Rosemount[™] 3051 Pressure Transmitter and 3051CF Series Flow Meter

with 4-20 mA HART®

Safety messages

A WARNING

Explosions

Explosions could result in death or serious injury.

Before connecting a communication device in an explosive atmosphere, ensure that the instruments are installed in accordance with intrinsically safe or non-incendive field wiring practices.

In an explosion-proof/flameproof installation, do not remove the transmitter covers when power is applied to the transmitter.

WARNING

Process leaks

Process leaks may cause harm or result in death.

To avoid process leaks, only use the O-ring designed to seal with the corresponding flange adapter.

A WARNING

Electrical shock

Electrical shock can result in death or serious injury.

Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

A WARNING

Physical access

Unauthorized personnel may potentially cause significant damage to and/or misconfiguration of end users' equipment. This could be intentional or unintentional and needs to be protected against.

Physical security is an important part of any security program and fundamental in protecting your system. Restrict physical access by unauthorized personnel to protect end users' assets. This is true for all systems used within the facility.

A WARNING

Refer to the *Product certifications* section of this Quick Start Guide documentation when using the RFID tag (option code Y3) for required installation conditions.

NOTICE

Conduit/cable entries

Unless otherwise marked, the conduit/cable entries in the housing enclosure use a $\frac{1}{2}$ -14 NPT form. Only use plugs, adapters, glands, or conduit with a compatible thread form when closing these entries.

Entries marked $\rm M20$ are M20 × 1.5 thread form. On devices with multiple conduit entries, all entries will have the same thread form.

When installing in a hazardous location, use only appropriately listed or Ex-certified plugs, glands, or adapters in cable/conduit entries.

Contents

About this guide	5
Mounting the transmitter	6
Rotate housing	14
Set the switches	15
Connect the wiring and power up	17
Verify configuration parameters	22
Trimming the transmitter	26
Safety Instrumented Systems (SIS)	28
Product certifications	29

1 About this guide

This guide provides basic installation guidelines for Rosemount 3051 Transmitters.

Refer to Rosemount 3051 Pressure Transmitter Manual for instructions about:

- configuration
- diagnostics
- maintenance
- service
- troubleshooting
- explosion-proof
- flameproof
- · intrinsically safe installations

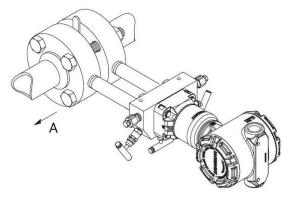
This guide and the referenced manual are also available on Emerson.com/qlobal.

2 Mounting the transmitter

A WARNING

Process connection temperatures above +185 °F (+85 °C) require a limited ambient temperature, reduced by a 1:1.5 ratio.

Consider process connection and ambient temperatures when installing the transmitter with hazardous location certifications. See <u>Table 2-1</u>.

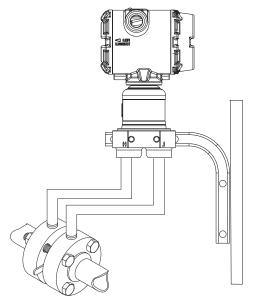

Table 2-1: Intrinsically Safe/Increased Safety

Process connection temperature	Maximum ambient temperature
-76 to +185 °F (-60 to +85 °C)	+158 °F (+70 °C)
+185 to +250 °F (+85 to +121 °C)	+158 to +60 °F (+70 to +16 °C) ⁽¹⁾

(1) Maximum ambient temperature is reduced by 1.5 degree for 1 degree temperature rise in the process connection temperature beyond +185 °F (+85 °C).

2.1 Mount the transmitter in a liquid flow application

Figure 2-1: Mounting the transmitter


A. Flow

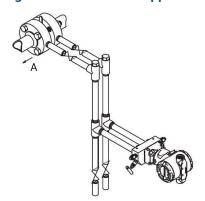
Procedure

- 1. Place taps to the side of the line.
- 2. Mount the transmitter beside or below the taps.

3. Mount the transmitter so that the drain/vent valves are oriented upward.

2.2 Mount the transmitter in a gas flow application

NOTICE

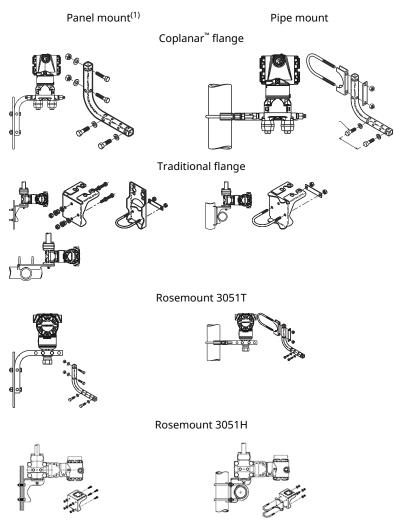

A bracket is required to support the transmitter and the ¼-inch tubing going into the transmitter.

Procedure

- 1. Place taps in the top or side of the line.
- 2. Mount the transmitter beside or above the taps.

2.3 Steam flow applications

Figure 2-2: Steam Flow Application

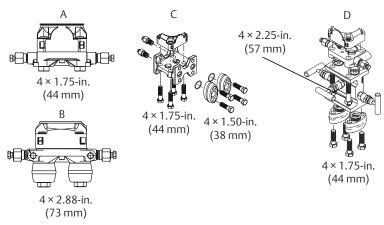

A. Flow

Procedure

- 1. Place taps to the side of the line.
- 2. Mount beside or below the taps.
- 3. Fill impulse lines with water.

2.4 Panel and pipe mount

Figure 2-3: Panel and Pipe Mounting


(1) 5/16 x 1½ panel bolts are customer-supplied.

2.5 Bolting considerations

If the transmitter installation requires assembly of the process flanges, manifolds, or flange adapters, use the following assembly guidelines to ensure a tight seal for optimal performance characteristics of the transmitters.

Use only bolts supplied with the transmitter or sold by Emerson as spare parts. Figure 2-4 illustrates common transmitter assemblies with the bolt length required for proper transmitter assembly.

Figure 2-4: Common Transmitter Assemblies

- A. Transmitter with Coplanar[™] flange
- B. Transmitter with Coplanar flange and optional flange adapters
- C. Transmitter with traditional flange and optional flange adapters
- D. Transmitter with Coplanar flange and optional manifold and flange adapters

Bolts are typically carbon steel or stainless steel. Confirm the material by viewing the markings on the head of the bolt and referencing <u>Table 2-2</u>. If bolt material is not shown in <u>Table 2-2</u>, contact your local Emerson representative for more information.

2.5.1 Install bolts

NOTICE

Carbon steel bolts do not require lubrication, and the stainless steel bolts are coated with a lubricant to ease installation. Do not apply any additional lubricant when installing either type of bolt.

Procedure

- 1. Finger-tighten the bolts.
- 2. Torque the bolts to the initial torque value using a crossing pattern.

Note

See Table 2-2 for torque values.

Torque the bolts to the final torque value using the same crossing pattern.

Note

See <u>Table 2-2</u> for torque values.

4. Verify the flange bolts are protruding through the isolator plate before applying pressure.

Table 2-2: Torque Values for the Flange and Flange Adapter Bolts

Bolt material	Head markings	Initial torque	Final torque
Carbon steel (CS)	(B7M)	300 in-lb	650 in-lb
Stainless steel (SST)	316 BSM 316 STM SW 316	150 in-lb	300 in-lb

2.6 O-rings with flange adapters

A WARNING

Failure to install proper flange adapter O-rings may cause process leaks, which can result in death or serious injury.

The two flange adapters are distinguished by unique O-ring grooves. Only use the O-ring that is designed for its specific flange adapter, as shown in <u>Figure 2-5</u>.

Figure 2-5: O-ring location: Rosemount 3051S/3051/2051

- A. Flange adapter
- B. O-ring
- C. PFTE-based profile (square)
- D. Elastomer profile (round)

Note

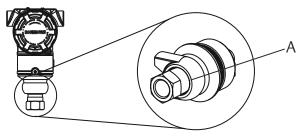
Whenever the flanges or adapters are removed, visually inspect the O-rings. Replace them if there are any signs of damage, such as nicks or cuts. If you replace the O-rings, re-torque the flange bolts and alignment screws after installation to compensate for seating of the PTFE O-ring.

2.7 Environmental seal for housing

For NEMA® 4X, IP66, and IP68 requirements, use thread sealing PTFE tape or paste on male threads of conduit to provide a water and dust tight seal. Consult factory if other ingress protection ratings are required.

For M20 threads, install conduit plugs to full thread engagement or until mechanical resistance is met.

2.8 In-line gauge transmitter orientation


The low side pressure port (atmospheric reference) on the in-line gauge transmitter is located in the neck of the transmitter, behind the housing.

The vent path is 360° around the transmitter between the housing and sensor. (See Figure 2-6.)

To allow fluids to drain away, keep the vent path free of any obstruction, including but not limited to:

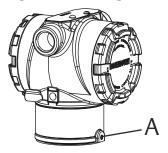
- paint
- dust
- lubrication

Figure 2-6: In-line Gauge Low Side Pressure Port

A. Pressure port location

3 Rotate housing

To improve field access to wiring or to better view the optional display:

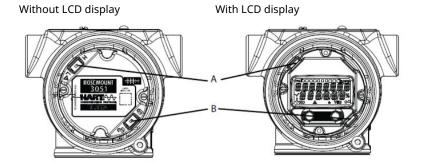

Procedure

- 1. Loosen the housing rotation set screw using a 5/64-inch hex wrench.
- 2. Turn the housing left or right up to a maximum of 180° from its original position.⁽¹⁾
- 3. Re-tighten the housing rotation set screw to a maximum of 7 in-lb when desired location is reached.

NOTICE

Over-rotating will damage the transmitter.

Figure 3-1: Housing Rotation


A. Housing rotation set screw (5/64 in.)

⁽¹⁾ Rosemount 3051C original position aligns with ${\tt H}$ side; Rosemount 3051T original position is the opposite side of the bracket holes.

4 Set the switches

Set **Alarm** and **Security** switch configuration before installation, as shown in Figure 4-1.

Figure 4-1: Electronics Board

- A. Alarm switch
- B. Security switch
- The Alarm switch sets the analog output alarm to high or low.
- Default Alarm is high.
- The **Security** switch allows () or prevents () any configuration of the transmitter.
- Default **Security** is **off** ().

To change the switch configuration:

Procedure

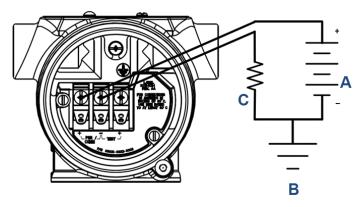
- 1. If the transmitter is installed, secure the loop, and remove power.
- 2. Remove the housing cover opposite the field terminal side.

WARNING

Do not remove the instrument cover in explosive atmospheres when the circuit is live.

3. Slide the **Security** and **Alarm** switches into the preferred position using a small screwdriver.

4. Reattach the transmitter cover.


▲ WARNING

The cover must be fully engaged to comply with explosion-proof requirements.

5 Connect the wiring and power up

<u>Figure 5-1</u> shows wiring connections necessary to power a Rosemount 3051 Transmitter and enable communications with a communication device.

Figure 5-1: Transmitter Wiring Diagrams

- A. Power supply
- B. Ground
- C. Resistor

Table 5-1: Power Supply and Resistance Needs by Communicator Type

Communicator	Power supply	Resistor
AMS Device Manager	≥ 16.6 Vdc	≥ 250 Ω
AMS Trex (HART®)	≥ 16.6 Vdc	≥ 250 Ω
AMS Trex (HART + pwr)	None	None
AMS Device Configurator Bluetooth [®] App	≥ 10.5 Vdc	None
Quick Service buttons	≥ 10.5 Vdc	None
Local operator interface (LOI)	≥ 10.5 Vdc	None

Resistance and power requirements vary based on the interface type used to communicate with the device. See <u>Table 5-1</u> for specific loop power and resistance needs.

To wire the transmitter:

Procedure

- 1. Remove the housing cover on the field terminals side.
- 2. Connect the positive lead to the "+" terminal (PWR/COMM) and the negative lead to the "-" terminal.
- 3. Ensure full contact with terminal block screw and washer. When using a direct wiring method, wrap wire clockwise to ensure it is in place when tightening the terminal block screw.

NOTICE

Emerson does not recommend using a pin or a ferrule wire, as the connection may be more susceptible to loosening over time or under vibration.

4. Ensure proper grounding.

NOTICE

It is important that the instrument cable shield:

Be trimmed close and insulated from touching the transmitter housing.

Be connected to the next shield if cable is routed through a junction box.

Be connected to a good earth ground at the power supply

Do not connect the powered signal wiring to the test terminals. Power could damage the test diode in the test connection. Use shielded twisted pair cable for best results. Use 24 AWG or larger wire and do not exceed 5,000 ft. (1500 m).

- 5. Plug and seal unused conduit connections.
- 6. If applicable, install wiring with a drip loop. Arrange the drip loop so the bottom is lower than the conduit connections and the transmitter housing.
- 7. Replace the housing cover.

NOTICE

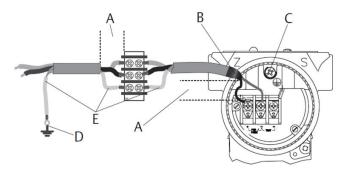
Installation of the transient protection terminal block does not provide transient protection unless the transmitter enclosure is properly grounded.

5.1 Ground signal wiring

A WARNING

Do not run signal wiring in conduit or open trays with power wiring or near heavy electrical equipment.

Grounding terminations are provided on the outside of the electronics housing and inside the terminal compartment. Use these terminations when transient protect terminal blocks are installed or to fulfill local regulations. See Step 2 for more information on how the cable shield should be grounded.


Procedure

1. Remove the field terminals housing cover.

2. Connect the wiring pair and ground as indicated in <u>Figure 5-2</u>. Ensure the wiring is:

- Trimmed close and insulated from touching the transmitter housing.
- Continuously connected to the termination point.
- Connected to a good earth ground at the power supply end.

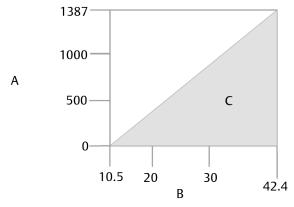
Figure 5-2: Wiring

- A. Minimize distance
- B. Trim shield and insulate
- C. Ground for transient protection
- D. Shield connected to power supply ground
- F. Insulate shield
- 3. Replace the housing cover.

NOTICE

Emerson recommends tightening the cover until there is no gap between the cover and the housing.

4. Plug and seal unused conduit connections.


5.2 Power supply for a 4-20 mA HART® communication device

The transmitter operates on 10.5 to 42.4 Vdc at the terminal. The DC power supply must provide power with less than two percent ripple. Loops with a 250 Ω resistance require a minimum of 16.6 V.

Note

The transmitter must have a minimum of 250 Ω to communicate with a communication device. If you are using a single power supply to power more than one transmitter, ensure the power supply used and the circuitry common to the transmitters do not have more than 20 Ω of impedance at 1200 Hz.

Figure 5-3: Load Limitation

Maximum loop resistance = $43.5 \times (power supply voltage - 10.5)$

- A. Load (Ω)
- B. Voltage (Vdc)
- C. Operating region

The total resistance load is the sum of the resistance of the signal leads and the load resistance of the controller, indicator, intrinsically safe (IS) barriers, and related pieces. If you use IS barriers, then include the resistance and voltage drop.

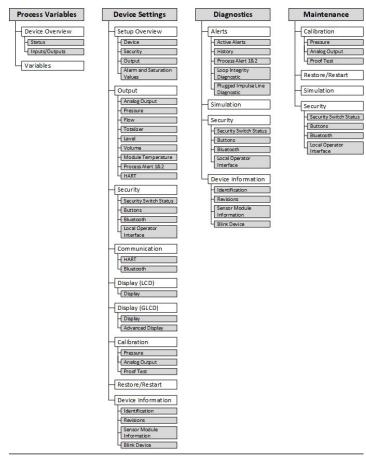
6 Verify configuration parameters

Emerson recommends verifying various configuration parameters prior to installing the transmitter into the process:

- Alarm and saturation levels
- Damping
- Process variables
- Range values
- Tag
- Transfer function
- Units

See Figure 6-1 for a full menu tree.

NOTICE


Emerson recommends installing the latest device driver (DD) to ensure full functionality. Download the latest DD at <u>Software & Drivers</u>.

Procedure

- Set alarm and saturation values: Device Settings → Setup Overview → Alarm and Saturation Values.
- 2. Set damping: **Device Settings** → **Setup Overview** → **Output**.
- 3. Set process variables:
 - Primary variable: Device Settings → Setup Overview → Output
 - Secondary/tertiary/quaternary variables: Device Settings → Communication → HART → Variable Mapping
- 4. Set range values: **Device Settings** → **Setup Overview** → **Output**.
- 5. Set tag: **Device Settings** → **Setup Overview** → **Device**.
- 6. Set transfer function: **Device Settings** \rightarrow **Setup Overview** \rightarrow **Output**.
- 7. Set units:
 - Pressure units: Device Settings → Setup Overview → Output

 Other units: Device Settings → Output → Pressure/Flow/ Totalizer/Level/Volume/Module Temperature → Setup

Figure 6-1: DD Menu Tree

6.1 Wireless configuration via Bluetooth® technology

6.1.1 Download AMS Device Configurator

Procedure

Download and install the AMS Device Configurator app from your preferred app store.

Note

If this is your first time opening AMS Device Configurator, then you may be asked to allow the application to access media on your device and to access your device's location. If prompted, select **Allow**.

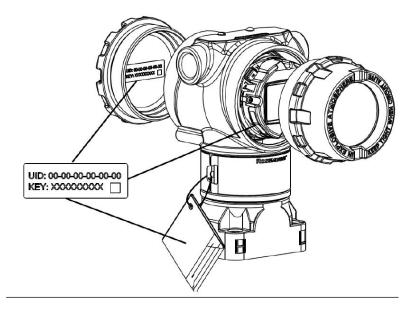
Figure 6-2: Emerson Application Icon

Related information

Bluetooth® Connectivity for Field Instrumentation

6.1.2 Configure via Bluetooth® wireless technology

Procedure


- Launch AMS Device Configurator.
 See AMS Device Configurator for Emerson Field Devices.
- 2. Select the device where you want to connect.
- 3. On first connection, enter the key for selected device.
- 4. At the top left, select the menu icon to navigate the desired device menu.

Bluetooth® UID and key

You can find the Unique Identifier (UID) and key on the disposable paper tag attached to:

- device
- terminal block cover
- display unit

Figure 6-3: Bluetooth Security Information

7 Trimming the transmitter

Note

Emerson ships transmitters fully calibrated per request or by the factory default of full scale (span = upper range limit).

7.1 Zero trim

A zero trim is a single-point adjustment used for compensating mounting position effects.

When performing a zero trim, ensure the equalizing valve is open and all wet legs are filled to the correct level.

There are two methods to compensate for mounting effects:

- Zero trim
- Using the transmitter zero adjustment buttons

The zero trim will affect the 4–20 mA value, the HART® Primary Variable (PV), and the display value.

7.1.1 Zero trim using communication device

Procedure

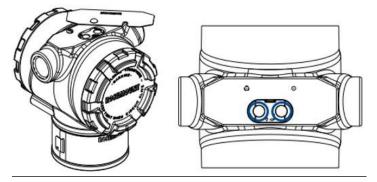
- Equalize or vent the transmitter and connect communication device.
- 2. Navigate to **Maintenance** → **Calibration** → **Pressure** → **Calibration** → **Zero Sensor Trim**.
- 3. Follow the commands to perform a zero trim.

7.1.2 Zero trim using Quick Service buttons

Procedure

- 1. Locate the external buttons under the top nameplate as shown in Figure 7-1.
- 2. Press either button to activate the menu.
- 3. Follow the on-screen prompt by pressing the other button.
- 4. Once on the *Quick Service Button* main menu, use the **Scroll** and **Enter** buttons to navigate to the **Zero** menu.

7.1.3 Zero trim using the transmitter zero adjustment buttons


You can use the transmitter zero adjustment buttons to set the Lower Range Value (LRV) to the pressure applied to the transmitter.

This adjustment will affect the 4–20 mA value only. To perform a rerange using the zero adjustment buttons:

Procedure

- 1. Loosen the certifications label screw and slide the label to expose the zero adjustment buttons.
- Set the 4 mA point by pressing the **Zero** button for two seconds. Verify the output is 4 mA.
 The optional LCD display will show ZERO PASS.

Figure 7-1: Zero Adjustment or Quick Service Buttons

8 Safety Instrumented Systems (SIS)

For safety certified installations, refer to the <u>Rosemount 3051</u> <u>Pressure Transmitter Manual</u> for installation procedure and system requirements.

9 Product certifications

9.1 European directive information

A copy of the EU Declaration of Conformity can be found at the end of the Quick Start Guide. The most recent revision of the EU Declaration of Conformity can be found at Emerson.com/global.

9.2 Federal Communication Commission (FCC) notice

This device complies with Part 15 of the Federal Communication Commission Rules.

Operation is subject to the following conditions: This device may not cause harmful interference; this device must accept any interference received, including interference that may cause undesired operation. This device must be installed to ensure a minimum antenna separation distance of 7.9 in. (20 cm) from all persons. Changes or modification to the equipment not expressly approved by Emerson could void the user's authority to operate the equipment.

9.3 Innovation, Science, and Economic Development (ISED) notice

This device contains license-exempt transmitter(s)/receiver(s) that comply with Innovation, Science, and Economic Development Canada's license-exempt RSS(s). Operation is subject to the following two conditions: This device may not cause interference. This device must accept any interference, including interference that may cause undesired operation of the device.

Cet appareil est conformé à la norme RSS-247 Industrie Canada exempt de licence. Son fonctionnement est soumis aux deux conditions suivantes: (1) cet appareil ne doit pas provoquer d'interférences et (2) cet appareil doit accepter toute interférence, y compris les interférences pouvant causer un mauvais fonctionnement du dispositif.

9.4 NCC notice

取得審驗證明之低功率射頻器材,非經核准,公司、商號或使用者均不得擅自變更頻率、加大功率或變更原設計之特性及功能。低功率射頻器材之使用不得影響飛航安全及干擾合法通信;經發現有干擾現象時,應立即停用,並改善至無干擾時方得繼續使用。前述合法通信,指依電信管理法規定作業之無線電通信。低功率射頻器材須忍受合法通信或工業、科學及醫療用電波輻

9.5 Ordinary location certification

As standard, the transmitter has been examined and tested to determine that the design meets the basic electrical, mechanical, and fire protection requirements by a Nationally Recognized Test Laboratory (NRTL) as accredited by the Federal Occupational Safety and Health Administration (OSHA).

9.5.1 Functional specifications

Pollution

degree

Altitude 16,404.2 ft. (5000 m) maximum

4

Humidity All models: 0 to 100 percent relative humidity

Supply voltage

(VMAX)

4-20 mA (HART®): 42.4 Vdc

FOUNDATION[™] Fieldbus, PROFIBUS[™] PA: 32 Vdc

Low power (HART): 28 Vdc

9.6 North America

9.6.1 E5 USA Explosion-proof (XP) and Dust-Ignitionproof (DIP)

Certificate FM16US0121

Range 1-5 (HART® only)

Standards FM 3600: 2018, FM 3615: 2018, FM 3616: 2011, FM 3810:

2005, ANSI/NEMA® 250: 2008

Markings XP: CL I, DIV 1, GP B, C, D, T5;

DIP: CL II, DIV 1, GP E, F, G; CL III; T5

 $(-50 \text{ °C} \le T_a \le +85 \text{ °C})$

Type 4X

Certificate 1053834

Ranges 1-6

Standards FM 3600: 2022, FM 3610: 2021, FM 3615: 2022, FM

3616: 2022, ANSI/UL 61010-1-2019 Third Edition, ANSI-

ISA-12.27.01-2022, ANSI/UL 50E (First Edition)

Markings XP: CL I, DIV 1, GP B, C, D T5;

Seal not required

DIP: CL II, DIV 1, GP E, F, G; CL III T5;

 $(-50 \text{ °C} \le T_a \le +[85 \text{ °C})$

Type 4X, IP 68

Optional: single seal

Specific Conditions for Use:

1. The Rosemount 3051 transmitter housing may contain aluminum and is considered a potential risk of ignition by impact or friction. Care must be taken during installation and use to prevent impact and friction.

- 2. Equipment evaluated for atmospheric pressure range between 80 kPa (0.8 bar) to 110 kPa (1.1 bar).
- 3. Process temperature limits shall be in accordance with 03031-1053.
- 4. Flameproof joints are not intended for repair.

9.6.2 I5 USA Intrinsic Safety (IS) and Nonincendive (NI)

Certificate FM16US0120X

Ranges 1-5 (HART® only)

Standards FM 3600: 2011, FM 3610: 2010, FM 3611: 2004, FM 3810:

2005, ANSI/NEMA 250: 2008

Markings IS: CL I, DIV 1, GP A, B, C, D T4

CL II, DIV 1, GP E, F, G; CL III

NI: CL 1, DIV 2, GP A, B, C, D; T4

HART: $(-50 \, ^{\circ}\text{C} \le T_a \le +70 \, ^{\circ}\text{C})$

FOUNDATION[™] Fieldbus/PROFIBUS[®]-PA: (-50 °C ≤ T_a ≤ +60

°C)

Install per 03031-1019.

Type 4X

Special Conditions for Safe Use (X):

- The Rosemount 3051 Transmitter housing contains aluminum and is considered a potential risk of ignition by impact or friction. Care must be taken into account during installation and use to prevent impact and friction.
- The Rosemount 3051 Transmitter with the transient terminal block (option code T1) will not pass the 500 Vrms dielectric strength test, and this must be taken into account during installation.

Certificate 1053834 Ranges 1-6

Standards FM 3600: 2022, FM 3610: 2018, FM 3611: 2021,

ANSI/UL 61010-1-2019 Third Edition, ANSI/UL 60079-0: 2017, ANSI/UL 60079-11: 2013, ANSI-ISA-12.27.01-2022,

ANSI/UL 50E (First Edition)

Markings IS: CL I GP ABCD T4

IS: CL II GP EFG; CL III T4 CL I ZN 0 AEx ia IIC T4 Ga NI: CL I DIV 2 GP ABCD T4

 $-76 \, ^{\circ}\text{F} \, (-60 \, ^{\circ}\text{C}) \le T_a \le 158 \, ^{\circ}\text{F} \, (70 \, ^{\circ}\text{F})$

Optional: single seal

Type 4X IP 68

INSTALL PER 03031-1024

Specific Conditions for Use

- 1. The Rosemount 3051 Transmitter housing contains aluminum and is considered a potential risk of ignition by impact or friction. Care must be taken into account during installation and use to prevent impact and friction.
- 2. The Rosemount 3051 Transmitter with the transient terminal block (option code T1) will not pass the 500 Vrms dielectric strength test, and this must be taken into account during installation.
- 3. Equipment evaluated for atmospheric pressure range between 80 kPa (0.8 bar) to 110 kPa (1.1 bar).
- 4. Maximum process temperature limits shall be in accordance with 03031-1053.

9.6.3 IE USA FISCO

Certificate FM16US0120X

Ranges 1-5

Standards FM 3600: 2011, FM 3610: 2010, FM 3611: 2004, FM 3810:

2005, ANSI/NEMA® 250: 2008

Markings IS: CL I, DIV 1, GP A, B, C, D T4;

CL II, DIV 1, GP E, F, G; CL III

 $-50 \, ^{\circ}\text{C} \le T_a \le +60 \, ^{\circ}\text{C}$

FISCO

Install per 03031-1019

Type 4X

Special Conditions for Safe Use (X):

 The Rosemount 3051 Transmitter housing contains aluminum and is considered a potential risk of ignition by impact or friction. Care must be taken into account during installation and use to prevent impact and friction.

Certificate 1053834

Standards FM 3600: 2022, FM 3610: 2018, FM 3611: 2021,

ANSI/UL 61010-1-2019 Third Edition, ANSI/UL 60079-0: 2017, ANSI/UL 60079-11: 2013, ANSI-ISA-12.27.01-2022,

ANSI/UL 50E (First Edition)

Markings IS: CL I GP ABCD T4

CL I ZN 0 AEx ia IIC T4 Ga

-60 °C ≤ T_a ≤ +70 °C

FISCO

Optional: single seal

Type 4X, IP 68

Install per 03031-1024.

Specific Conditions for Use

- The Rosemount 3051 Transmitter housing contains aluminum and is considered a potential risk of ignition by impact or friction. Care must be taken into account during installation and use to prevent impact and friction.
- 2. Equipment evaluated for atmospheric pressure range between 80 kPa (0.8 bar) to 110 kPa (1.1 bar).
- Process temperature limits shall be in accordance with 03031-1053.

9.6.4 C6 Canada Explosion-proof, Dust-Ignitionproof, Intrinsic Safety, and Nonincendive

Certificate 1053834

Standards CAN/CSA C22.2 No. 61010-1-12, CAN/CSA C22.2 No.

94.2-20, CSA C22.2 No. 25-17, CAN/CSA C22.2 No. 30:20, CAN/CSA C22.2 No. 213-17 +UPD1 (2018)+UPD2 (2019)+UPD3 (2021), CAN/CSA C22.2 No. 60079-0:19, CAN/CSA C22.2 No. 60079-1:14,

ANSI-ISA-12.27.01-2021

Markings XP: CL I, DIV 1, GP B, C, D T5

Ex db IIC T5 Gb

Seal not required

 $(-50 \text{ °C} \le T_a \le +85 \text{ °C});$

DIP: CL II, DIV 1, GP E, F, G; CL III T5;

T5: $-50 \,^{\circ}\text{C} \le \text{T}_a \le +85 \,^{\circ}\text{C}$

IS: CL I DIV 2 GP ABCD T4

T4: -60 °C ≤ Ta ≤ +70 °C;

Install per 03031-1024 (IS/NI only)

Single seal - temp limits 03031-1053

Type 4X, IP68

Specific Conditions for Use:

- 1. The Rosemount 3051 Transmitter housing contains aluminum and is considered a potential risk of ignition by impact or friction. Care must be taken into account during installation and use to prevent impact and friction.
- 2. Equipment evaluated for atmospheric pressure range between 80 kPa (0.8 bar) to 110 kPa (1.1 bar).
- The Rosemount 3051 Transmitter with the transient terminal block (option code T1) will not pass the 500 Vrms dielectric strength test, and this must be taken into account during installation.
- 4. Flameproof joints are not intended for repair.

9.6.5 E6 Canada Explosion-proof, Dust-Ignitionproof, and Division 2

Certificate 1053834

Standards CAN/CSA C22.2 No. 61010-1-12, CAN/CSA C22.2 No.

94.2-20, CSA C22.2 No. 25-17, CAN/CSA C22.2 No. 30:20, CAN/CSA C22.2 No. 213-17 +UPD1 (2018) +UPD2 (2019) +UPD3 (2021), CAN/CSA C22.2 No. 60079-0:19, CAN/CSA

C22.2 No. 60079-1:16, ANSI-ISA-12.27.01-2021

Markings XP: CL I, DIV 1, GP B, C, D T5

Ex db IIC T5 Gb

Seal not required

DIP: CL II, DIV 1, GP E, F, G; CL III T5;

T5: $-50 \, ^{\circ}\text{C} \le T_a \le +85 \, ^{\circ}\text{C}$

NI: CL I DIV 2 GP ABCD T4

T4: -60 °C \leq Ta \leq +70 °C;

Single seal - temp limits per 03031-1053

Type 4X, IP68

Specific Conditions for Use:

 The Rosemount 3051 Transmitter housing contains aluminum and is considered a potential risk of ignition by impact or friction. Care must be taken into account during installation and use to prevent impact and friction.

- 2. Equipment evaluated for atmospheric pressure range between 80 kPa (0.8 bar) to 110 kPa (1.1 bar).
- 3. Flameproof joints are not intended for repair.

9.7 Europe

9.7.1 E8 ATEX Flameproof and Dust

ATEX Certificate KEMA00ATEX2013X (Ex db); Baseefa11ATEX0275X (Ex ta)

Standards Used EN IEC 60079-0: 2018, EN 60079-1: 2014, EN 60079-26:

2015, EN 60079-31: 2014

Markings

😰 II ½ G Ex db IIC T6...T4 Ga/Gb T6

T6: $-60 \, ^{\circ}\text{C} \le \text{T}_{\text{a}} \le +70 \, ^{\circ}\text{C}$

T4/T5: $-60 \, ^{\circ}\text{C} \le T_a \le +80 \, ^{\circ}\text{C};$

ᢄ II 1 D Ex ta IIIC T₅₀₀105 °C Da

-20 °C ≤ T_a ≤ +85 °C

Table 9-1: Process Temperature

Temperature class	Process connection temperature	Ambient temperature
Т6	-60 °C to +70 °C	-60 °C to +70 °C
T5	-60 °C to +80 °C	-60 °C to +80 °C
T4	-60 °C to +120 °C	-60 °C to +80 °C

Special Conditions for Safe Use (X):

This device contains a thin wall diaphragm less than

 mm thick that forms a boundary between Category
 (process connection) and Category 2G (all other parts of the equipment). The model code and datasheet are to be consulted for details of the diaphragm material.
 During installation, maintenance, and use, the environmental conditions to which the diaphragm will be subjected shall

be taken into account. The manufacturer's instructions for installation and maintenance shall be followed in detail to assure safety during its expected lifetime.

- 2. Flameproof joints are not intended to be repaired.
- Non-standard paint options may cause risk from electrostatic discharge. Avoid installations that could cause electrostatic build-up on painted surfaces and only clean the painted surfaces with a damp cloth. If paint is ordered through a special option code, contact the manufacturer for more information.
- 4. Some variants of the equipment have reduced markings on the nameplate. Refer to the Certificate for full equipment marking.
- 5. Variants with a paint finish must not be installed in a dustladen airflow.

9.7.2 I1 ATEX Intrinsic Safety and Dust

Certificate BAS97ATEX1089X; Baseefa11ATEX0275X

Standards EN IEC 60079-0: 2018, EN60079-11: 2012, EN60079-31:

2014

Markings

IS: 🐼 II 1 G Ex ia IIC T4 Ga

 $HART^{\otimes}$: -60 °C $\leq T_a \leq$ +70 °C

Fieldbus/PROFIBUS®: -60 °C ≤ T_a ≤ +60 °C

Dust: 🕼 II 1 D Ex ta IIIC T₅₀₀ 105 °C Da

-20 °C ≤ T_a ≤ +85 °C

Table 9-2: Input Parameters

	HART	Fieldbus/PROFIBUS
Voltage U _i	30 V	30 V
Current I _i	200 mA	300 mA
Power P _i	1.0 W	1.3 W
Capacitance C _i	0.012 μF	0 μF
Inductance L _i	0 mH	0 mH

Specific Conditions of Use (X):

 The apparatus is not capable of withstanding the 500 V insulation test required by clause 6.3.12 of EN60079-11: 2012. This must be taken into account when installing the apparatus.

- The enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however, care must be taken to protect it from impact or abrasion if located in Zone 0.
- Some variants of the equipment have reduced markings on the nameplate. Refer to the Certificate for full equipment marking.
- 4. Non-standard paint options may cause risk from electrostatic discharge. Avoid installations that could cause electrostatic build-up on painted surfaces and only clean the painted surfaces with a damp cloth. If paint is ordered through a special option code, contact the manufacturer for more information.

9.7.3 IA ATEX FISCO

Certificate BAS97ATEX1089X

Standards EN IEC 60079-0: 2018, EN60079-11: 2012

Markings 💿 II 1 G Ex ia IIC T4 Ga

 $-60 \,^{\circ}\text{C} \leq T_a \leq +60 \,^{\circ}\text{C}$

Table 9-3: Input parameters

	Fieldbus/PROFIBUS®
Voltage U _i	17.5 V
Current I _i	380 mA
Power P _i	5.32 W
Capacitance C _i	≤ 5 nF
Inductance L _i	≤ 10 µH

Specific Conditions for Safe Use (X):

- The apparatus is not capable of withstanding the 500 V insulation test required by clause 6.3.12 of EN60079-11: 2012. This must be taken into account when installing the apparatus.
- 2. The enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion if located in Zone 0.

Some variants of the equipment have reduced markings on the nameplate. Refer to the Certificate for full equipment marking.

9.7.4 N1 ATEX Type n and Dust

Certificate BAS00ATEX3105X; Baseefa11ATEX0275X

Standards EN IEC 60079-0: 2018, EN60079-15: 2010, EN60079-31:

2014

Markings (x) II 3 G Ex nA IIC T5 Gc

 $-40 \, ^{\circ}\text{C} \leq \text{T}_{a} \leq +70 \, ^{\circ}\text{C};$

☑ II 1 D Ex ta IIIC T₅₀₀ 105 °C Da

-20 °C ≤ T_a ≤ +85 °C

Specific Conditions for Safe Use (X):

- 1. The apparatus is not capable of withstanding the 500 V insulation test required by EN 60079-15: 2010. This must be taken into account when installing the apparatus.
- 2. The enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however, care must be taken to protect it from impact or abrasion if located in Zone 0.
- 3. Variants with a paint finish must not be installed in a dustladen airflow.
- 4. Some variants of the equipment have reduced markings on the nameplate. Refer to the Certificate for full equipment marking.

9.8 International

9.8.1 E7 IECEx Flameproof and Dust

Certificate IECEx KEM 09.0034X; IECEx BAS 10.0034X

Standards IEC 60079-0: 2017, IEC 60079-1: 2014-06, IEC 60079-26:

2014-10, IEC 60079-31: 2013

Markings Ex db IIC T6...T4 Ga/Gb

T6: -60 °C \leq T_a \leq +70 °C;

T4/T5: -60 °C \leq T_a \leq +80 °C;

Ex ta IIIC T₅₀₀105 °C Da

 $-20 \, ^{\circ}\text{C} \le \text{T}_a \le +85 \, ^{\circ}\text{C}$

Table 9-4: Proces	s Temperature
--------------------------	---------------

Temperature class	Process connection temperature	
Т6	-60 °C to +70 °C	
T5	-60 °C to +80 °C	
T4	-60 °C to +80 °C	

Specific Conditions of Use:

- 1. This device contains a thin wall diaphragm less than 1 mm thick that forms a boundary between EPL Ga (process connection) and EPL Gb (all other parts of the equipment). The model code and datasheet are to be consulted for details of the diaphragm material. During installation, maintenance, and use, the environmental conditions to which the diaphragm will be subjected shall be taken into account. The manufacturer's instructions for installation and maintenance shall be followed in detail to assure safety during its expected lifetime.
- 2. Flameproof joints are not intended to be repaired.
- Non-standard paint options may cause risk from electrostatic discharge. Avoid installations that could cause electrostatic build-up on painted surfaces and only clean the painted surfaces with a damp cloth. If paint is ordered through a special option code, contact the manufacturer for more information.
- 4. Some variants of the equipment have reduced markings on the nameplate. Refer to the Certificate for full equipment marking.

9.8.2 I7 IECEx Intrinsic Safety

Certificate IECEx BAS 09.0076X

Standards IEC 60079-0: 2017, IEC60079-11: 2011

Markings Ex ia IIC T4 Ga

 $HART^{\mathbb{R}}$: -60 °C $\leq T_a \leq$ +70 °C

Fieldbus/PROFIBUS®: -60 °C ≤ T_a ≤ +60 °C

Table 9-5: Input Parameters

	HART	Fieldbus/PROFIBUS
Voltage U _i	30 V	30 V
Current I _i	200 mA	300 mA

Table 9-5: Input Parameters (continued)

	HART	Fieldbus/PROFIBUS
Power P _i	1.0 W	1.3 W
Capacitance C _i	0.012 μF	0 μF
Inductance L _i	0 mH	0 mH

Specific Conditions of Use:

- 1. If the apparatus is fitted with an optional 90 V transient suppressor, it is not capable of withstanding the 500 V insulation test required by clause 6.3.12 of IEC 60079-11. This must be taken into account when installing the apparatus.
- 2. The enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however, care must be taken to protect it from impact or abrasion if located in Zone 0.

IECEx Mining (Special A0259)

Certificate IECEx TSA 14.0001X

Standards IEC 60079-0: 2011, IEC 60079-11: 2011

Markings Ex ia I Ma (-60 °C \leq T_a \leq +70 °C)

Table 9-6: Input Parameters

	HART	Fieldbus/ PROFIBUS	FISCO
Voltage U _i	30 V	30 V	17.5 V
Current I _i	200 mA	300 mA	380 mA
Power P _i	0.9 W	1.3 W	5.32 W
Capacitance C _i	0.012 μF	0 μF	< 5 nF
Inductance L _i	0 mH	0 mH	< 10 µH

Specific Conditions of Use:

- 1. If the apparatus is fitted with an optional 90 V transient suppressor, it is not capable of withstanding the 500 V insulation test required by IEC60079-11. This must be taken into account when installing the apparatus.
- 2. It is a condition of safe use that the above input parameters shall be taken into account during installation.

3. It is a condition of manufacture that only the apparatus fitted with housing, covers, and sensor module housing made out of stainless steel are used in Group 1 applications.

9.8.3 IG IECEX FISCO

Certificate IECEx BAS 09.0076X

Standards IEC 60079-0: 2017, IEC60079-11: 2011

Markings Ex ia IIC T4 Ga

-60 °C ≤ T_a ≤ +60 °C

Table 9-7: Input Parameters

	Fieldbus/PROFIBUS®
Voltage U _i	17.5 V
Current I _i	380 mA
Power P _i	5.32 W
Capacitance C _i	≤ 5 nF
Inductance L _i	≤ 10 µH

Specific Conditions for Safe Use:

- 1. If the apparatus is fitted with an optional 90 V transient suppressor, it is not capable of withstanding the 500 V insulation test required by clause 6.3.12 of IEC 60079-11. This must be taken into account when installing the apparatus.
- The enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however, care must be taken to protect it from impact or abrasion if located in Zone 0.

9.8.4 N7 IECEx Type n

Certificate IECEx BAS 09.0077X

 Standards
 IEC60079-0: 2017, IEC60079-15: 2010

 Markings
 Ex nA IIC T5 Gc (-40 °C \leq T_a \leq +70 °C)

Specific Condition for Safe Use (X):

1. The apparatus is not capable of withstanding the 500 V insulation test required by clause 6.5.1 of IEC 60079-15. This must be taken into account when installing the apparatus.

9.9 Brazil

9.9.1 E2 Brazil Flameproof

Certificate UL-BR 13.0643X

Standards ABNT NBR IEC 60079-0: 2013; ABNT NBR IEC 60079-1:

2016; ABNT NBR IEC 60079-26: 2016

Markings Ex db IIC T6...T4 Ga/Gb

T6: -60 °C \leq T_a \leq +70 °C

T4/T5: -60 °C \leq T_a \leq +80 °C

Special Conditions for Safe Use (X):

- This device contains a thin wall diaphragm with less than 1 mm thickness that forms a boundary between zone 0 (process connection) and zone 1 (all other parts of the equipment).
 The model code and datasheet are to be consulted for details of the diaphragm material. Installation, maintenance, and use shall take into account the environmental conditions to which the diaphragm will be subjected. The manufacturer's instructions for installation and maintenance shall be followed in detail to assure safety during its expected lifetime.
- 2. Flameproof joints are not intended to be repaired.
- Non-standard paint options may cause risk from electrostatic discharge. Avoid installations that could cause electrostatic build-up on painted surfaces and only clean the painted surfaces with a damp cloth. If paint is ordered through a special option code, contact the manufacturer for more information.

9.9.2 I2 Brazil Intrinsic Safety

Certificate UL-BR 13.0584X

Standards ABNT NBR IEC60079-0: 2013, ABNT NBR IEC60079-11:

2013

Markings HART[®]: Ex ia IIC T5/T4 Ga, T5 (-60 °C \leq T_a \leq +40 °C), T4

 $(-60 \text{ °C} \le T_a \le +70 \text{ °C})$

Fieldbus/PROFIBUS®: Ex ia IIC T4 Ga (-60 °C \leq T_a \leq +60 °C)

Table 9-8: Input Parameters

	HART	Fieldbus/PROFIBUS
Voltage U _i	30 V	30 V

Table 9-8: Inp	ut Parameters	(continued)
----------------	---------------	-------------

	HART	Fieldbus/PROFIBUS
Current I _i	200 mA	300 mA
Power P _i	0.9 W	1.3 W
Capacitance C _i	0.012 μF	0 μF
Inductance L _i	0 mH	0 mH

Special Conditions for Safe Use (X):

- 1. If the equipment is fitted with an optional 90 V transient suppressor, it is not capable of withstanding the 500 V insulation test required by ABNT NBR IRC 60079-11. This must be taken into account when installing the equipment.
- The enclosure may be made of aluminum alloy and given protective polyurethane paint finish; however, care must be taken to protect it from impact or abrasion if equipment requires EPL Ga.

9.9.3 IB Brazil FISCO

Certificate UL-BR 13.0584X

Standards ABNT NBR IEC60079-0: 2013, ABNT NBR IEC60079-11:

2013

Markings Ex ia IIC T4 Ga (-60 °C \leq T_a \leq +60 °C)

Table 9-9: Input Parameters

	FISCO
Voltage U _i	17.5 V
Current I _i	380 mA
Power P _i	5.32 W
Capacitance C _i	≤ 5 nF
Inductance L _i	≤ 10 µH

Special Conditions for Safe Use (X):

 If the equipment is fitted with an optional 90 V transient suppressor, it is not capable of withstanding the 500 V insulation test required by ABNT NBR IRC 60079-11. This must be taken into account when installing the equipment.

2. The enclosure may be made of aluminum alloy and given protective polyurethane paint finish; however, care must be taken to protect it from impact or abrasion if equipment requires EPL Ga.

9.10 China

9.10.1 E3 China Flameproof

Certificate GYJ24.1006X [Transmitters]; GYJ20.1486X [Flow meters]

Standards GB/T 3836.1-2021, GB/T 3836.2-2021, GB/T

3836.20-2021, GB/T 3836.31-2021

Markings 3051 Series: Ex db IIC T6···T4 Ga/Gb, Ex ta IIIC T200

105 °C Da (-20 °C ≤ Ta ≤ +85 °C)

3051CF Series: Ex d IIC T6~T4 Ga/Gb

9.10.2 I3 China Intrinsic Safety

Certificate GYJ23.1139X; GYJ20.1488X [Flow meters]

Standards GB/T 3836.1-2021, GB/T 3836.4-2021, GB/T 3836.31-2021

Markings 3051 Series: Ex ia IIC T4 Ga, Ex ta IIIC T₅₀₀ 105 °C Da

3051CF Series: Ex ia IIC T4 Ga, Ex ta IIIC T₅₀₀ 105 °C Da

9.10.3 N3 China Type n

Certificate GYJ20.1110X

Standards GB/T 3836.1-2021, GB/T 3836.3-2021

Markings Ex ec IIC T5 Gc

9.11 Japan

9.11.1 E4 Japan Flameproof

Certificate CML20JPN1098X

Markings Ex db IIC T6...T4 Ga/Gb, T6 (-60 °C ≤ Ta ≤ +70 °C), T5/T4

 $(-60 \, ^{\circ}\text{C} \le \text{Ta} \le +80 \, ^{\circ}\text{C})$

Special Conditions for Safe Use (X):

 This device contains a thin wall diaphragm less than 1 mm thick that forms a boundary between EPL Ga (process connection) and EPL Gb (all other parts of the equipment). The model code and datasheet are to be consulted for details of the diaphragm material. During installation, maintenance, and use, the environmental conditions to which the diaphragm will

be subjected shall be taken into account. The manufacturer's instructions for installation and maintenance shall be followed in detail to assure safety during its expected lifetime.

- 2. Flameproof joints are not intended to be repaired.
- Non-standard paint options may cause risk from electrostatic discharge. Avoid installations that could cause electrostatic build-up on painted surfaces and only clean the painted surfaces with a damp cloth. If paint is ordered through a special option code, contact the manufacturer for more information.

9.12 Republic of Korea

9.12.1 EP Republic of Korea Flameproof

Certificate 11-KB4BO-0188X [Manufacturing Singapore], 19-

KA4BO-079X [Manufacturing USA]

Markings Ex d IIC T6...T4 Ga/Gb

9.12.2 IP Republic of Korea Intrinsic Safety

Certificate 13-KB4BO-0203X [HART® – Manufacturing USA], 13-

KB4BO-0204X [Fieldbus – Manufacturing USA], 10-KB4BO-0138X [HART – Manufacturing Singapore], 13-KB4BO-0206X [Fieldbus – Manufacturing Singapore] 18-KA4BO-0354X [HART – Manufacturing USA], 18-KA4BO-0355X [Fieldbus – Manufacturing USA]

Markings Ex ia IIC T5/T4 (HART): Ex ia IIC T4 (Fieldbus)

9.13 Combinations

K2 Combination of E2 and I2

K5 Combination of E5 and I5

K6 Combination of C6, E8, and I1

K7 Combination of E7, I7, and N7

K8 Combination of E8, I1, and N1

KB Combination of E5, I5, and C6

KD Combination of E8, I1, E5, I5, and C6

KM Combination of EM and IM

KP Combination of EP and IP

9.14 Additional certifications

9.14.1 SBS American Bureau of Shipping (ABS) Type Approval

Certificate 18-HS1814795-PDA

Intended use Marine and offshore applications – Measurement of

either gauge or absolute pressure for liquid, gas, and

vapor.

9.14.2 SBV Bureau Veritas (BV) Type Approval

Certificate 23155

Requirements Bureau Veritas rules for the classification of steel

ships

Application Class notations: AUT-UMS, AUT-CCS, AUT-PORT, and

AUT-IMS; Pressure transmitter type 3051 cannot be

installed on diesel engines.

9.14.3 SDN Det Norske Veritas (DNV) Type Approval

Certificate TAA000004F

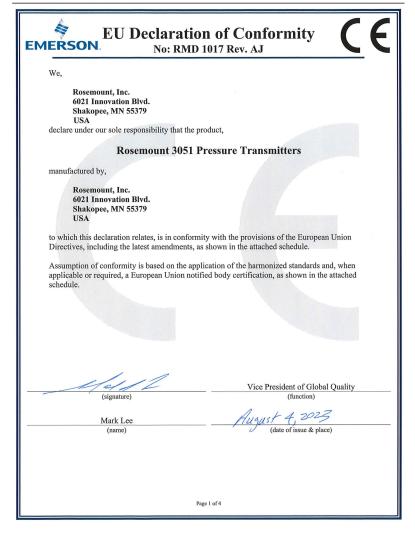
Intended Use DNV GL rules for classification - ships and offshore

units

Application Table 9-10: Location Classes

Temperature	D
Humidity	В
Vibration	A
Electromagnetic compatibility (EMC)	В
Enclosure	D

9.14.4 SLL Lloyds Register (LR) Type Approval


Certificate LR21173788TA

Application Environmental categories ENV1, ENV2, ENV3, and ENV5

9.14.5 C5 Custody Transfer - Measurement Canada Accuracy Approval

Certificate AG-0226; AG-0454; AG-0477

9.15 EU Declaration of Conformity

EU Declaration of Conformity No: RMD 1017 Rev. AJ

EMC Directive (2014/30/EU)

Harmonized Standards: EN 61326-1:2013, EN 61326-2-3:2013

Radio Equipment Directive (RED) (2014/53/EU)

Harmonized Standards: EN 300 328 V2.2.2

EN 301 489-1 V2.2.0

EN 301 489-17 V3.2.4: 2020 EN 61010-1: 2010 EN 62311: 2020

PED Directive (2014/68/EU)

Rosemount 3051CA4; 3051CD2, 3, 4, 5; 3051HD2, 3, 4, 5; (also with P9 option)

QS Certificate of Assessment - Certificate No. 12698-2018-CE-USA-ACCREDIA

Module H Conformity Assessment Other Standards Used: ANSI/ISA61010-1:2004

All other Rosemount 3051 Pressure Transmitters

Sound Engineering Practice

Transmitter Attachments: Diaphragm Seal, Process Flange, or Manifold

Sound Engineering Practice

Rosemount 3051CFx DP Flowmeters

See DSI 1000 Declaration of Conformity

RoHS Directive (2011/65/EU)

Model 3051 Pressure Transmitters

Harmonized standard: EN IEC 63000:2018

Does not apply to the following options:

- Wireless output code X
- Low power output code M

Page 2 of 4

EU Declaration of Conformity No: RMD 1017 Rev. AJ

ATEX Directive (2014/34/EU)

BAS97ATEX1089X - Intrinsic Safety

Equipment Group II Category 1 G Ex ia IIC T5/T4 Ga Harmonized Standards Used: EN IEC 60079-0: 2018, EN 60079-11: 2012

BAS00ATEX3105X - Type n

Equipment Group II Category 3 G Ex nA IIC T5 Ge Harmonized Standards Used: EN IEC 60079-0: 2018, EN 60079-15: 2010

Baseefa11ATEX0275X - Dust

Equipment Group II Category 1 D Ex ta IIIC T₅₀₀ 105 °C Da Harmonized Standards Used: EN IEC 60079-0: 2018, EN 60079-31: 2014

KEMA00ATEX2013X - Flameproof

Equipment Group II Category 1/2 G Ex db IIC T6...T4 Ga/Gb Harmonized Standards Used: EN IEC 60079-0: 2018, EN 60079-1: 2014, EN 60079-26: 2015

Page 3 of 4

PED Notified Body

DNV GL Business Assurance Italia S.r.l. [Notified Body Number: 0496] Via Energy Park, 14, N-20871 Vimercate (MB), Italy

ATEX Notified Bodies

DEKRA [Notified Body Number: 0344] Utrechtseweg 310, 6812 AR Arnhem P.O. Box 5185, 6802 ED Arnhem The Netherlands Postbank 6794687

SGS FIMKO OY [Notified Body Number: 0598] Takomotie 8 FI-00380 Helsinki, Finland

ATEX Notified Body for Quality Assurance

SGS FIMKO OY [Notified Body Number: 0598] Takomotie 8 FI-00380 Helsinki, Finland

Page 4 of 4

9.16 China RoHS

含有China RoHS 管控機局超过最大浓度限值的部件型号列表 3051 List of 3051 Parts with China RoHS Concentration above MCVs

	有書物质 / Hazardous Substances					
部件名称 Part Name	铅 Lead (Pb)	录 Mercury (Hg)	ffi Cadmium (Cd)	大价格 Hexavalent Chromium (Cr +6)	多狭联苯 Polybrominated biphenyls (PBB)	多漢 東苯醛 Polybrominated diphenyl ethers (PBDE)
电子组件 Electronics Assembly	Х	0	0	0	0	0
壳体组件 Housing Assembly	0	0	0	0	0	0
传感器组件 Sensor Assembly	Х	0	0	0	0	0

本表格系依据SJT11964的规定而制作。

X: 意为在该部件所使用的所有均原材料里,至少有一类均质材料中该有害物质的含量高于GBT 26572所规定的限量要求。 X: Indicate that said hazardous substance contained in at least one of the formageneous materials used for this part is above the firm requirement of GBT 26572.

部件名称 Part Name	组载各件说明 Spare Parts Descriptions for Assemblies
电子组件 Electronics Assembly	电子线路板组件 Electronic Board Assemblies 端子块组件 Termin al Block Assemblies 升级套件 Upgrade Kits 液晶显示屏或本地操作系面 LCD or LOI Display
壳体组件 Housing Assembly	电子外壳 Electrical Housing
传感器组件 Sensor Assembly	传感器模块 Sensor Module

9.17 Y3 ATEX/IECEx RFID tag approvals

Certificate IECEx EPS 15.0042X, EPS 15 ATEX 1 1011 X

Markings II 2G Ex ia IIC T6/T4 Gb, II 2D Ex ia IIC T80/T130C

Db

This table is proposed in accordance with the provision of SWT11364.

O. 度为该结件的符合均氮材料中该有害物质的含量均低于GBT 26072年规定的限量要求。 O. Indicate that said hazardous substance in all of the homogeneous materials for this part is below the limit requirement of GBT 26072.

Conditions of certification

Maximum operating temperature: -58 °F (-50 °C) to +158 °F (+70 °C)

The RFID tags shall never be exposed to high electromagnetic field strengths according to IEC 60079-14.

Electrostatic charges shall be avoided. The tags shall never be used next to strong charge generating processes.

A WARNING

Additional warnings

The plastic enclosure may present a potential electrostatic ignition hazard.

RFID tag has limitations in ambient temperature and zone installation areas (Zones 1 & 21) as compared to the gauge.

Quick Start Guide 00825-0100-4007, Rev. HK November 2024

For more information: Emerson.com/global

©2024 Emerson. All rights reserved.

Emerson Terms and Conditions of Sale are available upon request. The Emerson logo is a trademark and service mark of Emerson Electric Co. Rosemount is a mark of one of the Emerson family of companies. All other marks are the property of their respective owners.

The "Bluetooth" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of such marks by Emerson is under license.

