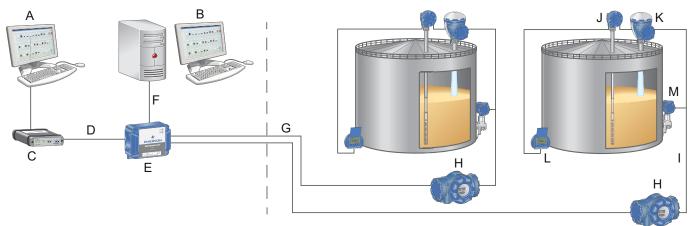
Rosemount[™] 2460 System-Hub

für Tankmess-Systeme

Übertragung von Tankmessdaten an Rosemount TankMaster™, Host- und Prozessleitsysteme

- Schnelle Datenaktualisierung
- Unterstützung von bis zu 64 Tanks
- Skalierbare Optionen für praktisch alle Systemgrößen
- Bestandsberechnungen in Echtzeit mit API-Standardnettovolumen
- Flexible und konfigurierbare Konnektivität mit mehreren Ports
- Instrumentierungs- und Systemredundanz
- Drittanbieter-Emulation durch Datenübernahme von Enraf-®, Varec-® und Sakura-Instrumenten



Effiziente Aktualisierung der wichtigsten Online-Tankdaten

Der Rosemount 2460 System-Hub ist ein Datenkonzentrator, der ständig Daten von Feldgeräten wie Radar-Füllstandsmessgeräten, Druck- und Temperaturmessgeräten abfragt und speichert. Die von einem oder mehreren Tanks gemessenen und berechneten Daten werden über den Rosemount 2410 Tank Hub zum Pufferspeicher des System-Hubs weitergeleitet. Sobald eine entsprechende Anfrage eingeht, kann der System-Hub sofort Daten von einer Gruppe von Tanks an einen TankMaster-PC oder ein Hostsystem senden.

Der System-Hub unterstützt auch den Anschluss anderer Tankmessinstrumente wie z. B. TankRadar[™] Pro und TankRadar Rex Messgeräte. Darüber hinaus kann es verwendet werden, um Geräte anderer Hersteller wie Honeywell[®] Enraf, Whessoe etc. zu verbinden

Abbildung 1: Systemübersicht

- A. TankMaster PC
- B. Hostsystem
- C. Modem
- D. Modbus RTU
- E. Rosemount 2460 System-Hub
- F. Modbus® RTU/TCP
- G. Feldbus
- H. Rosemount 2410 Tank-Hub
- I. Tankbus
- J. Rosemount 2240S Temperaturmessumformer mit Mehrfacheingang
- K. Rosemount 5900S Radar-Füllstandsmessgerät
- L. Rosemount 2230 Grafischer Feldanzeiger
- M. Rosemount 3051S Druckmessumformer

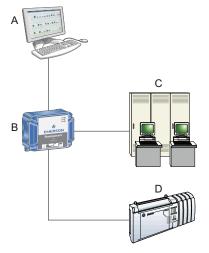
Inhalt

Effiziente Aktualisierung der wichtigsten Online-Tankdaten	2
Bestellinformationen	
Spezifikationen	
Produktzulassungen	
Maßzeichnungen	

Konfigurierbare Konnektivität mehrerer Ports

Der Rosemount 2460 verfügt über 8 Steckplätze für Kommunikations-Schnittstellenkarten. Diese Platinen können einzeln für die Kommunikation mit Hosts oder Feldgeräten konfiguriert werden. Der Rosemount 2460 unterstützt eine Reihe von Standards für Host-Kommunikationsschnittstellen wie Ethernet, TRL2, RS485 und RS232. Für die Feldkommunikation werden TRL2 und RS485 sowie andere Standards unterstützt, wie z. B. Enraf BPM und Digital Current Loop (Whessoe).

Modbus TCP-Kommunikation zum Host


Einer der drei Ethernet-Ports des System-Hubs wird für die Modbus TCP-Verbindung mit Hostsystemen verwendet. Durch einfaches Verbinden des System-Hubs mit dem vorhandenen LAN-Netzwerk wird die Kommunikation über Ethernet hergestellt:

- Einfacher Zugriff, keine speziellen Konverter erforderlich
- Schnelle Kommunikation
- Keine bestimmte Verkabelung erforderlich
- Kann mit TankMaster oder anderen Hosts verbunden werden

Benutzerdefiniertes Modbus Mapping

Der Rosemount 2460 kann auf einfache Weise in bestehende Hostsysteme integriert werden, da er so konfiguriert werden kann, dass er der bestehenden Wertzuordnung des aktuellen Systems entspricht. Er bietet Flexibilität beim Austausch älterer Geräte, da er so konfiguriert werden kann, dass er mit dem alten Gerät übereinstimmt, ohne das Hostsystem zu konfigurieren.

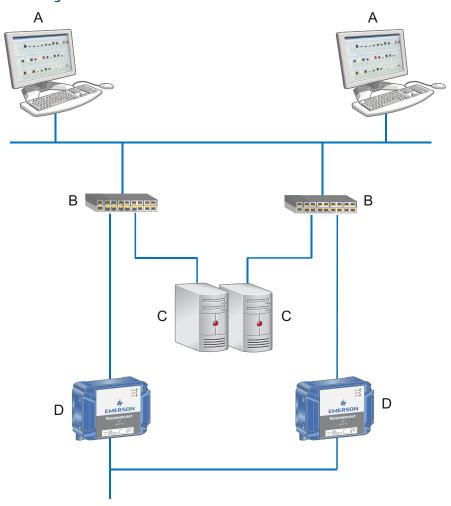
Abbildung 2: Benutzerdefiniertes Modbus Mapping

- A. TankMaster PC⁽¹⁾
- B. Rosemount 2460 System-Hub
- C. Vorhandene ältere Mensch-Maschine-Schnittstelle (HMI)⁽²⁾
- D. Bestehendes Prozessleitsystem⁽²⁾

- (1) Standardanschluss am Rosemount 2460.
- (2) Benutzerdefiniertes Modbus Mapping, das so eingerichtet wurde, dass es der Konfiguration des alten Datensammlers entspricht.

Verbesserte Systemzuverlässigkeit durch Redundanz

Der System-Hub kann durch die Verwendung von zwei identischen Geräten Redundanz für kritische Betriebsabläufe bereitstellen.


Der primäre System-Hub befindet sich im aktiven Modus und der andere im passiven Modus. Wenn die Primäreinheit nicht ordnungsgemäß funktioniert, wird die Sekundäreinheit aktiviert und es wird eine Fehlermeldung an den TankMaster (oder ein Prozessleitsystem) gesendet.

Die Redundanz kann für einige oder alle Geräte im System genutzt werden – von der Steuerwarte bis zu Feldgeräten.

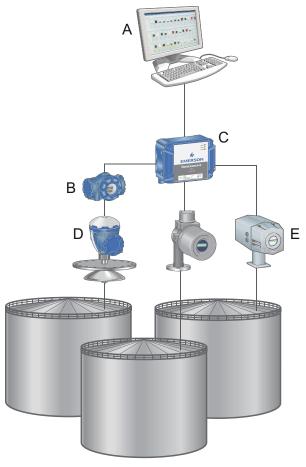
Die Redundanz wird auch auf der Feldebene unterstützt, indem zwei Feldgeräte verwendet werden, die für eine Hot-Redundanz der Feldwerte an denselben Tank angeschlossen sind. Es kann sich um ein Rosemount 5900 2-in-1-Gerät, zwei separate Rosemount 5900 Geräte oder zwei separate Geräte unterschiedlicher Typen handeln.

Die Redundanz des Feld-Ports wird unterstützt, wenn zwei Feld-Ports in einem Ringnetzwerk verbunden werden können, in dem einer als Hot-Backup fungiert. Alle Feld-Ports sind für Redundanz verfügbar. Es ist auch möglich, die Redundanz einzeln an den Ports 1–2, Ports 3–4 oder Ports 5–6 zu verwenden.

Abbildung 3: Redundanz

- A. TankMaster Client-PCs
- B. Schalter
- C. TankMaster Server
- D. Rosemount 2460 System-Hubs

Nahtlose Integration von Messgeräten anderer Hersteller


Ersetzen Sie Ihr altes Tank-Managementsystem durch Rosemount TankMaster, indem Sie den System-Hub an vorhandene Feldgeräte wie Enraf, Whessoe oder Varec anschließen.

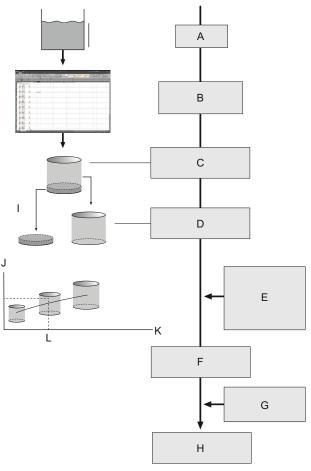
Rosemount TankMaster kann ein bestehendes Bestands-Managementsystem nahtlos ersetzen und gleichzeitig mit aktiven Feldgeräten kommunizieren. Oft wird auf diese Weise eine noch bessere Update-Rate erreicht.

Eine Emulation ermöglicht auch die schrittweise Modernisierung von Tanklagern, da ältere Feldgeräte durch Rosemount 5900 Füllstandsmessgeräte, Temperaturmessgeräte und einen oder mehrere Tank-Hubs ersetzt werden können.

Alle Modbus Feldgeräte, die über RS485 Modbus RTU kommunizieren, können in den Rosemount 2460 integriert werden. Es können bis zu drei Gerätetypen definiert werden.

Abbildung 4: Integration von Messgeräten anderer Hersteller

- A. TankMaster PC
- B. Rosemount 2410 Tank-Hub
- C. Rosemount 2460 System-Hub
- D. Rosemount 5900S Füllstandsmessgerät
- E. Messgeräte in einem bestehenden System eines anderen Herstellers


Bestandsberechnung

Die Bestandsberechnungen in Echtzeit umfassen Brutto- und Nettovolumen sowie Masseberechnungen gemäß den aktuellen APITabellen (6, 54, 24, 60, A-D) und ASTM D4311.

Tankkapazitätstabellen (5 000 Vermessungspunkte pro Tank/Tabelle) werden für zylindrische und kugelförmige Tanks unterstützt.

Netto-Standardvolumen kann mit einer vom Anwender spezifizierten Referenztemperatur für bestimmte Tabellen berechnet werden.

Abbildung 5: Bestandsberechnung

- A. Füllstand
- B. Tankkapazitätstabelle
- C. Ermitteltes Gesamtvolumen
- D. Ermitteltes Bruttovolumen
- E. Volumenkorrekturfaktor, CTPL (VCF)
- F. Standardbruttovolumen
- G. Sediment und Wasser
- H. Standardnettovolumen
- I. Freies Wasservolumen
- J. Volumen
- K. Temperatur
- L. T_{Referenz}

Bestellinformationen

Rosemount 2460 System-Hub

Der Rosemount 2460 System-Hub überträgt Tankmessdaten in Echtzeit von Feldgeräten zur Rosemount TankMaster-Bestandsmanagementsoftware und/oder zu einem Host-/Prozessleitsystem. Der System-Hub verfügt über acht konfigurierbare Ports für die Host- oder Feldgeräte-Kommunikation. Er unterstützt die Systemredundanz und Emulation von Geräten anderer Hersteller.

Tabelle 1: Rosemount 2460 System-Hub – Bestellinformationen

Modell	Produktbeschreibung
2460	System-Hub
Kapazität ⁽	1)(2)
1	1–16 Tanks
4	1–48 Tanks
6	1–64 Tanks
Firmware	
S	Standard
1	Bestandsberechnung, 1–16 Tanks
4	Bestandsberechnung, 1–48 Tanks
6	Bestandsberechnung, 1–64 Tanks
Redundan	z/Fernzugriff (Ethernet)
0	Keine
R ⁽³⁾⁽⁴⁾	Redundanz
Modbus N	lapping
S	Standard
G ⁽⁵⁾	Benutzerdefiniertes Modbus Mapping (ermöglicht die kundenspezifische Zuordnung für die Host-Kommunikation).
Port 1, Fel	dkommunikation (serieller Port) ⁽⁶⁾
R	TRL2-Modbus
E	Enraf Bi-phase Mark GPU
G	GPE (Digitaler Stromkreis)
Р	GPE (RS485)
Н	Whessoe WM 550/660 (Digitaler Stromkreis)
Υ	Whessoe WM 660 (RS485)
N ⁽⁷⁾⁽⁸⁾	L&J Tankway
V(7)(8)	Varec Mark/Space

Tabelle 1: Rosemount 2460 System-Hub – Bestellinformationen (Fortsetzung)

U ⁽⁹⁾	Sakura V1, MDP, BBB
Т	Tokyo Keiso, TIC
4	RS485-Modbus
Port 2, Fe	dkommunikation (serieller Port) ⁽⁶⁾
0 ⁽¹⁰⁾	Keine
R	TRL2-Modbus
E	Enraf Bi-phase Mark GPU
G	GPE (Digitaler Stromkreis)
Р	GPE (RS485)
Н	Whessoe WM 550/660 (Digitaler Stromkreis)
Υ	Whessoe WM 660 (RS485)
L ⁽⁷⁾⁽⁸⁾	L&J Tankway
V ⁽⁷⁾⁽⁸⁾	Varec Mark/Space
U ⁽⁹⁾	Sakura V1, MDP, BBB
Т	Tokyo Keiso, TIC
4	RS485-Modbus
Port 3, Fe	dkommunikation (serieller Port) ⁽⁶⁾
0 ⁽¹⁰⁾	Keine
R	TRL2-Modbus
E	Enraf Bi-phase Mark GPU
G	GPE (Digitaler Stromkreis)
Р	GPE (RS485)
Н	Whessoe WM 550/660 (Digitaler Stromkreis)
Υ	Whessoe WM 660 (RS485)
L ⁽⁷⁾⁽⁸⁾	L&J Tankway
V ⁽⁷⁾⁽⁸⁾	Varec Mark/Space
U ⁽⁹⁾	Sakura V1, MDP, BBB
Т	Tokyo Keiso, TIC
4	RS485-Modbus
Port 4, Fe	dkommunikation (serieller Port) ⁽⁶⁾
0 ⁽¹⁰⁾	Keine
R	TRL2-Modbus
E	Enraf Bi-phase Mark GPU
G	GPE (Digitaler Stromkreis)
Р	GPE (RS485)
Н	Whessoe WM 550/660 (Digitaler Stromkreis)

Tabelle 1: Rosemount 2460 System-Hub – Bestellinformationen (Fortsetzung)

Γ	Rosemount 2460 System-Hub – Bestellintormationen (Fortsetzung)
Υ	Whessoe WM 660 (RS485)
L(7)(8)	L&J Tankway
V ⁽⁷⁾⁽⁸⁾	Varec Mark/Space
U ⁽⁹⁾	Sakura V1, MDP, BBB
Т	Tokyo Keiso, TIC
4	RS485-Modbus
Port 5, Fe	d- oder Host-Kommunikation (serieller Port) ⁽⁶⁾
00 ⁽¹⁰⁾	Keine
FR	TRL2-Modbus, Feldkommunikation
FE	Enraf Bi-phase Mark GPU, Feldkommunikation
FG	GPE (Digitaler Stromkreis), Feldkommunikation
FP	GPE (RS485), Feldkommunikation
FH	Whessoe WM 550/660 (Digitaler Stromkreis), Feldkommunikation
FY	Whessoe WM 660 (RS485), Feldkommunikation
FL ⁽⁷⁾⁽⁸⁾	L&J Tankway, Feldkommunikation
FV ⁽⁷⁾⁽⁸⁾	Varec Mark/Space, Feldkommunikation
FU ⁽⁹⁾	Sakura V1, MDP, BBB
FT	Tokyo Keiso, TIC
F4	RS485 Modbus (Feldbus)
H8 ⁽¹¹⁾	Enraf CIU 858 Emulation (RS485)
HR	TRL2-Modbus, Host-Kommunikation
H4	RS485-Modbus, Host-Kommunikation
Port 6, Fe	ld- oder Host-Kommunikation (serieller Port) ⁽⁶⁾
00 ⁽¹⁰⁾	Keine
FR	TRL2-Modbus, Feldkommunikation
FE	Enraf Bi-phase Mark GPU, Feldkommunikation
FG	GPE (Digitaler Stromkreis), Feldkommunikation
FP	GPE (RS485), Feldkommunikation
FH	Whessoe WM 550/660 (Digitaler Stromkreis), Feldkommunikation
FY	Whessoe WM 660 (RS485), Feldkommunikation
FL ⁽⁷⁾⁽⁸⁾	L&J Tankway, Feldkommunikation
FV ⁽⁷⁾⁽⁸⁾	Varec Mark/Space, Feldkommunikation
FU ⁽⁹⁾	Sakura V1, MDP, BBB
FT	Tokyo Keiso, TIC
F4	RS485-Modbus, Feldkommunikation
H8 ⁽¹¹⁾	Enraf CIU 858-Emulation (RS485), Host-Kommunikation
FT F4	Tokyo Keiso, TIC RS485-Modbus, Feldkommunikation

Tabelle 1: Rosemount 2460 System-Hub – Bestellinformationen (Fortsetzung)

HR	TRL2-Modbus, Host-Kommunikation			
H4	RS485-Modbus, Host-Kommunikation			
Port 7, Hos	t-Kommunikation (serieller Port)			
00 ⁽¹⁰⁾	Keine			
TR	TRL2-Modbus-Kommunikation zu TankMaster			
T2	S232-Modbus Kommunikation zu TankMaster			
T4	RS485-Modbus Kommunikation zu TankMaster			
ER ⁽¹¹⁾	Enraf CIU 858 Emulation (RS232)			
H8 ⁽¹¹⁾	Enraf CIU 858 Emulation (RS485)			
HR	TRL2-Modbus-Kommunikation zu Host-/Prozessleitsystem			
H2	RS232-Modbus- Kommunikation zu Host-/Prozessleitsystem			
H4	RS485-Modbus- Kommunikation zu Host-/Prozessleitsystem			
Port 8, Hos	t-Kommunikation (serieller Port)			
TR	TRL2-Modbus-Kommunikation zu TankMaster			
T2	RS232-Modbus Kommunikation zu TankMaster			
T4	RS485-Modbus Kommunikation zu TankMaster			
OPC-Host-	Kommunikation (Ethernet)			
00	Keine			
Modbus TO	P-Host-Kommunikation (Ethernet)			
00	Keine			
MT	TankMaster TCP-Verbindung. Zwei TankMaster Clients können eine Verbindung herstellen.			
MV	TankMaster TCP-Verbindung + 1 Modbus TCP Client			
M1 ⁽¹²⁾⁽⁵⁾	1 Modbus TCP-Client			
M5 ⁽¹²⁾⁽⁵⁾	1–5 Modbus TCP-Clients			
Spannungs	versorgung			
Р	100–250 VAC 50/60 Hz, 24–48 VDC			
Typenzula	ssung für den eichamtlichen Verkehr ⁽¹³⁾			
R	OIML R85 Ausgabe 2008			
Α	CMI (Tschechische Republik)			
С	PTB Eich (Deutschland)			
I	Ministero (Italien)			
L	LNE (Frankreich)			
N	NMi (Niederlande)			
0	ONML (Algerien)			
Т	ANM (Tunesien)			

Tabelle 1: Rosemount 2460 System-Hub – Bestellinformationen (Fortsetzung)

Gehäuse					
А	Aluminium (Polyurethan-beschichtet), IP 65				
Kabel-/Ka	abelschutzrohranschlüsse				
G	Metall-Kabelverschraubungen (M20 x 1,5 und M25 x 1,5)	Umfasst: M25-Blindstopfen (2 Stck.) M20-Blindstopfen (7 Stck.) M25-Verschraubungen (2 Stck.) M20-Verschraubungen (9 Stck.)			
1	NPT-Adapter (½ -14 NPT und ¾ -14 NPT)	Umfasst: M25-Blindstopfen (2 Stck.) M20-Blindstopfen (7 Stck.) 34-14 NPT-Adapter (2 Stck.) 1/2-14 NPT-Adapter (9 Stck.)			
2	Metallstopfen (M20 x 1,5 und M25 x 1,5)	Umfasst: ■ M25-Blindstopfen (2 Stck.) ■ M20-Blindstopfen (7 Stck.)			
Extra					
0	Keine				
Optioner	n (mit ausgewählter Modellnummer angeben)				
Typensch	nild				
ST	Graviertes Edelstahl- Typenschild				
Konform	itätsbescheinigung				
Q1	Gedrucktes Exemplar der Konformitätsbescheinigung				
Erweitert	te Garantie ⁽¹⁴⁾				
WR3	3-jährige, beschränkte Garantie				
WR5	5-jährige, beschränkte Garantie				
Typische	Modellnummer: 2460 1 S 0 S R R R R FI	R FR TR TR 00 00 P R A 1 0 WR3			

- (1) Die maximale Anzahl von Tanks ist abhängig von der Konfiguration der ausgewählten Feld-Ports.
- (2) Je nach Gerätetyp und Anwendung kann die Anzahl der Geräte pro Tank oder die Anzahl der Tanks pro Gerät unterschiedlich sein.
- (3) Duale Rosemount 2460 System-Hub-Redundanz erfordert zwei System-Hubs mit identischen Modellcodes. Wenden Sie sich für redundante Systeme mit Emulation an den Hersteller, um technische Hinweise zu erhalten.
- (4) Diese Option ist erforderlich, um die Redundanz des Feld-Ports und/oder die Redundanz des Feldgeräts verwenden zu können. Die Redundanz des Feld-Ports ist nur bei TRL/2- und RS485-Ports möglich, bei denen für jedes Paar die gleiche Schnittstelle verwendet werden muss. Die Kapazität des Rosemount 2460 wird reduziert, wenn die Redundanz des Feld-Ports verwendet wird.
- (5) Bei der Verwendung von Modbus TCP in Kombination mit benutzerdefiniertem Modbus Mapping wird dasselbe Modbus Mapping für alle Clients verwendet. In diesem Fall kann TankMaster nicht verwendet werden.
- (6) Siehe Tabelle 2 bzgl. der max. Anzahl von Geräten, die an jeden Feld-Port angeschlossen sind.
- (7) Wird für redundante System-Hubs nicht unterstützt (Redundanz-Optionscode R).
- (8) Für die Versorgung des Busses ist eine externe Spannungsversorgung erforderlich.
- (9) Pro Port kann nur ein Protokoll verwendet werden.
- (10) Nicht belegte Ports werden für die Verwendung nicht freigegeben. Um nach der Auslieferung einen nicht belegten Port zu aktivieren, muss ein Port-Upgrade bestellt werden.
- (11) Unterstützung für die Emulation von Enraf CIU 858 für die Verbindung mit bestehendem Hostsystem oder als Service/Konfigurationsgerät.
- (12) Ein redundantes TankMaster System erfordert zwei Clients, wenn TankMaster über Modbus TCP angeschlossen wird.

(13) Erfordert Rosemount 5900S Radar-Füllstandsmessgerät und Rosemount 2410 Tank-Hub mit der entsprechenden Typenzulassung für den eichamtlichen Verkehr.
 (14) Die standardmäßige Garantie gilt ab dem Lieferdatum für 18 Monate.

Spezifikationen

Kommunikations-/Konfigurationsdaten

Anzahl der Behälter

Jeder Rosemount 2460 kann für bis zu 64 Tanks konfiguriert werden. Die tatsächliche Anzahl der Tanks hängt von der elektrischen Schnittstelle und der Konfiguration des Feld-Ports ab. Weitere Informationen unter Tabelle 2.

Hinweis: Jedes Rosemount 5900S Radar-Füllstandsmessgerät mit 2-in-1-Funktionalität entspricht zwei Tanks.

Anzahl der Geräte pro Feld-Port

Tabelle 2 zeigt die maximale Anzahl von Geräten an, die mit jedem Rosemount 2460 Feld-Port verbunden werden können. Beispiele für Geräte sind Rosemount 2410, Rosemount TankRadar Pro und ältere Geräte, wie z. B. Rosemount TankRadar Rex und Rosemount TankRadar TRL2.

Tabelle 2: Anzahl der Geräte

Schnittstelle	Maximale Anzahl der an jeden Feld-Port angeschlossenen Geräte
RS485 ⁽¹⁾	16
TRL2 ⁽²⁾	8
Enraf BPM	10
Digitaler Stromkreis 0–20 mA (DCL) ⁽³⁾	10 ⁽⁴⁾
L&J	10 ⁽⁵⁾
Varec	10 ⁽⁵⁾

⁽¹⁾ Geräte, wie z. B. E + H NRF590 Tank Side Monitor (TSM), Geräte mit TSM Modbus Mapping, Whessoe, GPE, Si-6290/7000, Wärtsilä 1146 und benutzerdefinierte Modbus Geräte werden unterstützt.

Anzahl der Ports

Schnittstelle	Anzahl der Ports
Modem ⁽¹⁾	8
Ethernet ⁽²⁾	3
USB ⁽²⁾	1
SD ⁽²⁾	1

⁽¹⁾ Weitere Informationen finden Sie unter Tabelle 4 und Tabelle 3.

Modem-Ports können gemäß dem Modellcode für Feld- oder Host-Kommunikation konfiguriert werden. Weitere Informationen unter Tabelle 5.

Hostsysteme

Siehe Tabelle 4 und Tabelle 5.

⁽²⁾ Geräte, wie z. B. Rosemount 2410 Tank-Hub, Rosemount TankRadar Rex, Rosemount TankRadar Pro, TRL2-Messgeräte und DAU werden unterstützt.

⁽³⁾ Geräte, wie z. B. Whessoe und GPE werden unterstützt.

⁽⁴⁾ Bis zu 32 Geräte werden bei Verwendung einer externen Spannungsversorgung unterstützt.

⁽⁵⁾ In bestimmten Situationen können mehr als zehn (10) Geräte funktionieren. Wenden Sie sich an die Tank Gauging-Serviceabteilung von Emerson Automation Solutions.

⁽²⁾ Weitere Informationen finden Sie unter Tabelle 6.

Rosemount 2160/2165-Emulation

Host-Protokoll unterstützt die Zuordnung der Eingangsregister der Rosemount 2160/2165 Feldkommunikationseinheit. Ermöglicht den Austausch der Rosemount 2160/2165, ohne den Host neu zu programmieren. Bei Verwendung der 2160-Emulation wird die maximale Anzahl der Tanks auf 32 reduziert.

Digitale Kommunikationsprotokolle

Tabelle 3: Serielle Ports (1-6) für die Feldkommunikation

Unterstützte Geräte	Protokoll	Elektrische Schnittstelle	Baudrate	Port	
Rosemount 2410, TankRadar Rex Messgeräte (mit SDAU), IDAU, TankRadar Pro und TankRa- dar TRL2 Messgeräte	Modbus RTU	TRL2	4800		
Rosemount 2410		RS485 (2-Leiter)	150-38400		
Enraf 811, 813, 854, 873, 877, 894, 970, 971, 973 und TOI-B ⁽¹⁾	GPU Enraf Bi-phase Mark 120		1200/2400		
GPE 31422, 31423	GPF	Digitaler 20 mA-Stromkreis	150-2400	\neg	
	GPE	RS485	150-38400		
Whessoe 1315, 1143	WM 550	Digitaler 20 mA-Stromkreis	150-2400		
		Digitaler 20 mA-Stromkreis	150-2400		
	WM 660	RS485	150-38400		
L&J 1500 XL, MCG 2000, L&J MCG 1600	L&J Tankway	L&J Tankway	300-4800	1–6	
Varec 1800, 1900	Varec Mark/Space	Varec Mark/Space	70/250		
E + H NRF590 Tank Side Monitor					
Benutzerdefinierte Modbus-Geräte ⁽²⁾	1		150–38400		
LTD (Füllstand, Temperatur, Dichte) Si 6290/7000	Modbus	RS485			
LTD (Füllstand, Temperatur, Dichte) Whessoe/ Wärtsilä 1146					
Tokyo Keiso	Tokyo Keiso	Tokyo Keiso	2400		
Sakura	Sakura V1 Sakura MDP	Sakura	9600		

⁽¹⁾ Enraf 990 verwendet TOI-B für Messdaten.

⁽²⁾ Vollständig konfigurierbar für bis zu drei Gerätetypen.

Tabelle 4: Host-Kommunikations-Ports (5-8)

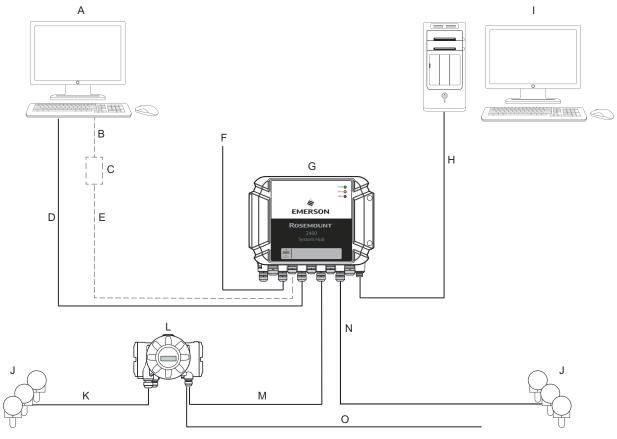
Unterstützte Geräte	Protokoll	Elektrische Schnittstelle	Baudrate	Port
TankMaster		TRL2	4800	5–8
	Modbus RTU	RS485 (2-Leiter)		5-8 ⁽¹⁾
	Moddus KTO	RS485 (4-Leiter)	150–38400	7-8 ⁽¹⁾
		RS232		7–8
	Modbus TCP	Ethernet	_	Eth1
Andere Hostsysteme (DCS, SCADA usw.)		TRL2	4800	5–7
	Modbus RTU	RS485 (2-Leiter)		5-7 ⁽¹⁾
	Moddus KTO	RS485 (4-Leiter)	150–38400	7 ⁽¹⁾
		RS232		7
Enraf CIU 858 Emulation ⁽²⁾		RS485 (2-Leiter)		5-7 ⁽¹⁾
	GPU	RS485 (4-Leiter)	150–38400	7 ⁽¹⁾
		RS232		7

Über Hardware-Schalter konfigurierbarer Abschluss.

Tabelle 5: Optionen für Port-Konfiguration

Ports	1	2	3	4	5	6	7	8
Alternativ 6+2 (Standard)	Feld-Port	Feld-Port	Feld-Port	Feld-Port	Feld-Port	Feld-Port	Host-Port	Host-Port
Alternativ 5+3	Feld-Port	Feld-Port	Feld-Port	Feld-Port	Feld-Port	Host-Port	Host-Port	Host-Port
Alternativ 4+4	Feld-Port	Feld-Port	Feld-Port	Feld-Port	Host-Port	Host-Port	Host-Port	Host-Port

Tabelle 6: Weitere Schnittstellen


Elektrische Schnittstelle	Beschreibung
Ethernet 1 (ETH 1) ⁽¹⁾⁽²⁾	Modbus TCP-Verbindung zum Hostsystem
Ethernet 2 (ETH 2) ⁽²⁾	Am redundanten System-Hub angeschlossen
Ethernet 3 (ETH 3) ⁽²⁾	Wird für den Zugriff auf die Web-Schnittstelle über einen Webbrowser für erweiterte Konfiguration und Service verwendet
USB 2.0 ⁽³⁾	USB-Memorystick zur Aufzeichnung von Diagnosedaten
SD ⁽³⁾	SD-Karte zur Aufzeichnung von Diagnosedaten

⁽¹⁾ Beim Verbinden des System-Hubs mit dem lokalen LAN-Netzwerk sicherstellen, dass die Verbindung sicher ist, um unbefugten Zugriff zu verhindern.
(2) CAT 5- oder CAT 6-Kabel wird empfohlen.

Ein Rosemount 2460 kann nehrere Enraf CIU 858-Geräte ersetzen, indem er auf mehr als eine separate Adresse antwortet.

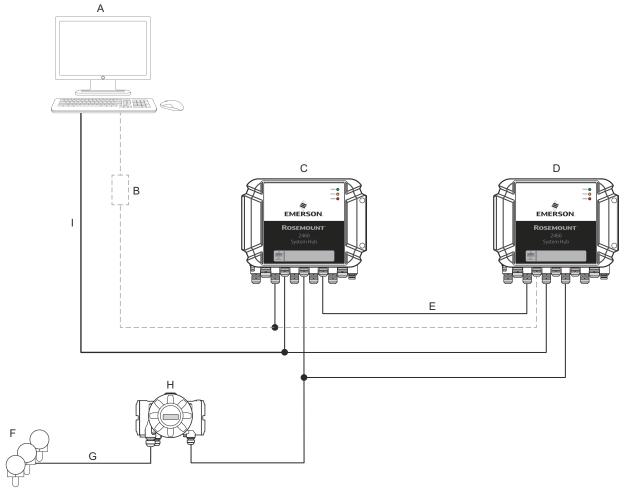

⁽³⁾ Dateisystem FAT32.

Abbildung 6: Typische Konfiguration eines Rosemount 2460 System-Hubs

- A. TankMaster
- B. USB, RS232
- C. Modem
- D. Ethernet (Modbus TCP), RS232, RS485
- E. TRL2, RS485
- F. Prozessleitsystem (DCS)/Andere Hostsysteme (TRL2, RS485, RS232)
- G. Rosemount 2460 System-Hub
- H. Modbus RTU/TCP
- I. Andere Hosts
- J. Feldgeräte
- K. Tankbus
- L. Rosemount 2410 Tank-Hub
- M. Primärer Bus: TRL2, RS485
- N. TRL2, RS485, andere Anbieter
- O. Sekundärer Bus: Enraf, Whessoe und andere, HART 4–20 mA-Analogausgang/-eingang

Abbildung 7: Typische redundante Konfiguration

- A. TankMaster
- B. Modem
- C. Rosemount 2460 System-Hub, primär
- D. Rosemount 2460 System-Hub, sekundär
- E. Redundanz-Steuersignal
- F. Feldgeräte
- G. Tankbus
- H. Rosemount 2410 Tank-Hub
- I. Ethernet (Modbus TCP), RS232, RS485

Elektrische Spezifikationen

Spannungsversorgung

24–48 VDC (–15 %, +10 %) 100-250 VAC (-15 %, +10 %), 50/60 Hz (±2 %)

Leistungsaufnahme

Max. 20 W

Kabeleinführungen

Neun M20 x 1,5 (Innengewinde) Zwei M25 x 1,5 (Innengewinde)

Elektrische Schnittstelle

Siehe Tabelle 4, Tabelle 3 und Tabelle 6.

Leiterquerschnitt

Spannungsversorgung: 0,75 bis 2,1 mm² (18-14 AWG)

Bus: 0,5 bis 2,5 mm² (20-14 AWG), abhängig von der Kommunikationsschnittstelle

Integrierte Netzleitungs-Sicherungen

T1,6 A

Back-up-Batterie

3 V CR 1632 Lithium

Mechanische Daten

Gehäusewerkstoff

Polyurethan-beschichteter Aluminiumdruckguss

Installation

Wandmontage mit vier Schrauben. Weitere Informationen unter Maßzeichnungen.

Gewicht

7 kg (15 lbs)

Umgebungsdaten

Temperaturgrenzen

Umgebungstemperatur

-40 bis 70 °C (-40 bis 158 °F)

Lagerungstemperatur

-40 bis 80 °C (-40 bis 176 °F)

Zulässige Feuchte

0–100 % relative Feuchte

Schutzart

IP65

Weitere Spezifikationen

Möglichkeit zur Versiegelung der Messtechnik

Ja

Schreibschutz

Ja, über die Softwarekonfiguration und/oder den Hardware-Schalter.

Produktzulassungen

Rev 3.1

Informationen zu EU-Richtlinien

Die neueste Version der EU-Konformitätserklärung ist unter Emerson.com/Rosemount zu finden.

Standardbescheinigung

Der Rosemount 2460 System-Hub wurde standardmäßig untersucht und geprüft, um zu gewährleisten, dass die Konstruktion die grundlegenden elektrischen, mechanischen und Brandschutzanforderungen eines national anerkannten Prüflabors (NRTL), zugelassen von der Federal Occupational Safety and Health Administration (OSHA, US-Behörde für Sicherheit und Gesundheitsschutz am Arbeitsplatz), erfüllt.

Zertifikat 2735155

Normen CAN/CSA-C22.2 Nr. 61010-1-12; UL-Std. Nr. 61010-1 (3. Ausgabe);

Kennzeichnun- Nennwerte: 24–48 VDC, 100–250 VAC, 20 W, 50/60 Hz; Umgebungstemperatur-Nennwerte: -40 bis +70 °C

gen

Kompatibilität der elektromagnetischen Verträglichkeit

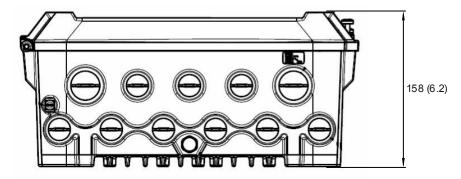
FCC

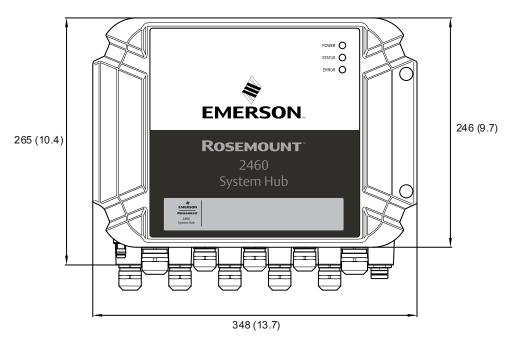
Dieses Gerät erfüllt Teil 15 der FCC-Vorschriften.

Normen FCC 47 CFR Teil 15B, 15.107 leitungsgebundene Störaussendung Klasse A, 15.109 gestrahlte Störaussendung

Klasse A

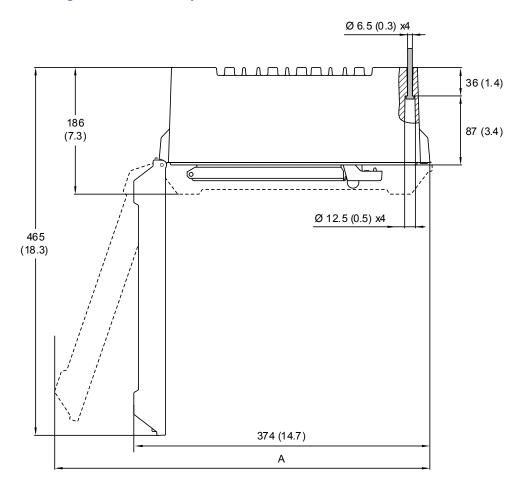
Zulassungen für eichamtlichen Verkehr


OIML Eichamtlicher Verkehr


Zertifikat R85-2008-SE-11.01

Weitere Zertifikate zum eichamtlichen Verkehr sind auf Emerson.com/Rosemount zu finden

Maßzeichnungen


Abbildung 8: Rosemount 2460 System-Hub

Abmessungen in mm (in.)

Abbildung 9: Rosemount 2460 System-Hub

A. 474 (18,7) mit max. geöffnetem Deckel

Abmessungen in mm (in.)

Weiterführende Informationen: Emerson.com

©2022 Emerson. Alle Rechte vorbehalten.

Die Verkaufsbedingungen von Emerson sind auf Anfrage erhältlich. Das Emerson Logo ist eine Marke und Dienstleistungsmarke der Emerson Electric Co. Rosemount ist eine Marke der Emerson Unternehmensgruppe. Alle anderen Marken sind Eigentum ihres jeweiligen Inhabers.

