

Original Instructions 4000847 - REV. 02



## DCX F-EIP Power Supply

# Operating Manual

Branson Ultrasonics Corp. 120 Park Ridge Road Brookfield, CT 06804 (203) 796-0400 http://www.bransonultrasonics.com



## Manual Change Information

At Branson, we strive to maintain our position as the leader in ultrasonics plastics joining, metal welding, cleaning and related technologies by continually improving our circuits and components in our equipment. These improvements are incorporated as soon as they are developed and thoroughly tested.

Information concerning any improvements will be added to the appropriate technical documentation at its next revision and printing. Therefore, when requesting service assistance for specific units, note the Revision information found on this document, and refer to the printing date which appears on this page.

## **Copyright and Trademark Notice**

Copyright © 2023 Branson Ultrasonics Corporation. All rights reserved. Contents of this publication may not be reproduced in any form without the written permission of Branson Ultrasonics Corporation.

Mylar is a registered trademark of DuPont Teijin Films.

Loctite is a registered trademark of Loctite Corporation.

WD-40 is a registered trademark of WD-40 Company.

Windows 7, Windows Vista, and Windows XP are registered trademarks of Microsoft Corporation.

Other trademarks and service marks mentioned herein are held by their respective owners.

### Foreword

Congratulations on your choice of a Branson Ultrasonics Corporation system!

The Branson DCX F-EIP Power Supply system is process equipment for the joining of plastic parts using ultrasonic energy. It is the newest generation of product using this sophisticated technology for a variety of customer applications. This Operating Manual is part of the documentation set for this system, and should be kept with the equipment.

Thank you for choosing Branson!

## Introduction

This manual is arranged into several structured chapters which will help you find the information you may need to know to safely handle, install, set up, program, operate, and/or maintain this product. Please refer to the <u>Table Of Contents</u> and/or the <u>Index</u> of this manual to find the information you may be looking for. In the event you require additional assistance or information, please contact our Product Support department (see <u>1.4 How to Contact Branson</u> for information on how to contact them) or your local Branson representative.

## **Table Of Contents**

### **Chapter 1: Safety and Support**

| 1.1                    | Safety Requirements and Warnings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12                     | General Precautions 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13                     | Warranty 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.0                    | How to Contact Branson 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.1                    | Returning Equipment for Repair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.6                    | Obtaining Replacement Parts 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.0                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chapter 2              | : Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.1                    | Models Covered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.2                    | Compatibility with other Branson Products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.3                    | Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.4                    | Controls and Indicators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2.5                    | Welding Systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2.6                    | Glossary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Chanter 3              | · Delivery and Handling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3.1                    | Shipping and Handling 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3.1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 33                     | Unnacking the Power Sunnly 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3.3                    | Take Inventory of Small Parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 25                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.0                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chapter 4              | : Technical Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.1                    | Technical Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.2                    | Physical Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.3                    | EU Declaration of Conformity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.4                    | UK Declaration of Conformity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.5                    | Declaration of Conformity to the EtherNet/IP Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chantor E              | . Installation and Satur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Chapter 5              | : Installation and Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.1                    | About Installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.2                    | Installation Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5.3                    | Installation Steps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.4                    | Power Supply Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.5                    | Assembling the Acoustic Stack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5.6                    | Converter Cooling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.7                    | Testing the Installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5.8                    | Still Need Help?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chapter 6              | : Converters and Boosters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6.1                    | Converters and Boosters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Chanter 7              | · Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7 1                    | Setting Primary Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.1                    | Satting the Amplitude 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7.2<br>7.2             | Desatting the Dower Supply Alarms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 7.3<br>7.4             | Configuring the Dower Supply Additions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7. <del>4</del><br>7.5 | Configuring the rower supply registers         112           ICD Par Graph         117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.5                    | ני מישטאויים אוויט אוויע אוויט אווי |

| 7.6<br>7.7                  | Ultrasonics Test Procedure.    120      Using the I/O Connections    122 |  |
|-----------------------------|--------------------------------------------------------------------------|--|
| Chapter 8                   | 3: EtherNet/IP Operation                                                 |  |
| 8 1                         | EtherNet/IP 124                                                          |  |
| 8.2                         | EtherNet/IP Overview 127                                                 |  |
| 83                          | Massage Type Definitions                                                 |  |
| 0.5<br>Q /                  | Communication to the CompactII ogiv Via EtherNet/IP                      |  |
| 0.4                         |                                                                          |  |
| 0.0                         |                                                                          |  |
| 8.0                         |                                                                          |  |
| 8.7                         |                                                                          |  |
| 8.8                         |                                                                          |  |
| Chapter 9                   | P: Maintenance                                                           |  |
| 9.1                         | General Maintenance Considerations                                       |  |
| 9.2                         | DCX F-EIP Power Supply Preventive Maintenance                            |  |
| 9.3                         | Recommended Spare Stock 176                                              |  |
| 9.4                         | Circuit Diagram 182                                                      |  |
| 9.5                         | Troubleshooting 183                                                      |  |
| 9.6                         | Cold Start Procedure 187                                                 |  |
| 9.0                         |                                                                          |  |
| Appendix                    | A: Alarms                                                                |  |
| A.1                         | Overload Alarms (Group 0) 190                                            |  |
| A.2                         | Cutoff Alarms (Group 1) 192                                              |  |
| A.3                         | Setup Alarms (Group 2)                                                   |  |
| A.4                         | Cycle Modified Alarms (Group 3) 194                                      |  |
| A.5                         | Warning Alarms (Group 4)                                                 |  |
| A.6                         | Limit Alarms (Group 5)                                                   |  |
| A.7                         | Equipment Failure Alarms (Group 6)                                       |  |
| A.8                         | No Cycle Alarms (Group 7)                                                |  |
| A.9                         | Communication Failure Alarms (Group 8)                                   |  |
| A.10                        | Hardware Alarms (Group A) 201                                            |  |
| A.11                        | Non-Cycle Overload Alarms (Group B).                                     |  |
|                             |                                                                          |  |
| Appendix                    | B: EtherNet/IP Commands                                                  |  |
| B.1                         | Parameter Set Class 100 (32 Instances) 206                               |  |
| B.2                         | Weld Data Class 101 (32 Instances)    209                                |  |
| B.3                         | Stack Parameter Class 102 (16 Instances)                                 |  |
| B.4                         | Common Stack Parameters (16 Instances) 212                               |  |
| B.5                         | Stack Status Class 103 (16 Instances) 213                                |  |
| B.6                         | Alarm Data Class 104 (1 Instances) 216                                   |  |
| B.7                         | System Information Class 105 (1 Instances) 217                           |  |
| B.8                         | Other Information Class 112 (1 Instances) 218                            |  |
| B.9                         | Identity Object 1 (1 Instance) 219                                       |  |
| Appendix C. Timing Diagrams |                                                                          |  |
| C.1                         | Timing Diagrams 222                                                      |  |
| 0.1                         |                                                                          |  |
| Appendix D: Signal Diagrams |                                                                          |  |
| D.1                         | Signal Diagrams                                                          |  |

## **List Of Figures**

### Chapter 1: Safety and Support

| Figure 1.1                        | Safety-related Labels found on the DCX F-EIP Power Supply                         |  |
|-----------------------------------|-----------------------------------------------------------------------------------|--|
| Chapter 2                         | : Introduction                                                                    |  |
| Figure 2.1                        | The DCX F-EIP Power Supply (Horizontal)15                                         |  |
| Figure 2.2                        | The DCX F-EIP Power Supply (Vertical)                                             |  |
| Figure 2.3                        | DCX F-EIP Power Supply Front Panel Controls and Indicators                        |  |
| Figure 2.4                        | LCD Description                                                                   |  |
| Figure 2.5                        | DCX F-EIP Power Supply Back Panel (Horizontal)                                    |  |
| Figure 2.6                        | DCX F-EIP Power Supply Bottom Panel (Vertical)                                    |  |
| Chapter 3                         | : Delivery and Handling                                                           |  |
| Chapter 4                         | : Technical Specifications                                                        |  |
| Figure 4.1                        | EU Declaration of Conformity                                                      |  |
| Figure 4.2                        | UK Declaration of Conformity                                                      |  |
| Figure 4.3                        | Declaration of Conformity to the EtherNet/IP Specification                        |  |
| Chapter 5: Installation and Setup |                                                                                   |  |
| Figure 5.1                        | DCX F-EIP Power Supply Benchtop Dimensional Drawing                               |  |
| Figure 5.2                        | DCX F-EIP Power Supply Vertical Mount dimensional drawing                         |  |
|                                   | (400 W, 750 W & 800 W)                                                            |  |
| Figure 5.3                        | DCX F-EIP Power Supply Vertical Mount dimensional drawing (1.25 kW and 1.5 kW).48 |  |
| Figure 5.4                        | DCX F-EIP Power Supply Vertical Mount dimensional drawing (2.5 kW and 4 kW) 49    |  |
| Figure 5.5                        | LCD Viewing Angle                                                                 |  |
| Figure 5.6                        | DCX F-EIP Power Supply Connections (Horizontal Model)                             |  |
| Figure 5.7                        | DCX F-EIP Power Supply Connections (Vertical Model)                               |  |
| Figure 5.8                        | User I/O Cable Identification and Wire Color Diagram                              |  |
| Figure 5.9                        | Typical Digital I/O Wiring Examples                                               |  |
| Figure 5.10                       | Typical Analog I/O Wiring Examples                                                |  |
| Figure 5.11                       | RF Cable Connection                                                               |  |
| Figure 5.12                       | Assembling the Acoustic Stack                                                     |  |
| Figure 5.13                       | Connecting Tip to Horn                                                            |  |
| Chapter 6                         | : Converters and Boosters                                                         |  |

| chapter e  | : Converters and Boosters           |  |
|------------|-------------------------------------|--|
| Figure 6.1 | 20 kHz typical Converter Dimensions |  |

| Figure 6.1 | 20 kHz typical Converter Dimensions               |
|------------|---------------------------------------------------|
| Figure 6.2 | 20 kHz Booster Dimensions                         |
| Figure 6.3 | 20 kHz Converter/Booster/Horn, Typical Dimensions |
| Figure 6.4 | 30 kHz Converter Dimensions                       |
| Figure 6.5 | 30 kHz Booster Dimensions                         |
| Figure 6.6 | 30 kHz Converter/Booster/Horn, Typical Dimensions |
| Figure 6.7 | 40 kHz, 4TR Converter Dimensions                  |
| Figure 6.8 | 40 kHz Booster Dimensions                         |
| Figure 6.9 | 40 kHz Converter/Booster/Horn, Typical Dimensions |
|            |                                                   |

### **Chapter 7: Operation**

| Figure 7.1 LCD at Power Up                             | 109   |
|--------------------------------------------------------|-------|
|                                                        | . 107 |
| Figure 7.2 LCD when in External Amplitude Control Mode | . 110 |
| Figure 7.3 Test Connections                            | . 122 |

### Chapter 8: EtherNet/IP Operation

| Figure 8.1  | LED Status Indicator                                         |
|-------------|--------------------------------------------------------------|
| Figure 8.2  | I/O Setup for EtherNet/IP Module With Standard Configuration |
| Figure 8.3  | RSLogix 5000 Implementation of Token 147                     |
| Figure 8.4  | Web Page Indication of Token Being Established               |
| Figure 8.5  | RSLogix 5000 Implementation of Token Release                 |
| Figure 8.6  | Web Page Indication of Token Being Released 148              |
| Figure 8.7  | RSLogix 5000 Implementation of Get Energy Value              |
| Figure 8.8  | RSLogix 5000 Implementation of Set Energy Value              |
| Figure 8.9  | PLC Output STW1/STW2 = 0                                     |
| Figure 8.10 | PLC Input ZSW1= 16, ZSW2=1024 155                            |
| Figure 8.11 | DCX Fieldbus Diagnostic                                      |
| Figure 8.12 | DCX Weld Mode - Sending a 513 Command - Weld Time 156        |
| Figure 8.13 | DCX Fieldbus Diagnostic Page 156                             |
| Figure 8.14 | DCX Weld Mode - Sending a 513 Command - Hold Time            |
| Figure 8.15 | DCX Fieldbus Diagnostic                                      |
| Figure 8.16 | DCX Weld Mode - Sending a 0 Command - Changeover State       |
| Figure 8.17 | DCX Fieldbus Diagnostic Page 158                             |
| Figure 8.18 | DCX Weld Mode - Sending a 513 and Holding It to Create a     |
|             | "Start Input is Active" Alarm 159                            |
| Figure 8.19 | DCX Fieldbus Diagnostics                                     |
| Figure 8.20 | DCX Weld Mode - Alarm Reset                                  |
| Figure 8.21 | DCX Weld Mode - Alarm Reset (Cont)                           |
| Figure 8.22 | DCX Fieldbus Diagnostic                                      |
| Figure 8.23 | DCX Weld Mode - Alarm Reset (Cont)                           |
| Figure 8.24 | DCX Fieldbus Diagnostic                                      |
| Figure 8.25 | Implicit Messaging                                           |
| Figure 8.26 | Data Going to the DCX (Control) 163                          |
| Figure 8.27 | Data Coming from the DCX (Status) 164                        |
| Figure 8.28 | DCX Status Word                                              |
| Figure 8.29 | Status Word (Web Page Interface) 165                         |
| Figure 8.30 | DCX Control Word                                             |
| Figure 8.31 | DCX Control Word (Web Page Interface) 166                    |
| Ob ender O  | Maintenance                                                  |

#### Chapter 9: Maintenance Figure 9.1 Reconditioning Stack Mating Surfa

| -<br>-      | Deserved it is an other share to be Martine as Counter and | 170 |
|-------------|------------------------------------------------------------|-----|
| Figure 9. I | Reconditioning Stack Mating Surfaces                       | 1/3 |
| Figure 9.2  | Interconnect Diagram, Power Supply                         | 182 |
|             |                                                            |     |

### Appendix A: Alarms

#### Appendix B: EtherNet/IP Commands

#### **Appendix C: Timing Diagrams**

| Figure C.1 | RF Switching Direct With Feedback, With And Without Alarm                          |
|------------|------------------------------------------------------------------------------------|
| Figure C.2 | RF Switching I/O Direct With Feedback, With And Without Alarm                      |
| Figure C.3 | RF Switching I/O Direct With Feedback With And Without Alarm And Load On Start 223 |
| Figure C.4 | RF Switching I/O With Off, With And Without Alarm, And Load On Start 223           |
| Figure C.5 | RF Switching I/O With Off, With Feedback, With And Without Alarm                   |
| Figure C.6 | RF Switching With Off, With Feedback, With And Without Alarm                       |
| Figure C.7 | Timing Diagram For All Other Modes With Actuator                                   |
| Figure C.8 | Timing Diagram For Cycle Abort With Actuator                                       |
| Figure C.9 | Timing Diagram For Ground Detect With Actuator                                     |
| Appendix   | D: Signal Diagrams                                                                 |
| Figure D.1 | Continuous Mode                                                                    |
| Figure D.2 | Time Mode                                                                          |
| Figure D.3 | AE Actuator                                                                        |

## **List Of Tables**

### **Chapter 1: Safety and Support**

| Table 1.1                                                                  | Branson Contacts                                                                                                                                                                                                                                           | 11                         |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Chapter 2<br>Table 2.1<br>Table 2.2<br>Table 2.3<br>Table 2.4<br>Table 2.5 | Introduction         Models Covered in this Manual         Power Supply Compatibility with Branson Converters         DCX F-EIP Power Supply Front Panel Controls and Indicators         LCD Description         Connections to the DCX F-EIP Power Supply | 14<br>16<br>20<br>22<br>25 |
| Chapter 3<br>Table 3.1<br>Table 3.2<br>Table 3.3<br>Table 3.4<br>Table 3.5 | <b>: Delivery and Handling</b><br>Shipping Specifications.<br>Inspect the Power Supply.<br>Unpacking the Power Supply.<br>Small Parts included: Power Supply Assemblies<br>DCX F-EIP Power Supply System Cables.                                           | 30<br>31<br>32<br>33<br>33 |
| Chapter 4<br>Table 4.1<br>Table 4.2<br>Table 4.3<br>Table 4.4<br>Table 4.5 | : Technical Specifications<br>Environmental Specifications                                                                                                                                                                                                 | 36<br>37<br>38<br>38<br>39 |
| Chapter 5<br>Table 5.1<br>Table 5.2                                        | <b>: Installation and Setup</b> DCX F-EIP Power Supply Benchtop Dimensional Drawing                                                                                                                                                                        | 46                         |
| Table 5.3<br>Table 5.4<br>Table 5.5                                        | (400 W, 750 W & 800 W)<br>DCX F-EIP Power Supply Vertical Mount dimensional drawing (1.25 kW and 1.5 kW)<br>DCX F-EIP Power Supply Vertical Mount dimensional drawing (2.5 kW and 4 kW)<br>Environmental Requirements                                      | 47<br>48<br>49<br>50       |
| Table 5.8<br>Table 5.7<br>Table 5.8<br>Table 5.9                           | DCX F-EIP Power Supply Connections (Vertical Model)                                                                                                                                                                                                        | 50<br>54<br>55<br>57       |
| Table 5.10<br>Table 5.11<br>Table 5.12<br>Table 5.13                       | User I/O Cable Pin Assignments                                                                                                                                                                                                                             | 58<br>60<br>62<br>64       |
| Table 5.14<br>Table 5.15<br>Table 5.16<br>Table 5.17                       | Analog Output Functions                                                                                                                                                                                                                                    | 65<br>66<br>68<br>71       |
| Table 5.18<br>Table 5.19<br>Table 5.20                                     | Input Power Connection                                                                                                                                                                                                                                     | 72<br>76<br>77<br>77       |
| Table 5.22<br>Table 5.22<br>Table 5.23                                     | 20 kHz System                                                                                                                                                                                                                                              | 78<br>78                   |

| Table 5.24 | 40 kHz System                                                |
|------------|--------------------------------------------------------------|
| Table 5.25 | Tip to horn torgue values                                    |
| Table 5.26 | Continuous Duty Max. Power & Full Power Duty Cycle           |
| Table 5.27 | Converter Cooling Procedure                                  |
|            |                                                              |
| Chapter 6  | 5: Converters and Boosters                                   |
| Table 6.1  | 20 kHz Converter                                             |
| Table 6.2  | 20 kHz Booster                                               |
| Table 6.3  | 20 kHz Converter/Booster/Horn                                |
| Table 6.4  | 30 kHz Converter                                             |
| Table 6.5  | 30 kHz Booster                                               |
| Table 6.6  | 30 kHz Converter/Booster/Horn 91                             |
| Table 6.7  | 40 kHz 4TR Converter 92                                      |
| Table 6.8  | 40 kHz Booster 93                                            |
| Table 6.9  | 40 kHz Converter/Booster/Horn 94                             |
|            |                                                              |
| Chapter 7  | 7: Operation                                                 |
| Table 7.1  | Summary of Weld Modes 98                                     |
| Table 7.2  | Continuous Mode Operational Sequence                         |
| Table 7.2  | Time Mode Parameters                                         |
| Table 7.3  | Selecting Time Mode 101                                      |
| Table 7.4  | Setting Time Mode Parameters                                 |
| Table 7.5  | Enorgy Mode Parameters                                       |
| Table 7.0  | Ellergy Mode Farameters                                      |
|            | Setting Energy Mode Decomptore                               |
|            | Setting Energy Mode Parameters                               |
|            |                                                              |
|            |                                                              |
|            | Setting Peak Power Mode Parameters                           |
| Table 7.12 | Ground Detect Mode Parameters 10/                            |
| Table 7.13 | Selecting Ground Detect Mode                                 |
| Table 7.14 | Setting Ground Detect Mode Parameters                        |
| Table 7.15 | Setting the Amplitude Using the Front Panel Controls         |
| Table 7.16 | Resetting the DCX F-EIP Power Supply 111                     |
| Table 7.17 | Steps to Configure the Power Supply Registers                |
| Table 7.18 | Power Supply Registers                                       |
| Table 7.19 | Power Bar-Graph Interpretation Examples                      |
| Table 7.20 | Frequency Bar-Graph Interpretation - 20 kHz (50 Hz Segment)  |
| Table 7.21 | Frequency Bar-Graph Interpretation - 30 kHz (76 Hz Segment)  |
| Table 7.22 | Frequency Bar-Graph Interpretation - 40 kHz (100 Hz/Segment) |
| Table 7.23 | Frequency Bar-Graph Interpretation Examples                  |
| Table 7.24 | Power Supply Ultrasonic Test Procedure (Front Panel)         |
| Table 7.25 | Power Supply                                                 |
|            |                                                              |
| Chapter 8  | 3: EtherNet/IP Operation                                     |
| Table 8.1  | DCX F-EIP Power Supply LED Status Indicator 124              |
| Table 8.2  | DCX Inputs/PLC Outputs (8 bytes) 134                         |
| Table 8.3  | Control Word (STW1)                                          |
| Table 8.4  | HFS Bit (Control Word) 136                                   |
| Table 8.5  | PSN Bit (Control Word) 136                                   |
| Table 8.6  | Control Word (STW2) 138                                      |
| Table 8.7  | DCX Outputs/PLC Inputs (20 bytes) 139                        |
| Table 8.8  | Status Word (ZSW1)                                           |
| Table 8.9  | HFS Bit (Status Word)141                                     |
| Table 8.10 | PSN Bit (Status Word)                                        |
| Table 8.11 | Status Word (ZSW2)                                           |
| Table 8.12 | Stack Function                                               |

 Table 8.13
 Implicit Message for Run
 144

| Table 8.14 | Implicit Message for Seek                       |
|------------|-------------------------------------------------|
| Table 8.15 | Implicit Message for Scan                       |
| Table 8.16 | Implicit Message for Reset                      |
| Table 8.17 | Establishing Token                              |
| Table 8.18 | Attribute ID                                    |
| Table 8.19 | Common Services                                 |
| Table 8.20 | RSLogix 5000 Implementation of Token            |
| Table 8.21 | RSLogix 5000 Implementation of Token Release    |
| Table 8.22 | Get Energy Value Example                        |
| Table 8.23 | Attribute ID                                    |
| Table 8.24 | Common Services                                 |
| Table 8.25 | RSLogix 5000 Implementation of Get Energy Value |
| Table 8.26 | Get Energy Value Example                        |
| Table 8.27 | Attribute ID                                    |
| Table 8.28 | Common Services                                 |
| Table 8.29 | RSLogix 5000 Implementation of Set Energy Value |
| Table 8.30 | Control/Status Word (Time Mode)153              |
| Table 8.31 | DCX Outputs/PLC Inputs (20 bytes)               |
| Table 8.32 | DCX Input                                       |
|            |                                                 |

### **Chapter 9: Maintenance**

| Stack Reconditioning Procedure                        |
|-------------------------------------------------------|
| Reconditioning Stack Mating Surfaces                  |
| Stack Torque Values                                   |
| Stack Reassembly for a 20 kHz System                  |
| Stack Reassembly for a 30 kHz System                  |
| Stack Reassembly for a 40 kHz System                  |
| Stud Torque Values                                    |
| DCX F-EIP Power Supply System Cables                  |
| Suggested Spares                                      |
| Converters Compatible with the DCX F-EIP Power Supply |
| DCX F-EIP Power Supply Compatible Boosters            |
| Other Items used with the DCX F-EIP Power Supply      |
| Troubleshooting                                       |
| Troubleshooting Common Electrical Problems            |
| Troubleshooting Ultrasonic Power Problems             |
| Troubleshooting Weld Cycle Problems                   |
| Steps to Perform a Cold Start                         |
|                                                       |

#### **Appendix A: Alarms**

| Table A.1  | Overload Alarms (Group 0)               |
|------------|-----------------------------------------|
| Table A.2  | Cutoff Alarms (Group 1)                 |
| Table A.3  | Cycle Modified Alarms (Group 2)         |
| Table A.4  | Cycle Modified Alarms (Group 3) 194     |
| Table A.5  | Warning Alarms (Group 4)                |
| Table A.6  | Limit Alarms (Group 5)                  |
| Table A.7  | Equipment Failure Alarms (Group 6)      |
| Table A.8  | No Cycle Alarms (Group 7)               |
| Table A.9  | Communication Failure Alarms (Group 8)  |
| Table A.10 | Hardware Alarms (Group A)               |
| Table A.11 | Non-Cycle Overload Alarms (Group B) 202 |
|            |                                         |
| Appendix   | B: EtherNet/IP Commands                 |
| Table B.1  | Parameter Set Class                     |
| Table B.2  | Common Services                         |
| Table B.3  | Weld Data Class                         |
| Table B.4  | Common Services                         |

| Table B.5  | Stack Parameter Class (Seek Results)     |
|------------|------------------------------------------|
| Table B.6  | Stack Parameter Class (Test Results) 211 |
| Table B.7  | Common Services                          |
| Table B.8  | Common Stack Parameters                  |
| Table B.9  | Stack Status Class (Seek) 213            |
| Table B.10 | Stack Status Class (Test)                |
| Table B.11 | Stack Status Class (Scan) 214            |
| Table B.12 | Common Services                          |
| Table B.13 | Alarm Data Class                         |
| Table B.14 | Common Services                          |
| Table B.15 | System Information Class                 |
| Table B.16 | Common Services                          |
| Table B.17 | Other Information Class                  |
| Table B.18 | System Configuration Parameters          |
| Table B.19 | Common Services                          |
| Table B.20 | Identity Object (1 - 1 Instance) 219     |
| Table B.21 | Common Services                          |

### Appendix C: Timing Diagrams

Appendix D: Signal Diagrams

## **Chapter 1: Safety and Support**

| 1.1 | Safety Requirements and Warnings | . 2 |
|-----|----------------------------------|-----|
| 1.2 | General Precautions              | . 4 |
| 1.3 | Warranty                         | . 7 |
| 1.4 | How to Contact Branson           | . 8 |
| 1.5 | Returning Equipment for Repair   | . 9 |
| 1.6 | Obtaining Replacement Parts      | 12  |

## 1.1 Safety Requirements and Warnings

This chapter contains an explanation of the different Safety Notice symbols and icons found both in this manual and on the product itself and provides additional safety information for ultrasonic welding. This chapter also describes how to contact Branson for assistance.

### 1.1.1 Symbols Found in this Manual

These symbols used throughout this manual warrant special attention:

| WARNING | Indicates a possible danger                                          |
|---------|----------------------------------------------------------------------|
|         | If these risks are not avoided, death or severe injury might result. |

| CAUTION | Indicates a possible danger                                          |
|---------|----------------------------------------------------------------------|
|         | If these risks are not avoided, slight or minor injury might result. |

| NOTICE    | Indicates a possible damaging situation                                                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>()</b> | If this situation is not avoided, the system or something in its vicinity might get damaged.<br>Application types and other important or useful information are emphasized. |

### 1.1.2 Symbols Found on the Product

The DCX F-EIP Power Supply has several safety-related labels on it to indicate the presence of hazardous voltages inside the unit.







## 1.2 General Precautions

Take the following precautions before servicing the power supply:

- · Be sure the power switch is in the off position before making any electrical connections
- To prevent the possibility of an electrical shock, always plug the power supply into a grounded power source
- To prevent the possibility of an electrical shock, ground the power supply by securing an 8 gauge grounded conductor to the ground screw located next to the air outlet
- Power supplies produce high voltage. Before working on the power supply assembly, do the following:

Turn off the power supply;

Unplug main power; and

Allow at least 2 minutes for capacitors to discharge

- High voltage is present in the power supply. Do not operate with the cover removed
- High line voltages exist in the ultrasonic power supply assembly. Common points are tied to circuit reference, not chassis ground. Therefore, use only non-grounded, battery-powered multimeters when testing the power supply assembly. Using other types of test equipment can present a shock hazard
- Keep hands from under the horn. Down force (pressure) and ultrasonic vibrations can cause injury
- Do not cycle the welding system if either the RF cable or converter is disconnected
- When using larger horns, avoid situations where fingers could be pinched between the horn and the fixture
- Ensure power supply installation is performed by qualified personnel and in accordance with local standards and regulations

| CAUTION | Loud Noise Hazard                                                                                                                                                                                                                                                                                      |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Sound level and frequency of the noise emitted during the ultrasonic<br>assembly process may depend upon a. type of application, b. size,<br>shape and composition of the material being assembled, c. shape<br>and material of the holding fixture, d. welder setup parameters and<br>e. tool design. |
|         | Some parts vibrate at an audible frequency during the process. Some<br>or all of these factors may result in an uncomfortable noise being<br>emitted during the process.                                                                                                                               |
|         | In such cases operators may need to be provided with personal protective equipment. See 29 CFR (Code of Federal Regulations) 1910.95 Occupational Noise Exposure.                                                                                                                                      |

| NOTICE |                                                                                        |
|--------|----------------------------------------------------------------------------------------|
| i      | When the battery is worn out, dispose it under the ordinance of each local government. |

| CAUTION | Corrosive Material Hazard                                                                                                                                                                                                      |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | First aid measures (in case of electrolyte leakage from the battery):                                                                                                                                                          |
|         | <b>Eye Contact:</b> Flush the eyes with plenty of clean water for at least 15 minutes immediately, without rubbing. Get immediate medical treatment.<br>If appropriate procedures are not taken, this may cause eye injury.    |
|         | <b>Skin Contact:</b> Wash the affected area under tepid running water using a mild soap. If appropriates procedures are not taken, this may cause sores on the skin. Get medical attention if irritation develops or persists. |
|         | Inhalation: Remove to fresh air immediately. Get medical treatment immediately.                                                                                                                                                |

### 1.2.1 Intended Use of the System

The DCX F-EIP Power Supply and components are designed to be used as part of an ultrasonic welding system. These are designed for a wide variety of welding or processing applications.

If the equipment is used in a manner not specified by Branson, the protection provided by the equipment may be impaired.

Branson Ultrasonics Corporation designs and manufactures machines giving the first priority to safety precautions, to allow customers to use the machines safely and effectively. Only trained operators should run and service the equipment. Untrained operators can misuse the equipment or ignore safety instructions that can result in personal injury or equipment damage. It is most essential that all operators and service personnel pay attention to safety instructions when operating and servicing the equipment.

### 1.2.2 Emissions

Because of the various types of toxic or injurious gases that may be liberated during the welding based on the material being processed, sufficient ventilation should be provided to prevent a concentration of these gases in excess of 0.1 ppm. Check with your materials suppliers for recommended protection when processing their materials.

| CAUTION | Corrosive Material Hazard                                                                                                                                                                   |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Processing of many materials, such as PVC, can be hazardous to an operator's health and could cause corrosion/damage to the equipment. Use proper ventilation and take protective measures. |

### 1.2.3 Setting up the Workplace

Measures for setting up a workplace for safe operation of the ultrasonic welder are outlined in <u>Chapter 5: Installation and Setup</u>.

### 1.2.4 Regulatory Compliance

This product meets electrical safety requirements and EMC (Electromagnetic Compliance) requirements for North America, Great Britain and the European Union.

## 1.3 Warranty

For warranty information please reference the warranty section of Terms and Conditions found at: <u>www.emerson.com/branson-terms-conditions</u>.

## 1.4 How to Contact Branson

Branson is here to help you. We appreciate your business and are interested in helping you successfully use our products. To contact Branson for help, use the following telephone numbers, or contact the field office nearest you (business hours from 8 a.m. to 4 p.m. Central and Eastern Time Zones):

- North American Headquarters (all Departments): (203) 796-0400
- Parts Store (direct number): (877) 330-0406
- Repair department: (877)-330-0405
- For emergency after-hours service (5 p.m. 8 a.m. EST): (203) 796-0500 (US phone numbers only)

Tell the operator which product you have and which person or department you need (<u>Table 1.1 Branson Contacts</u>). If after hours, please leave a voice message with your name and return telephone number.

### 1.4.1 Before Calling Branson for Assistance

This manual provides information for troubleshooting and resolving problems that could occur with the equipment (see <u>Chapter 9: Maintenance</u>). If you still require assistance, Branson Product Support is here to help you. To help identify the problem, use the following questionnaire which lists the common questions you will be asked when you contact the Product Support department.

Before calling, determine the following information:

- 1. Your company name and location.
- 2. Your return telephone number.
- 3. Have your manual with you. If troubleshooting a problem, refer to Chapter 9: Maintenance.
- 4. Know your equipment model and serial numbers (found on a gray data label on the units). Information about the horn (part number, gain, etc.) or other tooling may be etched into the tooling. Software- or firmware-based systems may provide a BOS or software version number, which may be required.
- 5. What tooling (horn) and booster are being used?
- 6. What are the setup parameters and mode?
- 7. Is your equipment in an automated system? If so, what is supplying the "start" signal?
- 8. Describe the problem; provide as much detail as possible. For example, is the problem intermittent? How often does it occur? How long before it occurs if you are just powering up? If an error is occurring, which error (give error number or name)?
- 9. List the steps you have already taken.
- 10. What is your application, including the materials being processed?
- 11. Have a list of service or spare parts you have on hand (tips, horns, etc.)
- 12. Notes:

# Branson

## 1.5 Returning Equipment for Repair

Before sending equipment for repair, provide as much information with the equipment to help determine the problem with the system. Use the following page to record necessary information.

| NOTICE    |                                                                                                                                                     |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>()</b> | To return equipment to Branson, you must first obtain an RGA<br>number from a Branson representative, or the shipment may be<br>delayed or refused. |

If you are returning equipment to Branson for repair, you must first call the Repair department to obtain a **Returned Goods Authorization** (RGA) number. (If you request it, the repair department will fax a Returned Goods Authorization form to fill out and return with your equipment).

- Branson Repair Department, C/O Zuniga Logistics, LTD
- 12013 Sara Road, Killam Industrial Park
- Laredo, Texas 78045 U.S.A.
- Direct telephone number: (877) 330-0405
- Fax number: (877) 330-0404
- · Provide as much information as possible that will help identify the need for repair
- · Carefully pack the equipment in original packing cartons
- Clearly label all shipping cartons with the RGA number on the outside of cartons as well as on your packing slip, along with the reason for return
- Return general repairs by any convenient method. Send priority repairs by air freight
- You must prepay the transportation charges FOB Laredo, Texas, U.S.A.

### 1.5.1 Get an RGA Number

#### RGA#

If you are returning equipment to Branson, please call the Repair Department to obtain a Returned Goods Authorization (RGA) number. (At your request, the Repair Department will fax an RGA form to fill out and return with the equipment.)

# Branson

### 1.5.2 Record Information About the Problem

Before sending equipment for repair, record the following information and send a copy of it with the equipment. This will greatly increase Branson's ability to address the problem.

- 1. Describe the problem; provide as much detail as possible. For example, is the problem intermittent? How often does it occur? How long before it occurs after powering up?
- 2. Is your equipment in an automated system?
- 3. If the problem is with an external signal, which signal?
- 4. If known, include plug/pin # (e.g., P29, pin #3) for that signal:
- 5. What are the Weld Parameters?
- 6. What is your application (type of weld, plastic material, etc.)?
- 7. Name and phone number of the person most familiar with the problem:

Contact the Branson office prior to shipping the equipment.

For equipment not covered by warranty, to avoid delay, include a Purchase Order.

Send a copy of this page with the equipment being returned for repair.

### 1.5.3 Departments to Contact

Call your local Branson Representative, or contact Branson by calling and asking for the appropriate department, as indicated in <u>Table 1.1 Branson Contacts</u> below.

| What you need help with or<br>information about       | Whom to Call                                          | At this Phone<br>Number      |
|-------------------------------------------------------|-------------------------------------------------------|------------------------------|
| Information about new welding systems or components   | Your local Branson Rep or<br>Branson Customer Service | 203-796-0400<br>Ext 384      |
| Application and setup questions on the welding system | Welding Applications Lab                              | 203-796-0400<br>Ext 368      |
| Application assistance on the horns and tooling       | ATG Lab                                               | 203-796-0400<br>Ext 495      |
| Technical questions about the welding system          | Welding Product Support                               | 203-796-0400<br>Ext 355, 551 |
| Technical questions about horns and tooling           | ATG Lab                                               | 203-796-0400<br>Ext 495      |
| Ordering new parts                                    | Parts Store                                           | 877-330-0406                 |
| RGA's, request for repair, status of a repair         | Welding Repair Department                             | 877-330-0405                 |
| System automation/hookup information                  | Product Support                                       | 203-796-0400<br>Ext 355, 551 |

My Local Branson Representative's name is:

I can reach this representative at:

### 1.5.4 Pack and Ship the Equipment

- 1. Carefully pack the system in original packing material to avoid shipping damage. Plainly show the RGA number on the outside of cartons as well as inside the carton along with the reason for return. Make a list of all components packed in the box. KEEP YOUR MANUAL.
- 2. Return general repairs by any convenient method. Send priority repairs by air freight. Prepay the transportation charges FOB the repair site.

| NOTICE |                                                      |
|--------|------------------------------------------------------|
| j      | Items that are sent Freight Collect will be refused. |

# Branson

## 1.6 Obtaining Replacement Parts

You can reach Branson Parts Store at the following telephone numbers:

- Branson Part Store Direct telephone number: 877-330-0406
- Fax number: 877-330-0404

Many parts can be shipped the same day if ordered before 2:30 p.m., Eastern time.

A parts list is found in <u>Chapter 9: Maintenance</u> of this manual, listing descriptions and EDP part numbers. If you need replacement parts, coordinate the following with your purchasing agent:

- Purchase order number
- Ship to information
- Bill to information
- Shipping instructions (air freight, truck, etc.)
- Any special instructions (for example, "Hold at the airport and call"). Be sure to give a name and phone number
- Contact name information

# **Chapter 2: Introduction**

| 2.1 | Models Covered                            | . 14 |
|-----|-------------------------------------------|------|
| 2.2 | Compatibility with other Branson Products | . 16 |
| 2.3 | Features                                  | . 17 |
| 2.4 | Controls and Indicators                   | . 20 |
| 2.5 | Welding Systems                           | . 26 |
| 2.6 | Glossary                                  | . 27 |

## 2.1 Models Covered

This manual covers all models of the DCX F-EIP Power Supply.

| Table 2.1 Mod | els Covered in this Manual |
|---------------|----------------------------|
|---------------|----------------------------|

| Frequency | Power  | Model      | EDP          |
|-----------|--------|------------|--------------|
|           | 1250 W | Horizontal | 101-132-1836 |
|           |        | Vertical   | 101-132-1843 |
| 20 647    | 2500 W | Horizontal | 101-132-1837 |
|           |        | Vertical   | 101-132-1844 |
|           | 4000 W | Horizontal | 101-132-1838 |
|           |        | Vertical   | 101-132-1845 |
|           | 750 W  | Horizontal | 101-132-1839 |
| 30 kHz    |        | Vertical   | 101-132-1846 |
|           | 1500 W | Horizontal | 101-132-1840 |
|           |        | Vertical   | 101-132-1847 |
| 40 kHz    | 400 W  | Horizontal | 101-132-1835 |
|           |        | Vertical   | 101-132-1842 |
|           | 800 W  | Horizontal | 101-132-1841 |
|           |        | Vertical   | 101-132-1848 |

### 2.1.1 Overview of these Models

Figure 2.1 The DCX F-EIP Power Supply (Horizontal)



Figure 2.2 The DCX F-EIP Power Supply (Vertical)



## 2.2 Compatibility with other Branson Products

**Table 2.2** Power Supply Compatibility with Branson Converters

| DCX F-EIP Model | Converter           |  |
|-----------------|---------------------|--|
|                 | CR-20               |  |
|                 | CR-20S              |  |
| 20 kHz / 1250 W | CR-20C              |  |
| 20 kHz / 2500 W | CH-20S (932 AH SPL) |  |
| 20 kHz / 4000 W | CH-20C              |  |
|                 | CS-20S              |  |
|                 | CS-20C              |  |
|                 | CR-30S              |  |
|                 | CR-30C              |  |
| 30 kHz / 750 W  | CH-30S              |  |
| 30 kHz / 1500 W | CH-30C              |  |
|                 | CS-30S              |  |
|                 | CS-30C              |  |
|                 | CR-40S (4TH)        |  |
| 40 kHz / 400 W  | CR-40C              |  |
| 40 kHz / 800 W  | 4TP                 |  |
|                 | 4TR                 |  |

| NOTICE    |                                                                                                                                                           |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>()</b> | Special adaptor cables are available to connect to MS-style converters (CR20 and 4TR). See <u>Table 9.8 DCX F-EIP Power Supply</u> <u>System Cables</u> . |

## 2.3 Features

### 2.3.1 The Welding System

The DCX F-EIP Power Supply generates ultrasonic energy through an ultrasonic converter for welding plastics. Several models are available, depending on the desired frequency (for example, 20 kHz), the desired power range (for example, 2.5 kW), and the intended mounting arrangement (horizontal or vertical). The power supply also contains a microprocessor-based controller module that provides for control and monitoring of welding operations.

The welding system consists of a DCX F-EIP Power Supply and a converter-booster-horn stack. The system can perform ultrasonic welding, inserting, staking, spot welding, swaging, degating, and continuous ultrasonic operations. It is designed for automated, semi-automated and/or manual production operations.

### 2.3.2 The Power Supply

The DCX F-EIP Power Supply consists of an ultrasonic power supply assembly with a system controller and user interfaces. The ultrasonic power supply assembly converts conventional 50/60 Hz line current to 20 kHz, 30 kHz or 40 kHz electrical energy. The system controller controls the welding system.

Listed below are the control features of the Branson DCX F-EIP Power Supply ultrasonic welding system

- Autotuning: Branson power supply tuning ensures that the system is running at peak efficiency
- **Digital Amplitude Setting:** This feature allows you to set the exact amplitude necessary for your application, allowing increased range and setting repeatability over analog systems
- EtherNet/IP: Provides plant-wide network systems using open, industry-standard networking technologies. This combination of well-accepted standards provides the functionality required to support both information data exchange as well as control applications
- **Frequency Offset:** This process feature allows a user to set an offset relative to the starting frequency, for certain specific applications, where the force imparted on the fixture or anvil causes a frequency shift in the stack's operation. You should only use this feature when advised to do so by Branson
- Horn Signature: Using the DCX F-EIP Power Supply Web Page Interface, you may scan your ultrasonic stack to view its operating frequency on your computer, using digital readouts to give you the best picture of the stack's operation
- LCD (Liquid Crystal Display): Provides a clear visual interface to monitor and configure the system
- Line Regulation: Maintains converter amplitude by regulating for variances in the line voltages
- Load Regulation: Maintains converter amplitude over the full range of rated power
- **Membrane Keys:** Front panel controls are designed for high reliability and immunity from factory dust and oils
- User ID and Passcodes: Allows for keeping track of user access to the DCX F-EIP Power Supply Web Page Interface
- **Ramp Starting:** The starting of the DCX F-EIP Power Supply and horn is done at a rate that helps reduce electrical and mechanical stress on the system. The horn start rate may be adjusted for some tough-to-start applications
- Seek: Ensures operation at resonance; minimizes tuning errors; and operates the stack at low amplitude (10%), then provides a means of sensing and storing the resonant operating frequency value
- Start-up Diagnostics: At start-up, the controls test the major internal components
- **System Protection:** Protects the power supply by providing six levels of protection: Voltage, Current, Phase, Temperature, Power and Frequency

- **Timed Seek:** When enabled, will do a Seek once every minute to update horn resonant frequency to memory. This is especially useful when the welding process affects the actual temperature of the horn, causing a resonant frequency shift
- **True Wattmeter:** The controls on the power supply include a true wattmeter for accurate measurement of power and energy
- Web Page Interface: Provides access, via Ethernet connection, to power supply information, diagnostics, and configuration web pages

### 2.3.3 The Actuator

The DCX F-EIP Power Supply can interface with actuator signals, only when operating in manual mode.

### 2.3.4 Converter/Booster/Horn Assembly

### **The Converter**

The ultrasonic electrical energy from the power supply is applied to the converter (sometimes called the transducer). This transforms the high frequency electrical oscillations into mechanical vibrations at the same frequency as the electrical oscillations. The heart of the converter is piezoelectric ceramic elements. When subjected to an alternating voltage, these elements alternately expand and contract, resulting in better than 90% conversion of electrical to mechanical energy.

### The Booster

Success in ultrasonic assembly depends on the right amplitude of movement at the horn face. Amplitude is a function of horn shape, which is largely determined by the size and form of the parts to be assembled. The booster can be used as a mechanical transformer to increase or decrease the amplitude of vibrations applied to the parts through the horn.

The booster is a resonant half-wave section of aluminum or titanium. It is mounted between the converter and the horn, as part of the ultrasonic stack. It also provides a clamping point for rigid stack mounting.

Boosters are designed to resonate at the same frequency as the converter with which they are used. Boosters are usually mounted at a nodal (minimum vibration) point of axial motion. This minimizes the loss of energy and prevents vibration from being transmitted to the stack supporting structure.

## The Horn

The horn is selected or designed for a specific application. Each horn is tuned typically as a half-wave section that applies the necessary force and vibration uniformly to the parts to be assembled. It transfers ultrasonic vibrations from the converter to the workpiece. The horn is mounted to the booster as part of the ultrasonic stack.

Depending on their profile, horns are referred to as stepped, conical, exponential, bar, or catenoidal. The shape of the horn determines the amplitude at the face of the horn. Depending on the application, horns can be made from titanium alloys, aluminum, or steel. Titanium alloys are the best materials for horn fabrication due to their high level of strength and low loss. Aluminum horns are usually chrome- or nickel-plated or hard-coated to reduce wear. Steel horns are for low amplitude requiring hardness, such as ultrasonic insertion applications.

## 2.4 Controls and Indicators

### 2.4.1 DCX F-EIP Power Supply Front Panel

Figure 2.3 DCX F-EIP Power Supply Front Panel Controls and Indicators



 Table 2.3
 DCX F-EIP Power Supply Front Panel Controls and Indicators

| Reference    | Description                                                                                                                                                                                                            |  |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|              | <b>LCD</b><br>For detailed information refer to Figure 2.4 LCD Description and Table 2.4 LCD Description.                                                                                                              |  |  |  |
| $\bigotimes$ | <b>Up/Down Keys</b><br>Use to adjust the amplitude of ultrasonic vibrations (10% to 100%). Also used to adjust weld mode parameters, select registers and edit register values.                                        |  |  |  |
|              | Alarm Reset Key<br>Use the Reset key to reset alarms.<br>When changing system registers, use the Reset key to set a<br>register back to its default value after entering the register and<br>before editing the value. |  |  |  |
|              | <b>Configuration Key</b><br>Use the Configuration key to change system registers. For<br>information on using the Configuration key to set system registers<br>see <u>7.4 Configuring the Power Supply Registers</u> . |  |  |  |

| Reference       | Description                                                                                                                                                                                                                                           |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | <b>Ultrasonics Test Key</b><br>Use the Test key to perform an ultrasonic test. Test performs a<br>seek and then ramps the amplitude to the current setting.                                                                                           |
| •               | EtherNet/IP Connectors<br>Use the EtherNet/IP Connector to connect the DCX F-EIP Power<br>Supply to a master/slave EtherNet/IP network. For more<br>information, refer to <u>Chapter 5: Installation and Setup</u> and<br><u>Chapter 7: Operation</u> |
|                 | Ethernet Port<br>Use the Ethernet Port to connect to the DCX F-EIP Power Supply<br>Web Page Interface.                                                                                                                                                |
|                 | <b>Power-On Indicator</b><br>Lights when the power supply is connected to main power and the<br>power switch is on.                                                                                                                                   |
| 24V             | <b>24 V Indicator</b><br>Lights when 24 V DC are supplied to the DCX F-EIP Power Supply.                                                                                                                                                              |
| SYS<br>MS<br>NS | EtherNet/IP Status Indicator<br>Indicate the status of the EtherNet/IP module. For more<br>information see <u>Chapter 7: Operation</u> .                                                                                                              |

 Table 2.3
 DCX F-EIP Power Supply Front Panel Controls and Indicators





 Table 2.4
 LCD Description

| Reference         | Description                                                                                                                                                                                                                                                                                            |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                   | Numeric Display                                                                                                                                                                                                                                                                                        |  |  |
| 8.8:8.8           | Displays the Power Supply amplitude settings, weld time<br>settings, weld energy settings, peak power settings, scrub<br>time settings, register numbers, register values or alarm<br>numbers.                                                                                                         |  |  |
|                   | Continuous Mode Icon                                                                                                                                                                                                                                                                                   |  |  |
| $\mathbf{\infty}$ | Indicates the power supply is running in Continuous mode.<br>When in Continuous mode, the amplitude setting is shown<br>on the numeric display in conjunction with the % icon. The<br>amplitude setting may range from 10% to 100%. For more<br>information see <u>Chapter 7: Operation</u> .          |  |  |
|                   | Time Mode Icon                                                                                                                                                                                                                                                                                         |  |  |
| (Îr               | Indicates the power supply is running in Time mode. When<br>in Time mode, the weld time setting is shown on the<br>numeric display in conjunction with the <b>S</b> icon. The weld<br>time setting can range from 10 ms to 30 seconds. For more<br>information see <u>Chapter 7: Operation</u> .       |  |  |
|                   | Energy Mode I con                                                                                                                                                                                                                                                                                      |  |  |
|                   | Indicates the power supply is running in Energy mode.<br>When in Energy mode, the weld energy setting is shown on<br>the numeric display in conjunction with the <b>J</b> icon. The<br>energy setting may range from 1 Joule to 9999 Joules. For<br>more information see <u>Chapter 7: Operation</u> . |  |  |

| Table 2 | 2.4 | LCD | Descri | ption |
|---------|-----|-----|--------|-------|
|         |     |     |        |       |

| Reference | Description                                                                                                                                                                                                                                                                                                                                          |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Peak Power Icon                                                                                                                                                                                                                                                                                                                                      |
| ľ         | Indicates the power supply is running in Peak Power mode.<br>When in Peak Power mode, the peak power percentage is<br>shown on the numeric display in conjunction with the <b>%</b><br>icon. The peak power setting may range from 1% to 100%<br>of the maximum power supply output power. For more<br>information see <u>Chapter 7: Operation</u> . |
|           | Ground Detect Icon                                                                                                                                                                                                                                                                                                                                   |
|           | Indicates the power supply is running in Ground Detect<br>mode. When in Ground Detect mode, the scrub time setting<br>will be shown on the numeric display in conjunction with the<br><b>S</b> icon. Scrub time setting may range from 1 millisecond to<br>500 milliseconds. For more information see <u>Chapter 7:</u><br><u>Operation</u> .        |
| 4         | Sonics Active Indicator<br>Indicates ultrasonics is running.                                                                                                                                                                                                                                                                                         |
| ,<br>     |                                                                                                                                                                                                                                                                                                                                                      |
| S         | <b>Time Icon</b><br>Indicates that the value shown on the numeric display<br>represents time in seconds.                                                                                                                                                                                                                                             |
|           | Joule Icon                                                                                                                                                                                                                                                                                                                                           |
| J         | Indicates that the value shown on the numeric display represents energy.                                                                                                                                                                                                                                                                             |
|           | Percentage I con                                                                                                                                                                                                                                                                                                                                     |
| %         | Indicates that the value shown on the numeric display<br>represents a percentage. When in Peak Power mode, the<br>value shown on the numeric display represents a percentage<br>of the power supply rated power. If not in Peak Power mode,<br>the value shown on the numeric represents the amplitude<br>setting.                                   |
|           | Number Sign I con                                                                                                                                                                                                                                                                                                                                    |
| #         | Indicates that the value shown on the numeric display is a register number. Use up and down keys to select a register. For more information see <u>7.4 Configuring the Power Supply Registers</u> .                                                                                                                                                  |



| Table 2  | Λ | Doscri | ntion |
|----------|---|--------|-------|
| Table Z. | 4 | Descri | ριισι |

| Reference                             | Description                                                                                                                                                                                                                                                                                     |  |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Ο                                     | <b>Circle Icon</b><br>Indicates that the value shown on the numeric display is a register value. Use up and down keys to modify the register value. For more information see <u>7.4 Configuring the Power</u><br><u>Supply Registers</u> .                                                      |  |  |
| $\overline{\mathbf{x}}$               | <b>Alarm I con</b><br>A flashing icon which indicates and alarm condition.                                                                                                                                                                                                                      |  |  |
| <b>10 20 30 40 50 60 70 80 90 100</b> | Power/Frequency Bar-Graph                                                                                                                                                                                                                                                                       |  |  |
|                                       | Shows the true percentage of ultrasonic power during a weld cycle. The bar-graph can be configured to show the peak power or the memory frequency at the end of each weld or test cycle. For instructions on how to modify this setting see <u>7.4 Configuring the Power Supply Registers</u> . |  |  |
|                                       | For detailed bar-graph description and bar-graph reading examples, see 7.5.2 Frequency Bar-Graph Interpretation.                                                                                                                                                                                |  |  |
### 2.4.2 DCX F-EIP Power Supply Connections

Figure 2.5 DCX F-EIP Power Supply Back Panel (Horizontal)



Figure 2.6 DCX F-EIP Power Supply Bottom Panel (Vertical)



 Table 2.5
 Connections to the DCX F-EIP Power Supply

| Item | Name                              | Function                                                                                                                                                                                                                                             |
|------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Circuit Breaker /<br>Power Switch | Turns the AC main power on or off.                                                                                                                                                                                                                   |
| 2    | Line Input<br>Connector           | Detachable connector block for connecting the input<br>power. For wiring details refer to <u>Chapter 5: Installation</u><br>and <u>Setup</u> .                                                                                                       |
| 3    | Ground Screw                      | Ground screw to serve as a redundant safety measure.                                                                                                                                                                                                 |
| 4    | User I/O<br>Connector             | Provides the necessary input/output signals to interface<br>with actuators, user automation or control interfaces. For<br>detailed information on interfacing with the DCX F-EIP<br>Power Supply refer to <u>Chapter 5: Installation and Setup</u> . |
| 5    | Ethernet Port                     | Use the Ethernet Port to connect to the DCX F-EIP Power Supply Web Page Interface.                                                                                                                                                                   |
| 6    | RF Connector                      | SHV connector for RF cable, which provides ultrasonic energy to the converter.                                                                                                                                                                       |

### 2.5 Welding Systems

#### 2.5.1 Principle of Operation

Thermoplastic parts are welded ultrasonically by applying high frequency vibrations to the parts being assembled. The vibrations, through surface and intermolecular friction, produce a sharp rise in temperature at the welding interface.

When the temperature is high enough to melt the plastic, there is a flow of material between the parts. When the vibrations stop, the material solidifies under pressure and a weld results.

### 2.5.2 Weld System Applications

DCX F-EIP Power Supply weld systems can be used for the following applications:

- Ultrasonic welding
- Cutting and sealing thermoplastic fabric and film
- Staking, spot welding, swaging, and degating thermoplastic parts
- Other ultrasonic processing applications

### 2.6 Glossary

The following terminology may be encountered when using or operating a DCX F-EIP Power Supply ultrasonic welding system:

- Actuator: The unit which houses the converter/booster/horn stack assembly in a rigid mounting, allowing the stack to move up and down, either mechanically or pneumatically, applying force to the part at a user-adjustable force and velocity
- Alarm: Visual indication of error
- Amplitude Control: The ability to set amplitude digitally or by an external control
- **Amplitude:** The peak-to-peak movement at the horn face. Always expressed as a percentage of the maximum
- **Booster:** A one-half-wavelength-long resonant metal section mounted between the converter and horn, sometimes having a change in cross-sectional area between the input and output surfaces. The booster mechanically alters the amplitude of vibrations received from the converter, and imparts the new amplitude to the horn
- Clamping Force: The pounds or kilograms exerted by the horn onto the workpiece
- Cold Start: Restores the settings of the power supply back to its original condition
- **Converter**: The device that converts electrical energy into mechanical vibrations at a high frequency (an ultrasonic rate)
- · Counters: A record of the number of preset cycles recorded in the power supply
- Degating: Removing a molded part from its runner system
- **Energy Director:** A triangular-shaped projection of plastic material which concentrates the ultrasonic energy at the joint interface of a plastic part
- EtherNet/IP (Ethernet Industrial Protocol): A communications protocol designed for use in process control and industrial automation applications
- External Amplitude Control: Enables you to access real-time amplitude control directly via the user I/O connector
- External Frequency Control: Enables you to access real-time frequency offset control directly via the user I/O connector
- Fieldbus: Computer network protocols for industrial two way communications used for real-time distributed control
- Fixture: A device for holding a part in position for assembly
- Flash: Material displaced from the joint area
- Forming: Reshaping a section of thermoplastic
- Fretting Corrosion: A black surface condition, that results from friction between metal parts, that appears on the converter-booster-horn stack mating surfaces
- **Frequency:** The operating frequency of the ultrasonic stack. The frequency stored is measured at the end of the ultrasonic portion of the cycle (when ultrasonics are terminated)
- Frequency Offset: An offset factor applied to the ultrasonic frequency stored in the power supply
- Gain: The ratio of output to input amplitude of a horn or booster
- Horn: A bar or metal section, usually one half-wavelength-long which transfers vibratory energy to the workpiece
- · Horn Amplitude: The peak-to-peak displacement of a horn at its work face
- Horn Signature: A scan to enhance selection of operating frequency and control parameters
- Insertion: The process of embedding a metal component in plastic
- Interface: 1. The contact surface of two mating parts. 2. The connection between two pieces of equipment
- Joint: The weld surfaces
- Parameter: A unique factor or element which affects the welding operation in a particular mode
- Parameter Range: Valid range of parameters accepted for a particular setup

- **Power Supply**: The electronic instrument in an ultrasonic assembly system which changes conventional 50/60 Hz electrical power into high frequency electrical power at 20 kHz, 30 kHz or 40 kHz
- Seek: The activation of ultrasonics at a low-level (10 %) amplitude, for the purpose of finding the resonant frequency of the stack
- **Staking:** The process of melting and reforming a plastic stud to mechanically lock a dissimilar material in place
- **Swaging:** The process of capturing another component of an assembly by melting and reforming a ridge of plastic
- Thermoplastic: A polymer which undergoes a reversible change of state when subjected to heat
- Thermoset: A polymer which undergoes an irreversible change when subjected to heat
- **Token:** Token is a concept that applies to who can make a change to the preset. If the fieldbus has gotten the token, then only the fieldbus can perform a change. However, if fieldbus has not gotten the token (or has released the token), then the preset can be changed by any other means, for example, via Web Page or front panel controls
- Ultrasonic Power: Presence of ultrasonic power at the horn face
- **Ultrasonic Welding:** The use of ultrasonic vibrations to generate heat and subsequently melt the mating surfaces of two thermoplastic parts. When ultrasonic vibrations stop, the molten material resolidifies, and a weld occurs
- User ID: A unique 12 character long alphanumeric ID used to keep track of user access to the web page interface
- Weld System: A combination of components required to perform an ultrasonic operation. Usually consists of a power supply, converter, booster, and horn, with either an actuator or a handheld device, or in a fixed, mounted location

## **Chapter 3: Delivery and Handling**

| 3.1 | Shipping and Handling               |
|-----|-------------------------------------|
| 3.2 | Receiving                           |
| 3.3 | Unpacking the Power Supply          |
| 3.4 | Take Inventory of Small Parts    33 |
| 3.5 | Returning Equipment                 |

## 3.1 Shipping and Handling

| CAUTION | Heavy Object                                                                                                                                              |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | The power supply may be heavy. Handling, unpacking, and installation may require the assistance of a colleague or the use of lifting platforms or hoists. |

### 3.1.1 Environmental Specifications

The DCX F-EIP Power Supply is an electronic unit that converts line voltage to ultrasonic energy and responds to user input for regulating the weld process. Its internal components are sensitive to static discharge, and many of its components can be harmed if the unit is dropped, shipped under improper conditions, or otherwise mishandled.

The following environmental guidelines should be respected in the shipping of the power supply.

| Environmental Condition           | Acceptable Range                                                            |
|-----------------------------------|-----------------------------------------------------------------------------|
| Storage / Shipping<br>Temperature | -25° C / -13° F to +55° C / +131° F<br>(+70° C / +158° F for 24 hours)      |
| Shock / Vibration (transit)       | 45 g shock / 0.5 g and (3 to 100 Hz) vibration per ASTM 3332-88 and 3580-90 |
| Drop Test                         | ISTA Procedure 1 & 2A (while packaged)                                      |
| Humidity                          | Maximum 95%, non-condensing                                                 |

#### Table 3.1 Shipping Specifications

### 3.2 Receiving

The DCX F-EIP Power Supply is a sensitive electronic device. Many of its components can be harmed if the unit is dropped or otherwise mishandled.

### Scope of Delivery

Branson equipment is carefully checked and packed before dispatch. It is recommended, however, that you follow the procedure below upon receiving your DCX F-EIP Power Supply.

#### Inspect the Power Supply when it is delivered, take the following steps.

| Step | Action                                                                                         |
|------|------------------------------------------------------------------------------------------------|
| 1    | Verify that all parts are complete according to the packing slip.                              |
| 2    | Check the packing and the unit for damage (visual inspection).                                 |
| 3    | Report any damage claims to your carrier immediately.                                          |
| 4    | Determine if any component has become loose during shipping and, if necessary, tighten screws. |

| NOTICE |                                                                                                                                                                                                  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | If the goods delivered have been damaged during shipping, please<br>contact the forwarding agent immediately. Retain packing material<br>(for possible inspection or for sending back the unit). |

## 3.3 Unpacking the Power Supply

#### NOTICE



If there are any visible signs of damage to the shipping containers or the product, or you later discover hidden damage, NOTIFY YOUR CARRIER IMMEDIATELY. Save the packing material.

The power supply is fully assembled. It is shipped in a sturdy cardboard box. Some additional items are shipped in the box with the power supply. Note orientation of packaging material in case return/repack is necessary. When unpacking the power supply, take the following steps:

#### **Table 3.3**Unpacking the Power Supply

| Step | Action                                                                                        |
|------|-----------------------------------------------------------------------------------------------|
| 1    | Unpack the power supply as soon as it arrives. Save the packing material                      |
| 2    | Verify you have all of the equipment ordered. Some components are packed inside other boxes.  |
| 3    | Inspect the controls, indicators, and surface for signs of damage.                            |
| 4    | Remove the cover of the power supply to check if any components became loose during shipping. |

### 3.4 Take Inventory of Small Parts

| Part or Kit                     | 20 kHz | 30 kHz | 40 kHz |
|---------------------------------|--------|--------|--------|
| Mylar®* plastic film Washer Kit | Х      | Х      |        |
| Silicone Grease                 |        |        | Х      |
| Spanners (2)                    | Х      | Х      | Х      |

 Table 3.4
 Small Parts included: Power Supply Assemblies

\* Mylar is a registered trademark of DuPont Teijin Films.

#### 3.4.1 Cables

The RF cable connects the power supply to the converter. For automated systems you will also need a user I/O cable to monitor and control the power supply. Check your invoice for cable types and cable lengths.

| P/N         | Description                                       |
|-------------|---------------------------------------------------|
| 100-240-383 | Cable, RF 8 ft (2.5 m)                            |
| 100-240-384 | Cable, RF 15 ft (4.5 m)                           |
| 100-240-385 | Cable, RF 25 ft (7.5 m)                           |
| 100-240-387 | Cable, RF right angle 8 ft (2.5 m)                |
| 100-240-388 | Cable, RF right angle 15 ft (4.5 m)               |
| 100-240-389 | Cable, RF right angle 25 ft (7.5 m)               |
| 100-240-391 | Cable, RF adaptor for CR20 converter 3 ft (0.9 m) |
| 100-240-392 | Cable, User I/O 25 ft (7.5 m)                     |
| 100-240-393 | Cable, User I/O 50 ft (15 m)                      |
| 200-240-396 | Cable Ethernet Cat 5e 7 ft (2.1 m)                |
| 100-240-397 | Cable, RF adaptor for 4TR converter 3 ft (0.9 m)  |

## 3.5 Returning Equipment

If you are returning equipment to Branson Ultrasonic Corporation, please call your Customer Service Representative to receive approval to return the goods. Refer to 1.4 How to Contact Branson.

## **Chapter 4: Technical Specifications**

| Technical Specifications                                      |
|---------------------------------------------------------------|
| Physical Description                                          |
| EU Declaration of Conformity 40                               |
| UK Declaration of Conformity                                  |
| Declaration of Conformity to the EtherNet/IP Specification 42 |
|                                                               |

## 4.1 Technical Specifications



### 4.1.1 Environmental Specifications

The DCX F-EIP Power Supply has the following environmental specifications:

| Table 4.1 | Environmental | Specifications |
|-----------|---------------|----------------|
|-----------|---------------|----------------|

| <b>Environmental Condition</b> | Acceptable Range                     |
|--------------------------------|--------------------------------------|
| Ambient Operating Temperature  | +41° F to +104° F (+5° C to +40° C)  |
| Storage / Shipping Temperature | -13° F to +131° F (-25° C to +55° C) |
| Humidity                       | Maximum 95%, non-condensing          |
| IP Rating                      | 2X                                   |
| Altitude                       | Up to 3280ft (1000m)                 |
| Pollution degree               | 2                                    |
| Overvoltage category           | П                                    |

| NOTICE |                                           |
|--------|-------------------------------------------|
| i      | Cooling fan is the thermostat controller. |

### 4.1.2 Electrical Specifications

The following tables list input voltage and current requirements for the DCX F-EIP Power Supply.

## **Electrical Input Operating Voltages**

| Power Supply Rating | Input Operating Voltage                                                          |  |  |
|---------------------|----------------------------------------------------------------------------------|--|--|
| All Models          | 200 V to 240 V Nominal (180 V Min.* to 253 V Max.), 50 Hz or 60 Hz, Single Phase |  |  |
|                     | 24 VDC, 2.5 A                                                                    |  |  |

\* 200 V Min. for 4 kW units.

### **Input Current and Circuit Breaker Specifications**

| Model  | Power  | Current Rating                         |
|--------|--------|----------------------------------------|
| 20 kHz | 1250 W | 7 A Max. @ 200 - 240 V / 15 A Breaker  |
|        | 2500 W | 14 A Max. @ 200 - 240 V / 25 A Breaker |
|        | 4000 W | 25 A Max. @ 200 - 240 V / 25 A Breaker |
| 30 kHz | 750 W  | 5 A Max. @ 200 - 240 V / 10 A Breaker  |
|        | 1500 W | 10 A Max. @ 200 - 240 V / 15 A Breaker |
| 40 kHz | 400 W  | 3 A Max. @ 200 - 240 V / 10 A Breaker  |
|        | 800 W  | 5 A Max. @ 200 - 240 V / 10 A Breaker  |

 Table 4.3
 Input Current and Circuit Breaker Specifications

### **Continuous Duty Maximum Power**

| Model  | Power  | Continuous Duty Max. Power |
|--------|--------|----------------------------|
| 20 kHz | 1250 W | 800 W                      |
|        | 2500 W | 1600 W                     |
|        | 4000 W | 2000 W                     |
| 30 kHz | 750 W  | 300 W                      |
|        | 1500 W | 800 W                      |
| 40 kHz | 400 W  | 300 W                      |
|        | 800 W  | 400 W                      |

**Table 4.4**Continuous Duty Maximum Power

| NOTICE |                                                                                                                                                                                         |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i      | High duty cycles require additional cooling for the converter. For information on converter cooling refer to <u>5.6 Converter Cooling</u> in <u>Chapter 5: Installation and Setup</u> . |

| NOTICE |                                                                                                                                                                                                                                                                                                 |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i      | System average power must be limited to the specified continuous maximum. Higher peak power, up to the maximum acceptable power limit, with an on time of up to 10 seconds may be obtained if appropriate off time ensures that, on average, the Continuous Duty Maximum Power is not exceeded. |

Cycle Rate - up to 200 cpm. Cycle rate including off time is application and stack dependent.

## 4.2 Physical Description

This section describes the physical dimensions of the DCX F-EIP Power Supply.

| NOTICE |                         |
|--------|-------------------------|
| i      | Dimensions are nominal. |

| Table 4.5 | DCX F-EIP Power Supply |
|-----------|------------------------|
|-----------|------------------------|

| Size                 | Width          | Height         | Depth  | Weight          |
|----------------------|----------------|----------------|--------|-----------------|
| Small (Benchtop)     | 14″<br>356 mm  | 5.5″<br>132 mm | 7.4″   | 16 lb<br>7.2 kg |
| Small (Vertical)     | 5.2″<br>132 mm | 14″<br>356 mm  | 187 mm |                 |
| Medium<br>(Benchtop) | 14″<br>356 mm  | 5.5″<br>132 mm | 8.6"   | 18 lb<br>8.2 kg |
| Medium (Vertical)    | 5.2″<br>132 mm | 14″<br>356 mm  | 219 mm |                 |
| Large (Benchtop)     | 14″<br>356 mm  | 5.5″<br>132 mm | 10.6″  | 22 lb<br>10 kg  |
| Large (Vertical)     | 5.2″<br>132 mm | 14″<br>356 mm  | 270 mm |                 |

For detailed dimensional information refer to Chapter 5: Installation and Setup.

### 4.3 EU Declaration of Conformity

Figure 4.1 EU Declaration of Conformity

DocuSign Envelope ID: B0909E8A-D9E3-4295-81B6-06331CD21321

EU DECLARATION OF CONFORMITY According to Low Voltage Directive 2014/35/EU, EMC Directive 2014/30/EU, and RoHS Directive 2011/65/EU.

We, the manufacturer

**BRANSON ULTRASONICS CORPORATION** 

120 Park Ridge Rd Brookfield, CT 06804 USA

represented in the community by

BRANSON ULTRASONICS, a.s. Piestanska 1202 91501 Nove Mesto nad Vahom Slovak Republic

expressly declare under our sole responsibility that the following electrical equipment product:

Ultrasonic Assembly System consisting of an Ultrasonic Power Supply, model:

0.40DCX(s, v, a, f-dp or f-eip)40(VRT, V, H or HOR) 0.80DCX(s, v, a, f-dp or f-eip)40(VRT, V, H or HOR) 0.75DCX(s, v, a, f-dp or f-eip)30(VRT, V, H or HOR) 1.50DCX(s, v, a, f-dp or f-eip)30(VRT, V, H or HOR) 1.25DCX(s, v, a, f-dp or f-eip)20(VRT, V, H or HOR) 2.50DCX(S+, s, v, a, f-dp or f-eip)20(VRT, V, H or HOR) 4.00DCX(S+, s, v, a, f-dp or f-eip)20(VRT, V, H or HOR) 4.00DCX(S+, s, v, a, f-dp or f-eip)20(VRT, V, H or HOR) 4.00DCX(S+, s) V, a, f-dp or f-eip)20(VRT, V, H or HOR) 4.00DCXS20HD -V P/S 0.8 DCX S HD 40 VRT 1.50 DCX-S HD 30 VRT 4.00DCXs20HD -H P/S 0.8 DCX S HD 40 HOR P/S 4.0KW 20KHZ DCX S LIM RES

used with converter model: CR-20, CR-20S, CR-20C, CH-20C, CS-20S, CS-20C, CR-30, CR-30C, CH-30, CH-30C, CS-30S, CS-30C, CR-40C, 4TR, 4TH, 4TP or 932, and associated cables.

in the state in which it was placed on the market, fulfills all the relevant provisions of:

Low Voltage Directive **2014/35/EU** EMC Directive **2014/30/EU** RoHS Directive **2011/65/EU** 

The object of this declaration is in conformity with relevant Union harmonization legislation. The electrical equipment product, to which this declaration relates, is in conformity with the following standards:

EN 61010-1:2010+A1:2019 EN 55011:2016/A11:2020 EN 61000-6-2:2005/AC:2005

DocuSigned by:

(+)

Luis Benavides \_\_\_\_018235BFCDE147C...

Luis Benavides Product safety Officer

Brookfield, CT, USA March 29, 2022

### 4.4 UK Declaration of Conformity

Figure 4.2 UK Declaration of Conformity

DocuSign Envelope ID: CBF9A5E3-CFF5-43C8-B1AA-6F0C89C3A63B



UK DECLARATION OF CONFORMITY

We, the manufacturer

#### **BRANSON ULTRASONICS CORPORATION**

120 Park Ridge Rd. Brookfield, CT 06804 USA

expressly declare under our sole responsibility that the following electrical equipment product:

Ultrasonic Assembly System consisting of an Ultrasonic Power Supply, model:

0.40DCX(s, v, a, f-dp or f-eip)40(VRT, V, H or HOR) 0.80DCX(s, v, a, f-dp or f-eip)40(VRT, V, H or HOR) 0.75DCX(s, v, a, f-dp or f-eip)30(VRT, V, H or HOR) 1.50DCX(s, v, a, f-dp or f-eip)20(VRT, V, H or HOR) 1.25DDCX(s, v, a, f-dp or f-eip)20(VRT, V, H or HOR) 2.50DCX(S+, s, v, a, f-dp or f-eip)20(VRT, V, H or HOR) 4.00DCX(S+, s, v, a, f-dp or f-eip)20(VRT, V, H or HOR) 4.00DCXs20HD -V P/S 0.8 DCX S HD 40 VRT 1.50 DCX-S HD 30 HOR 1.50 DCX-S HD 30 VRT 4.00DCXs20HD -H P/S 0.8 DCX S HD 40 HOR P/S 0.8 DCX S HD 40 HOR P/S 4.0KW 20KHZ DCX S LIM RES

used with converter model: CR-20, CR-20S, CR-20C, CH-20C, CS-20S, CS-20C, CR-30, CR-30C, CH-30, CH-30C, CS-30S, CS-30C, CR-40C, 4TR, 4TH, 4TP or 932, and associated cables.

in the state in which it was placed on the market, fulfills all the relevant provisions of:

Electrical Equipment (Safety) Regulations **2016** Electromagnetic Compatibility Regulations **2016** Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations **2012**.

The electrical equipment product, to which this declaration relates, is in conformity with the following designated standards:

BS EN 61010-1:2010+A1:2019 BS EN 55011:2016/A11:2020 BS EN 61000-6-2:2005/AC:2005

> —DocuSigned by: Luis Benavides

Luis Benavides Product safety Officer

Brookfield, CT, USA March 22, 2022

# 4.5 Declaration of Conformity to the EtherNet/IP Specification

Figure 4.3 Declaration of Conformity to the EtherNet/IP Specification



Declaration of Conformity to the EtherNet/IP<sup>™</sup> Specification

ODVA hereby issues this Certificate of Declarations of Conformity to the EtherNet/IP<sup>TM</sup> Specification for the product(s) described below. The Vendor listed below (the "Vendor") has holds a valid the Terms of Usage Agreement for the EtherNet/IP Technology from ODVA, which is incorporated herein by reference, thereby agreeing that it is the Vendor's ultimate responsibility to assure that its EtherNet/IP Compliant Products conform to the EtherNet/IP Specifications and that the EtherNet/IP Specifications are provided by ODVA to the vendor on an AS IS basis without warranty. NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE BEING PROVIDED BY ODVA.

In recognition of the below EtherNet/IP Compliant Product(s) having been EtherNet/IP Conformance Tested at ODVA-authorized Test Service Provider and having received a passing result from ODVA at the Composite Test Revision Level specified below, this Declaration of Conformity authorizes the Vendor to use the EtherNet/IP Certification Marks in conjunction with the specific EtherNet/IP Compliant Product(s) described below, for so long as the Vendor's Terms of Usage Agreement for the EtherNet/IP Technology remains valid.

EtherNet (IP"

Certification Logo Mark

EtherNet/IP CONFORMANCE TESTED ™

Certification Word Mark

This Certificate is issued on <u>January 15, 2014</u> on behalf of ODVA by:

Tatherine Voss

Katherine Voss

| Test Information                                                                 |                               |                            |                                   |               |  |
|----------------------------------------------------------------------------------|-------------------------------|----------------------------|-----------------------------------|---------------|--|
| Vendor Nam                                                                       | ie                            | Branson Ultrasonics        |                                   |               |  |
| Test Inform                                                                      | Test Information              |                            |                                   |               |  |
| Test Date                                                                        |                               | January 10, 2014           |                                   |               |  |
| Composite Test Revision                                                          |                               | CT10                       |                                   |               |  |
| ODVA File N                                                                      | A File Number 11245.02        |                            |                                   |               |  |
| Product Information                                                              |                               |                            |                                   |               |  |
| Identity Object Instance                                                         |                               |                            |                                   |               |  |
| Vendor ID (Attribute 1)                                                          |                               | 1283                       |                                   |               |  |
| Device Type (Attribute 2)                                                        |                               | 0x2B                       |                                   |               |  |
| Device Profile Name                                                              |                               | Generic Device (keyable)   |                                   |               |  |
| Products Covered under this Declaration of Conformity (Identity Object Instance) |                               |                            |                                   |               |  |
| No.                                                                              | Product Code<br>(Attribute 3) | Product Name (Attribute 7) | Product Revision<br>(Attribute 4) | SOC File Name |  |
| 1                                                                                | 2                             | DCX-FE                     | 2.001                             | DCX_STC       |  |

EtherNet/IP and EtherNet/IP CONFORMANCE TESTED logo mark and word mark are trademarks of ODVA.

Copyright © ODVA Inc. 2012

PUB00033R7 www.odva.org

Page 1 of 1

## Chapter 5: Installation and Setup

| 5.1 | About Installation.           | 44 |
|-----|-------------------------------|----|
| 5.2 | Installation Requirements     | 45 |
| 5.3 | Installation Steps            | 51 |
| 5.4 | Power Supply Setup            | 74 |
| 5.5 | Assembling the Acoustic Stack | 75 |
| 5.6 | Converter Cooling.            | 80 |
| 5.7 | Testing the Installation      | 82 |
| 5.8 | Still Need Help?              | 83 |

### 5.1 About Installation

This chapter is intended to help the installer with the basic installation and setup of your new DCX F-EIP Power Supply.

| CAUTION | Heavy Object                                                                                                                                                                         |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | The power supply, and related components are heavy. Handling,<br>unpacking, and installation may require the assistance of a colleague<br>or the use of lifting platforms or hoists. |

International safety-related labels are found on the power supply. Those that are of importance during installation of the system are identified in <u>Figure 1.1 Safety-related</u> <u>Labels found on the DCX F-EIP Power Supply</u>.

### 5.2 Installation Requirements

This section covers the location requirements, mounting options, power supply dimensions, environmental requirements, and electrical requirements, to help you plan and execute your installation successfully.

#### 5.2.1 EtherNet/IP Wiring Considerations

It is recommended to use as a minimum Cat5 Ethernet cable on new installations with a maximum cable length of 100 m (328 ft). If existing cabling is of lower category, maximum data rate may be limited.

#### 5.2.2 Location

The DCX F-EIP Power Supply comes in two different models Horizontal (benchtop) and Vertical (which may be back mounted or side mounted).

The power supply should be accessible for parameter changes and settings, and it can be placed in a horizontal or vertical orientation (depending on your selected model). The power supply should be located in an area away from radiators or heating vents and positioned so it does not draw in dust, dirt or material via its cooling fan.

The DCX F-EIP Power Supply must not be positioned so that is difficult to plug in or unplug the main power plug.

A cable clamp can be used to secure wires in place.

| NOTICE |                                            |
|--------|--------------------------------------------|
| i      | Cable clamp is not included with the unit. |

Refer to the illustrations on the pages that follow for dimensional drawings of both models. All dimensions are approximate and may vary slightly:

Figure 5.1 DCX F-EIP Power Supply Benchtop Dimensional Drawing.

Figure 5.2 DCX F-EIP Power Supply Vertical Mount dimensional drawing (400 W, 750 W & 800 W).

Figure 5.3 DCX F-EIP Power Supply Vertical Mount dimensional drawing (1.25 kW and 1.5 kW).

Figure 5.4 DCX F-EIP Power Supply Vertical Mount dimensional drawing (2.5 kW and 4 kW).



#### Figure 5.1 DCX F-EIP Power Supply Benchtop Dimensional Drawing

 Table 5.1
 DCX F-EIP Power Supply Benchtop Dimensional Drawing

| Item | Note                                                   |
|------|--------------------------------------------------------|
| 1    | 5.0 in (127 mm) recommended clearance for cables.      |
| 2    | 3.0 in (76 mm) recommended fan clearance (both sides). |







| Item | Note                                              |
|------|---------------------------------------------------|
| 1    | 3.0 in (76 mm) recommended fan clearance.         |
| 2    | 5.0 in (127 mm) recommended clearance for cables. |

| NOTICE |                                                                                                                   |
|--------|-------------------------------------------------------------------------------------------------------------------|
| i      | Use the keyhole mounting bracket to mount the unit in the needed position. Use M6 (6mm) screws to mount the unit. |







| Item | Note                                              |
|------|---------------------------------------------------|
| 1    | 3.0 in (76 mm) recommended fan clearance.         |
| 2    | 5.0 in (127 mm) recommended clearance for cables. |

| NOTICE |                                                                                                                   |
|--------|-------------------------------------------------------------------------------------------------------------------|
| i      | Use the keyhole mounting bracket to mount the unit in the needed position. Use M6 (6mm) screws to mount the unit. |







| Item | Note                                              |
|------|---------------------------------------------------|
| 1    | 3.0 in (76 mm) recommended fan clearance.         |
| 2    | 5.0 in (127 mm) recommended clearance for cables. |

| NOTICE |                                                                                                                   |
|--------|-------------------------------------------------------------------------------------------------------------------|
| i      | Use the keyhole mounting bracket to mount the unit in the needed position. Use M6 (6mm) screws to mount the unit. |

### 5.2.3 Environmental Requirements

Verify the DCX F-EIP Power Supply is operated in an environment that meets the temperature and humidity requirements indicated in <u>Table 5.5 Environmental</u> <u>Requirements</u>.

| Table 5.5 | Environmental | Requirements |
|-----------|---------------|--------------|
| Table 5.5 | LINIOIIIICIII | Requirements |

| <b>Environmental Condition</b> | Acceptable Range                    |
|--------------------------------|-------------------------------------|
| Ambient Operating Temperature  | +41° F to +104° F (+5° C to +40° C) |
| Humidity                       | Maximum 95%, non-condensing         |
| IP Rating                      | 2X                                  |
| Altitude                       | Up to 3280ft (1000m)                |
| Pollution degree               | 2                                   |
| Overvoltage category           | 11                                  |

#### 5.2.4 Electrical Input Power Ratings

Connect the power supply to a single-phase, grounded, 3-wire, 50 Hz or 60 Hz 200 V to 240 V power source. <u>Table 5.6 Input Current and Circuit Breaker Specifications</u> lists the current and breaker ratings for the various models.

| Model  | Power  | Current Rating                         |
|--------|--------|----------------------------------------|
|        | 1250 W | 7 A Max. @ 200 - 240 V / 15 A Breaker  |
| 20 kHz | 2500 W | 14 A Max. @ 200 - 240 V / 25 A Breaker |
|        | 4000 W | 25 A Max. @ 200 - 240 V / 25 A Breaker |
| 30 kHz | 750 W  | 5 A Max. @ 200 - 240 V / 10 A Breaker  |
|        | 1500 W | 10 A Max. @ 200 - 240 V / 15 A Breaker |
| 40 kHz | 400 W  | 3 A Max. @ 200 - 240 V / 10 A Breaker  |
|        | 800 W  | 5 A Max. @ 200 - 240 V / 10 A Breaker  |

 Table 5.6
 Input Current and Circuit Breaker Specifications

#### 5.2.5 Pneumatic Requirements

Your welding system may require a cooling air stream for the converters. In continuous operations, or applications with longer duty cycles, it may be necessary to cool the horn as well as the converter.

Typically 80 cubic feet (2.26 m<sup>3</sup>) per hour of clean, dry, compressed air are required to cool most welding operations.

To verify the 80 cubic feet (2.26 m<sup>3</sup>) per hour cooling air stream required for your welding system, refer to <u>5.6 Converter Cooling</u>.

### 5.3 Installation Steps

| WARNING    | High Voltage Hazard                                                                                                                                                             |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|            | To prevent the possibility of an electrical shock:                                                                                                                              |  |
|            | Ensure the power source is disconnected before beginning work on line connections                                                                                               |  |
| <u>_</u> 7 | Ensure the power switch on the back of the unit is in the OFF position before making any electrical connections                                                                 |  |
|            | Always plug the power supply into a grounded power source                                                                                                                       |  |
|            | • To prevent the possibility of an electrical shock, ground the power supply<br>by securing an 8 gauge grounded conductor to the ground screw located<br>next to the air outlet |  |
|            | Ensure power supply installation is performed by qualified personnel and in accordance with local standards and regulations                                                     |  |

All persons who are involved with installation, commissioning, operation and maintenance must have the required qualification, strictly follow this operating manual.

### **Basic installation notes:**

- To avoid problems associated with EMI, you should route high power lines (AC and Ultrasonic RF) away from low power lines (controls signals)
- You should consider future troubleshooting and repair when installing all wiring. All wiring should be either color coded or tagged with industrial wire tags
- The minimum cable bend radius is 5 times the cable outer diameter for RF cables
- The minimum cable bend radius is 10 times the cable outer diameter for user I/O & Ethernet cables
- · Ground wires should not be shared with other equipment
- All inductive coils must be suppressed with appropriate devices, such as diodes or RC networks

#### 5.3.1 Mount the Power Supply

The cable lengths are limited based on the operating frequency of the welding system. Performance and results can suffer if the RF cable is crushed, pinched, damaged or modified. Contact your Branson Representative if you have special cable requirements.

Do not place the power supply on the floor or in other locations that will allow dust, dirt or contaminants to be drawn into the power supply.

| NOTICE   |                                                                                                                                               |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| <b>i</b> | Special fan filter kits are available for use in dusty environments. See <u>Table 9.12 Other Items used with the DCX F-EIP Power Supply</u> . |

| NOTICE |                                                                                                            |
|--------|------------------------------------------------------------------------------------------------------------|
| 6      | Do not block exhaust and intake air circulation, which is needed to maintain a safe operating temperature. |

### 5.3.2 Horizontal (Benchtop) Mounting

The Horizontal DCX F-EIP Power Supply is designed to be placed on a workbench (rubber feet on bottom) within cable-length limits of the stack. It has one fan which draws cooling air from the left side to the right side, which must be free from obstruction. The controls on the front of the power supply should be accessible and readable for setup changes.

All electrical connections are made to the rear of the power supply, which should be positioned in your workspace with adequate clearance, approximately 3 in (76.2 mm) or more on either side, and 5 in (127 mm) to the rear) for cable access and ventilation. Do not place anything on top of the power supply case.

For a dimensional drawing of the Horizontal DCX F-EIP Power Supply, see <u>Figure 5.1 DCX</u> <u>F-EIP Power Supply Benchtop Dimensional Drawing</u>.

#### 5.3.3 Vertical Mounting

The Vertical DCX F-EIP Power Supply is designed to be mounted vertically (from the side or back) within cable-length limits of the stack. It has one fan which draws cooling air from the top to the bottom of the power supply, which must be free from obstruction. The controls on the front of the power supply should be accessible and readable for setup changes.

All electrical connections are made to the bottom of the power supply, which should be positioned with adequate clearance (approximately 3 in (76.2 mm) or more on the top, and 5 in (127 mm) to the bottom) for cable access and ventilation. Do not place anything on top of the power supply case.

For dimensional drawings of the Vertical DCX F-EIP Power Supply, see <u>Figure 5.2</u>, <u>Figure 5.3</u> and <u>Figure 5.4</u>.

#### 5.3.4 Mounting Considerations

In addition to the considerations mentioned above, the LCD's viewing angle should be taken into account when selecting a location for your DCX F-EIP Power Supply. The LCD is designed to be viewed from the top. Please refer to <u>Figure 5.5 LCD Viewing Angle</u> below when selecting a location for your DCX F-EIP Power Supply.

Figure 5.5 LCD Viewing Angle



| NOTICE |                                                                                 |
|--------|---------------------------------------------------------------------------------|
| 6      | Optimal viewing angle is 25° above the normal to the display (indicated by 0°). |

### 5.3.5 Electrical Connections

Figure 5.6 DCX F-EIP Power Supply Connections (Horizontal Model)



|--|

| Item | Description                     |
|------|---------------------------------|
| 1    | RF Connector                    |
| 2    | Ground Screw                    |
| 3    | RF Cable (Ferrite End)          |
| 4    | Ethernet Port                   |
| 5    | User I/O Connectors             |
| 6    | Line Cord                       |
| 7    | Circuit Breaker (On/Off Switch) |
| 8    | Input Power Connector           |



#### Figure 5.7 DCX F-EIP Power Supply Connections (Vertical Model)

| Item | Description                     |
|------|---------------------------------|
| 1    | RF Connector                    |
| 2    | Ground Screw                    |
| 3    | Line Cord                       |
| 4    | RF Cable (Ferrite End)          |
| 5    | Ethernet Port                   |
| 6    | User I/O Connectors             |
| 7    | Circuit Breaker (On/Off Switch) |
| 8    | Input Power Connector           |

### 5.3.6 User I/O Connections



The user I/O is a standard interface for automation, provided on the power supply. It provides the ability to make your own interface for your automation, actuator interface, special control, or reporting needs. The interface cable has a 26-pin HD male D-Sub connector on one end, and wires on the other end. Pins are wired to ICEA standard color code (see Figure 5.8 User I/O Cable Identification and Wire Color Diagram and Table 5.10 User I/O Cable Pin Assignments).

| NOTICE |                                                                                                           |
|--------|-----------------------------------------------------------------------------------------------------------|
| i      | Ensure all unused wires are properly isolated. Failure to do so may result in a power supply malfunction. |

Digital I/O functions can be configured to either active-high or active-low using the DCX F-EIP Power Supply Web Page Interface. <u>Table 5.11 Digital Input Functions</u> to <u>Table 5.14</u> <u>Analog Output Functions</u> list the input and output functions available on the DCX F-EIP Power Supply. See <u>Table 5.15 Default Branson User I/O Connector PIN Assignments</u>, V6.0 for the default user I/O pin assignments.

<u>Figure 5.9 Typical Digital I/O Wiring Examples</u> and <u>Figure 5.10 Typical Analog I/O Wiring Examples</u> show typical wiring examples.



User I/O Cable Stripped Jacket one end, HD-26 male connector other end (cable length as ordered)



Wire Color Diagram Two Colors = Insulator/Stripe Three Colors = Insulator/Stripe/Dot





| Item | Description |
|------|-------------|
| 1    | Part number |
| 2    | Insulation  |
| 3    | Stripe      |
| 4    | Dot         |

### 5.3.7 User I/O Cable Pin Assignments

| Table 5.10 | User I/O ( | Cable Pin | Assignments  |
|------------|------------|-----------|--------------|
| 14010 0110 | 0001 1/0 0 |           | rissignmente |

| Pin | Input/Output<br>(All I/O are user<br>definable) | Available<br>Function                                                         | Signal<br>Type                                                                            | Signal Range                         | Color           |
|-----|-------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------|-----------------|
| 1   | Digital in 1*                                   | See <u>Table</u><br>5.11<br>Digital<br>Input<br>Functions                     | Discrete<br>Input                                                                         | 0 V to 24 V +/-<br>10%, 12 mA        | Blk             |
| 2   | Digital in 2*                                   |                                                                               |                                                                                           |                                      | Wht             |
| 3   | Digital in 3*                                   |                                                                               |                                                                                           |                                      | Red             |
| 4   | Digital in 4*                                   |                                                                               |                                                                                           |                                      | Grn             |
| 5   | +24 V                                           | N/A                                                                           | 24 V<br>Source                                                                            | 24 V +/-10%,<br>250 mA Max           | Orn             |
| 6   | +24 V                                           |                                                                               |                                                                                           |                                      | Blu             |
| 7   | Digital out 1                                   | See <u>Table</u><br>5.12<br>Digital<br>Output                                 | e <u>Table</u><br>2<br><u>ital</u><br><u>tput</u><br><u>nctions</u><br>Discrete<br>Output | 0 V to 24 V, -<br>10%, 25mA Max      | Wht/Blk         |
| 8   | Digital out 2                                   |                                                                               |                                                                                           |                                      | Red/Blk         |
| 9   | Digital out 3                                   |                                                                               |                                                                                           |                                      | Grn/Blk         |
| 10  | Digital out 4                                   | Functions                                                                     |                                                                                           |                                      | Orn/Blk         |
| 11  | Digital in 5*                                   | See <u>Table</u><br>5.11<br>Digital<br>Input<br>Functions                     | Discrete                                                                                  | 0 V to 24 V +/-<br>10%, 12 mA        | Blu/Blk         |
| 12  | Digital in 6*                                   |                                                                               |                                                                                           |                                      | Blk/Wht         |
| 13  | Digital in 7*                                   |                                                                               | mput                                                                                      |                                      | Red/Wht         |
| 14  | GND                                             |                                                                               | 24 V                                                                                      | 0.V                                  | Grn/Wht         |
| 15  | GND                                             |                                                                               | Ground                                                                                    | 0 1                                  | Blu/Wht         |
| 16  | Digital in 8*                                   | See <u>Table</u><br>5.11<br>Digital<br>Input<br>Functions                     | Discrete<br>Input                                                                         | 0 V to 24 V +/-<br>10%, 12 mA        | Blk/Red         |
| 17  | Analog in 1                                     | See <u>Table</u><br>5.13<br><u>Analog</u><br><u>Input</u><br><u>Functions</u> | Analog<br>Input                                                                           | 0 V to +10 V,<br>2 mA                | Wht/Red         |
| 18  | Analog in 2                                     |                                                                               |                                                                                           |                                      | Orn/Red         |
| 19  | Digital out 5                                   |                                                                               | Discrete<br>Output                                                                        | 0 V to 24 V +/-<br>10%,<br>12 mA Max | Blu/Red         |
| 20  | Digital out 6                                   | See <u>Table</u><br><u>5.12</u><br><u>Digital</u><br>Output                   |                                                                                           |                                      | Red/Grn         |
| 21  | Digital out 7                                   |                                                                               |                                                                                           |                                      | Orn/Grn         |
| 22  | Digital out 8                                   | Functions                                                                     |                                                                                           |                                      | Blk/Wht/<br>Red |

| Pin | Input/Output<br>(All I/O are user<br>definable) | Available<br>Function                                     | Signal<br>Type    | Signal Range                    | Color           |
|-----|-------------------------------------------------|-----------------------------------------------------------|-------------------|---------------------------------|-----------------|
| 23  | Digital in 9*                                   | See <u>Table</u><br>5.11<br>Digital<br>Input<br>Functions | Discrete<br>Input | 0 V to 24 V +/-<br>10%, 12 mA   | Wht/Blk/<br>Red |
| 24  | Analog out 1                                    | See <u>Table</u><br>5.14                                  | Analog<br>Output  | 0 V to 10 V +/-<br>5%, 1 mA Max | Red/Blk/<br>Wht |
| 25  | Analog out 2                                    | Output<br>Functions                                       |                   |                                 | Grn/Blk/<br>Wht |
| 26  | Analog GND                                      | N/A                                                       | Analog<br>Ground  | 0 V                             | Orn/Blk/<br>Wht |

#### Table 5.10 User I/O Cable Pin Assignments

\*Input signal should be kept at least 5ms.

### 5.3.8 Digital Input Functions

| Function                            | Description                                                                                                                                                                                              |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACT-Actuator<br>Present             | Must be active at power up to activate TRS, ULS, Interlock, Part in Place.                                                                                                                               |
| ACT-Cycle Abort                     | Will immediately terminate the current weld cycle and not accept<br>another External Start until removed. Reset required is user settable.                                                               |
| ACT-Ground<br>Detect                | Will start scrub time. When scrub time expires, ultrasonics will be turned off.                                                                                                                          |
| ACT-Interlock<br>In Place           | Prevents a cycle from starting until the signal becomes active.                                                                                                                                          |
| ACT-Part In<br>Place                | When enabled, signal must be active before weld cycle is started.                                                                                                                                        |
| ACT-Trigger<br>Switch (TRS)         | Indicates the power supply to start ultrasonics.                                                                                                                                                         |
| ACT-Upperlimit<br>Switch (ULS)      | Tells the power supply that the actuator is at home position.                                                                                                                                            |
| RF-Feedback A,<br>B, C, D           | Indicates which relay the RF switch has changed to. Bit 0 to bit 3 are binary coded values indicating the selected RF switch. It can also be uncoded. This function is user settable.                    |
| RF-Status<br>Feedback               | Indicates the RF switch has changed to the proper relay.           NOTICE           Single value. Not coded/uncoded like RF-Feedback A, B, C, D.                                                         |
| STD-Cable<br>Detect                 | When enabled 24 volts must be present on pin at all times. If 24 volts is removed, suggesting that the cable has been removed, ultrasonics will not be allowed to run and will stop if already running.  |
| STD-Display<br>Lock                 | Locks the front panel display controls. Registers are read only when signal is active.                                                                                                                   |
| STD-External<br>Amp Step<br>Trigger | When set to +24 V sets amplitude to Amplitude 2. If set again to 0 V during a weld cycle will set amplitude back to Amplitude 1. Used only if amplitude stepping is turned on and set to external input. |
| STD-External<br>Horn Scan           | Starts horn scan. Signal must be maintained during the scan.                                                                                                                                             |
| STD-External<br>Reset               | Resets alarm conditions.                                                                                                                                                                                 |
| STD-External<br>Seek                | Activates ultrasonic energy at 10% amplitude for the purpose of finding the ultrasonic stack resonant frequency.                                                                                         |

 Table 5.11
 Digital Input Functions
| Function                                   | Description                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| STD-External<br>Sonics Delay               | Delays the start of ultrasonics even if a trigger occurs. This can be<br>used to enable an external operation to be complete before<br>continuing the cycle (e. g. test device or part marking operation).<br>If the delay is maintained for 1 minute, the cycle is aborted and all<br>inputs must be cycled again.                                                          |  |  |
| STD-External<br>Start                      | Activates ultrasonic energy at the currently set amplitude.          NOTICE         DCX F-EIP Power Supply must be in ready mode before External         Start.         WARNING         When using 0 V to activate ultrasonics (External Start signal), it is recommended to assign one input as Cable Detect to prevent sonics from activating if 24 V is lost by accident. |  |  |
| STD-External<br>Test                       | Performs a test cycle. Signal must be maintained.                                                                                                                                                                                                                                                                                                                            |  |  |
| STD-Load New<br>Preset                     | Loads a weld preset as defined by Recall Preset Bits 1-32.                                                                                                                                                                                                                                                                                                                   |  |  |
| STD-Memory<br>Clear                        | Centers the power supply start frequency.                                                                                                                                                                                                                                                                                                                                    |  |  |
| STD-Recall<br>Preset 1, 2, 4,<br>8, 16, 32 | Bit 0 to bit 5 for preset recall binary code. This code will be used to recall a preset when Load Preset input is activated.                                                                                                                                                                                                                                                 |  |  |
| STD-Sonics<br>Disable                      | Prevents ultrasonics from coming on. If active throughout a weld cycle, the cycle will be performed but without ultrasonics. Should the weld mode be time indeterminate (energy, power, etc) then the weld time will extend to the cutoff time.                                                                                                                              |  |  |
| STD-Start Cycle                            | Starts a cycle.                                                                                                                                                                                                                                                                                                                                                              |  |  |

#### Table 5.11 Digital Input Functions

### 5.3.9 Digital Output Functions

| Function                           | Description                                                                                                                             |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| ACT-Actuator<br>Home               | Indicates that a ULS input has been received.                                                                                           |  |  |
| ACT-Afterburst<br>Delay            | Indicates if the weld cycle is in the Afterburst Delay state.                                                                           |  |  |
| ACT-Afterburst<br>Time             | Indicates if the weld cycle is in the Afterburst state.                                                                                 |  |  |
| ACT-End of Hold<br>Time            | Indicates the system has reached the end of Hold since the cycle started.                                                               |  |  |
| ACT-Holdtime                       | Indicates if the weld cycle is in the Hold Time state.                                                                                  |  |  |
| RF-Select A-D                      | Output to select stacks 1 to 4 or a binary coded value (bit 0-3) to select RF relay.                                                    |  |  |
| STD-Amp1<br>Amp2                   | If output is 0 V, indicates the amplitude setting is Amplitude 1.<br>If output is 24 V, indicates the amplitude setting is Amplitude 2. |  |  |
| STD-Confirm<br>Preset Change       | Output will go active when a preset has been recalled.                                                                                  |  |  |
| STD-Custom<br>Alarm                | Indicates a Custom Alarm has occurred. This function is user defined.                                                                   |  |  |
| STD-Cycle Okay                     | Output will go inactive with cycle start input, and will go high at the end of the cycle if no alarms occurred.                         |  |  |
| STD-Cycle Start<br>Out             | Indicates start signal is active. It will stay active through weld time and hold time.                                                  |  |  |
| STD-General<br>Alarm               | Indicates an alarm occurred. This function is user configurable.                                                                        |  |  |
| STD-Minus<br>Energy Limit<br>Alarm | Indicates the weld did not reach the minimum energy set.                                                                                |  |  |
| STD-Minus<br>Time Limit<br>Alarm   | Indicates the weld time has not reached the minimum time set.                                                                           |  |  |
| STD-Minus                          |                                                                                                                                         |  |  |
| Peakpower<br>Limit Alarm           | Indicates the weld has not reached the minimum peak power set.                                                                          |  |  |
| STD-Overload<br>Alarm              | Indicates an overload alarm has occurred.                                                                                               |  |  |
| STD-Plus<br>Energy Limit<br>Alarm  | Indicates the weld has exceeded the maximum energy set.                                                                                 |  |  |

| Table 5.12 | Digital Output Functions |
|------------|--------------------------|

| Table 5.12 | Digital | Output | Functions  |
|------------|---------|--------|------------|
|            | Digitai | Gaipai | i unctions |

| Function                     | Description                                                                                                                                                                                                                                    |  |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| STD-Plus Time<br>Limit Alarm | Indicates the weld time did exceed the maximum time set.                                                                                                                                                                                       |  |  |
| STD-Plus                     |                                                                                                                                                                                                                                                |  |  |
| Peakpower<br>Limit Alarm     | Indicates the weld has exceeded the maximum peak power set.                                                                                                                                                                                    |  |  |
| STD-Ready                    | If active, indicates the system is ready to start a weld cycle, enter<br>test mode, or start a horn scan. If inactive, it indicates the system is<br>already cycling, in test mode, performing a horn scan, or has a reset-<br>required alarm. |  |  |
| STD-Seek/Scan<br>Out         | Indicates either a seek or a horn scan is in progress.                                                                                                                                                                                         |  |  |
| STD-Sonics<br>Active         | Indicates sonics are active.                                                                                                                                                                                                                   |  |  |
| STD-Start<br>Signal Release  | If output is active, it indicates the start signal can be removed.<br>If output is inactive, it indicates start signal is either inactive or that<br>it cannot yet be removed.                                                                 |  |  |
| STD-Status                   | To be used to drive an external beeper. Single 0.5 second beeps will occur when trigger is received. Three Beeps indicate an alarm occurred (e.g. overload alarm). Beeps 0.5 seconds on, 0.5 seconds off long are in between each beep.        |  |  |
| STD-Weldcycle<br>Complete    | Indicates if a weld cycle is no longer in process.                                                                                                                                                                                             |  |  |

### 5.3.10 Analog Input Functions

| Function         | Descr                                                                                | Valid Range                   |                                     |
|------------------|--------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|
| Amplitude In     | Controls the amplitud<br>energy that will be de<br>supply.                           | 1 V to 10 V*<br>(10% to 100%) |                                     |
| Custom Input 1 2 | Define an analog volt to create a cutoff.                                            | 0 V to 10 V                   |                                     |
|                  | Voltage must be exce<br>cutoff.                                                      |                               |                                     |
|                  | Controls the frequence<br>supply operating free<br>depends on the powe<br>frequency: |                               |                                     |
| Frequency Offset | Frequency                                                                            | Offset Range                  | 1 V to 9 V*<br>(5 V is zero offset) |
|                  | 20 kHz                                                                               | +/- 400 Hz                    |                                     |
|                  | 30 kHz                                                                               | +/- 600 Hz                    |                                     |
|                  | 40 kHz                                                                               | +/- 800 Hz                    |                                     |

| Table 5.13 | Analog | Input | Functions |
|------------|--------|-------|-----------|
|------------|--------|-------|-----------|

 $^{\ast}$  If the input signals are not within their valid range, or if left unconnected, the power supply will use 50% amplitude and zero frequency offset, respectively.

### 5.3.11 Analog Output Functions

| Function         |                                                                                                                                                    | Valid Range          |                       |                                     |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|-------------------------------------|
| Amplitude Out    | Provides a 0 V to 10 V output signal proportional to amplitude (0% to 100%).                                                                       |                      |                       | 0 V to 10 V<br>(0% to 100%)         |
| Power Out        | Provides a 0 V to 10 V output signal proportional<br>to ultrasonic power output (0% to 100%).0 V to<br>(0%                                         |                      |                       | 0 V to 10 V<br>(0% to 100%)         |
|                  | Provides a 0 V to 10 V output signal that<br>indicates memory plus offset. Actual frequency<br>depends on the power supply operating<br>frequency: |                      |                       |                                     |
| Frequency<br>Out | Frequency                                                                                                                                          | Lower Limit<br>(0 V) | Upper Limit<br>(10 V) | 0 V to 10 V<br>(5 V is zero offset) |
|                  | 20 kHz                                                                                                                                             | 19,450 Hz            | 20,450 Hz             |                                     |
|                  | 30 kHz                                                                                                                                             | 29,250 Hz            | 30,750 Hz             |                                     |
| _                | 40 kHz                                                                                                                                             | 38,900 Hz            | 40,900 Hz             |                                     |

#### Table 5.14 Analog Output Functions

### 5.3.12 Default Branson User I/O Connector PIN Assignments

### Software V6.0 - V6.4

| Pin | Function                    | I/О Туре             | Values                                                                              |
|-----|-----------------------------|----------------------|-------------------------------------------------------------------------------------|
|     |                             |                      | Apply +24 VDC to run cycle                                                          |
| 1   | STD-External Start          | Input Digital        | NOTICE<br>DCX F-EIP Power Supply must be in<br>ready mode before External Start.    |
| 2   | STD-External Seek           | Input Digital        | Apply +24 VDC to perform a seek                                                     |
| 3   | STD-External Reset          | Input Digital        | Apply +24 VDC to reset alarm                                                        |
| 4   | STD-Memory Clear            | Input Digital        | Apply +24 VDC to clear memory                                                       |
| 5   | +24 VDC Source              | I/O Signal<br>Source | +24 V, 250 mA max. (sourced from the customer supplied 24 V external power supply). |
| 7   | STD-Ready                   | Output<br>Digital    | +24 V indicates the system is ready                                                 |
| 8   | STD-Sonics Active           | Output<br>Digital    | +24 V indicates ultrasonics are active                                              |
| 9   | STD-General Alarm           | Output<br>Digital    | +24 V indicates an alarm occurred                                                   |
| 10  | STD-Seek/Scan Out           | Output<br>Digital    | +24 V indicates either Seek or a Scan is in progress                                |
| 11  | STD-Recall Preset 1         | Input Digital        | Bit 0 for preset recall binary code                                                 |
| 12  | STD-Recall Preset 2         | Input Digital        | Bit 1 for preset recall binary code                                                 |
| 13  | STD-Recall Preset 4         | Input Digital        | Bit 2 for preset recall binary code                                                 |
| 14  | +24 VDC Return and          | I/O Signal           | Return for all pins except pins 17, 18,                                             |
| 15  | I/O Return                  | Return               | 24, and 25                                                                          |
| 16  | STD-Recall Preset 8         | Input Digital        | Bit 3 for preset recall binary code                                                 |
| 17  | Amplitude In                | Input Analog         | 1 V to + 10 V (10% to 100%)*                                                        |
| 18  | Frequency Offset            | Input Analog         | 1 V to + 9 V (5 V is zero offset)                                                   |
| 19  | STD-Amp1 Amp2               | Output<br>Digital    | Indicates amplitude setting 0 V for<br>Amplitude 1, +24 V for Amplitude 2           |
| 20  | STD-Overload Alarm          | Output<br>Digital    | +24 V indicates an overload alarm occurred.                                         |
| 21  | STD-Start Signal<br>Release | Output<br>Digital    | +24 V indicates start signal can be removed.                                        |

 Table 5.15
 Default Branson User I/O Connector PIN Assignments, V6.0

| Pin | Function                     | I/О Туре                | Values                                                                                           |
|-----|------------------------------|-------------------------|--------------------------------------------------------------------------------------------------|
| 22  | STD-Confirm Preset<br>Change | Output<br>Digital       | +24 V indicates a load new preset request has occurred and the preset was successfully recalled. |
| 23  | ACT-Trigger Switch           | Input Digital           | +24 V must be present for ultrasonics to be enabled.                                             |
| 24  | Power Out                    | Output<br>Analog        | 0 V to + 10 V (0% to 100%)                                                                       |
| 25  | Amplitude Out                | Output<br>Analog        | 0 V to + 10 V (0% to 100%)                                                                       |
| 26  | Analog Signal Return         | Analog Signal<br>Return | Return for pins 17, 18, 24, and 25                                                               |

 Table 5.15
 Default Branson User I/O Connector PIN Assignments, V6.0

\* If the input signals are not within their valid range, or if left unconnected, the power supply will use 50% amplitude and zero frequency offset, respectively.

### Software V6.5 or Newer

| Table 5.16 | Default Branson User I/O Connector PIN Assignments, | V6.5 |
|------------|-----------------------------------------------------|------|

| Pin      | Function                            | I/О Туре             | Values                                                                                                         |
|----------|-------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|
| 1        | STD-External Start                  | Input Digital        | Apply +24 VDC to run cycle<br>NOTICE<br>DCX F-EIP Power Supply must be in<br>ready mode before External Start. |
| 2        | STD-External Seek                   | Input Digital        | Apply +24 VDC to perform a seek                                                                                |
| 3        | STD-External Reset                  | Input Digital        | Apply +24 VDC to reset alarm                                                                                   |
| 4        | STD-Memory Clear                    | Input Digital        | Apply +24 VDC to clear memory                                                                                  |
| 5        | +24 VDC Source                      | I/O Signal<br>Source | +24 V, 250 mA max. (sourced from the customer supplied 24 V external power supply).                            |
| 7        | STD-Ready                           | Output Digital       | +24 V indicates the system is ready                                                                            |
| 8        | STD-Sonics Active                   | Output Digital       | +24 V indicates ultrasonics are active                                                                         |
| 9        | STD-General Alarm                   | Output Digital       | +24 V indicates an alarm occurred                                                                              |
| 10       | STD-Seek/Scan Out                   | Output Digital       | +24 V indicates either Seek or a Scan is in progress                                                           |
| 11       | STD-Recall Preset 1                 | Input Digital        | Bit 0 for preset recall binary code                                                                            |
| 12       | STD-Recall Preset 2                 | Input Digital        | Bit 1 for preset recall binary code                                                                            |
| 13       | ACT-Ground Detect                   | Input Digital        | Bit 2 for preset recall binary code                                                                            |
| 14<br>15 | +24 VDC Return and I/O Return       | I/O Signal<br>Return | Return for all pins except pins 17, 18, 24, and 25                                                             |
| 16       | ACT-Cycle Abort                     | Input Digital        | Bit 3 for preset recall binary code                                                                            |
| 17       | Amplitude In                        | Input Analog         | 1 V to + 10 V (10% to 100%)*                                                                                   |
| 18       | Frequency Offset                    | Input Analog         | 1 V to + 9 V (5 V is zero offset)                                                                              |
| 19       | STD-Confirm Preset<br>Change        | Output Digital       | Indicates amplitude setting 0 V for<br>Amplitude 1, +24 V for Amplitude 2                                      |
| 20       | STD-Overload Alarm                  | Output Digital       | +24 V indicates an overload alarm occurred.                                                                    |
| 21       | STD-Plus Peak Power<br>Limit Alarm  | Output Digital       | +24 V indicates start signal can be removed.                                                                   |
| 22       | STD-Minus Peak Power<br>Limit Alarm | Output Digital       | +24 V indicates a load new preset<br>request has occurred and the preset<br>was successfully recalled.         |
| 23       | STD-Display Lock                    | Input Digital        | +24 V must be present for ultrasonics to be enabled.                                                           |

| Pin | Function             | I/О Туре                | Values                             |
|-----|----------------------|-------------------------|------------------------------------|
| 24  | Power Out            | Output<br>Analog        | 0 V to + 10 V (0% to 100%)         |
| 25  | Amplitude Out        | Output<br>Analog        | 0 V to + 10 V (0% to 100%)         |
| 26  | Analog Signal Return | Analog Signal<br>Return | Return for pins 17, 18, 24, and 25 |

**Table 5.16**Default Branson User I/O Connector PIN Assignments, V6.5

\* If the input signals are not within their valid range, or if left unconnected, the power supply will use 50% amplitude and zero frequency offset, respectively.

### 5.3.13 Typical Digital I/O Wiring Examples

#### Figure 5.9 Typical Digital I/O Wiring Examples



Machine  $I_{I}$   $\downarrow$  DCX Power Supply \*25 mA Max. output current

AA/

### 5.3.14 Typical Analog I/O Wiring Examples

Figure 5.10 Typical Analog I/O Wiring Examples



\*1 mA Max. output current

#### 5.3.15 Output Power (RF Cable) Connection

Ultrasonic energy is delivered to the SHV connector on the power supply, which is then transmitted to the converter via the RF cable. The RF connector position depends on the power supply configuration. For Horizontal models it is located on the rear panel of the power supply. For Vertical models it is located on the bottom panel of the power supply.

To reduce electromagnetic interference (EMI), RF cables are equipped with a ferrite core (plastic case) on one end. This end is meant to be connected to the power supply.

| WARNING | High Voltage Hazard                                                                                    |
|---------|--------------------------------------------------------------------------------------------------------|
| 4       | Operating the System with the RF Cable disconnected or damaged can present an electrical shock hazard. |

| WARNING | High Voltage Hazard                                                                    |
|---------|----------------------------------------------------------------------------------------|
| 4       | To avoid the possibility of electrical shock. Converters need to be properly grounded. |

| NOTICE |                                                                                                                                                                                                     |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i      | To avoid the possibility of EMI interference, ensure the RF connection to the power supply is made with the cable end that has the ferrite core box attached (see Figure 5.11 RF Cable Connection). |

Figure 5.11 RF Cable Connection



Table 5.17 RF Cable Connection

| Item | Description      |
|------|------------------|
| 1    | To Power Supply  |
| 2    | Ferrite Core Box |

### 5.3.16 Input Power Connection

| WARNING | High Voltage Hazard                                                                                                                                                      |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ^       | Ensure all electrical power is off when wiring input power to your DCX F-EIP Power Supply connector block.                                                               |
| 4       | To prevent the possibility of an electrical shock, ground the power supply by securing an 8 gauge grounded conductor to the ground screw located next to the air outlet. |

| WARNING | High Voltage Hazard                                                     |
|---------|-------------------------------------------------------------------------|
| 4       | If miss-wired, the power supply can present an electrical shock hazard. |

| NOTICE |                                                                                                                                  |
|--------|----------------------------------------------------------------------------------------------------------------------------------|
| i      | The power supply can be permanently damaged if it is connected to the incorrect line voltage, or if the connection is mis-wired. |

Use the following procedure to connect the power supply to a 24 VDC 2.5A external power supply and to a single-phase, grounded 3-wire, 50 Hz or 60 Hz 200 V to 230 V power source. The 24 VDC power supply must be safety certified and agency approved.

| Table 5.18 | Input Power Connection |
|------------|------------------------|
|------------|------------------------|

| Step | Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Detach the connector block on the back of the power supply.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2    | Use two properly sized wires (according to local standards) to connect a 24 VDC 2.5A power supply as shown on Figure 5.6 DCX F-EIP Power Supply Connections (Horizontal Model).                                                                                                                                                                                                                                                                                                                                     |
| 3    | Use three properly sized wires (No. 12 gauge, 2.5 mm or according to local standards) to connect the line 1, line 2, and ground to the connector block as shown on Figure 5.6 DCX F-EIP Power Supply Connections (Horizontal Model). Choose wires according to the current rating as specified in Table 5.6 Input Current and Circuit Breaker Specifications and on the label located on the back of the unit. Be sure to use agency approved wiring and use sleeving or tubing on each wire for double insulation. |
| 4    | Secure an 8 gauge grounded conductor to the ground screw located next to the air outlet.                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### Table 5.18 Input Power Connection

| Step | Action                                                                                                                                                        |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5    | Connect the converter-booster-horn stack to the power supply using the RF cable. See <u>5.3.15 Output Power (RF Cable) Connection</u> .                       |
| 6    | Ensure the power switch on the back of the unit is in the OFF position. Plug the connector block back into the power supply. Tighten the two securing screws. |
| 7    | Connect the power supply to a single-phase, grounded, 3-wire, 50 Hz or 60 Hz 200 V to 230 V power source.                                                     |

### 5.4 Power Supply Setup

Certain power supply configurations can be modified from the factory setting if needed. Although not usually requiring modifications from the factory setting, the following features are selectable:

- Afterburst: Allows for a short activation of ultrasonics at the end of the weld cycle to reliably release parts from the horn
- Cutoffs: Allows for setting parameter values for immediately terminating a weld cycle: Time (S); Energy (J); Peak Power (%); Frequency Low (Hz); Frequency High (Hz); Custom Input1 (V); and Custom Input2 (v)
- End of Weld Store: Provides an option for selecting if the stack frequency is stored at the end of each weld cycle
- Energy Brake: Allows the user to set the power supply to reduce the amplitude before the sonics are shut off
- Frequency Offset: Allows for varying the start frequency by way of external controls (analog signal applied though the user I/O analog input) or setting a fixed value using the web page interface. This is useful for certain applications, where the force applied on the fixture or anvil causes a frequency shift in the stack's operation
- Limits: Allows for setting up limits within a weld mode: +/- Continuous; +/- Time (s); +/-Energy (J); or +/- Peak Power (%)
- **Mode:** Allows for selecting the weld mode from the different available options: Continuous; Time (s); Energy (J); Peak Power (%); and Ground detect
- **Power Up:** Allows an option to configure the power supply to perform a seek on power up; a horn scan on power up; or to perform no action at power up
- Seek Ramp: Provides a selection for different power supply seek ramp times
- Seek Time: Provides an option for selecting seek duration
- **Start Ramp:** Provides a selection for different start ramp times. This controls how fast the amplitude of the horn rises from 0 to 100. Long ramp times may be useful when using large horns or high gain stacks
- **Timed Seek:** Provides an option for monitoring, and storing the operating frequency at timed intervals (60 seconds). Periodic frequency seeks may be helpful when welder is not used for long periods of time. Seeks are timed from the moment sonics was last activated
- Weld Amplitude: Allows for varying the amplitude (10% to 100%) using the front panel LCD, the web page interface, or by way of external controls (analog signal applied though the user I/O analog input). Via the web page interface scrub amplitude, afterburst amplitude, and amplitude stepping options may also be configured

For instruction on how to change the power supply settings refer to <u>7.4 Configuring the</u> <u>Power Supply Registers</u> in <u>Chapter 7: Operation</u>.

### 5.5 Assembling the Acoustic Stack

| CAUTION | General Warning                                                                                                                                                                                                                                                                       |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | The following procedure must be performed by a setup person. If<br>necessary, secure the largest portion of a square or rectangular horn<br>in a soft jawed vise. NEVER attempt to assemble or remove a horn by<br>holding the converter housing or the booster clamp ring in a vise. |

| CAUTION | General Warning                                                                                                                                                       |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | Do not use silicone grease with Mylar plastic film washers. Use only 1 (one) Mylar plastic film washer of the correct inside and outside diameters at each interface. |  |

| NOTICE |                                                                                                                                                         |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| i      | The use of a Branson torque wrench or the equivalent is recommended. P/N 101-063-787 for 20 kHz, and 30 kHz systems and 101-063-618 for 40 kHz systems. |

#### Figure 5.12 Assembling the Acoustic Stack



### **Acoustic Stack Description**

| Table 5.19 | Acoustic Stack | Description |
|------------|----------------|-------------|
|------------|----------------|-------------|

| Item | Description                                  |  |
|------|----------------------------------------------|--|
| 1    | Converter                                    |  |
| 2    | Booster                                      |  |
| 3    | Spanner (provided)                           |  |
| 4    | Horn                                         |  |
| 5    | See stack assembly procedure                 |  |
| 6    | Vise Jaw protectors (aluminum or soft metal) |  |
| 7    | Vise                                         |  |

### **Stack Torque Values**

| Frequency | Torque                |
|-----------|-----------------------|
| 20 kHz    | 220 in lb (24.85 N·m) |
| 30 kHz    | 185 in∙lb (21 N·m)    |
| 40 kHz    | 95 in∙lb (10.73 N·m)  |

#### Table 5.20 Stack Torque Values

### Tools

Table 5.21 Tools

| ΤοοΙ                                 | EDP Number  |
|--------------------------------------|-------------|
| 20 kHz, and 30 kHz Torque Wrench Kit | 101-063-787 |
| 40 kHz Torque Wrench                 | 101-063-618 |
| 20 kHz Spanner Wrench                | 101-118-039 |
| 30 kHz Spanner Wrench                | 201-118-033 |
| 40 kHz Spanner Wrench                | 201-118-024 |
| Silicone Grease                      | 101-053-002 |
| Mylar Plastic Film Washers (20 kHz)  | 100-063-357 |
| Mylar Plastic Film Washers (30 kHz)  | 100-063-632 |

#### 5.5.1 For a 20 kHz System

Table 5.22 20 kHz System

| Step | Action                                                                                                                                   |
|------|------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Ensure that the mating surfaces of the converter, booster, and horn are clean, and that the threaded holes are free of foreign material. |
| 2    | Install a single Mylar plastic film washer (matching the size of the washer to the stud) to each interface.                              |
| 3    | Assemble the converter to the booster and the booster to the horn.                                                                       |
| 4    | Torque to 220 in lb (24.85 N·m) at each interface.                                                                                       |

#### 5.5.2 For a 30 kHz System

Table 5.23 30 kHz System

| Step | Action                                                                                                                                   |
|------|------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Ensure that the mating surfaces of the converter, booster, and horn are clean, and that the threaded holes are free of foreign material. |
| 2    | Install a single Mylar plastic film washer (matching the size of the washer to the stud) to each interface.                              |
| 3    | Assemble the converter to the booster and the booster to the horn.                                                                       |
| 4    | Torque to 185 in lb (21 N·m) at each interface.                                                                                          |

#### 5.5.3 For a 40 kHz System

#### Table 5.2440 kHz System

| Step | Action                                                                                                                                   |
|------|------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Ensure that the mating surfaces of the converter, booster, and horn are clean, and that the threaded holes are free of foreign material. |
| 2    | Coat each interface surface with a thin film of silicon grease - but do not apply silicon grease to a threaded stud or tip.              |
| 3    | Assemble the converter to the booster and the booster to the horn.                                                                       |
| 4    | Torque to 95 in Ib (10.73 N·m) at each interface.                                                                                        |

### 5.5.4 Connecting Tip to Horn

- 1. Ensure that the mating surfaces of the tip and horn are clean. Remove any foreign matter from the threaded stud and hole.
- 2. Hand assemble the tip to the horn. Assemble dry. Do not use any silicone grease.
- 3. Use the spanner wrench and an open-end wrench (refer to <u>Figure 5.13 Connecting Tip to Horn</u>) and tighten to the following torque tip specifications:

Figure 5.13 Connecting Tip to Horn



Table 5.25 Tip to horn torque values

| Tip Thread | Torque                 |
|------------|------------------------|
| 1/4 - 28   | 110 in lbs (12.42 N·m) |
| 3/8 - 24   | 180 in lbs (20.33 N·m) |

### 5.6 Converter Cooling

Converter performance and reliability can be adversely affected if the converter ceramics are subjected to temperatures above  $140^{\circ}$  F ( $60^{\circ}$  C). The converter front driver temperature should not exceed  $122^{\circ}$  F ( $50^{\circ}$  C).

To prolong converter life and maintain a high degree of system reliability, the converter should be cooled with clean, dry, compressed air, particularly if your application calls for continuous ultrasonic operation. Converter cooling is especially critical in 40 kHz applications.

Use one of the following procedures to determine if a converter is operating close to the maximum allowable temperature. Check converter temperature immediately after substantial machine operation and without power applied to the horn.

- Press a pyrometer probe (or similar temperature measuring device) against the front driver of the converter assembly. Wait for the probe to reach the temperature of the shell. If the temperature is 120° F (49° C) or higher, the converter requires a cooling air stream
- If a temperature measuring device is unavailable, use your hand to feel the shell of the converter. If the converter is hot to touch, the converter requires a cooling air stream

High duty cycles require additional cooling for the converter. System average power must be limited to the specified continuous maximum. Higher peak power, up to the maximum acceptable power limit, with an on time of up to 10 seconds may be obtained, if appropriate off time ensures that, on average, the continuous duty maximum power is not exceeded.

| Configuration   | Continuous Duty<br>Max. Power | Full Power Duty Cycle             |
|-----------------|-------------------------------|-----------------------------------|
| 20 kHz / 1250 W | 800 W                         | 10 s on 10 s off (50% Duty Cycle) |
| 20 kHz / 2500 W | 1600 W                        | 10 s on 10 s off (50% Duty Cycle) |
| 20 kHz / 4000 W | 2000 W                        | 5 s on 15 s off (25% Duty Cycle)  |
| 30 kHz / 750 W  | 300 W                         | 2 s on 2 s off (50% Duty Cycle)   |
| 30 kHz / 1500 W | 800 W                         | 2 s on 2 s off (50% Duty Cycle)   |
| 40 kHz / 400 W  | 300 W                         | 10 s on 10 s off (50% Duty Cycle) |
| 40 kHz / 800 W  | 400 W                         | 10 s on 10 s off (50% Duty Cycle) |

 Table 5.26
 Continuous Duty Max. Power & Full Power Duty Cycle

If converter cooling is required, use the following steps:

| Table 5.27 Converter ( | Cooling Procedure |
|------------------------|-------------------|
|------------------------|-------------------|

| Step | Action                                                                                                                                                  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Start with a 50 psi (345 kPa) air source or higher from a 0.06 in (1.5 mm) I.D. orifice                                                                 |
| 2    | Perform a run of welding operations.                                                                                                                    |
| 3    | Immediately after completing the welding run, check the converter temperature.                                                                          |
| 4    | If the converter is still too hot, increase the diameter of the orifice in small increments until the temperature falls within the ranges in the chart. |

A 0.06 in (1.5 mm) orifice at 50 psi (345 kPa) will result in a reading of 80  $ft^3$  (2.26  $m^3$ ) per hour. This should be sufficient to cool most operations requiring a cooling air stream. In continuous welding operations, or applications with longer duty cycles, it may be necessary to cool the horn as well as the converter. Horns may require cooling because of the heat transfer from contacting the work piece.

# Branson

### 5.7 Testing the Installation

To test the power supply follow the procedure described in <u>7.6 Ultrasonics Test Procedure</u> in <u>Chapter 7: Operation</u>.

### 5.8 Still Need Help?

Branson is pleased that you chose our product and we are here for you! If you need parts or technical assistance with your DCX F-EIP Power Supply system, call your local Branson representative. Please refer to <u>1.4 How to Contact Branson</u> for a list of Branson key contacts.

### **Chapter 6: Converters and Boosters**

| 6.1 | Converters and Boosters |
|-----|-------------------------|
| 0.1 |                         |

### 6.1 Converters and Boosters

A variety of converters and boosters available for use with the DCX F-EIP Power Supply are illustrated in the following pages.

| WARNING | High Voltage Hazard                                                                    |
|---------|----------------------------------------------------------------------------------------|
| A       | To avoid the possibility of electrical shock. Converters need to be properly grounded. |

| NOTICE |                                                                                                                                                           |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| i      | Special adaptor cables are available to connect to MS-style converters (CR20 and 4TR). See <u>Table 9.8 DCX F-EIP Power Supply</u> <u>System Cables</u> . |

#### Figure 6.1 20 kHz typical Converter Dimensions



| Table 6.1 | 20 kHz Converter |
|-----------|------------------|
|-----------|------------------|

| Item | Description   |  |
|------|---------------|--|
| 1    | Air inlet     |  |
| 2    | Ground stud   |  |
| 3    | SHV connector |  |
| 4    | Grip area     |  |







| Item | Description                                                                    |
|------|--------------------------------------------------------------------------------|
| 1    | 1/2 - 20 x 1 - 1/4 stud (Ti boosters)<br>1/2 - 20 x 1 - 1/2 stud (Al boosters) |
| 2    | Grip Ring Diameter                                                             |
| 3    | Variable                                                                       |
| 4    | Varies with tuning and gain                                                    |

\* These dimensions do not vary.



Figure 6.3 20 kHz Converter/Booster/Horn, Typical Dimensions

 Table 6.3
 20 kHz Converter/Booster/Horn

| Item | Description                                         |
|------|-----------------------------------------------------|
| 1    | Converter                                           |
| 2    | Booster                                             |
| 3    | One-half wavelength horn                            |
| 4    | Recommended clamping area                           |
| 5    | Booster front end diameter will vary with amplitude |

\* Overall horn length can vary beyond these typical dimensions depending on the application.





Table 6.430 kHz Converter

| Item | Description   |
|------|---------------|
| 1    | Air inlet     |
| 2    | SHV connector |
| 3    | Ground stud   |
| 4    | Grip area     |

CR-30S and CH-30S are dimensionally identical, and differ only in their respective cooling feature.

CR-30S has flow through cooling, and CH-30S has closed loop cooling (air circulates in the converter and returns to its source).





| Table 6.5 | 30 kHz Booster |
|-----------|----------------|
| 10010-0.0 |                |

| Item | Description                 |
|------|-----------------------------|
| 1    | 3/8 - 24 x 1 - 1/4 stud     |
| 2    | Grip Ring Diameter          |
| 3    | Variable                    |
| 4    | Varies with tuning and gain |

\* These dimensions do not vary.



#### Figure 6.6 30 kHz Converter/Booster/Horn, Typical Dimensions

| Table 6.6 | 30 kHz Converter/Booster/Horn |
|-----------|-------------------------------|
|           |                               |

| Item | Description                                         |
|------|-----------------------------------------------------|
| 1    | Converter                                           |
| 2    | Booster                                             |
| 3    | One-half wavelength horn                            |
| 4    | Recommended clamping area                           |
| 5    | Booster front end diameter will vary with amplitude |

\* Overall horn length can vary beyond these typical dimensions depending on the application.

# Branson





| Table 6.7 | 40 kHz.  | 4TR | Converter |
|-----------|----------|-----|-----------|
|           | 10 1012, |     | COnverter |

| Item | Description   |  |
|------|---------------|--|
| 1    | Ground stud   |  |
| 2    | SHV connector |  |
| 3    | Grip area     |  |







| Item | Description                                                        |
|------|--------------------------------------------------------------------|
| 1    | M8 x 1 - 1/4 stud (Ti boosters)<br>M8 x 1 - 1/2 stud (Al boosters) |
| 2    | Grip ring diameter                                                 |
| 3    | Variable                                                           |
| 4    | Varies with tuning and gain                                        |



Table 6.9 40 kHz Converter/Booster/Horn

| Item | Description                                         |
|------|-----------------------------------------------------|
| 1    | Converter                                           |
| 2    | Booster                                             |
| 3    | One-half wavelength horn                            |
| 4    | Recommended clamping area                           |
| 5    | Booster front end diameter will vary with amplitude |

\* Overall horn length can vary beyond these typical dimensions depending on the application. \*\* Dimension varies with tuning and gain.

# Branson

#### 6.1.1 Component Functional Description

### **Ultrasonic Stack**

#### Converter

The converter is mounted in the customer's automation as part of the ultrasonic stack. The ultrasonic electrical energy from the power supply is applied to the converter (sometimes called the transducer). This transforms the high frequency electrical oscillations into mechanical vibrations at the same frequency as the electrical oscillations. The heart of the converter are piezoelectric ceramic elements. When subjected to an alternating voltage, these elements alternately expand and contract, resulting in better than 90% conversion of electrical to mechanical energy.

### Booster

It is important to be able to modify the horn face amplitude for successful ultrasonic assembly. The booster provides a means to modify the amplitude. It is designed to couple different ratios of ultrasonic energy to the horn, which will in turn increase or decrease the amplitude at the face of the horn. This is accomplished by varying the ratios of the masses of the input and output half sections of the booster.

The booster is a resonant half-wave section of aluminum or titanium. It is mounted between the converter and the horn, as part of the ultrasonic stack. It also provides a clamping point for rigid stack mounting.

### Horn

The horn is selected or designed for a specific application. Each horn is tuned typically as a half-wave section that applies the necessary force and vibration uniformly to the parts to be assembled. It transfers ultrasonic vibrations from the converter to the workpiece. The horn is mounted to the booster as part of the ultrasonic stack.

Depending on their profile, horns are referred to as stepped, conical, exponential, bar, or catenoidal. The shape of the horn determines the amplitude at the face of the horn. Depending on the application, horns can be made from titanium alloys, aluminum, or steel. Titanium alloys are the best materials for horn fabrication due to their high level of strength and low loss. Aluminum horns are usually chrome- or nickel-plated or hard-coated to reduce wear. Steel horns are for low amplitude requiring hardness, such as ultrasonic insertion applications.

### **Solid Mount Boosters**

The solid mount booster is a one-half wave-length resonant section made exclusively of titanium. It is mounted between the converter and the horn, modifying the amplitude of vibration applied to the horn and providing a clamping point.

The solid mount booster is superior to prior versions in that deflection is minimized. This is the result of a redesigned clamp-ring which employs a metal-to-metal press fit rather than an O-ring assembly.

The advantage this booster offers is its improved rigidity. For continuous applications, this means more energy delivered to the product, while in plunge applications, improved alignment is possible. The solid mount provides improved positional alignment and will benefit continuous applications where high force, high side load, or high cycle rates are necessary. In plunge welding applications, overall deflection is reduced by an average of 0.0025 in. (0.064 mm) over a wide variety of materials, joint designs, and operating conditions. The results of this testing in combination with information drawn from field testing indicate that the solid mount will benefit plunge applications where precision alignment is necessary (such as staking, swaging, or insertion) or where concentricity/ parallelism is critical.
### **Chapter 7: Operation**

| 7.1 | Setting Primary Parameters             | . 98 |
|-----|----------------------------------------|------|
| 7.2 | Setting the Amplitude                  | 109  |
| 7.3 | Resetting the Power Supply Alarms      | 111  |
| 7.4 | Configuring the Power Supply Registers | 112  |
| 7.5 | LCD Bar-Graph                          | 117  |
| 7.6 | Ultrasonics Test Procedure             | 120  |
| 7.7 | Using the I/O Connections              | 122  |

### 7.1 Setting Primary Parameters

After analyzing your specific application, you can determine the Weld Mode to use to weld your parts. A Weld Mode is a set of parameters that governs the weld. Contact the Branson Ultrasonics Applications Laboratory for more information on determining the best mode for welding your application. See <u>1.4 How to Contact Branson</u>.

There are five Weld Modes to choose from Continuous, Time, Energy, Peak Power, and Ground Detect Modes. The following table describes each mode:

| Table 7.1 Summary of Weld Modes |
|---------------------------------|
|---------------------------------|

| Weld Mode                                                                                                 | Description                                                                                                                                                                                                                                                |  |  |  |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Continuous On this mode, ultrasonic energy will be delivered continut the start signal is present.        |                                                                                                                                                                                                                                                            |  |  |  |
| Time                                                                                                      | You select the length of time (in seconds) that ultrasonic energy w be transmitted to your parts.                                                                                                                                                          |  |  |  |
| Energy                                                                                                    | You select the amount of energy (in Joules) that will be transmitted to your parts. (A Joule is one Watt-Second.)                                                                                                                                          |  |  |  |
| Peak PowerYou select the peak power level (as a percentage of full power<br>which the weld is terminated. |                                                                                                                                                                                                                                                            |  |  |  |
|                                                                                                           | The DCX F-EIP Power Supply provides ultrasonic energy until the<br>horn comes in contact with your electrically isolated fixture or with<br>the anvil, providing that you made an electrical connection between<br>the actuator and your fixture or anvil. |  |  |  |
| Ground Detect                                                                                             | NOTICE<br>Ground detect signal is required to terminate the weld and enter<br>scrub time.<br>It is necessary to install Ground Detect Kit (EDP No. 125-063-061)<br>in order to utilize this feature.                                                       |  |  |  |

| NOTICE |                                                            |
|--------|------------------------------------------------------------|
| i      | In these modes, cutoffs can be used as secondary controls. |

#### 7.1.1 Continuous Mode

In this mode, ultrasonic energy will be delivered continuously while the start signal is present. Within Continuous Mode, you can also select several other parameters, ranging from afterburst to limits and cutoffs. For more information on setting the optional parameters within Continuous Mode, or any other welding mode, refer to the DCX A/F Series Web Page Instruction Manual.

| Table 7.2 | Continuous | Mode O   | nerational | Sequence |
|-----------|------------|----------|------------|----------|
|           | Continuous | would of | perational | Sequence |

| Step | Action                                                                                                                                                                                    | Reference |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1    | Press the Configuration key until the<br>number icon (#) appears on the LCD.<br>The power supply will display register<br>101 at every power up.                                          |           |
| 2    | Press and release the Up/Down arrow<br>keys to select register 138. For a<br>detailed description of available<br>registers refer to <u>Table 7.18 Power</u><br><u>Supply Registers</u> . |           |
| 3    | Once you have reached register 138,<br>press the Configuration key. The<br>register value will be displayed; this is<br>indicated by the circle icon.                                     |           |

| Step | Action                                                                                                                     | Reference |
|------|----------------------------------------------------------------------------------------------------------------------------|-----------|
| 4    | Use the Up/Down arrow keys to select value 0 (Continuous mode), then press the Configuration key to confirm the selection. |           |
| 5    | Continuous mode icon and amplitude<br>value will be displayed.                                                             |           |

#### Table 7.2 Continuous Mode Operational Sequence

#### 7.1.2 Selecting Time Mode

You can use Time Mode to select the length of time that ultrasonic energy is applied to your parts. Within Time Mode, you can also select several other parameters, ranging from afterburst to limits and cutoffs. For more information on setting the optional parameters within Time Mode, or any other welding mode, refer to the DCX A/F Series Web Page Instruction Manual.

#### Table 7.3 Time Mode Parameters

| Parameter | Default       | Max. Value | Min. Value    |
|-----------|---------------|------------|---------------|
| Time      | 0.010 seconds | 30 seconds | 0.010 seconds |

| Tabla 7 4 | Colocting | Time  | Mada |
|-----------|-----------|-------|------|
|           | Selecting | TILLE | mode |

| Step | Action                                                                                                                                                                                    | Reference |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1    | Press the Configuration key until the<br>number icon (#) appears on the LCD.<br>The power supply will display register<br>101 at every power up.                                          |           |
| 2    | Press and release the Up/Down arrow<br>keys to select register 138. For a<br>detailed description of available<br>registers refer to <u>Table 7.18 Power</u><br><u>Supply Registers</u> . |           |
| 3    | Once you have reached register 138,<br>press the Configuration key. The register<br>value will be displayed; this is indicated<br>by the circle icon.                                     |           |



| Step | Action                                                                                                               | Reference |
|------|----------------------------------------------------------------------------------------------------------------------|-----------|
| 4    | Use the Up/Down arrow keys to select value 1 (Time mode), then press the Configuration key to confirm the selection. |           |

#### 7.1.2.1 Setting Time Mode Parameters

| Step | Action                                                                                                                 | Reference                      |
|------|------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| 1    | Set the Power Supply to Time Mode.                                                                                     | See 7.1.2 Selecting Time Mode. |
| 2    | Time mode icon and parameter value<br>will be displayed. Use the Up/Down keys<br>to enter the desired parameter value. |                                |

| Table 7.5 | Setting Time Mode Parameters |
|-----------|------------------------------|
|-----------|------------------------------|

#### 7.1.3 Selecting Energy Mode

You can use Energy Mode to select the amount of ultrasonic energy that is applied to your parts. Within Energy Mode, you can also select several other parameters, ranging from afterburst to limits and cutoffs. For more information on setting the optional parameters within Energy Mode, or any other welding mode, refer to the DCX A/F Series Web Page Instruction Manual.

|  | Table 7.6 | Energy Mode Parameters |
|--|-----------|------------------------|
|--|-----------|------------------------|

| Parameter | Default    | Max. Value  | Min. Value |
|-----------|------------|-------------|------------|
| Energy    | 500 Joules | 9999 Joules | 0.1 Joules |

| Table 7.7 | Selecting | Enerav | Mode |
|-----------|-----------|--------|------|
|           | Jereeting | LICIGY | mouc |

| Step | Action                                                                                                                                                                                    | Reference |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1    | Press the Configuration key until the<br>number icon (#) appears on the LCD.<br>The power supply will display register<br>101 at every power up.                                          |           |
| 2    | Press and release the Up/Down arrow<br>keys to select register 138. For a<br>detailed description of available registers<br>refer to <u>Table 7.18 Power Supply</u><br><u>Registers</u> . |           |
| 3    | Once you have reached register 138,<br>press the Configuration key. The register<br>value will be displayed; this is indicated<br>by the circle icon.                                     |           |



| Table 7.7 | Selecting Energy | / Mode |
|-----------|------------------|--------|
|           |                  |        |

| Step | Action                                                                                                                 | Reference |
|------|------------------------------------------------------------------------------------------------------------------------|-----------|
| 4    | Use the Up/Down arrow keys to select value 2 (Energy mode), then press the Configuration key to confirm the selection. |           |

#### 7.1.3.1 Setting Energy Mode Parameters

| Step | Action                                                                                                                   | Reference                        |
|------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 1    | Set the Power Supply to Energy Mode.                                                                                     | See 7.1.3 Selecting Energy Mode. |
| 2    | Energy mode icon and parameter value<br>will be displayed. Use the Up/Down keys<br>to enter the desired parameter value. |                                  |

| Table 7.8 | Setting | Energy | Mode | Parameters |
|-----------|---------|--------|------|------------|
|-----------|---------|--------|------|------------|

#### 7.1.4 Selecting Peak Power Mode

You can use Peak Power Mode to select the maximum percentage of the total available power that will be used to process your welds. When the power level you set is reached, ultrasonics will be terminated. From within Peak Power Mode, you can also select several other parameters, ranging from afterburst to limits and cutoffs. For more information on setting the optional parameters within Peak Power Mode, or any other welding mode, refer to the DCX A/F Series Web Page Instruction Manual.

|--|

| Parameter  | Default | Max. Value | Min. Value |
|------------|---------|------------|------------|
| Peak Power | 1%      | 100%       | 1%         |

| Step | Action                                                                                                                                                                                    | Reference |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1    | Press the Configuration key until the<br>number icon (#) appears on the LCD.<br>The power supply will display register<br>101 at every power up.                                          |           |
| 2    | Press and release the Up/Down arrow<br>keys to select register 138. For a<br>detailed description of available<br>registers refer to <u>Table 7.18 Power</u><br><u>Supply Registers</u> . |           |
| 3    | Once you have reached register 138,<br>press the Configuration key. The<br>register value will be displayed; this is<br>indicated by the circle icon.                                     |           |

Table 7.10 Selecting Peak Power Mode



| Table 7.10 | Selecting | Peak   | Power   | Mode |
|------------|-----------|--------|---------|------|
|            | Jereeting | I Cuik | 1 0 1 0 | mouc |

| Step | Action                                                                                                                     | Reference |
|------|----------------------------------------------------------------------------------------------------------------------------|-----------|
| 4    | Use the Up/Down arrow keys to select value 3 (Peak Power mode), then press the Configuration key to confirm the selection. |           |

#### 7.1.4.1 Setting Peak Power Mode Parameters

| Step | Action                                                                                                                           | Reference                               |
|------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 1    | Set the power supply to peak power mode.                                                                                         | See 7.1.4 Selecting Peak Power<br>Mode. |
| 2    | Peak Power mode icon and parameter<br>value will be displayed. Use the Up/<br>Down keys to enter the desired<br>parameter value. |                                         |

 Table 7.11
 Setting Peak Power Mode Parameters

#### 7.1.5 Selecting Ground Detect Mode

You can use Ground Detect Weld Mode to have ultrasonic energy turn off when the horn comes in contact with your electrically isolated fixture or anvil.

From within Ground Detect Mode, you can also select several other parameters, ranging from Hold Time (in seconds) to Suspect and Reject Limits. For more information on setting the optional parameters within Ground Detect Mode, or any other welding mode, refer to the DCX A/F Series Web Page Instruction Manual.

| Table 7.12 | Ground Detec | t Mode Parameters |
|------------|--------------|-------------------|
|            |              |                   |

| Parameter     | Default       | Max. Value    | Min. Value    |
|---------------|---------------|---------------|---------------|
| Ground Detect | 0.001 seconds | 0.500 seconds | 0.001 seconds |

| Table 7.13 | Selecting Groun | d Detect Mode |
|------------|-----------------|---------------|
|            | Sciecting Groun |               |

| Step | Action                                                                                                                                                                                      | Reference |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1    | Press the Configuration key until the<br>number icon (#) appears on the LCD.<br>The power supply will display register<br>101 at every power up.                                            |           |
| 2    | Press and release the Up/Down arrow<br>keys to select register 138. For a<br>detailed description of available<br>registers refer to <u>Table 7.18 Power</u> .<br><u>Supply Registers</u> . |           |
| 3    | Once you have reached register 138,<br>press the Configuration key. The<br>register value will be displayed; this is<br>indicated by the circle icon.                                       |           |



| Table 7 13 | Selecting | Ground | Detect | Mode |
|------------|-----------|--------|--------|------|
|            | Selecting | Ground | Detect | woue |

| Step | Action                                                                                                                        | Reference |
|------|-------------------------------------------------------------------------------------------------------------------------------|-----------|
| 4    | Use the Up/Down arrow keys to select value 4 (Ground Detect mode), then press the Configuration key to confirm the selection. |           |

#### 7.1.5.1 Setting Ground Detect Mode Parameters

| Step | Action                                                                                                                             | Reference                                                 |
|------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1    | Set the Power Supply to Ground Detect Mode.                                                                                        | See <u>7.1.5 Selecting Ground Detect</u><br><u>Mode</u> . |
| 2    | Ground Detect mode icon and<br>parameter value will be displayed. Use<br>the Up/Down keys to enter the desired<br>parameter value. |                                                           |

| Table 7.14 | Setting Ground De | tect Mode Parameters |
|------------|-------------------|----------------------|
|------------|-------------------|----------------------|

### 7.2 Setting the Amplitude

#### 7.2.1 Using the Front Panel Controls

At power up the DCX F-EIP Power Supply will display the last amplitude setting on the LCD. It can also be set to show weld mode.

Figure 7.1 LCD at Power Up



| Table 7 15 | Sotting the Am | nlituda Usina th | no Front Dano   | Controls |
|------------|----------------|------------------|-----------------|----------|
|            | Setting the Am | pintude Using ti | le FIOIIL Palle |          |

| Step | Action                                                                                                                                                                                                                                                                                                                                                                                               | Reference |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1    | Press the Configuration key until the percentage icon (%) and no mode icons are displaying on the LCD.                                                                                                                                                                                                                                                                                               |           |
| 2    | Press and release the Up or Down arrow<br>keys to select the desired amplitude at<br>1% increments.<br>Press and hold down the Up or Down<br>arrow keys and the Amplitude will auto<br>increment at 1% increments every<br>quarter of a second.<br>After holding down an arrow key for four<br>straight seconds, the amplitude will auto<br>increment at 5% increments every<br>quarter of a second. |           |

#### 7.2.2 Using External Amplitude Control

When External Amplitude Control is enabled, the front panel amplitude control is disabled and the LCD displays four dashes (see <u>Figure 7.2 LCD when in External Amplitude Control</u> <u>Mode</u> below).



 Figure 7.2
 LCD when in External Amplitude Control Mode

The ultrasonic amplitude can be controlled using one of the two analog input pins on the user I/O connector (pins 17 and 18) or through the Ether/Net IP interface.

#### 7.2.3 Using the Web Page Interface

The ultrasonic amplitude can be set to a user specified value using the web page interface. For more information, refer to the DCX A/F Series Web Page Instruction Manual.

### 7.3 Resetting the Power Supply Alarms

You need to reset the weld system when you get an overload. When there is an overload, the alarm icon appears on the front panel LCD and the General Alarm output on the user I/O connector becomes active. The procedure for resetting the power supply depends on the power supply alarm settings. Refer to <u>Table 7.16 Resetting the DCX F-EIP Power</u> <u>Supply</u> for reset procedures.

 Table 7.16
 Resetting the DCX F-EIP Power Supply

| Alarm Setting     | Reset Procedure                                                              |
|-------------------|------------------------------------------------------------------------------|
| Reset Required    | Press the front panel Reset key. You can also send an External Reset signal. |
| No Reset Required | Remove and re-apply the start signal.                                        |

For more information on interfacing the DCX F-EIP Power Supply using the user I/O connections refer to <u>5.3.6 User I/O Connections</u> in <u>Chapter 5: Installation and Setup</u>.

# Branson

### 7.4 Configuring the Power Supply Registers

At power up the DCX F-EIP Power Supply will display the last amplitude setting, this is indicated by the percentage icon (%) on the LCD. Refer to <u>Figure 7.1 LCD at Power Up</u>.

| Step | Action                                                                                                                                                                                               | Reference |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1    | Press the Configuration key until the<br>number icon (#) appears on the LCD.<br>The power supply will display register<br>101 at every power up.                                                     |           |
| 2    | Press and release the Up or Down arrow<br>keys to select the desired register. For a<br>detailed description of available<br>registers refer to <u>Table 7.18 Power</u><br><u>Supply Registers</u> . |           |
| 3    | Once you have reached the desired<br>register, press the Configuration key.<br>The register value will be displayed, this<br>is indicated by the circle icon.                                        |           |

 Table 7.17
 Steps to Configure the Power Supply Registers

| Step | Action                                                                                                                                                                                                            | Reference |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|      | Press and release the Up or Down arrow keys to enter the desired value at 1 increments.                                                                                                                           |           |
|      | Press and hold down the Up and Down<br>arrow keys and the value will auto<br>increment at 1 increments every quarter<br>of a second.                                                                              |           |
| 4    | After holding down an arrow key for four<br>straight seconds, the value will auto<br>increment at 5 increments every quarter<br>of a second.                                                                      |           |
|      | Or press the Reset key to enter the default value. For detailed default values of available registers refer to <u>Table 7.18</u><br><u>Power Supply Registers</u> .                                               |           |
| 5    | Press the Configuration key to save the<br>value. The current amplitude setting will<br>be displayed only for continuous mode.<br>For all the other modes, it will display<br>the primary parameter of that mode. |           |

| Table 7.17 | Steps to | Configure | the Power | Supply | Registers |
|------------|----------|-----------|-----------|--------|-----------|
|            |          |           |           |        |           |

#### 7.4.1 Power Supply Registers

| Register | Description                                                                    | Min.<br>Value | Max.<br>Value | Default<br>Value |
|----------|--------------------------------------------------------------------------------|---------------|---------------|------------------|
| 101      | Software version                                                               | N/A           | N/A           | N/A              |
| 102      | Bar graph identification after weld<br>complete<br>0=Power<br>1=Frequency      | 0             | 1             | 0                |
| 104      | External amplitude control - user analog<br>input or fieldbus<br>0=Off<br>1=On | 0             | 1             | 0                |
| 105      | Start ramp time (ms)                                                           | 10            | 1000          | 80               |
| 106      | Store frequency at end of weld<br>0=Off<br>1=On                                | 0             | 1             | 1                |
| 107      | Power up seek/scan<br>0=Off<br>1=Seek,<br>2=Scan                               | 0             | 2             | 1                |
| 108      | Seek ramp time (ms)                                                            | 10            | 1000          | 80               |
| 109      | Timed seek (every 60 seconds)<br>0=Off<br>1=On                                 | 0             | 1             | 0                |
| 110      | Seek time (ms)                                                                 | 10            | 1000          | 500              |
| 111      | External Frequency Offset<br>0=Off<br>1=On                                     | 0             | 1             | 0                |
| 112      | Frequency Offset Value                                                         |               |               | 0                |
| 113      | Cutoffs<br>0=Off<br>1=On                                                       | 0             | 1             | 0                |
| 114      | Limits<br>0=Off<br>1=On                                                        | 0             | 1             | 0                |

#### Table 7.18 Power Supply Registers

| Table 7.18 | Power Supply Registers                                                                      |               |               |                  |
|------------|---------------------------------------------------------------------------------------------|---------------|---------------|------------------|
| Register   | Description                                                                                 | Min.<br>Value | Max.<br>Value | Default<br>Value |
| 115        | Restore Defaults<br>0=Off<br>1=Just weld preset<br>2=System defaults                        | 0             | 2             | 0                |
| 116        | IP Address - 1                                                                              | 0             | 255           | 192              |
| 117        | IP Address - 2                                                                              | 0             | 255           | 168              |
| 118        | IP Address - 3                                                                              | 0             | 255           | 10               |
| 119        | IP Address - 4                                                                              | 0             | 255           | 100              |
| 120        | Gateway for IP Address - 1                                                                  | 0             | 255           | 192              |
| 121        | Gateway for IP Address - 2                                                                  | 0             | 255           | 168              |
| 122        | Gateway for IP Address - 3                                                                  | 0             | 255           | 10               |
| 123        | Gateway for IP Address - 4                                                                  | 0             | 255           | 1                |
| 124        | Subnet Mask for IP Address - 1                                                              | 0             | 255           | 255              |
| 125        | Subnet Mask for IP Address - 2                                                              | 0             | 255           | 255              |
| 126        | Subnet Mask for IP Address - 3                                                              | 0             | 255           | 255              |
| 127        | Subnet Mask for IP Address - 4                                                              | 0             | 255           | 0                |
| 128        | DHCP Settings<br>0=Server<br>1=Client<br>2=Static<br>3=Restore Registers 116-128 to default | 0             | 3             | 2                |
| 134        | Backlight Timeout (s)<br>0=Always on                                                        | 0             | 9999          | 600              |
| 135        | Auto scroll step size                                                                       | 1             | 50            | 5                |
| 136        | Power on display<br>0=Weld Mode<br>1=Amplitude                                              | 0             | 1             | 1                |
| 138        | Weld Mode<br>0=Continous<br>1=Time<br>2=Energy<br>3=Peak Power                              | 0             | 4             | 0                |

#### Та

139

4=Ground Detect

MAC Address 1

N/A

0

FFFF

| Register | Description                             | Min.<br>Value | Max.<br>Value | Default<br>Value |
|----------|-----------------------------------------|---------------|---------------|------------------|
| 140      | MAC Address 2                           | 0             | FFFF          | N/A              |
| 141      | MAC Address 3                           | 0             | FFFF          | N/A              |
| 142      | Ethernet IP Address - 1                 | 0             | 255           | 192              |
| 143      | Ethernet IP Address - 2                 | 0             | 255           | 168              |
| 144      | Ethernet IP Address - 3                 | 0             | 255           | 10               |
| 145      | Ethernet IP Address - 4                 | 0             | 255           | 101              |
| 146      | Gateway for Ethernet IP Address - 1     | 0             | 255           | 192              |
| 147      | Gateway for Ethernet IP Address - 2     | 0             | 255           | 198              |
| 148      | Gateway for Ethernet IP Address - 3     | 0             | 255           | 10               |
| 149      | Gateway for Ethernet IP Address - 4     | 0             | 255           | 1                |
| 150      | Subnet Mask for Ethernet IP Address - 1 | 0             | 255           | 255              |
| 151      | Subnet Mask for Ethernet IP Address - 2 | 0             | 255           | 255              |
| 152      | Subnet Mask for Ethernet IP Address - 3 | 0             | 255           | 255              |
| 153      | Subnet Mask for Ethernet IP Address - 4 | 0             | 255           | 0                |
| 154      | Restore registers 142–153 to default.   | 0             | 1             | 0                |

#### Table 7.18 Power Supply Registers

### 7.5 LCD Bar-Graph

While ultrasonic power is active the LCD will always display the power value on the 20segment LCD bar-graph as a percentage of the maximum output power.

At the end of a weld or test cycle, the bar-graph is factory set to represent the cycle's peak power as a percentage of the maximum output power.

The power supply can also be configured to show a single bar on the LCD bar-graph to represent the stack operating frequency stored at the end of each weld or test cycle. This option can be used to troubleshoot operating frequency changes as a result of heating effects, coupling, tooling wear, etc.

For information on how to set the power supply registers see <u>7.4 Configuring the Power</u> <u>Supply Registers</u>.

#### 7.5.1 Power Bar-Graph Interpretation

The lightning bolt left of the bar-graph indicates ultrasonic power is running. Each of the segments represent 5% increments of the maximum output power. The segments will only appear if the output power has exceeded the value represented. For example if the power is 4% only the lightning bolt will be on. When it reaches 5% the first bar-graph segment will appear.

| Table 7.19 | Power     | Bar-Graph  | Interpretation | Examples |
|------------|-----------|------------|----------------|----------|
|            | 1 0 11 01 | Dui Orupii | monprotation   | Examples |

| Description                                                                                                                                                                                             | Reference                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| In this example only the lightning bolt<br>appears left of the bar-graph. This<br>means power is between 0% and 5%.<br>If the power supply is 800 W the actual<br>output power is between 0 W and 40 W. | <b>;</b><br><b>;</b><br><b>;</b> |
| In this example the first six segments<br>appear on the bar-graph. This means<br>power is between 30% and 35%. If the<br>power supply is 800 W, the actual output<br>power is between 240 W and 280 W.  | <i>f</i> ₩₩<br>10 20 30          |

#### 7.5.2 Frequency Bar-Graph Interpretation

The actual frequency depends on the power supply's operating frequency. Use <u>Table 7.20</u> to <u>Table 7.22</u> below to interpret frequency bar-graph readings.

| NOTICE |                                                                                                                                  |
|--------|----------------------------------------------------------------------------------------------------------------------------------|
| i      | If there is a test overload or an external memory reset signal is received, then the 50% segment will be displayed and blinking. |



Table 7.20 Frequency Bar-Graph Interpretation - 20 kHz (50 Hz Segment)

 Table 7.21
 Frequency Bar-Graph Interpretation - 30 kHz (76 Hz Segment)



### Branson



 Table 7.22
 Frequency Bar-Graph Interpretation - 40 kHz (100 Hz/Segment)

 Table 7.23
 Frequency Bar-Graph Interpretation Examples

| Description                                                                                                                                                                      | Reference |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| In this example the bar is located in the 11 <sup>th</sup> segment. If the power supply is a 20 kHz unit, the stack is running in the frequency range of 19,975 Hz to 20,024 Hz. |           |
| In this example the bar is located in the 7 <sup>th</sup> segment. If the power supply is a 20 kHz unit, the stack is running in the frequency range of 19,775 Hz to 19,824 Hz.  |           |

## Branson

### 7.6 Ultrasonics Test Procedure

The Ultrasonics Test function measures ultrasonic power dissipated by the ultrasonic stack with no load. The ultrasonics test procedure involves an automatic matching of the frequency of the power supply to the frequency of the converter-booster-horn stack.

| WARNING | High Voltage Hazard                                                                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Ensure that no one is in contact with the horn when testing the power supply.<br>Do not cycle the welding system if either the RF cable or converter is disconnected. |
|         | ·                                                                                                                                                                     |
| WARNING | High Voltage Hazard                                                                                                                                                   |
|         |                                                                                                                                                                       |

Ensure the power supply is properly connected, as indicated in <u>5.3</u> Installation Steps.

#### 7.6.1 Using the Front Panel Controls

| NOTICE    |                                                                                          |
|-----------|------------------------------------------------------------------------------------------|
| <b>()</b> | To use the front panel controls, the DCX F-EIP Power Supply unit must be in manual mode. |

| Table 7.24 | Power Supply | Ultrasonic | Test | Procedure | (Front | Panel) |
|------------|--------------|------------|------|-----------|--------|--------|
|------------|--------------|------------|------|-----------|--------|--------|

| Step | Action                                                                        | Reference |
|------|-------------------------------------------------------------------------------|-----------|
| 1    | Turn on the power supply and 24 V. The front panel Power LED and LCD turn on. |           |

| Step | Action                                                                                                                                                                                                                           | Reference                                         |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 2    | Press the test key for 1-2 seconds, then<br>release. The Sonics Active indicator<br>appears while the test key is pressed.<br>If the power supply alarm indicator does<br>not appear, the test procedure is<br>finished.         | 1     %       4     %       5     %       6     % |
| 3    | If the alarm indicator appears, press the<br>alarm reset key and repeat step 2 one<br>time only. If the alarm persists, refer to<br><u>9.5 Troubleshooting</u> .<br>See <u>Appendix A: Alarms</u> for additional<br>information. |                                                   |

| Table 7.24 | Power Supply Ultrasonic Test Procedure (Front Panel) |
|------------|------------------------------------------------------|

### 7.7 Using the I/O Connections

| Table | 7.25 | Power | Supply |
|-------|------|-------|--------|
| lable | 1.25 | FUWEI | Suppry |

| Step | Action                                                                                                                                                                                                                                                                                                  | Reference                                   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 1    | Wire the necessary I/O signals as shown on Figure 7.3 Test Connections, or using a similar setup.                                                                                                                                                                                                       | Refer to Figure 7.3 Test Connections below. |
| 2    | Turn on the power supply and 24 V. The<br>front panel Power LED should turn on.<br>Ready Signal should become active.                                                                                                                                                                                   |                                             |
| 3    | Send an External Test signal for 1-2<br>seconds. The Sonics Active output will<br>become active and the Sonics Active<br>indicator appears while the External<br>Start Signal is present. If the General<br>Alarm output/ alarm indicator does not<br>become active, the test procedure is<br>finished. | <b>HBB</b> %                                |
| 4    | If the General Alarm output/alarm indicator becomes active, send an External Reset signal and repeat step 2 one time only. If the alarm persists, refer to <u>9.5 Troubleshooting</u> .                                                                                                                 | <b>100</b> %<br>☆                           |





### Chapter 8: EtherNet/IP Operation

| 8.1 | EtherNet/IP                                        |
|-----|----------------------------------------------------|
| 8.2 | EtherNet/IP Overview                               |
| 8.3 | Message Type Definitions                           |
| 8.4 | Communication to the CompactILogix Via EtherNet/IP |
| 8.5 | Implicit Messaging                                 |
| 8.6 | Explicit Messaging                                 |
| 8.7 | Implicit Messaging                                 |
| 8.8 | Implicit Messaging Live Channel                    |

# Branson

### 8.1 EtherNet/IP

The DCX F-EIP Power Supply is controlled via a EtherNet/IP interface. The parameters of the DCX F-EIP Power Supply, for example, are also configured via EtherNet/IP.

The number of EtherNet/IP slaves to be set up is limited to max. 125 stations, due to the standardized interface layout.

#### 8.1.1 LED Status Indicator

To get a fast overview about the status of the DCX F-EIP Power Supply, three LEDs are placed on the front of the unit. The subsequent table describes the meaning of the LEDs.





 Table 8.1
 DCX F-EIP Power Supply LED Status Indicator

| LED | Color            | State                    | Description                                                |
|-----|------------------|--------------------------|------------------------------------------------------------|
| SYS | Green            | On                       | Operating System running.                                  |
|     | Green/<br>Yellow | Blinking<br>green/yellow | Bootloader is waiting for firmware.                        |
|     | Yellow           | Static                   | Bootloader is waiting for software.                        |
|     | -                | Off                      | Power supply for the device is missing or hardware defect. |

| LED | Color     | State    | Description                                                                                                                                                       |  |
|-----|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     | Green     | On       | <b>Device operational:</b> If the device is operating correctly, the module status indicator will be steady green.                                                |  |
|     | Green     | Flashing | <b>Standby:</b> If the device has not been configured, the module status indicator will be flashing green.                                                        |  |
|     | Red       | On       | Major fault: If the device has detected a non-<br>recoverable major fault, the module status<br>indicator will be steady red.                                     |  |
| MS  | Red       | Flashing | Minor fault: If the device has detected a recoverable minor fault, the module status indicator will be flashing red.                                              |  |
|     |           |          | An incorrect or inconsistent configuration would be considered a minor fault.                                                                                     |  |
|     | Green/Red | Flashing | <b>Self-test:</b> While the device is performing its power up testing, the module status indicator will be flashing green/red.                                    |  |
|     | -         | Off      | <b>No power:</b> If no power is supplied to the device, the module status indicator will be steady off.                                                           |  |
|     | Green     | On       | <b>Connected:</b> If the device has at least one established connection, the network status indicator will be steady green.                                       |  |
|     | Green     | Flashing | <b>No connection:</b> If the device has no established connections, but has obtained an IP address, the network status indicator will be flashing green.          |  |
|     | Red       | On       | <b>Duplicate IP:</b> If the device has detected that its IP address is already in use, the network status indicator will be steady red.                           |  |
| NS  | Red       | Flashing | <b>Connection timeout:</b> If one or more of the connections in which this device is the target has timed out, the network status indicator will be flashing red. |  |
|     | Green/Red | Flashing | <b>Self-test:</b> While the device is performing its power up testing, the network status indicator will be flashing green/red.                                   |  |
| _   | -         | Off      | Not powered, no IP address: If the device<br>does not have an IP address or is powered off,<br>the network status indicator will be off.                          |  |

|           |                 |            | <b>—</b> · · · |           |
|-----------|-----------------|------------|----------------|-----------|
| Table 8.1 | DCX F-EIP Power | Supply LED | Status         | Indicator |

#### 8.1.2 EtherNet/IP Specifications

The EtherNet/IP interface has the following technical specifications:

- Maximum number of input data: 504 bytes
- Maximum number of output data: 504 bytes
- IO Connection: 1 explicit owner, up to 2 listen only
- IO Connection type: Cyclic, minimum 1 ms
- Maximum number of connections: 8, explicit and implicit connections
- UCMM (Unconnected Message Manager): Supported
- Explicit Messages: Get\_Attribute, Set\_Attribute
- Predefined standard objects: Identity Object, Message Route Object, Assembly Object, Connection Manager, Ethernet Link Object, TCP/P Object, DLR Object
- Maximum number of user specific objects: 20
- DHCP: Supported
- BOOTP: Supported
- Baud Rates: 10 and 100 MBit/Sec
- Data transport layer: Ethernet II, IEEE802.3
- ACD (Address conflict detection): Supported
- DLR (Device level ring) (Ring topology): Supported
- Integrated switch: Supported

## Branson

### 8.2 EtherNet/IP Overview

#### NOTICE

This section assumes that the user has a fundamental understanding of the various Rockwell PLC platforms and Rockwell software packages. It is not intended to be an instructional manual for the above items.

Because of the variety of uses for the products described in this publication, those responsible for the application and use of this equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards. The illustrations, charts, sample programs and layout examples shown in this section are intended solely for purposes of example. Since there are many variables and requirements associated with any particular installation, Branson does not assume responsibility or liability for actual use based upon the examples shown in this publication.

#### 8.2.1 Industrial Ethernet Protocol

The Industrial Ethernet Protocol (Ethernet/IP) was originally developed by Rockwell Automation and is now managed by the Open DeviceNet Vendors Association (ODVA). It is a well-established Industrial Ethernet communication system with Real-Time capabilities. EtherNet/IP has a strong presence in America and Asia and has been selected by many major manufacturers as a plant wide communication system for factories worldwide. EtherNet/IP is standardized in the International standard IEC 61158 and EtherNet/IP devices are certified by ODVA for interoperability and conformance.

EtherNet IP extends commercial off-the-shelf Ethernet to the Common Industrial Protocol (CIP) — the same upper-layer protocol and object model found in DeviceNet and ControlNet. CIP allows EtherNet/IP and DeviceNet system integrators and users to apply the same objects and profiles for plug-and-play interoperability among devices from multiple vendors and in multiple sub-nets. Combined, DeviceNet, ControlNet and EtherNet/IP promote transparency from sensors to the enterprise software.

#### 8.2.2 Common Industrial Protocol (CIP)

CIP provides a wide range of standard objects and services for access to data and for control of network devices via so called "implicit" and "explicit" messages. The CIP data packets are encapsulated before they will be send with standard TCP or UDP telegrams on the Ethernet.

EtherNet/IP uses all the transport and control protocols of standard Ethernet including the Transport Control Protocol (TCP), the User Datagram Protocol (UDP), the Internet Protocol (IP) and the media access and signaling technologies found in off-the-shelf Ethernet technology. Building on these standard communication technologies means that EtherNet/IP works transparently with all the standard Ethernet devices found in today's market place. It also means that EtherNet/IP automatically benefits from all further technology enhancements such as Gigabit Ethernet and Wireless technologies.

### 8.3 Message Type Definitions

#### 8.3.1 Explicit Message

Explicit messages contain addressing and service information that directs the receiving device to perform a certain service (action) on a specific part (e.g., an attribute) of a device. Explicit message data can be sent or received from any available instance in the EtherNet/IP device being communicated to. Explicit messages allow for easy management of different data types.

#### 8.3.2 Implicit (I/O) Message

Implicit messages do not carry address and/or service information; the consuming node(s) already know what to do with the data based on the connection ID that was assigned when the connection was established. Implicit messages are so named because the meaning of the data is implied by the connection ID. When an Implicit message procedure is setup for a specific device. All data sent to or received from the device must be of the same type.

### Branson

### 8.4 Communication to the CompactILogix Via EtherNet/IP

The purpose of this section is to describe the configuration steps necessary to establish a communication path between the DCX F-EIP Power Supply and a CompactLogix unit. For this example, you will need a 1769-L32E together with a CompactLogix Controller. You will also need Rockwell Software's RSLinx and RSLogix 5000 software configuration utilities.

| NOTICE |                                                                                                                                                                                         |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i      | The network parameters used in this example will almost certainly<br>not apply to your application. Be sure to consult your network<br>administrator when selecting appropriate values. |

#### 8.4.1 Generic Module Configuration

1. Run the RSLogix 5000 program and create a New File.



2. On the New Controller dialog box, select the Type of the controller 1769-L32E and enter a Name to identify the controller. The controller will be added to the I/O Configuration node in the Controller Organizer view.

| New Controller        |                                          | ×      |
|-----------------------|------------------------------------------|--------|
| Vendor:               | Allen-Bradley                            |        |
| <u>Type:</u>          | 1769-L32E CompactLogix5332E Controller 🗸 | ОК     |
| Re <u>v</u> ision:    | 19 👻                                     | Cancel |
|                       | Bedundancy Enabled                       | Help   |
| Na <u>m</u> e:        | DCX_EIP                                  |        |
| Descri <u>p</u> tion: | ×                                        |        |
|                       |                                          |        |
| <u>C</u> hassis Type: | <none></none>                            |        |
| Sl <u>o</u> t:        | 0 Safety Partner Slot: <none></none>     |        |
| Cr <u>e</u> ate In:   | C:\RSLogix 5000\Projects                 | Browse |
|                       |                                          |        |
|                       |                                          |        |

3. Right click on the 1769-L32E node in the Controller Organizer view and choose Add Module.



4. On the Select Module dialog box, select the ETHERNET-MODULE Generic Ethernet Module and click OK.

|   | Select Module           |                                                    | ×               |  |
|---|-------------------------|----------------------------------------------------|-----------------|--|
|   | Module                  | Description                                        | Vendor          |  |
| L | 1788-EN2DN/A            | 1788 Ethernet to DeviceNet Linking De              | Allen-Bradley   |  |
| L | 1788-ENBT/A             | 1788 10/100 Mbps Ethernet Bridge, Twi              | . Allen-Bradley |  |
|   |                         | 1788 10/100 Mbps Ethernet Bridge w/E Allen-Bradley |                 |  |
|   |                         | 1794 10/100 Mbps Ethernet Adapter, T               | Allen-Bradley   |  |
| L | Drivelogix5730 Ethernet | 10/100 Mbps Ethernet Port on DriveLo               | Allen-Bradley   |  |
| Ŀ | ETHERNET-BRIDGE         | Generic EtherNet/IP CIP Bridge                     | Allen-Bradley   |  |
| Ŀ | ETHERNET-MODULE         | Generic Ethernet Module                            | Allen-Bradley   |  |
| Ŀ | EtherNet/IP             | SoftLogix5800 EtherNet/IP                          | Allen-Bradley ≡ |  |
| Ŀ | PSSCENA                 | Ethernet Adapter, Twisted-Pair Media               | Parker Hanni    |  |
| Ŀ | Stratix 8000            | 26 Port Managed Switch                             | Allen-Bradley   |  |
| Ŀ | Stratix 8000            | 22 Port Managed Switch                             | Allen-Bradley   |  |
| Ŀ | Stratix 8000            | 18 Port Managed Switch                             | Allen-Bradley 🔔 |  |
| Ŀ | C .: 0000               |                                                    | AU D U          |  |
|   |                         | <u>F</u> ind                                       | Add Favorite    |  |
|   | By Category By Vendor   | Favorites                                          |                 |  |
| L |                         | OK Cancel                                          | <u>H</u> elp    |  |

5. This will open the Module Properties dialog box.

| Type:<br>Vendor:    | ETHERNET-MODULE G     | eneric Etherne | t Module                |                       |       |            |
|---------------------|-----------------------|----------------|-------------------------|-----------------------|-------|------------|
| Parent:             | LocalENB              |                |                         |                       |       |            |
| Name:               | Connection Parameters |                |                         |                       |       |            |
| —<br>Description:   | Dov.Len               |                |                         | Assembly<br>Instance: | Size: |            |
| -                   |                       |                | <u>I</u> nput:          | 101                   | 20    | 膏 (16-bit) |
|                     |                       | -              | O <u>u</u> tput:        | 100                   | 20    | 🚔 (16-bit) |
| Comm <u>F</u> ormal | t: Data - INT         | -              | Configuration:          | 102                   | 0     | 🦲 (8-bit)  |
| -Address / H        | lost Name             |                | <u>_</u>                |                       | _     | (* Ex)     |
| IP <u>A</u> ddre    | ess: 192 . 168 . 10   | ).50           | <u>S</u> tatus Input:   |                       |       | _          |
| ⊚ <u>H</u> ost Na   | ame:                  |                | S <u>t</u> atus Output: |                       |       |            |

- In the Name, enter a descriptive name to identify the module
- Select Data INT on the Comm Format menu
- In the Address/Host Name, enter the IP Address of the DCX F-EIP Power Supply unit

# Branson

- Enter 101 in the Input Assembly Connection Point and a size of 20. This will match a read only Slave Gateway block configured in the DCX F-EIP Power Supply, and will be used for reading data from the DCX F-EIP Power Supply to the CompactLogix
- Enter 100 in the Output Assembly Connection Point and a size of 20. This will match a read/write Slave Gateway block configured in the DCX F-EIP Power Supply, and will be used for writing data from the CompactLogix to the DCX F-EIP Power Supply
- Enter 102 in the Configuration Connection Point and a size of 0
- Press Finish to add the DCX F-EIP Power Supply to the I/O configuration
# 8.5 Implicit Messaging

# 8.5.1 I/O Setup for EtherNet/IP Module With Standard Configuration

| Figure 8.2   | 1/O Setup for | EtherNet/IP | Module With | Standard | Configuration |
|--------------|---------------|-------------|-------------|----------|---------------|
| i igui e 0.2 | 1/O Octup Ioi | Luicinculu  | would with  | Standard | configuration |

| New Module                         |                                                     |           |                         |                       |       | ->         | X |
|------------------------------------|-----------------------------------------------------|-----------|-------------------------|-----------------------|-------|------------|---|
| Type:<br>Vendor:<br>Parent:        | ETHERNET-MODULE Generi<br>Allen-Bradley<br>LocalENB | c Etherne | t Module                | meters                |       |            |   |
| Description:                       |                                                     |           |                         | Assembly<br>Instance: | Size: |            |   |
|                                    |                                                     |           | <u>I</u> nput:          | 101                   | 20    | 🚔 (16-bit) |   |
|                                    |                                                     | *         | O <u>u</u> tput:        | 100                   | 20    | 🚔 (16-bit) |   |
| Comm <u>F</u> ormat<br>Address / H | :Data - INT<br>łost Name                            | -         | <u>C</u> onfiguration:  | 102                   | 0     | 膏 (8-bit)  |   |
| IP <u>A</u> ddre                   | ess: 192 . 168 . 10 .                               | 50        | <u>S</u> tatus Input:   |                       |       | _          |   |
| ⊘ <u>H</u> ost Na                  | me:                                                 |           | S <u>t</u> atus Output: |                       |       |            |   |
| 🗖 Open Modu                        | ule Properties                                      |           | ОК                      | Can                   | cel   | Help       | ) |

# 8.5.2 DCX Inputs/PLC Outputs (8 bytes)

| Data | Description        | Data<br>Type | Access | Unit | Notes                |
|------|--------------------|--------------|--------|------|----------------------|
| 0    | STW1 (STW Word 1)  |              |        | -    | See Table 8.3        |
| 1    | SWT2 (STW Word 2)  |              | \\/    | -    | and <u>Table 8.6</u> |
| 2    | External Amplitude |              | vv     | %    |                      |
| 3    | Frequency Offset   |              |        | Hz   |                      |

### **Table 8.2**DCX Inputs/PLC Outputs (8 bytes)

## 8.5.2.1 Control Word (STW1)

|      | Bit                        | Name                                                                                                                                                                                                | Description           | Notes                                           |  |  |  |
|------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------|--|--|--|
|      | 0                          | RES                                                                                                                                                                                                 | Reserved              | Not used                                        |  |  |  |
|      | 1                          | ES                                                                                                                                                                                                  | Emergency Stop        | 1=Emergency Stop                                |  |  |  |
|      | 2                          | RES                                                                                                                                                                                                 | Reserved              | Not used                                        |  |  |  |
|      | 3                          | RES                                                                                                                                                                                                 | Reserved              | Not used                                        |  |  |  |
|      | 4                          | HFS0                                                                                                                                                                                                | Stack Preset Number 0 |                                                 |  |  |  |
|      | 5                          | HFS1                                                                                                                                                                                                | Stack Preset Number 1 | See Table 8.4 HFS Bit (Control                  |  |  |  |
|      | 6                          | HFS2                                                                                                                                                                                                | Stack Preset Number 2 | Word).                                          |  |  |  |
|      | 7                          | HFS3                                                                                                                                                                                                | Stack Preset Number 3 |                                                 |  |  |  |
|      | HFS s<br>state.<br>using s | NOTICE<br>HFS stack presets numbers are feedback inputs to indicate RF relay switching<br>state. This is used only in stack sequencing applications. Set HFS to 0 if not<br>using stack sequencing. |                       |                                                 |  |  |  |
| STW1 | 8                          | PSN0                                                                                                                                                                                                | Weld Preset Number 0  |                                                 |  |  |  |
|      | 9                          | PSN1                                                                                                                                                                                                | Weld Preset Number 1  |                                                 |  |  |  |
|      | 10                         | PSN2                                                                                                                                                                                                | Weld Preset Number 2  | See <u>Table 8.5 PSN Bit (Control</u><br>Word). |  |  |  |
|      | 11                         | PSN3                                                                                                                                                                                                | Weld Preset Number 3  |                                                 |  |  |  |
|      | 12                         | PSN4                                                                                                                                                                                                | Weld Preset Number 4  |                                                 |  |  |  |
|      | NOTI<br>Prese<br>it is co  | <b>NOTICE</b><br>Preset 0 is reserved for the running preset. When a preset number is recalled, it is copied to Preset 0 and becomes the running preset.                                            |                       |                                                 |  |  |  |
|      | 13                         | RES                                                                                                                                                                                                 | Reserved              | Not used                                        |  |  |  |

| Table 8.3 | Control Word | (STW1) |
|-----------|--------------|--------|
|           |              |        |

| 31 |                |          |                                                                                           |  |  |  |
|----|----------------|----------|-------------------------------------------------------------------------------------------|--|--|--|
| 13 | RES            | Reserved | Not used                                                                                  |  |  |  |
| 14 | MA Manual/Auto |          | Set and leave to 1 for implicit<br>messaging control<br>Set to 0 for discrete I/O control |  |  |  |
| 15 | RES            | Reserved | Not used                                                                                  |  |  |  |

# HFS Bit (Control Word)

| Table 8.4 | HFS Bit (Control Word) |
|-----------|------------------------|
|           | · · · · ·              |

| HFS3 | HFS2 | HFS1 | HFSO | Stack Selected      |
|------|------|------|------|---------------------|
| 0    | 0    | 0    | 0    | No stack change     |
| 0    | 0    | 0    | 1    | 1 (factory default) |
| 0    | 0    | 1    | 0    | 2                   |
| 0    | 0    | 1    | 1    | 3                   |
| 0    | 1    | 0    | 0    | 4                   |
| 0    | 1    | 0    | 1    | 5                   |
| 0    | 1    | 1    | 0    | 6                   |
| 0    | 1    | 1    | 1    | 7                   |
| 1    | 0    | 0    | 0    | 8                   |
| 1    | 0    | 0    | 1    | 9                   |
| 1    | 0    | 1    | 0    | 10                  |
| 1    | 0    | 1    | 1    | 11                  |
| 1    | 1    | 0    | 0    | 12                  |
| 1    | 1    | 0    | 1    | 13                  |
| 1    | 1    | 1    | 0    | 14                  |
| 1    | 1    | 1    | 1    | 15                  |

# **PSN Bit (Control Word)**

 Table 8.5
 PSN Bit (Control Word)

| PSN4 | PSN3 | PSN2 | PSN1 | PSNO | Preset Selected |
|------|------|------|------|------|-----------------|
| 0    | 0    | 0    | 0    | 0    | Previous preset |
| 0    | 0    | 0    | 0    | 1    | 1               |
| 0    | 0    | 0    | 1    | 0    | 2               |
| 0    | 0    | 0    | 1    | 1    | 3               |
| 0    | 0    | 1    | 0    | 0    | 4               |
| 0    | 0    | 1    | 0    | 1    | 5               |
| 0    | 0    | 1    | 1    | 0    | 6               |
| 0    | 0    | 1    | 1    | 1    | 7               |
| 0    | 1    | 0    | 0    | 0    | 8               |
| 0    | 1    | 0    | 0    | 1    | 9               |

| PSN4 | PSN3 | PSN2 | PSN1 | PSNO | Preset Selected |
|------|------|------|------|------|-----------------|
| 0    | 1    | 0    | 1    | 0    | 10              |
| 0    | 1    | 0    | 1    | 1    | 11              |
| 0    | 1    | 1    | 0    | 0    | 12              |
| 0    | 1    | 1    | 0    | 1    | 13              |
| 0    | 1    | 1    | 1    | 0    | 14              |
| 0    | 1    | 1    | 1    | 1    | 15              |
| 1    | 0    | 0    | 0    | 0    | 16              |
| 1    | 0    | 0    | 0    | 1    | 17              |
| 1    | 0    | 0    | 1    | 0    | 18              |
| 1    | 0    | 0    | 1    | 1    | 19              |
| 1    | 0    | 1    | 0    | 0    | 20              |
| 1    | 0    | 1    | 0    | 1    | 21              |
| 1    | 0    | 1    | 1    | 0    | 22              |
| 1    | 0    | 1    | 1    | 1    | 23              |
| 1    | 1    | 0    | 0    | 0    | 24              |
| 1    | 1    | 0    | 0    | 1    | 25              |
| 1    | 1    | 0    | 1    | 0    | 26              |
| 1    | 1    | 0    | 1    | 1    | 27              |
| 1    | 1    | 1    | 0    | 0    | 28              |
| 1    | 1    | 1    | 0    | 1    | 29              |
| 1    | 1    | 1    | 1    | 0    | 30              |
| 1    | 1    | 1    | 1    | 1    | 31              |

#### Table 8.5 PSN Bit (Control Word)

### 8.5.2.2 Control Word (STW2)

|      | Bit | Name  | Description       | Notes                                                                                         |  |  |
|------|-----|-------|-------------------|-----------------------------------------------------------------------------------------------|--|--|
|      | 0   | FCT   | Weld Function     | 1 = To run ultrasonics in normal mode                                                         |  |  |
|      | 1   | SFCT  | Stack Function    |                                                                                               |  |  |
|      | 2   | SFCT0 | Stack Function 0  | Soo Table 9 12                                                                                |  |  |
|      | 3   | SFCT1 | Stack Function 1  |                                                                                               |  |  |
|      | 4   | SFCT2 | Stack Function 2  |                                                                                               |  |  |
|      | 5   | RES   | Reserved          | Not used                                                                                      |  |  |
|      | 6   | MCLR  | Memory Clear      | 1 = Memory offset will be set to 0                                                            |  |  |
|      | 7   | RES   | Reserved          | Not used                                                                                      |  |  |
| STW2 | 8   | RST   | Reset             | 1 = Reset                                                                                     |  |  |
|      | 9   | ON    | Run Ultrasonics   | 1 = Will turn on ultrasonics based on<br>combination of SFCT or FCT bits. See<br>table below. |  |  |
|      | 10  | RES   | Reserved          | Notused                                                                                       |  |  |
|      | 11  | RES   | Reserved          |                                                                                               |  |  |
|      | 12  | GNDDT | Ground Detect     | 1 = Ground has been detected                                                                  |  |  |
|      | 13  | APROF | Amplitude Profile | 1 = Switch from amplitude 1 to<br>amplitude 2                                                 |  |  |
|      | 14  | RES   | Reserved          | Notused                                                                                       |  |  |
|      | 15  | RES   | Reserved          |                                                                                               |  |  |

Table 8.6Control Word (STW2)

# 8.5.3 DCX Outputs/PLC Inputs (20 bytes)

| Data | Description           | Data<br>Type | Access | Unit | Notes                 |
|------|-----------------------|--------------|--------|------|-----------------------|
| 0    | Reserved              |              |        |      |                       |
| 1    | Reserved              |              |        |      |                       |
| 2    | ZSW1 (ZSW Word 1)     |              |        | -    | See Table 8.8         |
| 3    | ZSW2 (ZSW Word 2)     |              |        | -    | and <u>Table 8.11</u> |
| 4    | Nominal Amplitude Set |              | R      | %    |                       |
| 5    | Amplitude Output      |              |        | %    |                       |
| 6    | Current               |              |        | %    |                       |
| 7    | Power                 |              |        | %    |                       |
| 8    | Phase                 | INT16        |        | 0    |                       |
| 9    | PWM                   |              |        | %    |                       |
| 10   | Frequency             | UINT16       |        | Hz   |                       |
| 11   | Temperature           | 1            |        | С    |                       |

Table 8.7DCX Outputs/PLC Inputs (20 bytes)

### 8.5.3.1 Status Word (ZSW1)

|        | Bit | Name | Description                     | Notes                                                   |  |  |  |  |
|--------|-----|------|---------------------------------|---------------------------------------------------------|--|--|--|--|
|        | 0   | NO-B | Non Cycle Overload<br>Group B   | 1 = Non cycle overload has<br>occurred                  |  |  |  |  |
|        | 1   | ES   | Emergency Stop Active           | 1 = Emergency stop active                               |  |  |  |  |
|        | 2   | TEE  | Euturo Uso                      | Notured                                                 |  |  |  |  |
|        | 3   | HFSE |                                 | Not used                                                |  |  |  |  |
|        | 4   | HFSO | Stack Preset Number 0<br>Status |                                                         |  |  |  |  |
|        | 5   | HFS1 | Stack Preset Number 1<br>Status | See Table 8.9 HFS Bit (Status                           |  |  |  |  |
|        | 6   | HFS2 | Stack Preset Number 2<br>Status | Word).                                                  |  |  |  |  |
| 75\//1 | 7   | HFS3 | Stack Preset Number 3<br>Status |                                                         |  |  |  |  |
| 23001  | 8   | PSNO | Weld Preset Number 0<br>Active  |                                                         |  |  |  |  |
|        | 9   | PSN1 | Weld Preset Number 1<br>Active  |                                                         |  |  |  |  |
|        | 10  | PSN2 | Weld Preset Number 2<br>Active  | See <u>Table 8.10 PSN Bit (Status</u><br><u>Word)</u> . |  |  |  |  |
|        | 11  | PSN3 | Weld Preset Number 3<br>Active  |                                                         |  |  |  |  |
|        | 12  | PSN4 | Weld Preset Number 4<br>Active  |                                                         |  |  |  |  |
|        | 13  | PSCA | Preset Change Complete          | 1 = Preset change complete                              |  |  |  |  |
|        | 14  | MA   | Manual/Auto Mode Active         | 1 = Auto Mode                                           |  |  |  |  |
|        | 15  | OL-0 | Overload Group 0                | 1 = Overload has occurred                               |  |  |  |  |

Table 8.8 Status Word (ZSW1)

# HSF Bit (Status Word)

| Tabla 0.0 |         | (Status Mord) |
|-----------|---------|---------------|
|           | HES BIL | (Status word) |

| HFS3 | HFS2 | HFS1 | HFSO | Stack Active |
|------|------|------|------|--------------|
| 0    | 0    | 0    | 0    | Not valid    |
| 0    | 0    | 0    | 1    | 1            |
| 0    | 0    | 1    | 0    | 2            |
| 0    | 0    | 1    | 1    | 3            |
| 0    | 1    | 0    | 0    | 4            |
| 0    | 1    | 0    | 1    | 5            |
| 0    | 1    | 1    | 0    | 6            |
| 0    | 1    | 1    | 1    | 7            |
| 1    | 0    | 0    | 0    | 8            |
| 1    | 0    | 0    | 1    | 9            |
| 1    | 0    | 1    | 0    | 10           |
| 1    | 0    | 1    | 1    | 11           |
| 1    | 1    | 0    | 0    | 12           |
| 1    | 1    | 0    | 1    | 13           |
| 1    | 1    | 1    | 0    | 14           |
| 1    | 1    | 1    | 1    | 15           |

# **PSN Bit (Status Word)**

Table 8.10 PSN Bit (Status Word)

| PSN4 | PSN3 | PSN2 | PSN1 | PSNO | Preset Active    |
|------|------|------|------|------|------------------|
| 0    | 0    | 0    | 0    | 0    | No preset active |
| 0    | 0    | 0    | 0    | 1    | 1                |
| 0    | 0    | 0    | 1    | 0    | 2                |
| 0    | 0    | 0    | 1    | 1    | 3                |
| 0    | 0    | 1    | 0    | 0    | 4                |
| 0    | 0    | 1    | 0    | 1    | 5                |
| 0    | 0    | 1    | 1    | 0    | 6                |
| 0    | 0    | 1    | 1    | 1    | 7                |
| 0    | 1    | 0    | 0    | 0    | 8                |
| 0    | 1    | 0    | 0    | 1    | 9                |

| PSN4 | PSN3 | PSN2 | PSN1 | <b>PSNO</b> | Preset Active |
|------|------|------|------|-------------|---------------|
| 0    | 1    | 0    | 1    | 0           | 10            |
| 0    | 1    | 0    | 1    | 1           | 11            |
| 0    | 1    | 1    | 0    | 0           | 12            |
| 0    | 1    | 1    | 0    | 1           | 13            |
| 0    | 1    | 1    | 1    | 0           | 14            |
| 0    | 1    | 1    | 1    | 1           | 15            |
| 1    | 0    | 0    | 0    | 0           | 16            |
| 1    | 0    | 0    | 0    | 1           | 17            |
| 1    | 0    | 0    | 1    | 0           | 18            |
| 1    | 0    | 0    | 1    | 1           | 19            |
| 1    | 0    | 1    | 0    | 0           | 20            |
| 1    | 0    | 1    | 0    | 1           | 21            |
| 1    | 0    | 1    | 1    | 0           | 22            |
| 1    | 0    | 1    | 1    | 1           | 23            |
| 1    | 1    | 0    | 0    | 0           | 24            |
| 1    | 1    | 0    | 0    | 1           | 25            |
| 1    | 1    | 0    | 1    | 0           | 26            |
| 1    | 1    | 0    | 1    | 1           | 27            |
| 1    | 1    | 1    | 0    | 0           | 28            |
| 1    | 1    | 1    | 0    | 1           | 29            |
| 1    | 1    | 1    | 1    | 0           | 30            |
| 1    | 1    | 1    | 1    | 1           | 31            |

 Table 8.10
 PSN Bit (Status Word)

### 8.5.3.2 Status Word (ZSW2)

|      | Bit | Name | Description                        | Notes                                       |
|------|-----|------|------------------------------------|---------------------------------------------|
|      | 0   | SE-2 | Setup Group 2                      | 1 = Setup alarm has occurred                |
|      | 1   | CM-3 | Cycle Modified Group 3             | 1 = Cycle modified alarm has<br>occurred    |
|      | 2   | WA-4 | Warning Group 4                    | 1 = Warning alarm has occurred              |
|      | 3   | EQ-6 | Equipment Failure Group 6          | 1 = Equipment failure alarm has<br>occurred |
|      | 4   | NC-7 | No Cycle Group 7                   | 1 = No cycle alarm has occurred             |
|      | 5   | CF-8 | Communication Failure<br>Group 8   | 1 = Communication alarm has<br>occurred     |
|      | 6   | HW-A | Hardware Group A                   | 1 = Hardware alarm has occurred             |
| ZSW2 | 7   | CU-1 | Cutoff Group 1                     | 1 = Cutoff alarm has occurred               |
|      | 8   | TP-9 | Future Use                         | Not used                                    |
|      | 9   | SM   | Future Use                         | Not used                                    |
|      | 10  | OFF  | Ultrasonics Off and DCX<br>Ready   | 1 = Ultrasonics off and DCX ready           |
|      | 11  | ON   | Ultrasonics Active                 | 1 = Ultrasonics active                      |
|      | 12  | ОК   | End of Weld Cycle Without<br>Error | 1 = End cycle without error                 |
|      | 13  | LM-5 | Limit Group 5                      | 1 = Limit alarm has occurred                |
|      | 14  | MCLR | Memory Clear                       | 1 = Memory offset will be set to 0          |
|      | 15  | RES  | Reserved                           | Not used                                    |

| Table 8.11 | Status Word | (ZSW2) |
|------------|-------------|--------|
|------------|-------------|--------|

### 8.5.3.3 Stack Function

Table 8.12
 Stack Function

| Bit    | Name  | Test | Scan | Seek |
|--------|-------|------|------|------|
| STW2/1 | SFCT  | 1    | 1    | 1    |
| STW2/2 | SFCT0 | 1    | 0    | 0    |
| STW2/3 | SFCT1 | 0    | 1    | 0    |
| STW2/4 | SFCT2 | 0    | 0    | 0    |

# 8.5.4 Implicit Message for Run

| Table 8.13 | Implicit Message for Run |
|------------|--------------------------|
|            |                          |

| Value  |    | STW1 Bit |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
|--------|----|----------|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| 1629/d | 15 | 14       | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 103040 | 0  | 1        | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Value  |    | STW2 Bit |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
|        | 15 | 11       | 12 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 513d   | 15 | 14       | 15 | 12 |    | 10 | , | Ŭ |   | • | • | • | 0 | 2 | • | 0 |

# 8.5.5 Implicit Message for Seek

| Table 8.14 | Implicit Message for Seek |
|------------|---------------------------|
|------------|---------------------------|

| Value  |    | STW1 Bit |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
|--------|----|----------|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
| 1638/d | 15 | 14       | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 103040 | 0  | 1        | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Value  |    | STW2 Bit |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| 511d   | 15 | 14       | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|        |    |          |    |    |    |    |   |   |   |   |   |   |   |   |   |   |

# 8.5.6 Implicit Message for Scan

| Value  |    | STW1 Bit |    |    |    |    |   |     |       |   |   |   |   |   |   |   |
|--------|----|----------|----|----|----|----|---|-----|-------|---|---|---|---|---|---|---|
| 163844 | 15 | 14       | 13 | 12 | 11 | 10 | 9 | 8   | 7     | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 103040 | 0  | 1        | 0  | 0  | 0  | 0  | 0 | 0   | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Value  |    |          |    |    |    |    |   | stw | 2 Bit |   |   |   |   |   |   |   |
|        |    |          |    |    |    |    |   |     |       |   |   |   |   |   |   |   |
| 522d   | 15 | 14       | 13 | 12 | 11 | 10 | 9 | 8   | 7     | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

 Table 8.15
 Implicit Message for Scan

## 8.5.7 Implicit Message for Reset

| Table 8.16 | Implicit Message for Rese |
|------------|---------------------------|
|------------|---------------------------|

| Value  |    |    |    |    |    |    |   | stw | 1 Bit | : |   |   |   |   |   |   |
|--------|----|----|----|----|----|----|---|-----|-------|---|---|---|---|---|---|---|
| 1638/d | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8   | 7     | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 103040 | 0  | 1  | 0  | 0  | 0  | 0  | 0 | 0   | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Value  |    |    |    |    |    |    |   | sтw | 2 Bit | : |   |   |   |   |   |   |
| 2564   | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8   | 7     | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| 2000   | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 1   | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### 8.6 **Explicit Messaging**

### NOTICE



#### **Establishing Token** 8.6.1

In order to use Explicit Messaging, Token must be obtained. Token allows the PLC Explicit Communication between the PLC and DCX.

The following is an example for establishing Token using Explicit Messaging. The information is extracted from B.8 Other Information Class 112 (1 Instances).

Change values in Message Configuration for RSLogix 5000 Message Configuration to establish as follows:

| Lable 0.17 Establishing lokel |
|-------------------------------|
|-------------------------------|

| Name              | Value                                    |
|-------------------|------------------------------------------|
| Class (Object)    | 112 (70 hex)                             |
| Attribute         | 50 (32 hex)                              |
| Instance          | 0 (DCX Preset Location 0)                |
| Service Code/Type | Get = 14 (e hex)                         |
| Destination       | Tag/register were the data is being sent |

### Table 8.18 Attribute ID

| Attribute ID | Description      | Data Type | Access  |
|--------------|------------------|-----------|---------|
| 50           | Get Access Token | UINT8     | Get     |
| 51           | Put Access Token | UINT8     | Get/Set |

#### Table 8.19 Common Services

| Service Code | Service Name         |
|--------------|----------------------|
| 14           | Get_Attribute_Single |
| 16           | Set_Attribute_Single |

### 8.6.1.1 RSLogix 5000 Implementation of Token

Getting Token must be established prior to the exchange of explicit messaging.

| Figure 8.3 | RSLogix 5000 | Implementation | of Token |
|------------|--------------|----------------|----------|
|------------|--------------|----------------|----------|

| Configuratio     | on" C | ommunicatio    | n Tag       |       |                |        |         |         |
|------------------|-------|----------------|-------------|-------|----------------|--------|---------|---------|
| Message          | Type: | CIP            | Generic     |       |                | 0      |         |         |
| Service          | Get A | attribute Sing | le .        | •     | Source Element |        |         |         |
| Type.            |       |                |             | 1     | Source Length: | 0      | +       | (Bytes) |
| Service<br>Code: | e     | (Hex) C        | lass: 70    | (Hex) | Destination    | get_to | ken_val | ue_1 +  |
| Instance         |       |                |             |       |                |        |         |         |
| Interior.        | 0     | A              | tribute: 32 | (Hex) |                | Nes    | v Tag   |         |

 Table 8.20
 RSLogix 5000 Implementation of Token

| Name         | Value                                                                                         |
|--------------|-----------------------------------------------------------------------------------------------|
| Message Type | Select CIP Generic from the drop down menu.                                                   |
| Service Type | Select Get Attribute Single from the drop down menu.                                          |
| Service Code | Value comes from the service type command.                                                    |
| Class        | Object reference of DCX EtherNet/IP Commands. See <u>Appendix B:</u><br>EtherNet/IP Commands. |
| Instance     | Preset location. 32 locations (Token uses Location 0).                                        |
| Attribute    | Parameter reference (Attribute ID). See <u>Appendix B: EtherNet/IP</u><br><u>Commands</u> .   |
| Destination  | Tag/Register storage location in PLC for acquired DCX data.                                   |

### 8.6.1.2 Web Page Indication of Token Being Established

Confirmation of Token can be checked by accessing the DCX F EIP Web Page Interface. The illumination of the radio button will turn red indicating Token (PLC control) has been obtained.

Figure 8.4 Web Page Indication of Token Being Established

| BRANSON    |            |                         | মার                           |
|------------|------------|-------------------------|-------------------------------|
| Setup 🔻 Vi | ew 🔻 Diagr | nostics Configuration - | Current User: Fernando Logout |

### 8.6.1.3 RSLogix 5000 Implementation of Token Release

| Configuratio                             | on Co  | mmunicatio  | n Tag        |          |                               |                |         |
|------------------------------------------|--------|-------------|--------------|----------|-------------------------------|----------------|---------|
| Message                                  | Type:  | CIP         | Generic      |          | •                             | )              |         |
| Service<br>Type:                         | Set At | thbute Sing | yle -        | •        | Source Element                | Set_Release    | Token," |
| Service<br>Code:                         | 10     | (Hex) C     | lass 70      | (Hex)    | Source Length:<br>Destination | 4              | (Bytes) |
| Instance.                                | 0      | A           | itribule: 33 | (Hex)    |                               | New Tag        |         |
| e Enable                                 | OE     | inable Wat  | ting O       | Start    | Done                          | Done Length: 0 |         |
| ) Error Co<br>irror Path:<br>irror Text: | de:    | 1           | Extended Em  | or Code: | -                             | Timed Out +    |         |
|                                          |        |             | -            | OK       | Carrel                        | Annie 1        | Help    |

Figure 8.5 RSLogix 5000 Implementation of Token Release

 Table 8.21
 RSLogix 5000 Implementation of Token Release

| Name           | Value                                                                                       |
|----------------|---------------------------------------------------------------------------------------------|
| Message Type   | Select CIP Generic from the drop down menu.                                                 |
| Service Type   | Select Get Attribute Single from the drop down menu.                                        |
| Service Code   | Value comes from the service type command.                                                  |
| Class          | Object reference of DCX EtherNet/IP Commands. See Appendix B:<br>EtherNet/IP Commands.      |
| Instance       | Preset location. 32 locations (Token uses Location 0).                                      |
| Attribute      | Parameter reference (Attribute ID). See <u>Appendix B: EtherNet/IP</u><br><u>Commands</u> . |
| Source Element | Tag/Register storage location in PLC for acquired DCX data.                                 |

### 8.6.1.4 Web Page Indication of Token Being Released

Confirmation of Token can be checked by accessing the DCX F EIP Web Page Interface. The illumination of the radio button will turn green indicating Token (PLC control) has been released.

Figure 8.6 Web Page Indication of Token Being Released

| BRANSON      |                           | DE                            |
|--------------|---------------------------|-------------------------------|
| Setup 👻 View | Diagnostics Configuration | Current User: Fernando Logout |

## 8.6.2 Obtaining (Get) Information from DCX

### 8.6.2.1 Get Energy Value Example

The following is an example for extracting Energy Value using Explicit Messaging. The information is extracted from <u>B.2 Weld Data Class 101 (32 Instances)</u>.

Change values in Message Configuration for RSlogix5000 Message Configuration as follows:

### Table 8.22 Get Energy Value Example

| Name              | Value                                                                        |
|-------------------|------------------------------------------------------------------------------|
| Class (Object)    | 101 (65 hex)                                                                 |
| Attribute         | 1362 (552 hex)                                                               |
| Instance          | 1 (DCX Preset Location 1)                                                    |
| Service Code/Type | Get = 14 (e hex)                                                             |
| Destination       | Tag/Register were the data is being sent (energy value from last weld cycle) |

#### Table 8.23 Attribute ID

| Attribute ID | Description | Data Type | Access |
|--------------|-------------|-----------|--------|
| 1362         | Energy      | UINT8     | Get    |

Table 8.24 Common Services

| Service Code | Service Name         |
|--------------|----------------------|
| 14           | Get_Attribute_Single |

### 8.6.2.2 RSLogix 5000 Implementation of Get Energy Value

| Message Type: CIP.Genenc<br>Service Get Attribute Single •             | •<br>Source Element |                       |
|------------------------------------------------------------------------|---------------------|-----------------------|
| Service Get Attribute Single                                           | Source Element      |                       |
| .)pc                                                                   |                     |                       |
|                                                                        | Source Length       | 0 (‡ (Bytes)          |
| Code: (Hex) Class: 65 (Hex)                                            | Destination         | Get_Class_Attribute_v |
| Instance: 0 Attribute: 552 (Hex)                                       |                     | New Tan               |
| O Enable O Enable Wating O Start<br>O Error Code: Extended Error Code; | • Done              | Done Length: 4        |

Figure 8.7 RSLogix 5000 Implementation of Get Energy Value

 Table 8.25
 RSLogix 5000 Implementation of Get Energy Value

| Name           | Value                                                                                       |
|----------------|---------------------------------------------------------------------------------------------|
| Message Type   | Select CIP Generic from the drop down menu.                                                 |
| Service Type   | Select Get Attribute Single from the drop down menu.                                        |
| Service Code   | Value comes from the service type command.                                                  |
| Class          | Object reference of DCX EtherNet/IP Commands. See Appendix B:<br>EtherNet/IP Commands.      |
| Instance       | Preset location. 32 locations (location 0 is the active/running location).                  |
| Attribute      | Parameter reference (Attribute ID). See <u>Appendix B: EtherNet/IP</u><br><u>Commands</u> . |
| Source Element | Tag/Register storage location in PLC for acquired DCX data.                                 |

## 8.6.3 Sending (Set) Parameter Values to DCX

### 8.6.3.1 Set Energy Value Example

The following is an example for sending the Energy Value using Explicit Messaging. The information is extracted from <u>B.1 Parameter Set Class 100 (32 Instances)</u>.

Change values in Message Configuration for RSlogix5000 Message Configuration as follows:

#### Table 8.26 Get Energy Value Example

| Name              | Value                                                          |
|-------------------|----------------------------------------------------------------|
| Class (Object)    | 101 (66 hex)                                                   |
| Attribute         | 1062 (426 hex)                                                 |
| Instance          | 0 (DCX Preset Location 0)                                      |
| Service Code/Type | Set = 16 (10 hex)                                              |
| Destination       | Tag/Register were the data is being sent (energy value to DCX) |

#### Table 8.27 Attribute ID

| Attribute ID | Description | Data Type | Access  |
|--------------|-------------|-----------|---------|
| 1062         | Energy      | AINT32    | Get/Set |

Table 8.28 Common Services

| Service Code | Service Name         |
|--------------|----------------------|
| 16           | Set_Attribute_Single |

### 8.6.3.2 RSLogix 5000 Implementation of Set Energy Value

Figure 8.8 RSLogix 5000 Implementation of Set Energy Value

| Configurati                  | on Commu             | nication Tag                    |                |                              |                                      |           |
|------------------------------|----------------------|---------------------------------|----------------|------------------------------|--------------------------------------|-----------|
| Message                      | Type:                | CIP Generic                     |                | •                            |                                      |           |
| Service<br>Type:             | Set Altribu          | te Single                       | •              | Source Element               | Set_Class_valve_1                    | • •       |
| Service<br>Code:<br>Instance | 10 <mark>0</mark> (H | iex) Class 64<br>Attribute: 426 | (Hex)<br>(Hex) | Source Length<br>Destination | 4 [1] [By<br>temp_class_1<br>New Tag | kes)<br>v |
|                              |                      |                                 |                |                              |                                      |           |
| ) Enable                     | O Enab               | le Wating O                     | Sat            | O Done                       | Done Length: 4                       |           |

 Table 8.29
 RSLogix 5000 Implementation of Set Energy Value

| Name           | Value                                                                                                 |
|----------------|-------------------------------------------------------------------------------------------------------|
| Message Type   | Select CIP Generic from the drop down menu.                                                           |
| Service Type   | Select Set Attribute Single from the drop down menu.                                                  |
| Service Code   | Value comes from the service type command.                                                            |
| Class          | Object reference of DCX EtherNet/IP Commands. See <u>Appendix B:</u><br><u>EtherNet/IP Commands</u> . |
| Instance       | Preset location. 32 locations (location 0 is the active/running location).                            |
| Attribute      | Parameter reference (Attribute ID). See <u>Appendix B: EtherNet/IP</u><br><u>Commands</u> .           |
| Source Element | Tag/Register storage location in PLC for where DCX will be getting data from.                         |

# 8.7 Implicit Messaging

## 8.7.1 Control/Status Word

The following examples will demonstrate the use of Implicit Messaging in performing a typical weld cycle. RSLogix 5000 Controller Tags will be used for this demonstration without need of a PLC program.

Refer to <u>8.4 Communication to the CompactILogix Via EtherNet/IP</u> for information on setting up the communication to the CompactILogix AB Controller via EtherNet/IP.

The DCX F-EIP is setup to operate in Time mode.

| Name      | Value  |
|-----------|--------|
| Weld Time | 5.0 s  |
| Hold Time | 10.0 s |

 Table 8.30
 Control/Status Word (Time Mode)

The examples will concentrate on the Control (ZSW) and Status (STW) words, since these are the items that control and monitor the DCX cycling through the fieldbus.

<u>Table 8.31</u> is the information that the DCX will send to the PLC. This is the "Status" information from the DCX.

| Data | Description           | Data<br>Type | Access | Unit | Notes                 |
|------|-----------------------|--------------|--------|------|-----------------------|
| 0    | Reserved              |              |        |      |                       |
| 1    | Reserved              |              |        |      |                       |
| 2    | ZSW1 (ZSW Word 1)     |              |        | -    | See <u>Table 8.8</u>  |
| 3    | ZSW2 (ZSW Word 2)     |              | R      | -    | and <u>Table 8.11</u> |
| 4    | Nominal Amplitude Set |              |        | %    |                       |
| 5    | Amplitude Output      |              |        | %    |                       |
| 6    | Current               |              |        | %    |                       |
| 7    | Power                 |              |        | %    |                       |
| 8    | Phase                 | INT16        |        | 0    |                       |
| 9    | PWM                   |              |        | %    |                       |
| 10   | Frequency             | UINT16       |        | Hz   |                       |
| 11   | Temperature           |              |        | С    |                       |

| Table 8.31 | DCX Outputs/PLC  | Inputs | (20 byte | s)   |
|------------|------------------|--------|----------|------|
|            | DON OULPULS/I LO | mputs  |          | , 3, |

<u>Table 8.32</u> is the information that the DCX will received from the PLC. This is the "Control" information to the DCX.

### Table 8.32 DCX Input

| Data | Description        | Data<br>Type | Access | Unit | Notes                                        |
|------|--------------------|--------------|--------|------|----------------------------------------------|
| 0    | STW1 (STW Word 1)  |              | W      | -    | See <u>Table 8.3</u><br>and <u>Table 8.6</u> |
| 1    | SWT2 (STW Word 2)  |              |        | -    |                                              |
| 2    | External Amplitude |              |        | %    |                                              |
| 3    | Frequency Offset   |              |        | Hz   |                                              |

## 8.7.2 DCX Initial State – No commands are being sent by PLC

PLC Output STW1/STW2 = 0

Figure 8.9 PLC Output STW1/STW2 = 0

| - DCX_32_IP:0         | {} | {}   |         | AB:ETHERNET |             |
|-----------------------|----|------|---------|-------------|-------------|
| E DCX_32_IP:0.Data    | () | {}   | Decimal | INT[20]     |             |
| + DCX_32_IP:0.Data[0] | 0  | 61-1 | Decimal | INT         | stw1        |
| + DCX_32_IP:0.Data[1] | 0  |      | Decimal | INT         | stw2        |
| + DCX_32_IP:0.Data[2] | 0  |      | Decimal | INT         | ampl out    |
| + DCX_32_IP:0.Data[3] | 0  |      | Decimal | INT         | freq offset |

PLC Input ZSW1= 16, ZSW2=1024

Note that Live Channel information is also preset (Sonics Off condition shown).

Figure 8.10 PLC Input ZSW1= 16, ZSW2=1024

| - DCX_32_IP:1          | {}    | {} |         | AB:ETHERNET |                |
|------------------------|-------|----|---------|-------------|----------------|
| E DCX_32_IP:I.Data     | {}    | {} | Decimal | INT[20]     |                |
| + DCX_32_IP:1.Data[0]  | 1     |    | Decimal | INT         |                |
| + DCX_32_IP:I.Data[1]  | 0     |    | Decimal | INT         |                |
| + DCX_32_IP:I.Data[2]  | 16    |    | Decimal | INT         | zsw1           |
| + DCX_32_IP:I.Data[3]  | 1024  |    | Decimal | INT         | zsw2           |
| + DCX_32_IP:I.Data[4]  | 74    |    | Decimal | INT         | set norm value |
| + DCX_32_IP:I.Data[5]  | 0     |    | Decimal | INT         | ampl Out       |
| + DCX_32_IP:I.Data[6]  | 0     |    | Decimal | INT         | current        |
| + DCX_32_IP:I.Data[7]  | 0     |    | Decimal | INT         | power          |
| + DCX_32_IP:I.Data[8]  | 0     |    | Decimal | INT         | phase          |
| + DCX_32_IP:I.Data[9]  | 0     |    | Decimal | INT         | pwm            |
| + DCX_32_IP:I.Data[10] | 30166 |    | Decimal | INT         | freq           |
| + DCX_32_IP:I.Data[11] | 37    |    | Decimal | INT         | temp           |

### **DCX Fieldbus Diagnostic**

STW1/STW2 show no LEDs illuminated (PLC Output STW1/STW2 = 0) ZSW1H/L: HFS0 bit 4 being illuminated (PLC Input ZSW1= 16 or 10000binary) ZSW2H/L: HFS0 bit 11 being illuminated (PLC Input ZSW2= 1024 or 100000000binary)

Figure 8.11 DCX Fieldbus Diagnostic



## 8.7.3 DCX Weld Mode - Sending a 513 command - Weld Time.

STW2 needs to stay in Auto mode (bit 14) -16384 command. Here we will pick the bits from STW2 that will start sonics.

To turn on sonics the Weld Function (FCT bit0) and Run Ultrasonics (ON, Bit 8) will be sent to the DCX thus creating a DCX Start Function. This will create the command 513 that will be sent to STW2.

|                       |       |    |         |             |                | the second se |
|-----------------------|-------|----|---------|-------------|----------------|-----------------------------------------------------------------------------------------------------------------|
| E DCX_32_IP1.Data     | {}    | {} | Decimal | INT[20]     |                |                                                                                                                 |
| + DOX_32_IP1.Data[0]  | 1     |    | Decimal | INT         |                | 1                                                                                                               |
| + DCX_32_IP1.Data[1]  | 0     |    | Decimal | INT         |                |                                                                                                                 |
| + DOX_32_IP1.Data[2]  | 16400 |    | Decimal | INT         | zsw1           |                                                                                                                 |
| E DOX_32_IP1.Data[3]  | 2048  |    | Decimal | INT         | zsw2           |                                                                                                                 |
| + DCX_32_IP:I.Data[4] | 49    |    | Decimal | INT         | set norm value |                                                                                                                 |
| + DCX_32_IP1.Data[5]  | 49    |    | Decimal | INT         | ampl Out       |                                                                                                                 |
| + DOX_32_IP1.Data[6]  | 29    |    | Decimal | INT         | current        |                                                                                                                 |
| E DOX_32_IPI.Data[7]  | 14    |    | Decimal | INT         | power          | 1000                                                                                                            |
| + DCX_32_IP1.Data[8]  | 0     |    | Decimal | INT         | phase          | 1                                                                                                               |
| + DCX_32_IP1.Data(9)  | 24    |    | Decimal | INT         | pwm            | 8 8                                                                                                             |
| + DOX_32_IPI.Data[10] | 30195 |    | Decimal | INT         | freq           |                                                                                                                 |
| + DOX_32_IPI.Data[11] | 32    |    | Decimal | INT         | temp           |                                                                                                                 |
| + DOX_32_IP1.Data[12] | 0     |    | Decimal | INT         | 2.00           | 3-3                                                                                                             |
| DOX_32_IPI.Data[13]   | 0     |    | Decimal | INT         |                |                                                                                                                 |
| E DOX_32_IPI.Data[14] | 0     |    | Decimal | INT         |                |                                                                                                                 |
| + DOX_32_IPI.Data[15] | 0     |    | Decimal | INT         |                |                                                                                                                 |
| + DCX_32_IPI.Data[16] | 0     |    | Decimal | INT         |                | 11                                                                                                              |
| + DCX_32_IPI.Data[17] | 0     |    | Decimal | INT         |                |                                                                                                                 |
| + DCX_32_IP1.Data[18] | 0     |    | Decimal | INT         |                |                                                                                                                 |
| DOX_32_IPI.Data[19]   | 0     |    | Decimal | INT         |                | 1                                                                                                               |
| - DCX_32_IP:0         | {}    | () |         | AB:ETHERNET |                | 1                                                                                                               |
| - DCX_32_IP:0.Data    | ()    | {} | Decimal | INT[20]     |                |                                                                                                                 |
| + DCX_32_IP:0.Data[0] | 16384 |    | Decimal | INT         | Iwitz          |                                                                                                                 |
| + DCX_32_IP:0.Data[1] | 513   |    | Decimal | INT         | stw2           |                                                                                                                 |

Figure 8.12 DCX Weld Mode - Sending a 513 Command - Weld Time

### **DCX Fieldbus Diagnostic**

Note that the PLC Commands and responses will be mirrored in the DCX Control and Status Words.





## 8.7.4 DCX Weld Mode - Sending a 513 Command - Hold Time

No changes will be made to the STW1/STW2 from prior example. The MA and ON bit will continued to be sent to the DCX.

Here we will see the ZSW2 response has changed from Weld Time (sonics On) to Hold Time (sonics Off). Note that the ZSW2 has changes from 2048 to 0 indicating Sonics is OFF. This is the Hold Time State

| E-DCX_32_IP:I.Data      | {}    | {} | Decimal | INT[20]     |                |   |
|-------------------------|-------|----|---------|-------------|----------------|---|
| DCX_32_IP:I.D ata[0]    | 1     |    | Decimal | INT         |                |   |
| DCX_32_IP:I.D ata[1]    | 0     |    | Decimal | INT         |                |   |
| + DCX_32_IP:I.Data[2]   | 16400 |    | Decimal | INT         | zsw1           |   |
| DCX_32_IP:I.D ata[3]    | 0     |    | Decimal | INT         | zsw2           |   |
| DCX_32_IP:I.D ata[4]    | 49    |    | Decimal | INT         | set norm value |   |
| DCX_32_IP:I.D ata[5]    | 0     |    | Decimal | INT         | ampl Out       |   |
| DCX_32_IP:I.D ata[6]    | 0     |    | Decimal | INT         | current        |   |
| DCX_32_IP:I.Data[7]     | 0     |    | Decimal | INT         | power          |   |
| DCX_32_IP:I.D ata[8]    | 0     |    | Decimal | INT         | phase          |   |
| DCX_32_IP:I.Data[9]     | 0     |    | Decimal | INT         | pwm            |   |
| EDCX_32_IP:I.Data[10]   | 30195 |    | Decimal | INT         | freq           |   |
| DCX_32_IP:I.Data[11]    | 32    |    | Decimal | INT         | temp           |   |
| DCX_32_IP:I.Data[12]    | 0     |    | Decimal | INT         |                |   |
| DCX_32_IP:I.D ata[13]   | 0     |    | Decimal | INT         |                |   |
| DCX_32_IP:I.Data[14]    | 0     |    | Decimal | INT         |                |   |
| EDCX_32_IP:I.Data[15]   | 0     |    | Decimal | INT         |                |   |
| E DCX_32_IP:I.D ata[16] | 0     |    | Decimal | INT         |                |   |
| DCX_32_IP:I.Data[17]    | 0     |    | Decimal | INT         |                |   |
| DCX_32_IP:I.D ata[18]   | 0     |    | Decimal | INT         |                |   |
| DCX_32_IP:I.Data[19]    | 0     |    | Decimal | INT         |                |   |
| E-DCX_32_IP:0           | {}    | {} |         | AB:ETHERNET |                | Γ |
| E DCX_32_IP:0.Data      | {}    | {} | Decimal | INT[20]     |                |   |
| DCX_32_IP:0.Data[0]     | 16384 |    | Decimal | INT         | stw1           |   |
| DCX_32_IP:0.Data[1]     | ▼ 513 |    | Decimal | INT         | stw2           |   |

Figure 8.14 DCX Weld Mode - Sending a 513 Command - Hold Time

### **DCX Fieldbus Diagnostic**

Note that the ZSW2 ON bit 11 is now Off also indicating Sonics is OFF. This is the Hold Time State.

Figure 8.15 DCX Fieldbus Diagnostic



## 8.7.5 DCX Weld Mode - Sending a 0 command - Changeover State

STW1 needs to stay in Auto mode (bit 14) -16384 command. STW2 from prior example. The MA and ON bit will continued to be sent to the DCX. A command 0 will be sent to STW2 to release the FCT (bit0) and On (bit 8) thus removing the DCX Start Function.

Here we will see the ZSW2 response has changed from Hold Time to End of Weld Cycle. Note that the ZSW2 has changes from 0 to 5120 indicating Weld Cycle is complete.

| DCX_32_IP:I.Data      | {}    | {} | Decimal | INT[20]     |                |
|-----------------------|-------|----|---------|-------------|----------------|
| DCX_32_IP:I.Data[0]   | 1     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[1]   | 0     |    | Decimal | INT         |                |
| + DCX_32_IP:I.Data[2] | 16400 |    | Decimal | INT         | zsw1           |
| DCX_32_IP:I.Data[3]   | 5120  |    | Decimal | INT         | zsw2           |
| DCX_32_IP:I.Data[4]   | 49    |    | Decimal | INT         | set norm value |
| + DCX_32_IP:I.Data[5] | 0     |    | Decimal | INT         | ampl Out       |
| DCX_32_IP:I.Data[6]   | 0     |    | Decimal | INT         | current        |
| DCX_32_IP:I.Data[7]   | 0     |    | Decimal | INT         | power          |
| DCX_32_IP:I.Data[8]   | 0     |    | Decimal | INT         | phase          |
| DCX_32_IP:I.Data[9]   | 0     |    | Decimal | INT         | pwm            |
| DCX_32_IP:I.Data[10]  | 30194 |    | Decimal | INT         | freq           |
| DCX_32_IP:I.Data[11]  | 33    |    | Decimal | INT         | temp           |
| DCX_32_IP:I.Data[12]  | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[13]  | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[14]  | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[15]  | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[16]  | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[17]  | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[18]  | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[19]  | 0     |    | Decimal | INT         |                |
| E-DCX_32_IP:0         | {}    | {} |         | AB:ETHERNET |                |
| DCX_32_IP:0.Data      | {}    | {} | Decimal | INT[20]     |                |
| DCX_32_IP:0.Data[0]   | 16384 |    | Decimal | INT         | stw1           |
| DCX_32_IP:0.Data[1]   | 0     |    | Decimal | INT         | stw2           |

Figure 8.16 DCX Weld Mode - Sending a 0 Command - Changeover State

### **DCX Fieldbus Diagnostic**

Note that none of the STW2 bits are active, thus mirroring the STW2 "0" command sent by the PLC. The ZSW2 shows End of Weld Cycle (Bit 12) and Ultrasonics OFF (bit 10) illuminated indicating Weld cycle is complete.





## 8.7.6 DCX Weld Mode - Sending a 513 and Holding it to Create a "Start Input is Active" Alarm

A command 513 will be sent and held constant to STW2 FCT (bit0) and On (bit 8) to invoke a DCX Start Function. (Refer to Weld Time Example). At some point after the Weld Cycle is complete a "Start Input is Active" alarm will be generated at the DCX. Note that the ZSW2 is 4104 indicating a Equipment failure has occurred.

Figure 8.18 DCX Weld Mode - Sending a 513 and Holding It to Create a "Start Input is Active" Alarm

| E-DCX 32 IPI Data      | 1 1   | J 1 | Decimal | INT[20]     |                |
|------------------------|-------|-----|---------|-------------|----------------|
|                        | ()    | ()  | Decimal | INT         |                |
| E DOX_32_IP.I.Data[0]  | 1     |     | Decinal | INT.        |                |
| DUX_32_IP:I.Data[1]    | 0     |     | Decimal | INI         |                |
|                        | 16400 |     | Decimal | INT         | zsw1           |
| DCX_32_IP:I.Data[3]    | 4104  |     | Decimal | INT         | zsw2           |
| DCX_32_IP:I.Data[4]    | 49    |     | Decimal | INT         | set norm value |
| DCX_32_IP:I.Data[5]    | 0     |     | Decimal | INT         | ampl Out       |
| DCX_32_IP:I.Data[6]    | 0     |     | Decimal | INT         | current        |
| DCX_32_IP:I.Data[7]    | 0     |     | Decimal | INT         | power          |
| DCX_32_IP:I.Data[8]    | 0     |     | Decimal | INT         | phase          |
| DCX_32_IP:I.Data[9]    | 0     |     | Decimal | INT         | pwm            |
| DCX_32_IP:I.Data[10]   | 30195 |     | Decimal | INT         | freq           |
| DCX_32_IP:I.Data[11]   | 33    |     | Decimal | INT         | temp           |
| DCX_32_IP:I.Data[12]   | 0     |     | Decimal | INT         |                |
| DCX_32_IP:I.Data[13]   | 0     |     | Decimal | INT         |                |
| E DCX_32_IP:I.Data[14] | 0     |     | Decimal | INT         |                |
| E DCX_32_IP:I.Data[15] | 0     |     | Decimal | INT         |                |
| DCX_32_IP:I.Data[16]   | 0     |     | Decimal | INT         |                |
| DCX_32_IP:I.Data[17]   | 0     |     | Decimal | INT         |                |
| DCX_32_IP:I.Data[18]   | 0     |     | Decimal | INT         |                |
| DCX_32_IP:I.Data[19]   | 0     |     | Decimal | INT         |                |
| E-DCX_32_IP:0          | {}    | {}  |         | AB:ETHERNET |                |
| DCX_32_IP:0.Data       | {}    | {}  | Decimal | INT[20]     |                |
| DCX_32_IP:0.Data[0]    | 16384 |     | Decimal | INT         | stw1           |
| DCX_32_IP:0.Data[1]    | 513   |     | Decimal | INT         | stw2           |

### DCX Fieldbus Diagnostic

Note that STW2 Shows ON and FCT still being active (the 513 command). The ZSW2 show the OK and EQ8 LEDs being active.

Figure 8.19 DCX Fieldbus Diagnostics



## 8.7.7 DCX Weld Mode - Alarm Reset

Using the prior "Start Input is Active" alarm example, we will send a Reset command to clear the alarm condition.

For this to occur the 513 command (DCX Start Function) will be removed first. We will send a command 0 to release the DCX Start function. Then we will send a command 256 to Reset the DCX alarm. Once the Alarm is Reset a 0 command will be sent to release the Reset command. Note that the ZSW2 is 5128 indicating a Equipment failure has occurred.

| E-DCX_32_IP:I.Data   | {}    | {} | Decimal | INT[20]     |                |
|----------------------|-------|----|---------|-------------|----------------|
| DCX_32_IP:I.Data[0]  | 1     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[1]  | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[2]  | 16400 |    | Decimal | INT         | zsw1           |
| DCX_32_IP:I.Data[3]  | 5128  |    | Decimal | INT         | zsw2           |
| DCX_32_IP:I.Data[4]  | 49    |    | Decimal | INT         | set norm value |
| DCX_32_IP:I.Data[5]  | 0     |    | Decimal | INT         | ampl Out       |
| DCX_32_IP:I.Data[6]  | 0     |    | Decimal | INT         | current        |
| DCX_32_IP:I.Data[7]  | 0     |    | Decimal | INT         | power          |
|                      | 0     |    | Decimal | INT         | phase          |
|                      | 0     |    | Decimal | INT         | pwm            |
|                      | 30195 |    | Decimal | INT         | freq           |
|                      | 32    |    | Decimal | INT         | temp           |
| DCX_32_IP:I.Data[12] | 0     |    | Decimal | INT         |                |
|                      | 0     |    | Decimal | INT         |                |
|                      | 0     |    | Decimal | INT         |                |
|                      | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[16] | 0     |    | Decimal | INT         |                |
|                      | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[18] | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[19] | 0     |    | Decimal | INT         |                |
| E-DCX_32_IP:0        | {}    | {} |         | AB:ETHERNET |                |
| E-DCX_32_IP:0.Data   | {}    | {} | Decimal | INT[20]     |                |
| DCX_32_IP:0.Data[0]  | 16384 |    | Decimal | INT         | stw1           |
|                      | 0     |    | Decimal | INT         | stw2           |

#### Figure 8.20 DCX Weld Mode - Alarm Reset

### **DCX Fieldbus Diagnostic**

Note that STW2 Shows ON and FCT are now OFF (the 0 command). The ZSW2 show the OFF and EQ8 LEDs being active.

### 8.7.7.1 DCX Weld Mode - Alarm Reset (Cont)

STW2 shows the 256 Command being sent to Reset the DCX alarm. ZSW2 response 1024 indicates that Alarm is Reset and the DCX is in the Ready state

| - DCX_32_IP:I.Data     | {}    | {} | Decimal | INT[20]     |                |
|------------------------|-------|----|---------|-------------|----------------|
| DCX_32_IP:I.Data[0]    | 1     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[1]    | 0     |    | Decimal | INT         |                |
| E DCX_32_IP:I.Data[2]  | 16400 |    | Decimal | INT         | zsw1           |
| DCX_32_IP:I.Data[3]    | 1024  |    | Decimal | INT         | zsw2           |
| DCX_32_IP:I.Data[4]    | 49    |    | Decimal | INT         | set norm value |
| DCX_32_IP:I.Data[5]    | 0     |    | Decimal | INT         | ampl Out       |
| DCX_32_IP:I.Data[6]    | 0     |    | Decimal | INT         | current        |
| DCX_32_IP:I.Data[7]    | 0     |    | Decimal | INT         | power          |
| DCX_32_IP:I.Data[8]    | 0     |    | Decimal | INT         | phase          |
| DCX_32_IP:I.Data[9]    | 0     |    | Decimal | INT         | pwm            |
| DCX_32_IP:I.Data[10]   | 30195 |    | Decimal | INT         | freq           |
| DCX_32_IP:I.Data[11]   | 32    |    | Decimal | INT         | temp           |
| DCX_32_IP:I.Data[12]   | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[13]   | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[14]   | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[15]   | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[16]   | 0     |    | Decimal | INT         |                |
| E DCX_32_IP:I.Data[17] | 0     |    | Decimal | INT         |                |
| E DCX_32_IP:I.Data[18] | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[19]   | 0     |    | Decimal | INT         |                |
| - DCX_32_IP:0          | {}    | {} |         | AB:ETHERNET |                |
| DCX_32_IP:0.Data       | {}    | {} | Decimal | INT[20]     |                |
| DCX_32_IP:0.Data[0]    | 16384 |    | Decimal | INT         | stw1           |
| DCX_32_IP:0.Data[1]    | 256   |    | Decimal | INT         | stw2           |

Figure 8.21 DCX Weld Mode - Alarm Reset (Cont)

### **DCX Fieldbus Diagnostic**

The ZSW2 show the OFF LED being active. The DCX is in the Ready State.

Figure 8.22 DCX Fieldbus Diagnostic





### 8.7.7.2 DCX Weld Mode - Alarm Reset (Cont)

STW2 shows the 0 Command being sent to release the Reset command to the DCX. ZSW2 response 1024 indicates that DCX is in the Ready state.

| E-DCX_32_IP:I.Data     | {}    | {} | Decimal | INT[20]     |                |
|------------------------|-------|----|---------|-------------|----------------|
| DCX_32_IP:I.Data[0]    | 1     |    | Decimal | INT         |                |
|                        | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[2]    | 16400 |    | Decimal | INT         | zsw1           |
| DCX_32_IP:I.D ata[3]   | 1024  |    | Decimal | INT         | zsw2           |
| + DCX_32_IP:I.Data[4]  | 49    |    | Decimal | INT         | set norm value |
| + DCX_32_IP:1.Data[5]  | 0     |    | Decimal | INT         | ampl Out       |
| + DCX_32_IP:I.Data[6]  | 0     |    | Decimal | INT         | current        |
| DCX_32_IP:I.Data[7]    | 0     |    | Decimal | INT         | power          |
| + DCX_32_IP:I.Data[8]  | 0     |    | Decimal | INT         | phase          |
| + DCX_32_IP:I.Data[9]  | 0     |    | Decimal | INT         | pwm            |
| DCX_32_IP:I.Data[10]   | 30195 |    | Decimal | INT         | freq           |
| DCX_32_IP:I.Data[11]   | 32    |    | Decimal | INT         | temp           |
| E DCX_32_IP:I.Data[12] | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[13]   | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[14]   | 0     |    | Decimal | INT         |                |
| E DCX_32_IP:I.Data[15] | 0     |    | Decimal | INT         |                |
| E DCX_32_IP:I.Data[16] | 0     |    | Decimal | INT         |                |
| E DCX_32_IP:I.Data[17] | 0     |    | Decimal | INT         |                |
| E DCX_32_IP:I.Data[18] | 0     |    | Decimal | INT         |                |
| DCX_32_IP:I.Data[19]   | 0     |    | Decimal | INT         |                |
| - DCX_32_IP:0          | {}    | {} |         | AB:ETHERNET |                |
| E-DCX_32_IP:0.Data     | {}    | {} | Decimal | INT[20]     |                |
| DCX_32_IP:0.Data[0]    | 16384 |    | Decimal | INT         | stw1           |
| DCX_32_IP:0.Data[1]    | 0     |    | Decimal | INT         | stw2           |

Figure 8.23 DCX Weld Mode - Alarm Reset (Cont)

#### **DCX Fieldbus Diagnostic**

STW2 shows no bits are active indicating that no commands (or command 0) is being sent by the PLC to the DCX. ZSW2 show the OFF LED being active. The DCX is in the Ready State and awaiting next Weld Cycle command.

Figure 8.24 DCX Fieldbus Diagnostic



# 8.8 Implicit Messaging Live Channel

Table 8.7 DCX Outputs/PLC Inputs (20 bytes) is the information that the DCX will send to the PLC. This is the *Status* information from the DCX.

Table 8.2 DCX Inputs/PLC Outputs (8 bytes) is the information that the DCX will receive from the PLC. This is the *Control* information to the DCX.

During PLC setup/configuration, RSLogix 5000 is setup to reserve 20 locations of Input and Output (Connection Parameters) for Implicit Messaging.

### Figure 8.25 Implicit Messaging

| Type:<br>Vendor:<br>Parent: | ETHERNET-MODULE Generic Ethern<br>Allen-Bradley<br>LocalENB | et Module       |                     |          |        |
|-----------------------------|-------------------------------------------------------------|-----------------|---------------------|----------|--------|
| Name:                       | DCX_32_IP                                                   | Connection Para | ameters<br>Assembly |          |        |
| Description:                |                                                             |                 | Instance:           | Size:    |        |
|                             |                                                             | Input:          | 101                 | 20 (16   | -bit)  |
|                             | · · ·                                                       | Output:         | 100                 | 20 🚑 (16 | i-bit) |
| Comm Format:                | Data - INT 👻                                                | Configuration   | 102                 | 0 0.     | -iit)  |
| Address / H                 | ost Name                                                    | Coninguration.  | 102                 | 0 0      | Jity   |
| IP Addre                    | ss: 10 , 218 , 200 , 32                                     | Status Input:   |                     |          |        |
| 🔿 Host Nar                  | ne:                                                         | Status Output   |                     |          |        |

This Live Channel information can be viewed by opening the Controller Tag (RSLogix 5000) for each of the DCX devices.

Below is the PLC Output Data - Data going to the DCX (Control).

Figure 8.26 Data Going to the DCX (Control)

| - DCX_32_IP:0          | {}    | {} |         | AB:ETHERNET |             |
|------------------------|-------|----|---------|-------------|-------------|
| E DCX_32_IP:0.Data     | {}    | {} | Decimal | INT[20]     |             |
| + DCX_32_IP:0.Data[0]  | 16384 |    | Decimal | INT         | stw1        |
| + DCX_32_IP:0.Data[1]  | 513   |    | Decimal | INT         | stw2        |
| + DCX_32_IP:0.Data[2]  | 75    |    | Decimal | INT         | ampl out    |
| + DCX_32_IP:0.Data[3]  | 3     |    | Decimal | INT         | freq offset |
| + DCX_32_IP:0.Data[4]  | 0     |    | Decimal | INT         |             |
| + DCX_32_IP:0.Data[5]  | 0     |    | Decimal | INT         |             |
| + DCX_32_IP:0.Data[6]  | 0     |    | Decimal | INT         |             |
| + DCX_32_IP:0.Data[7]  | 0     |    | Decimal | INT         |             |
| + DCX_32_IP:0.Data[8]  | 0     |    | Decimal | INT         |             |
| + DCX_32_IP:0.Data[9]  | 0     |    | Decimal | INT         |             |
| + DCX_32_IP:0.Data[10] | 0     |    | Decimal | INT         |             |
| + DCX_32_IP:0.Data[11] | 0     |    | Decimal | INT         |             |
| + DCX_32_IP:0.Data[12] | 0     |    | Decimal | INT         |             |
| + DCX_32_IP:0.Data[13] | 0     |    | Decimal | INT         |             |
| + DCX_32_IP:0.Data[14] | 0     |    | Decimal | INT         |             |
| + DCX_32_IP:0.Data[15] | 0     |    | Decimal | INT         |             |
| + DCX_32_IP:0.Data[16] | 0     |    | Decimal | INT         |             |
| + DCX_32_IP:0.Data[17] | 0     |    | Decimal | INT         |             |
| + DCX_32_IP:0.Data[18] | 0     |    | Decimal | INT         |             |
| + DCX_32_IP:0.Data[19] | 0     |    | Decimal | INT         |             |

Below is the PLC Input Data - Data coming from the DCX (Status).

| Name                   | 2 <mark>22</mark> | Value 🔸 | Force Mask 🔹 🕈 | Style   | Data Type   | Description    | 0 |
|------------------------|-------------------|---------|----------------|---------|-------------|----------------|---|
| E DCX_32_IP:C          |                   | {}      | {}             |         | AB:ETHERNET |                |   |
| E-DCX_32_IP:I          |                   | {}      | {}             |         | AB:ETHERNET |                |   |
| E-DCX_32_IP:I.Data     |                   | {}      | {}             | Decimal | INT[20]     |                |   |
| DCX_32_IP:I.Data[0]    |                   | 1       |                | Decimal | INT         |                |   |
| DCX_32_IP:I.Data[1]    |                   | 0       |                | Decimal | INT         |                |   |
| DCX_32_IP:I.Data[2]    |                   | 16400   |                | Decimal | INT         | zsw1           |   |
| DCX_32_IP:I.Data[3]    |                   | 2048    |                | Decimal | INT         | zsw2           |   |
| DCX_32_IP:I.Data[4]    |                   | 74      |                | Decimal | INT         | set norm value |   |
| DCX_32_IP:I.D ata[5]   |                   | 75      |                | Decimal | INT         | ampl Out       |   |
| + DCX_32_IP:I.Data[6]  |                   | 44      |                | Decimal | INT         | current        |   |
| DCX_32_IP:I.Data[7]    |                   | 34      |                | Decimal | INT         | power          |   |
| DCX_32_IP:I.D ata[8]   |                   | 0       |                | Decimal | INT         | phase          |   |
| DCX_32_IP:I.D ata[9]   |                   | 36      |                | Decimal | INT         | pwm            |   |
| DCX_32_IP:I.Data[10]   |                   | 30164   |                | Decimal | INT         | freq           |   |
| DCX_32_IP:I.Data[11]   |                   | 36      |                | Decimal | INT         | temp           |   |
| DCX_32_IP:I.Data[12]   |                   | 0       |                | Decimal | INT         |                |   |
| DCX_32_IP:I.Data[13]   |                   | 0       |                | Decimal | INT         |                |   |
| DCX_32_IP:I.Data[14]   |                   | 0       |                | Decimal | INT         |                |   |
| DCX_32_IP:I.Data[15]   |                   | 0       |                | Decimal | INT         |                |   |
| E DCX_32_IP:I.Data[16] |                   | 0       |                | Decimal | INT         |                |   |
| + DCX_32_IP:I.Data[17] |                   | 0       |                | Decimal | INT         |                |   |
| DCX_32_IP:I.Data[18]   |                   | 0       |                | Decimal | INT         |                |   |
| DCX_32_IP:I.D ata[19]  |                   | 0       |                | Decimal | INT         |                |   |
|                        |                   |         |                |         |             |                | - |

#### Figure 8.27 Data Coming from the DCX (Status)

The word fields for STW1/STW2 (Control Word) and ZSW1/ZSW2 (Status Word) can be expanded to view these words at the binary bit level.

# Branson

## 8.8.1 Live PLC Input Channel Example (DCX Status Word)

The following example shows the PLC input channel expanded to bit level. The ZSW1 word *16400* is displayed at its binary level. Bit 4 (HFS0), and Bit 14 (MA) = 1 are shown as being active on the Diagnostics Fieldbus section on the DCX Web Page Interface.

| - DCX_32_IP:I.Data                     | {}    | {}        | Decimal | INT[20] |      |
|----------------------------------------|-------|-----------|---------|---------|------|
| + DCX_32_IP:I.Data[0]                  | 1     | 179677990 | Decimal | INT     |      |
| + DCX_32_IP:LData[1]                   | 0     |           | Decimal | INT     |      |
| <ul> <li>DCX_32_IP:LData[2]</li> </ul> | 16400 |           | Decimal | INT     | zsw1 |
| -DCX_32_IP:1.Data[2].0                 | 0     |           | Decimal | BOOL    | zsw1 |
| -DCX_32_IP:I.Data[2].1                 | 0     |           | Decimal | BOOL    | zsw1 |
| -DCX_32_IP:1.Data[2].2                 | 0     |           | Decimal | BOOL    | zsw1 |
| -DCX_32_IP:1.Data[2].3                 | 0     |           | Decimal | BOOL    | zsw1 |
| DCX_32_IP:1.Data[2].4                  | 1     |           | Decimal | BOOL    | 25WT |
|                                        | 0     |           | Decimal | BOOL    | ZSWI |
| DCX_32_IP:1.Data[2].6                  | 0     |           | Decimal | BOOL    | zswl |
| -DCX_32_IP:I.Data[2].7                 | 0     |           | Decimal | BOOL    | zsw1 |
| DCX_32_IP:1.Data[2].8                  | 0     |           | Decimal | BOOL    | zswl |
| DCX_32_IP:1.Data[2].9                  | 0     |           | Decimal | BOOL    | zsw1 |
| DCX_32_IP:I.Data[2].10                 | 0     |           | Decimal | BOOL    | 2:W1 |
| -DCX_32_IP:I.Data[2].11                | 0     |           | Decimal | BOOL    | zsw1 |
| -DCX_32_IP1.Data[2]12                  | 0     |           | Decimal | BOOL    | zsw1 |
| -DCX_32_IP:I.Data[2].13                | 0     |           | Decimal | BOOL    | ZSWI |
| DCX_32_IP:1.Data[2].14                 | 1     |           | Decimal | BOOL    | zsw1 |
| DCX_32_IP:I.Data[2].15                 | 0     |           | Decimal | BOOL    | zew1 |

Figure 8.28 DCX Status Word





## 8.8.2 Live PLC Output Channel Example (DCX Control Word)

The following shows the PLC output channel expanded to bit level. The STW1 word "16384" is displayed at its binary level. Bit 14 (MA) = 1 and is shown as being active on the Diagnostics Fieldbus section on the DCX Web Page Interface.

#### Figure 8.30 DCX Control Word

| - DCX_32_IP:0          | {}    | {} |         | AB:ETHERNET |      |
|------------------------|-------|----|---------|-------------|------|
| DCX_32_IP:0.Data       | {}    | {} | Decimal | INT[20]     |      |
| - DCX_32_IP:0.Data[0]  | 16384 |    | Decimal | INT         | stw1 |
| -DCX_32_IP:0.Data[0].0 | 0     |    | Decimal | BOOL        | stw1 |
| DCX_32_IP:0.Data[0].1  | 0     |    | Decimal | BOOL        | stw1 |
| DCX_32_IP:0.Data[0].2  | 0     |    | Decimal | BOOL        | stw1 |
| -DCX_32_IP:0.Data[0].3 | 0     |    | Decimal | BOOL        | stw1 |
| DCX_32_IP:0.Data[0].4  | 0     |    | Decimal | BOOL        | stw1 |
| DCX_32_IP:0.Data[0].5  | 0     |    | Decimal | BOOL        | stw1 |
| DCX_32_IP:0.Data[0].6  | 0     |    | Decimal | BOOL        | stwl |
| DCX_32_IP:0.Data[0].7  | 0     |    | Decimal | BOOL        | stw1 |
| DCX_32_IP:0.Data[0].8  | 0     |    | Decimal | 800L        | stw1 |
| DCX_32_IP:0.Data[0].9  | 0     |    | Decimal | BOOL        | stw1 |
| DCX_32_IP:0.Data[0].10 | 0     |    | Decimal | BOOL        | stw1 |
| DCX_32_IP:0.Data[0].11 | 0     |    | Decimal | BOOL        | stw1 |
| DCX_32_IP:0.Data[0].12 | 0     |    | Decimal | BOOL        | stw1 |
| DCX_32_IP:0.Data[0].13 | 0     |    | Decimal | BOOL        | stw1 |
| DCX_32_IP:0.Data[0].14 | 1     |    | Decimal | BOOL        | stw1 |
| DCX_32_IP:0.Data[0].15 | 0     |    | Decimal | BOOL        | stw1 |

#### Figure 8.31 DCX Control Word (Web Page Interface)

| CONTR | OL \       | NOF        | RD         |            |            |            |            |            |  |
|-------|------------|------------|------------|------------|------------|------------|------------|------------|--|
|       |            |            |            |            |            |            |            |            |  |
| BITS  | 7          | 6          | 5          | 4          | 3          | 2          | 1          | 0          |  |
| STW1H | $\bigcirc$ | $\bigcirc$ | $\odot$    |            | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |
|       | RES        | MA         | RES        | PSN4       | PSN3       | PSN2       | PSN1       | PSN0       |  |
| STW1L | $\odot$    |            | $\bigcirc$ |            | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |  |
|       | HFS3       | HFS2       | HFS1       | HFS0       | RES        | RES        | ES         | RES        |  |
| STW2H |            | $\bigcirc$ |  |
|       | RES        | RES        | APROF      | GNDDT      | RES        | RES        | ON         | RST        |  |
| STW2L | $\odot$    | $\odot$    |            | $\bigcirc$ | $\odot$    | $\bigcirc$ | $\odot$    | $\bigcirc$ |  |
|       | RES        | RES        | MCLR       | SFCT2      | SFCT1      | SFCTO      | SFCT       | FCT        |  |
|       |            |            |            |            |            |            |            |            |  |

# Chapter 9: Maintenance

| 9.1 | General Maintenance Considerations            | 168 |
|-----|-----------------------------------------------|-----|
| 9.2 | DCX F-EIP Power Supply Preventive Maintenance | 170 |
| 9.3 | Recommended Spare Stock                       | 176 |
| 9.4 | Circuit Diagram.                              | 182 |
| 9.5 | Troubleshooting                               | 183 |
| 9.6 | Cold Start Procedure                          | 187 |

# 9.1 General Maintenance Considerations

| WARNING | High Voltage Hazard                                                                                                                                                  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4       | Power supplies produce high voltage. To avoid the possibility of an electrical shock, you should always power down your system prior to repairing any portion of it. |

| CAUTION | General Warning                                                                                  |
|---------|--------------------------------------------------------------------------------------------------|
|         | When performing maintenance on the welder, make sure that no other automated systems are active. |

| NOTICE |                                                                                                                                  |
|--------|----------------------------------------------------------------------------------------------------------------------------------|
| i      | There are no customer replaceable components inside the power supply. Have all servicing done by a qualified Branson technician. |

| NOTICE |                                                                                             |
|--------|---------------------------------------------------------------------------------------------|
| i      | When returning printed circuit boards, make sure to enclose them in an anti-static package. |

| NOTICE |                                                                                                                                                                    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i      | Connectors may not be keyed and wires may not be color-coded.<br>Therefore, when disconnecting cables and wires, label them so you<br>can reconnect them properly. |
#### NOTICE



To prevent circuit damage from electrostatic discharge, always service the power supply on a static-dissipative surface, while wearing a properly grounded wrist strap.

| NOTICE |                                                                                        |
|--------|----------------------------------------------------------------------------------------|
| i      | When the battery is worn out, dispose it under the ordinance of each local government. |

### 9.2 DCX F-EIP Power Supply Preventive Maintenance

The following preventive measures help assure long term operation of your Branson DCX F-EIP Power Supply equipment.

#### 9.2.1 Periodically Clean the Equipment



Air is continuously drawn into the power supply. Periodically disconnect the unit from power, remove the cover and vacuum out any accumulated dust and debris. Remove material adhering to:

- The fan blades and motor
- Power supply heat sink cooling fins
- Transformers
- Circuit boards
- Cooling intake vents
- Exhaust ports

External covers may be cleaned with a damp sponge or cloth using a solution of mild soap and water. Do not allow cleaning solution to enter the unit.

To prevent rust in areas of high humidity, exposed steel surfaces, may require a very light film of rust preventing oil, such as WD-40 <sup>®</sup> \*.

\* WD-40 is a registered trademark of WD-40 Manufacturing Company.

# Branson

#### 9.2.2 Recondition the Stack (Converter, Booster, and Horn)



Welding system components work most efficiently when the converter-booster-horn stack mating surfaces are flat, in solid contact, and free from fretting corrosion. Poor contact between mating surfaces wastes power output, makes tuning difficult, increases noise and heat, and may cause damage to the converter.

For standard 20 kHz and 30 kHz products, a Branson Mylar polyester film washer should be installed between the horn and booster, and horn and converter. Replace the washer if torn or perforated. Stacks using Mylar plastic film washers should be inspected every three months.

Stacks used with silicone grease, as with certain 20 kHz, 30 kHz and all 40 kHz products, should be periodically reconditioned to eliminate fretting corrosion. A stack using silicone grease should be inspected every two weeks for corrosion. When experience is gained for specific stacks, the inspection interval can be adjusted to a longer or shorter period as required.

#### Stack Reconditioning Procedure

To recondition stack mating surfaces, take the following steps:

| Table 9.1 | Stack | Reconditioning | Procedure |
|-----------|-------|----------------|-----------|
|           |       |                |           |

| Step | Action                                                                                                                                                                                                                                                                                          |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Disassemble the converter-booster-horn stack and wipe the mating surfaces with a clean cloth or paper towel.                                                                                                                                                                                    |
| 2    | Examine all mating surfaces. If any mating surface shows corrosion or a hard, dark deposit, recondition it.                                                                                                                                                                                     |
| 3    | If necessary, remove the threaded stud from the part.                                                                                                                                                                                                                                           |
| 4    | Tape a clean sheet of #400 (or finer) grit emery cloth to a clean, smooth, flat<br>surface (such as a sheet of plate glass), as in Figure 9.1 Reconditioning<br>Stack Mating Surfaces.                                                                                                          |
| 5    | Place the interface surface on the emery cloth. Grasp the part at the lower<br>end, with your thumb over the spanner-wrench hole, and lap the part in a<br>straight line across the emery cloth. Do not apply downward pressure — the<br>weight of the part alone provides sufficient pressure. |
| 6    | Lap the part, two or three times, in the same direction against the emery cloth. (See Figure 9.1 Reconditioning Stack Mating Surfaces.)                                                                                                                                                         |
| 7    | Rotate the part 120 degrees, placing your thumb over the spanner-wrench hole, and repeat the lapping procedure in step 6.                                                                                                                                                                       |
| 8    | Rotate the part another 120 degrees to the next spanner-wrench hole, and repeat the lapping procedure in step 6.                                                                                                                                                                                |
| 9    | Re-examine the mating surface. If necessary, repeat steps 2-5 until you remove most of the contaminant. Remember, this should not require more than two to three complete rotations for an aluminum horn or booster; a titanium component may require more rotations.                           |
|      | Before re-inserting a threaded stud in an aluminum booster or horn:                                                                                                                                                                                                                             |
| 10   | Using a file card or wire brush, clean any aluminum bits from the knurled end of the stud.                                                                                                                                                                                                      |
|      | Using a clean cloth or towel, clean the threaded hole.                                                                                                                                                                                                                                          |
|      | Examine the knurled end of the stud. If worn, replace the stud. Also, examine the stud and threaded hole for stripped threads.                                                                                                                                                                  |
|      | NOTICE<br>Threaded studs cannot be reused in titanium horns or boosters. Replace all<br>studs in these components.                                                                                                                                                                              |
| 11   | Assemble and install the stack.                                                                                                                                                                                                                                                                 |

#### Figure 9.1 Reconditioning Stack Mating Surfaces



 Table 9.2
 Reconditioning Stack Mating Surfaces

| Item | Description      |
|------|------------------|
| 1    | Таре             |
| 2    | #400 Emery Cloth |

#### 9.2.3 Stack Torque Values

Table 9.3Stack Torque Values

| Frequency | Torque             |
|-----------|--------------------|
| 20 kHz    | 220 in lb (25 N m) |
| 30 kHz    | 185 in lb (21 N m) |
| 40 kHz    | 95 in lb (11 N m)  |

## For a 20 kHz System

| Table 9.4Stack Reassembly for a 20 kHz | System |
|----------------------------------------|--------|
|----------------------------------------|--------|

| Step | Action                                                                                                                                                                       |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Clean the mating surfaces of the converter, booster, and horn. Remove any foreign material from the threaded holes.                                                          |
| 2    | Install the threaded stud into the top of the booster. Torque to 450 in lb (50.84 N·m). If the stud is dry, apply 1 or 2 drops of a light lubricating oil before installing. |
| 3    | Install the threaded stud into the top of the horn. Torque to 450 in lb (50.84 N·m). If the stud is dry, apply 1 or 2 drops of a light lubricating oil before installing.    |
| 4    | Install a single Mylar plastic film washer (matching the size of the washer to the stud) to each interface.                                                                  |
| 5    | Assemble the converter to the booster and the booster to the horn.                                                                                                           |
| 6    | Torque to 220 in lb (24.85 N·m) at each interface.                                                                                                                           |

### For a 30 kHz System

| Table 9.5 | Stack Reassembly for a 30 kHz System                                                                                                                                                                 |  |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Step      | Action                                                                                                                                                                                               |  |  |
| 1         | Clean the mating surfaces of the converter, booster, and horn. Remove any foreign material from the threaded holes.                                                                                  |  |  |
| 2         | Install the threaded stud into the top of the booster. Torque to 290 in lb $(32.76 \text{ N} \cdot \text{m})$ . If the stud is dry, apply 1 or 2 drops of a light lubricating oil before installing. |  |  |
| 3         | Install the threaded stud into the top of the horn. Torque to 290 in lb (32.76 N·m). If the stud is dry, apply 1 or 2 drops of a light lubricating oil before installing.                            |  |  |
| 4         | Install a single Mylar plastic film washer (matching the size of the washer to the stud) to each interface.                                                                                          |  |  |
| 5         | Assemble the converter to the booster and the booster to the horn.                                                                                                                                   |  |  |
| 6         | Torque to 185 in lb (21 N·m) at each interface.                                                                                                                                                      |  |  |
|           |                                                                                                                                                                                                      |  |  |

### For a 40 kHz System

| Step | Action                                                                                                                                                                          |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Clean the mating surfaces of the converter, booster, and horn. Remove any foreign material from the threaded holes.                                                             |
| 2    | Apply a drop of Loctite ${\ensuremath{\mathbb R}}^*$ 290 threadlocker (or equivalent) to the studs for the booster and horn.                                                    |
| 3    | Install the threaded stud into the top of the booster. Torque to 70 in lb (7.91 N·m). Remove excess Loctite 290 threadlocker from the booster face and let cure for 30 minutes. |
| 4    | Install the threaded stud into the top of the horn. Torque to 70 in lb (7.91 N·m). Remove excess Loctite 290 threadlocker from the horn face and let cure for 30 minutes.       |
| 5    | Coat each interface surface with a thin film of silicon grease - but do not apply silicon grease to a threaded stud or tip.                                                     |
| 6    | Torque to 95 in lb (10.73 N·m) at each interface.                                                                                                                               |

| Table 9.6 | Stack Reassembly for a 40 kHz System |
|-----------|--------------------------------------|
|-----------|--------------------------------------|

\* Loctite is a registered trademark of Henkel Corporation, U.S.A.

#### 9.2.4 Stud Torque Values

| Table 9.7 | Stud Torque Values |
|-----------|--------------------|
|-----------|--------------------|

| Used on | Stud Size              | Torque               | EDP #        |
|---------|------------------------|----------------------|--------------|
| 20 kHz  | 1/2 in x 20 x 1-1/4 in | 450 in lb 50.84 N m  | 100-098-370  |
|         | 1/2 in x 20 x 1-1/2 in | 430 mmb, 30.84 mm    | 100-098-123  |
| 30 kHz  | 3/8 in x 24 x 1 in     | 290 in Ib, 32.76 N m | 100-298-170R |
| 40 kHz* | M8 x 1.25              | 70 in·lb, 7.91 N·m   | 100-098-790  |

\* Add a drop of Loctite 290 threadlocker to the stud. Torque and let cure for 30 minutes before using.

## 9.3 Recommended Spare Stock

This section provides lists of replacement parts, system cables, and suggested spares.

#### 9.3.1 System Cables

You can order the following cables:

| Table 9.8 | DCX F-FIP | Power | Supply | System | Cables |
|-----------|-----------|-------|--------|--------|--------|
|           | DCA F-EIF | FUWEI | Suppry | System | Capies |

| P/N         | Description                                       |
|-------------|---------------------------------------------------|
| 100-240-383 | Cable, RF 8 ft (2.5 m)                            |
| 100-240-384 | Cable, RF 15 ft (4.5 m)                           |
| 100-240-385 | Cable, RF 25 ft (7.5 m)                           |
| 100-240-387 | Cable, RF right angle 8 ft (2.5 m)                |
| 100-240-388 | Cable, RF right angle 15 ft (4.5 m)               |
| 100-240-389 | Cable, RF right angle 25 ft (7.5 m)               |
| 100-240-391 | Cable, RF adaptor for CR20 converter 3 ft (0.9 m) |
| 100-240-392 | Cable, User I/O 25 ft (7.5 m)                     |
| 100-240-393 | Cable, User I/O 50 ft (15 m)                      |
| 200-240-396 | Cable Ethernet Cat 5e 7 ft (2.1 m)                |
| 100-240-397 | Cable, RF adaptor for 4TR converter 3 ft (0.9 m)  |

#### 9.3.2 Suggested Spares

| Description                      | EDP#                                                                                                                       | 1-4 Units | 6-12 Units | 14+ Units |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|------------|-----------|
| Converter                        | Refer to <u>Table</u><br><u>9.10 Converters</u><br><u>Compatible with</u><br><u>the DCX F-EIP</u><br><u>Power Supply</u> . | 0         | 1          | 2         |
| Booster                          | Refer to <u>Table</u><br>9.11 DCX F-EIP<br>Power Supply<br>Compatible<br>Boosters.                                         | 0         | 1          | 2         |
| Horn                             | As Ordered                                                                                                                 | 1         | 1          | 2         |
| Studs                            | Refer to <u>Table</u><br><u>9.12 Other</u><br><u>Items used with</u><br><u>the DCX F-EIP</u><br><u>Power Supply</u> .      | 4         | 6          | 8         |
| Mylar Plastic Film<br>Washer Kit | Refer to <u>Table</u><br>9.12 Other<br><u>Items used with</u><br>the DCX F-EIP<br>Power Supply.                            | 1         | 1          | 1         |

#### Table 9.9Suggested Spares

T.

#### 9.3.3 Converters Compatible with the DCX F-EIP Power Supply

| Where used                         | Model                  | Connector                                | Part Number  |
|------------------------------------|------------------------|------------------------------------------|--------------|
|                                    | CR-20*                 | 3-pin MS connector                       | 101-135-060R |
|                                    | CR-20S                 | SHV connector                            | 125-135-115R |
|                                    | CR-20C                 | SHV connector with 3 ft<br>(0.9 m) cable | 159-135-210R |
| 20 kHz / 1250 W<br>20 kHz / 2500 W | CH-20S<br>(932 AH SPL) | SHV connector                            | 159-135-075R |
| 20 kHz / 4000 W                    | CH-20C                 | SHV connector with 3 ft<br>(0.9 m) cable | 159-135-211R |
|                                    | CS-20S                 | SHV connector                            | 159-135-138R |
|                                    | CS-20C                 | SHV connector with 3 ft<br>(0.9 m) cable | 159-135-209R |
|                                    | CR-30S                 | SHV connectors                           | 101-135-081R |
|                                    | CR-30C                 | SHV connector with 3 ft<br>(0.9 m) cable | 159-135-213R |
| 30 kHz / 750 W                     | CH-30S                 | SHV connector                            | 101-135-071R |
| 30 kHz / 1500 W                    | CH-30C                 | SHV connector with 3 ft<br>(0.9 m) cable | 159-135-214R |
|                                    | CS-30S                 | SHV connector                            | 159-135-110R |
|                                    | CS-30C                 | SHV connector with 3 ft<br>(0.9 m) cable | 159-135-212R |
|                                    | 4TR                    | 3-pin MS connector                       | 101-135-042R |
| 40 kHz / 400 \\/                   | 4TP                    | SHV connector (platen mount)             | 101-135-068R |
| 40 kHz / 800 W                     | CR-40S (4TH)           | SHV connector                            | 101-135-067R |
|                                    | CR-40C                 | SHV connector with 3 ft<br>(0.9 m) cable | 159-135-215R |

 Table 9.10
 Converters Compatible with the DCX F-EIP Power Supply

\* Requires a special adaptor cable. See <u>Table 9.8 DCX F-EIP Power Supply System Cables</u>.

#### 9.3.4 DCX F-EIP Power Supply Compatible Boosters

| Type of Booster              | Description              | Part Number |
|------------------------------|--------------------------|-------------|
|                              | Titanium, 1:0.6 (Purple) | 101-149-095 |
| Solid Mount                  | Titanium, 1:1 (Green)    | 101-149-096 |
| (1/2-20 horn stud)           | Titanium, 1:1.5 (Gold)   | 101-149-097 |
| 20 kHz                       | Titanium, 1:2 (Silver)   | 101-149-098 |
|                              | Titanium, 1:2.5 (Black)  | 101-149-099 |
|                              | Titanium, 1:0.6 (Purple) | 109-041-178 |
| Solid Mount                  | Titanium, 1:1 (Green)    | 109-041-177 |
| (M8 x 1.25 horn stud)        | Titanium, 1:1.5 (Gold)   | 109-041-176 |
| 40 kHz                       | Titanium, 1:2 (Silver)   | 109-041-175 |
|                              | Titanium, 1:2.5 (Black)  | 109-041-174 |
|                              | Aluminum, 1:0.6 (Purple) | 101-149-055 |
|                              | Aluminum, 1:1 (Green)    | 101-149-051 |
|                              | Aluminum, 1:1.5 (Gold)   | 101-149-052 |
| Standard Series              | Aluminum, 1:2 (Silver)   | 101-149-053 |
| (1/2-20 horn stud)           | Titanium, 1:0.6 (Purple) | 101-149-060 |
| 20 kHz                       | Titanium, 1:1 (Green)    | 101-149-056 |
|                              | Titanium, 1:1.5 (Gold)   | 101-149-057 |
|                              | Titanium, 1:2 (Silver)   | 101-149-058 |
|                              | Titanium, 1:2.5 (Black)  | 101-149-059 |
|                              | Titanium, 1:2.5 (Black)  | 101-149-103 |
| Standard Series              | Titanium, 1:2 (Silver)   | 101-149-104 |
| (3/8-24 norn stud)<br>30 kHz | Titanium, 1:1.5 (Gold)   | 101-149-105 |
| ου κηζ                       | Titanium, 1:1 (Green)    | 101-149-106 |

 Table 9.11
 DCX F-EIP Power Supply Compatible Boosters

| Type of Booster       | Description              | Part Number  |
|-----------------------|--------------------------|--------------|
|                       | Aluminum, 1:0.6 (Purple) | 101-149-087  |
|                       | Aluminum, 1:1 (Green)    | 101-149-079  |
|                       | Aluminum, 1:1.5 (Gold)   | 101-149-080  |
| Standard Series       | Aluminum, 1:2 (Silver)   | 101-149-081R |
| (M8 x 1.25 horn stud) | Aluminum, 1:2.5 (Black)  | 101-149-082  |
| 40 kHz                | Titanium, 1:1 (Green)    | 101-149-085  |
|                       | Titanium, 1:1.5 (Gold)   | 101-149-086  |
|                       | Titanium, 1:2 (Silver)   | 101-149-083  |
|                       | Titanium, 1:2.5 (Black)  | 101-149-084  |

#### Table 9.11 DCX F-EIP Power Supply Compatible Boosters

#### 9.3.5 Other I tems used with the DCX F-EIP Power Supply

| Product                    | Description                                         | Part No.     |
|----------------------------|-----------------------------------------------------|--------------|
| Silicone grease            | For use with 40 kHz systems                         | 101-053-002  |
|                            | Kit, 10 each (1/2 in. and 3/8 in.)                  | 100-063-357  |
| (for 20 kHz systems)       | Kit, 150 each (1/2 in.)                             | 100-063-471  |
| (IOF 20 KHZ Systems)       | Kit, 150 each (3/8 in.)                             | 100-063-472  |
| Mylar Plastic Film Washers | Kit, 10 each (3/8 in.)                              | 100-063-632  |
| (for 30 kHz systems)       | Kit, 150 each (3/8 in)                              | 100-063-712  |
|                            | 20 kHz<br>(spanner wrench and 10 pc washer kit)     | 101-063-208R |
| Tool Kit                   | 30 kHz<br>(spanner wrench and 10 pc washer kit)     | 101-063-636R |
|                            | 40 kHz<br>(spanner wrench and silicone grease)      | 101-063-176R |
|                            | 20 kHz                                              | 101-118-039  |
| Spanner wrench             | 30 kHz                                              | 201-118-033  |
|                            | 40 kHz                                              | 201-118-024  |
|                            | 1/2-20 x 1-1/4 (titanium horns)                     | 100-098-370  |
| Stude                      | 1/2-20 x 1-1/2<br>(aluminum horns, 20 kHz boosters) | 100-098-123  |
| Studs                      | 3/8-24 x 1<br>(30 kHz titanium horns and boosters)  | 100-298-170  |
|                            | M-8 x 1.25 (40 kHz horns and boosters)              | 100-098-790  |
|                            | For small size units<br>(400 W, 750 W, and 800 W)   | 101-063-936  |
| Fan Filter*                | For medium size units<br>(1250 W, and 1500 W)       | 101-063-935  |
|                            | For large size units<br>(2500 W, and 4000 W)        | 101-063-934  |
| Connector Block            | Detachable connector block                          | 200-029-1081 |
| Top Mounting Plate         | Top mounting plate for vertical units.              | 100-079-462  |
| Bottom Mounting Plate      | Bottom mounting plate for vertical units.           | 100-079-463  |

 Table 9.12
 Other Items used with the DCX F-EIP Power Supply

\*When using a fan filter on a DCX F-EIP Power Supply, the maximum output power must be derated by 10%.

# Branson

### 9.4 Circuit Diagram





## 9.5 Troubleshooting

If you have a problem operating the DCX F-EIP Power Supply, take the following steps:

| Step | Action                                                                                                                                              |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Make sure the converter-booster-horn stack is properly assembled and installed.                                                                     |
| 2    | For instructions on reconditioning stack component surfaces, refer to <u>9.2.2</u><br><u>Recondition the Stack (Converter, Booster, and Horn)</u> . |
| 3    | If you need additional help, call your local Branson representative, refer to <u>1.4 How to Contact Branson</u> .                                   |

| NOTICE |                                                                                                                                                                                                                                                                          |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i      | DCX F-EIP Power Supply should be serviced only by qualified<br>technicians using Branson-approved test and repair equipment,<br>repair procedures, and replacement parts. Unauthorized attempts at<br>repair or modification of the power supply will void the warranty. |

#### 9.5.1 Common Electrical Problems

#### NOTICE



If the circuit breaker fails more than once, this usually indicates that another component has failed. Continue troubleshooting other components.

#### Table 9.14 Troubleshooting Common Electrical Problems

| Problem                                                                                       | Check                                             | Solution                                             |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|
| Main circuit breaker trips<br>when plugging the power<br>supply into an electrical<br>outlet. | Inspect line connection cables.                   | If failed, replace.                                  |
| Main circuit breaker trips during weld cycle.                                                 | Check current rating of the main circuit breaker. | If failed, replace.                                  |
| Main circuit breaker fails<br>during power up.                                                | Check main circuit breaker current rating.        | If incompatible,<br>replace main circuit<br>breaker. |
| When touching a component                                                                     | Ensure the Ground cable is connected properly.    | N/A                                                  |
| a slight electrical shock.                                                                    | Inspect the line cables.                          | If failed, repair or replace.                        |
| Fan does not operate when is<br>tested on the Diagnostic User<br>I/O Web Page.                | Fan motor has failed.                             | Return for repair.                                   |

#### 9.5.2 Ultrasonic Power Problems

| Problem                                                                           | Check                                                                  | Solution                                                                 |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Ultrasonic power delivered<br>to horn; no indication on<br>bar graph.             | Check connector cables, replace if failed.                             | Replace defective cables.                                                |
|                                                                                   | Test power supply.                                                     | See <u>7.6 Ultrasonics Test</u><br><u>Procedure</u> .                    |
| No ultrasonic power<br>generated when Test key<br>pressed; no Alarm<br>indicator. | Failed or missing stack.                                               | Replace.                                                                 |
|                                                                                   | RF cable unplugged or failed;<br>replace if failed.                    | Plug in or replace.                                                      |
|                                                                                   | Test power supply ( <u>7.6</u><br><u>Ultrasonics Test Procedure</u> ). | If defective, send unit for repair.                                      |
| Unable to adjust amplitude using the front panel keypad.                          | Register setting configured to<br>"External Amplitude Control"         | Reset if required, See<br>7.4 Configuring the<br>Power Supply Registers. |
|                                                                                   | User I/O cable                                                         | Repair or replace.                                                       |
| Unable to remote control.                                                         | Customer's switching device                                            | Test/inspect/repair/<br>replace.                                         |

| Table 9.15 Troubleshooting Ultrasonic Power Pr | roblems |
|------------------------------------------------|---------|
|------------------------------------------------|---------|

#### 9.5.3 Weld Cycle Problems

| Problem                                                          | Check                                                                             | Solution                                                                                    |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                                  | Unsuitable horn or booster selection.                                             |                                                                                             |
|                                                                  | Plastic part material varies.                                                     |                                                                                             |
| Full ultrasonic power                                            | Mold release lubricant in weld area.                                              | Contact Branson Applications<br>Lab                                                         |
| not delivered.                                                   | Unsuitable joint design.                                                          |                                                                                             |
|                                                                  | Unsuitable or misaligned part fixture.                                            |                                                                                             |
|                                                                  | Amplitude setting                                                                 | Adjust if required.                                                                         |
| No ultrasonic power passed to horn.                              | Power supply overheating;<br>check fan and vents.                                 | If defective, send unit for repair.                                                         |
|                                                                  | Check converter-booster-<br>horn stack interface for<br>fretting corrosion.       | See <u>9.2.2 Recondition the</u><br><u>Stack (Converter, Booster, and</u><br><u>Horn)</u> . |
| Alarm indicator<br>illuminates when you<br>press the Test key or | Check for loose or failed horn converter or booster.                              | Tighton or replace as peoded                                                                |
| during the weld cycle.                                           | Check for loose or failed horn or booster stud.                                   | righten of replace as needed.                                                               |
|                                                                  | Failed RF cable                                                                   | Replace if failed.                                                                          |
| Excessively warm<br>horn, booster, and                           | Check converter-booster-<br>horn stack mating surfaces<br>for fretting corrosion. | See <u>9.2.2 Recondition the</u><br><u>Stack (Converter, Booster, and</u><br><u>Horn)</u> . |
| overloads.                                                       | Be certain proper cooling has been provided.                                      | If defective, send unit for repair.                                                         |

#### Table 9.16 Troubleshooting Weld Cycle Problems

#### 9.6 Cold Start Procedure

The power supply internal memory stores the system default settings and the registers that you set. It also provides temporary storage to support the power supply internal functions. A cold start clears and restores all the power supply settings back to the original factory defaults. It is not necessary to perform a cold start during normal operation and servicing, but you might find a cold start helpful when:

- You suspect the system is not operating properly
- You want to make a new setup
- Some system memory registers, such as Software version, will not be cleared by this Cold Start procedure

#### 9.6.1 Performing a Cold Start

| NOTICE |                                                                                                                                                                                                                                                                                                   |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i      | Using the Cold Start procedure will erase the current Amplitude<br>Setting, the IP address and some of the Registers that you set. Be<br>sure you have a record of your setup if you want to retain it or use<br>the system backup feature from the DCX F-EIP Power Supply Web<br>Page Interface. |

Table 9.17 Steps to Perform a Cold Start

| Step | Action                                                           |
|------|------------------------------------------------------------------|
| 1    | Turn off the power supply.                                       |
| 2    | Connect together pins 4 and 10 on the 26-pin User I/O Connector. |
| 3    | Turn on the power supply.                                        |
| 4    | After the power up sequence ends, turn off the power supply      |
| 5    | Disconnect pins 4 and 10 of the 26-pin on User I/O Connector.    |

## **Appendix A: Alarms**

| A.1  | Overload Alarms (Group 0)19            | 0 |
|------|----------------------------------------|---|
| A.2  | Cutoff Alarms (Group 1)                | 2 |
| A.3  | Setup Alarms (Group 2)                 | 3 |
| A.4  | Cycle Modified Alarms (Group 3)        | 4 |
| A.5  | Warning Alarms (Group 4)               | 5 |
| A.6  | Limit Alarms (Group 5)                 | 6 |
| A.7  | Equipment Failure Alarms (Group 6)     | 7 |
| A.8  | No Cycle Alarms (Group 7)19            | 9 |
| A.9  | Communication Failure Alarms (Group 8) | 0 |
| A.10 | Hardware Alarms (Group A)20            | 1 |
| A.11 | Non-Cycle Overload Alarms (Group B)    | 2 |
|      |                                        |   |

### A.1 Overload Alarms (Group 0)

This group includes all overload alarms that can occur during a weld cycle. This overload group will abort the weld cycle after stopping the sonics.

| Alarm<br>Code | Bit<br>Assignment | Alarm                                | Description                                                                                                                                                                                                      |
|---------------|-------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 001           | Bit01             | Weld Overload - Phase                | This alarm is generated in case of<br>weld phase is out of weld phase limit<br>for weld phase limit time period.                                                                                                 |
| 002           | Bit02             | Weld Overload -<br>Current           | This alarm is generated in case of weld current reaches to peak RF current limit of the system.                                                                                                                  |
| 003           | Bit03             | Weld Overload -<br>Frequency         | This alarm is generated in case of<br>weld frequency is out of weld<br>frequency low and high limit<br>window.                                                                                                   |
| 004           | BitO4             | Weld Overload - Power                | This alarm is generated in case of weld power reaches to peak RF power limit of the system.                                                                                                                      |
| 005           | Bit05             | Weld Overload -<br>Voltage           | This alarm is generated in case of<br>voltage during weld reaches to peak<br>RF voltage limit of the system.                                                                                                     |
| 006           | Bit06             | Weld Overload -<br>Temperature       | This alarm is generated in case of<br>temperature inside the system<br>(at the heat sink) reaches to 85° C<br>(±5° C).<br>NOTICE<br>Alarm cannot be cleared until the<br>temperature returns below<br>threshold. |
| 011           | Bit17             | Energy Brake Overload<br>- Phase     | This alarm is generated in case of<br>phase is out of weld phase limit for<br>weld phase limit time period during<br>energy breaking.                                                                            |
| 012           | Bit18             | Energy Brake Overload<br>- Current   | This alarm is generated in case of<br>weld current reaches to peak RF<br>current limit of the system during<br>energy breaking.                                                                                  |
| 013           | Bit19             | Energy Brake Overload<br>- Frequency | This alarm is generated in case of<br>weld frequency is out of weld<br>frequency low and high limit window<br>during energy breaking.                                                                            |
| 014           | Bit20             | Energy Brake Overload<br>- Power     | This alarm is generated in case of<br>weld power reaches to peak RF<br>power limit of the system during<br>energy breaking.                                                                                      |

 Table A.1
 Overload Alarms (Group 0)

#### Table A.1 Overload Alarms (Group 0)

| Alarm<br>Code | Bit<br>Assignment | Alarm                              | Description                                                                                                                            |
|---------------|-------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 015           | Bit21             | Energy Brake Overload<br>- Voltage | This alarm is generated in case of<br>voltage during weld reaches to peak<br>RF voltage limit of the system<br>during energy breaking. |

### A.2 Cutoff Alarms (Group 1)

This groups includes all cutoff alarms. Cutoff alarms are defined as a limit on a parameter, that when exceeded, will stop ultrasonics. The remaining portion of a weld cycle will continue.

| Alarm<br>Code | Bit<br>Assignment | Alarm                             | Description                                                                                                                                                                                                                                            |
|---------------|-------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 102           | Bit02             | Energy Cutoff                     | Energy cutoff alarm is generated if the<br>energy value during sonics on<br>exceeded to the set cutoff value during<br>a weld.                                                                                                                         |
| 103           | Bit03             | Power Cutoff                      | Power cutoff alarm is generated if the peak power value during sonics on exceeded to the set cutoff value.                                                                                                                                             |
| 104           | BitO4             | Custom Input1<br>Cutoff           | User can configure one of the user<br>analog input as a Custom Input1 and<br>also set a cutoff value from that input.<br>System will generate custom Input1<br>Cutoff alarm if the user input voltage<br>exceeds from the cutoff value set by<br>user. |
| 105           | Bit05             | Time Cutoff<br>(Maximum Time-out) | User can set a time cutoff for weld and<br>the alarm will be generated if the sonic<br>on time during weld exceeds to the set<br>value.                                                                                                                |
| 106           | Bit06             | Frequency Low<br>Cutoff           | User can set frequency low cutoff<br>(negative offset to be applied from<br>weld start frequency) for weld and the<br>alarm will be generated if the<br>frequency during weld goes below to<br>the weld start frequency minus set<br>value.            |
| 107           | Bit07             | Frequency High<br>Cutoff          | User can set frequency high cutoff<br>(positive offset to be applied from weld<br>start frequency) for weld and the<br>alarm will be generated if the<br>frequency during weld goes above to<br>the weld start frequency plus set<br>value.            |
| 108           | Bit08             | Custom Input2<br>Cutoff           | User can configure one of the user<br>analog input as a Custom Input2 and<br>also set a cutoff value from that input.<br>System will generate Custom Input2<br>cutoff alarm if the user input voltage<br>exceeds from the cutoff value set by<br>user. |

 Table A.2
 Cutoff Alarms (Group 1)

### A.3 Setup Alarms (Group 2)

This group includes all alarms that can occur during setup.

| Table A.3         Cycle Modified Alarms (Group | 2) | ) |
|------------------------------------------------|----|---|
|------------------------------------------------|----|---|

| Alarm<br>Code | Bit<br>Assignment | Alarm          | Description                            |
|---------------|-------------------|----------------|----------------------------------------|
| 203           | Bit02             | Invalid Preset | Recalling invalid preset. Preset > 32. |

# Branson

### A.4 Cycle Modified Alarms (Group 3)

Cycle modified alarms cause the cycle to be modified from the intended parameters. This can be caused by the user or equipment conditions changing. This group of alarms will always abort the cycle.

| Alarm<br>Code | Bit<br>Assignment | Alarm                               | Description                                                                                                                                                                                               |
|---------------|-------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 301           | Bit01             | Trigger Lost During<br>Weld Or Hold | This alarm is generated during a<br>weld cycle in case actuator is<br>present and trigger input is lost<br>before completing the weld (in case<br>of time, energy, peak power and<br>ground detect mode). |
| 302           | Bit02             | Cycle Aborted Via User<br>I/O       | This alarm is generated if user<br>aborts the cycle using cycle abort<br>user input.                                                                                                                      |

 Table A.4
 Cycle Modified Alarms (Group 3)

### A.5 Warning Alarms (Group 4)

Warnings occur when a condition is happening that may have been unexpected. This group of alarms does not abort the cycle. This group includes overloads during afterburst because they do not abort the cycle.

| Alarm<br>Code | Bit<br>Assignment | Alarm                                | Description                                                                                                                                                     |
|---------------|-------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 404           | Bit04             | Amplitude Step Not<br>Reached        | This alarm is generated if<br>Amplitude Stepping is ON but weld<br>cycle finishes before stepping take<br>places.                                               |
| 405           | Bit05             | Sonics Disabled Via<br>User I/O      | This alarm indicates the user has<br>enabled an input pin as "Sonics<br>Disable" and has run a cycle with<br>this input active.                                 |
| 411           | Bit17             | Afterburst Overload -<br>Phase       | This alarm is generated in case of<br>afterburst phase is out of Weld<br>Phase limit for Weld Phase limit<br>time period.                                       |
| 412           | Bit18             | Afterburst Overload -<br>Current     | This Alarm is generated in case of<br>weld current reaches to peak RF<br>current limit of the system during<br>afterburst.                                      |
| 413           | Bit19             | Afterburst Overload -<br>Frequency   | This alarm is generated in case of<br>Weld Frequency is out of Weld<br>Frequency Low and High limit<br>window during afterburst.                                |
| 414           | Bit20             | Afterburst Overload -<br>Power       | This alarm is generated in case of<br>weld power reaches to peak RF<br>power limit of the system during<br>afterburst.                                          |
| 415           | Bit21             | Afterburst Overload -<br>Voltage     | This alarm is generated in case of<br>weld voltage reaches to peak RF<br>voltage limit of the system during<br>afterburst.                                      |
| 416           | Bit22             | Afterburst Overload -<br>Temperature | The internal heat sink temperature<br>is greater than allowed.<br><b>NOTICE</b><br>Alarm cannot be cleared until the<br>temperature returns below<br>threshold. |

|           |         | A 1    | (O 1)     |
|-----------|---------|--------|-----------|
| Table A.5 | warning | Alarms | (Group 4) |



### A.6 Limit Alarms (Group 5)

Limits will be reported at the end of the weld, but, unlike cutoffs, will not stop the sonics or abort the cycle.

| Alarm<br>Code | Bit<br>Assignment | Alarm                | Description                                                                                                                |
|---------------|-------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------|
| 503           | BitO3             | Power - Minus Limit  | This alarm is generated at the end<br>of the cycle in case that Weld peak<br>power is lower than the Power<br>Minus limit. |
| 504           | BitO4             | Power - Plus Limit   | This alarm is generated at the end<br>of the cycle in case that Weld peak<br>power is bigger than the Power Plus<br>limit. |
| 505           | Bit05             | Time - Minus Limit   | This alarm is generated at the end<br>of the cycle in case that Weld time<br>is lower than the Time Minus limit.           |
| 506           | Bit06             | Time - Plus Limit    | This alarm is generated at the end<br>of the cycle in case that Weld time<br>is bigger than the time Plus limit.           |
| 507           | Bit07             | Energy - Minus Limit | This alarm is generated at the end<br>of the cycle in case that Weld<br>energy is lower than the energy<br>Minus limit.    |
| 508           | Bit08             | Energy - Plus Limit  | This alarm is generated at the end<br>of the cycle in case that Weld<br>energy is bigger than the energy<br>Plus limit.    |

**Table A.6**Limit Alarms (Group 5)

## Branson

### A.7 Equipment Failure Alarms (Group 6)

Equipment alarms are caused by user equipment malfunction. These alarms occur before a cycle starts and therefore, will prevent a cycle from starting until the malfunction is corrected.

| NOTICE    |                                                                  |
|-----------|------------------------------------------------------------------|
| <b>()</b> | Alarm message will not reset until the malfunction is corrected. |

 Table A.7
 Equipment Failure Alarms (Group 6)

| Alarm<br>Code | Bit<br>Assignment | Alarm                              | Description                                                                                                                                                                                         |
|---------------|-------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 601           | BitO1             | Start Input Still Active           | This alarm is generated if External<br>Start/Cycle Start/Trigger signal is<br>active for more than 4 seconds<br>after finishing the weld or while<br>system is waiting to come into<br>ready state. |
| 602           | Bit02             | Trigger Active While<br>ULS Active | This alarm is generated any time if<br>Trigger and ULS both becomes<br>active.                                                                                                                      |
| 603           | BitO3             | Trigger Active In<br>Ready         | This alarm is generated if Trigger<br>signal becomes active while system<br>is in ready state and actuator is<br>present.                                                                           |
| 604           | BitO4             | ULS Not Active In<br>Ready         | This alarm is generated if actuator<br>is present and ULS is not active<br>while system is already in ready<br>state.                                                                               |
| 605           | Bit05             | Ground Detect Active<br>In Ready   | This alarm is generated if ground<br>detect signal becomes active while<br>system is in ready state.                                                                                                |
| 607           | Bit07             | Cable Failure -<br>User I/O        | The cable detect user I/O feature<br>has been enabled and detected that<br>the assigned pin does not have the<br>voltage applied.                                                                   |
| 608           | Bit08             | Field Bus Removed                  | Communication between the<br>internal field bus card and the<br>internal weld controller has failed.                                                                                                |
| 609           | Bit09             | Start Input Lost                   | This alarm is generated when<br>source of cycle start is removed<br>before Trigger comes.                                                                                                           |



| Alarm<br>Code | Bit<br>Assignment | Alarm                     | Description                                                                                                                                                                                                                                                                |
|---------------|-------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 610           | Bit16             | Cycle Abort In Ready      | This alarm is generated if Cycle<br>Abort signal becomes active while<br>system is in ready state.                                                                                                                                                                         |
| 611           | Bit17             | ULS Time Out              | This alarm is generated if Actuator<br>is present and ULS does not<br>become active with a time-out at<br>the end of the cycle.                                                                                                                                            |
| 612           | Bit18             | ULS Active During<br>Weld | This alarm is generated if System is<br>waiting for TRS and ULS becomes<br>active. After TRS is active and<br>system jumps to next state of cycle<br>this alarm is generated when ULS<br>becomes active during cycle along<br>with "TRS active while ULS Active"<br>alarm. |

| Table A.7 | Equipment Failure Alarms | Group  | 6) |
|-----------|--------------------------|--------|----|
|           | Equipment randre raarme  | Coroap | ς, |

#### A.8 No Cycle Alarms (Group 7)

No cycle alarms are caused by possible mechanical setup errors or user errors. These are usually time out errors because an expected input did not occur in time. They will prevent a cycle from continuing. So although a cycle may have started, the cycle will be aborted.

| Alarm<br>Code | Bit<br>Assignment | Alarm                                        | Description                                                                                                                                                       |
|---------------|-------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 701           | Bit01             | ULS Time-Out<br>(Start Of Cycle)             | A cycle start has been received but<br>the upper limit switch has not gone<br>inactive within the time-out<br>specified by the system.                            |
| 702           | Bit02             | Trigger Time-Out                             | A cycle has been started, but the trigger input has not gone active within the time-out specified by the system.                                                  |
| 703           | Bit03             | External Sonics Delay<br>Time-Out (User I/O) | The system is waiting for an<br>external user defined input (if<br>configured), but has not received<br>the input within the time-out<br>specified by the system. |
| 704           | BitO4             | Interlock Not In Place<br>(User I/O)         | The system is waiting for a valid<br>status from a user defined Interlock<br>input (if configured), but the input<br>is not active at the time of Cycle<br>start. |
| 705           | Bit05             | RF Switch Feedback<br>Failure                | A feedback signal from the RF<br>switch not was not received within<br>the time specified by the user.                                                            |
| 706           | Bit06             | Part Not In Place<br>(User I/O)              | The system is waiting for an external user defined input, but the input is not active at the Cycle Start.                                                         |
| 707           | Bit07             | Stack Number Not<br>Valid For RF Switching   | An invalid horn number is being<br>requested from the preset. Any<br>values outside the range of 16 horn<br>numbers will cause an alarm.                          |

 Table A.8
 No Cycle Alarms (Group 7)

### A.9 Communication Failure Alarms (Group 8)

This group handles any communication issue that occur between processors. This is generally the result of noisy environments or other conditions that interrupt communications. Physical cable failures will be included in the Hardware Failure group. Because data cannot be transmitted between internal hardware, the cycle will be aborted.

| NOTICE |                                                                  |
|--------|------------------------------------------------------------------|
| i      | Alarm message will not reset until the malfunction is corrected. |

| Alarm<br>Code | Bit<br>Assignment | Alarm                             | Description                                                                                                                                                                                                                                                                                                |
|---------------|-------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 801           | Bit01             | Modbus<br>Communication Failure   | Internal communication failure.                                                                                                                                                                                                                                                                            |
| 802           | Bit02             | LCD Communication<br>Failure      | Communication between the LCD<br>user interface and the internal weld<br>controller has failed.                                                                                                                                                                                                            |
| 803           | Bit03             | Fieldbus<br>Communication Failure | The field bus was detected at<br>power on, but is no longer<br>responding. Either the cable has<br>been removed or the field bus<br>master has stop working. If the<br>system is powered down and field<br>bus is not detected at power up,<br>then the system can still be used<br>without the field bus. |

| Table A.9 | Communication | Failure Alarms     | (Group 8 | 8) |
|-----------|---------------|--------------------|----------|----|
|           | oonnannoathon | i anon o i narrito | (0.00.0. | ~, |

### A.10 Hardware Alarms (Group A)

This group of alarms will deal with internal equipment failures. This will generally be equipment that is supplied by Branson as part in the internal workings of the power supply. Cycles cannot be started if there is a Hardware alarm. If a cycle is in process when the alarm is detected then the cycle is aborted.

| NOTICE |                                                                  |
|--------|------------------------------------------------------------------|
| i      | Alarm message will not reset until the malfunction is corrected. |

| Alarm<br>Code | Bit<br>Assignment | Alarm                             | Description                                                                                                                                                 |
|---------------|-------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A01           | Bit01             | LCD NOVRAM Failure                | LCD NOVRAM is not working.                                                                                                                                  |
| A02           | Bit02             | FRAM or NOVRAM<br>Failure         | FRAM or NOVRAM is not working.                                                                                                                              |
| A03           | Bit03             | SD RAM Failure                    | SD RAM is not working.                                                                                                                                      |
| A04           | BitO4             | Connection Failure -<br>WC to LCD | The physical connection between<br>the WC board and LCD board is<br>missing or broken.                                                                      |
| A05           | Bit05             | Connection Failure -<br>WC to DCP | The physical connection between<br>the WC board and DCP board is<br>missing or broken.                                                                      |
|               |                   |                                   | The AC line voltage to the system is lost but the 24 V supply is still present.                                                                             |
| A06           | Bit06             | AC Line Voltage Lost              | After clearing the alarm, the system<br>will run a Seek, Scan, or only power<br>up, depending on the selected<br>action in the Seek/Power Up Setup<br>menu. |
|               |                   |                                   | ES bit activated, check ZSW1 Low<br>Byte                                                                                                                    |

 Table A.10
 Hardware Alarms (Group A)

### A.11 Non-Cycle Overload Alarms (Group B)

This group deals with overloads that occur outside of a weld cycle. By definition a weld is not in process so the weld cycle counter is not affected and the weld is not aborted.

| Alarm<br>Code | Bit<br>Assignment | Alarm                          | Description                                                                                                                                                                                                                  |
|---------------|-------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b01           | Bit01             | Seek Overload - Phase          | This alarm is generated in case of<br>phase during Seek reaches to peak<br>RF phase limit of the system.                                                                                                                     |
| b02           | Bit02             | Seek Overload -<br>Current     | This alarm is generated in case of<br>current during Seek reaches to<br>peak RF current limit of the system.                                                                                                                 |
| b03           | Bit03             | Seek Overload -<br>Frequency   | This alarm is generated in case of<br>Frequency during seek is out of<br>Seek Frequency Low and High limit<br>window.                                                                                                        |
| b04           | BitO4             | Seek Overload - Power          | This alarm is generated in case of<br>Power during seek reaches to peak<br>RF Power limit of the system.                                                                                                                     |
| b05           | Bit05             | Seek Overload -<br>Voltage     | This alarm is generated in case of<br>Voltage during seek reaches to<br>peak RF voltage limit of the system.                                                                                                                 |
| b06           | Bit06             | Seek Overload -<br>Temperature | This alarm is generated in case of<br>temperature inside the system<br>(at the heat sink) reaches to 85° C<br>(±5° C) during Seek.<br>NOTICE<br>Alarm cannot be cleared until the<br>temperature returns below<br>threshold. |
| b11           | Bit17             | Test Overload - Phase          | This alarm is generated in case of<br>phase during Test reaches to peak<br>RF phase limit of the system.                                                                                                                     |
| b12           | Bit18             | Test Overload - Current        | This alarm is generated in case of<br>current during Test reaches to peak<br>RF current limit of the system.                                                                                                                 |
| b13           | Bit19             | Test Overload -<br>Frequency   | This alarm is generated in case of<br>Frequency during seek is out of Test<br>Frequency Low and High limit<br>window.                                                                                                        |
| b14           | Bit20             | Test Overload - Power          | This alarm is generated in case of<br>Power during Test reaches to peak<br>RF Power limit of the system.                                                                                                                     |
| b15           | Bit21             | Test Overload - Voltage        | This Alarm is generated in case of<br>Voltage during Test reaches to peak<br>RF voltage limit of the system.                                                                                                                 |

 Table A.11
 Non-Cycle Overload Alarms (Group B)

| Table A.11 | Non-Cycle | <b>Overload Alarms</b> | (Group B) |
|------------|-----------|------------------------|-----------|
|------------|-----------|------------------------|-----------|

| Alarm<br>Code | Bit<br>Assignment | Alarm                          | Description                                                                                                                                                                                                                  |
|---------------|-------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b16           | Bit22             | Test Overload -<br>Temperature | This alarm is generated in case of<br>temperature inside the system<br>(at the heat sink) reaches to 85° C<br>(±5° C) during Test.<br>NOTICE<br>Alarm cannot be cleared until the<br>temperature returns below<br>threshold. |
### Appendix B: EtherNet/IP Commands

| B.1 | Parameter Set Class 100 (32 Instances)     |
|-----|--------------------------------------------|
| B.2 | Weld Data Class 101 (32 Instances) 209     |
| B.3 | Stack Parameter Class 102 (16 Instances)   |
| B.4 | Common Stack Parameters (16 Instances)     |
| B.5 | Stack Status Class 103 (16 Instances)      |
| B.6 | Alarm Data Class 104 (1 Instances)         |
| B.7 | System Information Class 105 (1 Instances) |
| B.8 | Other Information Class 112 (1 Instances)  |
| B.9 | Identity Object 1 (1 Instance)             |
|     |                                            |

### B.1 Parameter Set Class 100 (32 Instances)

Each instance refers to the preset number.

| Table B.1 | Parameter  | Set | Class |
|-----------|------------|-----|-------|
|           | raraniotor | 001 | 01000 |

| Attribute<br>ID | Name                                                                                                                               | Data<br>Type | Access  | Default | Min. | Max.  | Format    | Unit  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|---------|------|-------|-----------|-------|
| 1010            | Preset Name (Character 1)                                                                                                          | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1011            | Preset Name (Character 2)                                                                                                          | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1012            | Preset Name (Character 3)                                                                                                          | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1013            | Preset Name (Character 4)                                                                                                          | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1014            | Preset Name (Character 5)                                                                                                          | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1015            | Preset Name (Character 6)                                                                                                          | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1016            | Preset Name (Character 7)                                                                                                          | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1017            | Preset Name (Character 8)                                                                                                          | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1018            | Preset Name (Character 9)                                                                                                          | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1019            | Preset Name (Character 10)                                                                                                         | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1020            | Preset Name (Character 11)                                                                                                         | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1021            | Preset Name (Character 12)                                                                                                         | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1022            | Preset Name (Character 13)                                                                                                         | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1023            | Preset Name (Character 14)                                                                                                         | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1024            | Preset Name (Character 15)                                                                                                         | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1025            | Preset Name (Character 16)                                                                                                         | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1026            | Preset Name (Character 17)                                                                                                         | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1027            | Preset Name (Character 18)                                                                                                         | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1028            | Preset Name (Character 19)                                                                                                         | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1029            | Preset Name (Character 20)                                                                                                         | AINT8        | Get/Set | 64      | 32   | 128   | -         | -     |
| 1040            | Horn number assigned to a preset                                                                                                   | AUINT8       | Get/Set | 1       | 1    | 16    | -         | -     |
| 1060            | Weld Mode<br>(0=Continuous<br>1=Time<br>2=Energy<br>3=Peak Power<br>4=Ground Detect)                                               | AINT32       | Get/Set | 0       | 0    | 4     |           |       |
| 1061            | Time                                                                                                                               | AINT32       | Get/Set | 10      | 10   | 30000 |           | ms    |
| 1062            | Energy (Value should be<br>entered 10 times higher)                                                                                | AINT32       | Get/Set | 10      | 1    | 99990 |           | 0.1xJ |
| 1063            | Peak Power                                                                                                                         | AINT32       | Get/Set | 1       | 1    | 100   |           | %     |
| 1064            | Ground Detect Time                                                                                                                 | AINT32       | Get/Set | 1       | 0    | 500   |           | ms    |
| 1065            | Amplitude A                                                                                                                        | AINT32       | Get/Set | 100     | 10   | 100   |           | %     |
| 1066            | Amplitude B                                                                                                                        | AINT32       | Get/Set | 100     | 10   | 100   |           | %     |
| 1067            | Amplitude Profile Criterion<br>(0=Fix,<br>1=External analog in<br>2=Step@Time<br>3=Step@Energy<br>4=Step@Power<br>5=Step@External) | AINT32       | Get/Set | 0       | 0    | 5     | Selection | -     |

| Attribute<br>ID | Name                                                                         | Data<br>Type | Access  | Default         | Min.           | Max.            | Format    | Unit  |
|-----------------|------------------------------------------------------------------------------|--------------|---------|-----------------|----------------|-----------------|-----------|-------|
| 1068            | Amplitude Profile Time                                                       | AINT32       | Get/Set | 10              | 1              | 30000           |           | ms    |
| 1069            | Amplitude Profile Energy<br>(Value should be entered 10<br>times higher)     | AINT32       | Get/Set | 10              | 1              | 99990           |           | 0.1xJ |
| 1070            | Amplitude Profile Peak Power                                                 | AINT32       | Get/Set | 1               | 1              | 100             |           | %     |
| 1071            | Amplitude Start Ramp Time                                                    | AINT32       | Get/Set | 80              | 10             | 1000            |           | ms    |
| 1072            | Amplitude Profile Ramp Time                                                  | AINT32       | Get/Set | 80              | 10             | 1000            |           | ms    |
| 1073            | Frequency Store at End                                                       | AINT32       | Get/Set | 1               | 0              | 1               | Selection |       |
| 1074            | Frequency Offset                                                             | AINT32       | Get/Set | 0               | -500           | 500             |           | Hz    |
| 1075            | Hold time                                                                    | AINT32       | Get/Set | 10              | 10             | 30000           | 0=OFF     | ms    |
| 1076            | Energy Breaking                                                              | AINT32       | Get/Set | 1               | 0              | 1               | Selection |       |
| 1077            | EB Target Amplitude                                                          | AINT32       | Get/Set | 3               | 1              | 100             |           | %     |
| 1078            | EB Time                                                                      | AINT32       | Get/Set | 20              | 10             | 1000            |           | ms    |
| 1079            | After Burst                                                                  | AINT32       | Get/Set | 1               | 0              | 1               | Selection |       |
| 1080            | AB Amplitude                                                                 | AINT32       | Get/Set | 100             | 10             | 100             |           | %     |
| 1081            | AB Time                                                                      | AINT32       | Get/Set | 100             | 100            | 2000            |           | ms    |
| 1082            | AB Delay                                                                     | AINT32       | Get/Set | 100             | 100            | 2000            |           | ms    |
| 1084            | Scrub Amplitude                                                              | AINT32       | Get/Set | 100             | 10             | 100             |           | %     |
| 1086            | Time Error High (Cutoff)                                                     | AINT32       | Get/Set | 6000            | 10             | 30000           | 0=OFF     | ms    |
| 1087            | Energy Error High (Cutoff)<br>(Value should be entered 10<br>times higher)   | AINT32       | Get/Set | 1               | 1              | 99990           | 0=OFF     | 0.1xJ |
| 1088            | Peak Power Error High<br>(Cutoff)                                            | AINT32       | Get/Set | 10              | 1              | 100             | 0=OFF     | %     |
| 1089            | - Time Limit                                                                 | AINT32       | Get/Set | 10              | 10             | 30000           | 0=OFF     | ms    |
| 1090            | + Time Limit                                                                 | AINT32       | Get/Set | 30000           | 10             | 30000           | 0=OFF     | ms    |
| 1091            | - Energy Limit (Value should<br>be entered 10 times higher)                  | AINT32       | Get/Set | 1               | 1              | 99990           | 0=OFF     | 0.1xJ |
| 1092            | + Energy Limit (Value should<br>be entered 10 times higher)                  | AINT32       | Get/Set | 99990           | 1              | 99990           | 0=OFF     | 0.1xJ |
| 1093            | - Peak Power Limit                                                           | AINT32       | Get/Set | 1               | 1              | 100             | 0=OFF     | %     |
| 1094            | + Peak Power Limit                                                           | AINT32       | Get/Set | 100             | 1              | 100             | 0=OFF     | %     |
|                 | Fraguancy Law                                                                |              |         | 20 kHz:<br>500  | 20 kHz:<br>1   | 20 kHz:<br>500  |           |       |
| 1095            | (Cutoff Relative) (It depends<br>on the power supply<br>operating frequency) | AINT32       | Get/Set | 30 kHz:<br>750  | 30 kHz:<br>1   | 30 kHz:<br>750  | 0=OFF     | Hz    |
|                 | operating frequency                                                          |              |         | 40 kHz:<br>1000 | 40 kHz:<br>1   | 40 kHz:<br>1000 |           |       |
|                 |                                                                              |              |         | 20 kHz:<br>500  | 20 kHz:<br>500 | 20 kHz:<br>500  | 0=OFF     |       |
| 1096            | (Cutoff Relative) (It depends<br>on the power supply<br>operating frequency) | AINT32       | Get/Set | 30 kHz:<br>750  | 30 kHz:<br>1   | 30 kHz:<br>750  |           | Hz    |
|                 | operating inequency)                                                         |              |         | 40 kHz:<br>1000 | 40 kHz:<br>1   | 40 kHz:<br>1000 |           |       |

#### Table B.1 Parameter Set Class

### B.1.1 Common Services

| Table B.2 | Common Services |
|-----------|-----------------|

| Service Code | Service Name         |
|--------------|----------------------|
| 14           | Get_Attribute_Single |
| 16           | Set_Attribute_Single |

### B.2 Weld Data Class 101 (32 Instances)

The weld data for the preset number run.

| Table B.3 W | eld Data | Class |
|-------------|----------|-------|
|-------------|----------|-------|

| Attribute ID | Description                                                                    | Data Type | Access | Format | Unit  |
|--------------|--------------------------------------------------------------------------------|-----------|--------|--------|-------|
| 1210         | Preset Name (Character 1)                                                      | AINT8     | Get    | -      | -     |
| 1211         | Preset Name (Character 2)                                                      | AINT8     | Get    | -      | -     |
| 1212         | Preset Name (Character 3)                                                      | AINT8     | Get    | -      | -     |
| 1213         | Preset Name (Character 4)                                                      | AINT8     | Get    | -      | -     |
| 1214         | Preset Name (Character 5)                                                      | AINT8     | Get    | -      | -     |
| 1215         | Preset Name (Character 6)                                                      | AINT8     | Get    | -      | -     |
| 1216         | Preset Name (Character 7)                                                      | AINT8     | Get    | -      | -     |
| 1217         | Preset Name (Character 8)                                                      | AINT8     | Get    | -      | -     |
| 1218         | Preset Name (Character 9)                                                      | AINT8     | Get    | -      | -     |
| 1219         | Preset Name (Character 10)                                                     | AINT8     | Get    | -      | -     |
| 1220         | Preset Name (Character 11)                                                     | AINT8     | Get    | -      | -     |
| 1221         | Preset Name (Character 12)                                                     | AINT8     | Get    | -      | -     |
| 1222         | Preset Name (Character 13)                                                     | AINT8     | Get    | -      | -     |
| 1223         | Preset Name (Character 14)                                                     | AINT8     | Get    | -      | -     |
| 1224         | Preset Name (Character 15)                                                     | AINT8     | Get    | -      | -     |
| 1225         | Preset Name (Character 16)                                                     | AINT8     | Get    | -      | -     |
| 1226         | Preset Name (Character 17)                                                     | AINT8     | Get    | -      | -     |
| 1227         | Preset Name (Character 18)                                                     | AINT8     | Get    | -      | -     |
| 1228         | Preset Name (Character 19)                                                     | AINT8     | Get    | -      | -     |
| 1229         | Preset Name (Character 20)                                                     | AINT8     | Get    | -      | -     |
| 1240         | Horn #                                                                         | -         | -      | -      | -     |
| 1241         | Mode<br>(0=Continous<br>1=Time<br>2=Energy<br>3=Peak Power<br>4=Ground Detect) | -         | -      | -      | -     |
| 1306*        | Date (DD/MM/YY)                                                                | -         | -      | -      | -     |
| 1307**       | Time (SS:MM:HH)                                                                | -         | -      | -      | -     |
| 1308***      | Cycle Counter                                                                  | -         | -      | -      | -     |
| 1309-1357    | Same as Class 67 attributes 1630-1678                                          | -         | -      | -      | -     |
| 1360         | Weld Time                                                                      | AINT32    | Get    |        | ms    |
| 1361         | Hold Time                                                                      | AINT32    | Get    |        | ms    |
| 1362         | Energy                                                                         | AINT32    | Get    |        | 0.1 J |
| 1363         | Peak Power                                                                     | AINT32    | Get    |        | %     |
| 1364         | Average Power                                                                  | AINT32    | Get    |        | %     |
| 1365         | Average Amplitude 1                                                            | AINT32    | Get    |        | %     |
| 1366         | Average Amplitude 2                                                            | AINT32    | Get    |        | %     |

| Attribute ID | Description             | Data Type | Access | Format    | Unit     |
|--------------|-------------------------|-----------|--------|-----------|----------|
| 1367         | Recalled Res. Frequency | AINT32    | Get    |           | Hz       |
| 1368         | Start Frequency         | AINT32    | Get    |           | Hz       |
| 1369         | End Frequency           | AINT32    | Get    |           | Hz       |
| 1370         | Stored Frequency        | AINT32    | Get    |           | Hz       |
| 1371         | Res. Frequency OK       | AINT32    | Get    | Selection |          |
| 1372         | End Amplitude Set       | AINT32    | Get    |           | %        |
| 1373         | End Amplitude           | AINT32    | Get    |           | %        |
| 1374         | End PSV                 | AINT32    | Get    |           | %        |
| 1375         | End Power               | AINT32    | Get    |           | %        |
| 1376         | End Current             | AINT32    | Get    |           | %        |
| 1377         | End Phase               | AINT32    | Get    |           | deg. (°) |
| 1378         | End Temperature         | AINT32    | Get    |           | °C       |

#### Table B.3 Weld Data Class

\*(Date) It's given in the order: day, month, year - for example 180810

18 Hex = 24 decimal = day 08 Hex = 08 decimal = month 10 Hex = 16 decimal = year Date = 24/08/16 \*\*(Time) It's given in the order: seconds, minutes, hours - for example 371E0F 37 Hex = 55 decimal = seconds 1E Hex = 30 decimal = minutes 0F Hex = 15 decimal = hours Time = 15:30:55 \*\*\*ID 1308 is a 32-bit long command.

#### B.2.1 Common Services

Table B.4 Common Services

| Service Code | Service Name         |
|--------------|----------------------|
| 14           | Get_Attribute_Single |

## Branson

### B.3 Stack Parameter Class 102 (16 Instances)

There is one instance for each horn preset. Attributes 1460-1465 are for seek, and 1475 is for test.

| Table B.5 Stack | Parameter Class | (Seek Results) |
|-----------------|-----------------|----------------|
|-----------------|-----------------|----------------|

| Attribute<br>ID | Description                  | Data<br>Type | Access  | Default | Min. | Max. | Format | Unit |
|-----------------|------------------------------|--------------|---------|---------|------|------|--------|------|
| 1460            | Time                         | AINT32       | Get/Set | 500     | 10   | 1000 |        | ms   |
| 1462            | Amplitude Start Ramp<br>Time | AINT32       | Get/Set | 80      | 10   | 1000 |        | ms   |
| 1465            | Frequency Offset             | AINT32       | Get/Set | 0       | -500 | 500  |        | Hz   |

 Table B.6
 Stack Parameter Class (Test Results)

| Attribute<br>ID | Description    | Data<br>Type | Access  | Default | Min. | Max. | Format | Unit |
|-----------------|----------------|--------------|---------|---------|------|------|--------|------|
| 1475            | Test Amplitude | AINT32       | Get/Set | 100     | 10   | 100  | -      | %    |

### B.3.1 Common Service

| Service Code | Service Name         |
|--------------|----------------------|
| 14           | Get_Attribute_Single |
| 16           | Set_Attribute_Single |

### B.4 Common Stack Parameters (16 Instances)

| Attribute<br>ID | Description               | Data<br>Type | Access  | Default           | Min.              | Max.              | Format | Unit |
|-----------------|---------------------------|--------------|---------|-------------------|-------------------|-------------------|--------|------|
|                 |                           |              |         | 20 kHz:<br>19,950 | 20 kHz:<br>19,450 | 20 kHz:<br>20,450 | -      | Hz   |
| 1505            | Digital Tune<br>Frequency | AINT32       | Get/Set | 30 kHz:<br>30,000 | 30 kHz:<br>29,250 | 30 kHz:<br>30,750 | -      | Hz   |
|                 |                           |              |         | 40 kHz:<br>39,900 | 40 kHz:<br>38,900 | 40 kHz:<br>40,900 | -      | Hz   |

 Table B.8
 Common Stack Parameters

### B.5 Stack Status Class 103 (16 Instances)

The horn status for the horn preset number run. 1625-1694 are for seek, 1725-1794 are for test and 1825-1894 are for scan.

| Attribute ID | Name                                      | Data Type | Access | Format    | Unit     |
|--------------|-------------------------------------------|-----------|--------|-----------|----------|
| 1625*        | RTC, Date (DD/MM/YY)                      | -         | -      | -         | -        |
| 1626**       | RTC, Time (SS:MM:HH)                      | -         | -      | -         | -        |
| 1630         | OL - Overload Group 0 (bit 0-31)          | -         | -      | -         | -        |
| 1634         | CU - Cutoffs Group 1 (bit 0-31)           | -         | -      | -         | -        |
| 1638         | SE - Setup Group 2 (bit 0-31)             | -         | -      | -         | -        |
| 1642         | CM - Cycle Modified Group 3 (bit 0-31)    | -         | -      | -         | -        |
| 1646         | WA - Warnings Group 4 (bit 0-31)          | -         | -      | -         | -        |
| 1650         | LM - Limits Group 5 (bit 0-31)            | -         | -      | -         | -        |
| 1654         | EQ - Equipment Failure Group 6 (bit 0-31) | -         | -      | -         | -        |
| 1658         | NC - No Cycle Group 7 (bit 0-31)          | -         | -      | -         | -        |
| 1662         | CF - Comm. Failure Group 8 (bit 0-31)     | -         | -      | -         | -        |
| 1670         | HW - Hardware Group A (bit 0-31)          | -         | -      | -         | -        |
| 1674         | NO - No Cycle Overload Group B (bit 0-31) | -         | -      | -         | -        |
| 1678         | Error Reason                              | -         | -      | -         | -        |
| 1680         | Time                                      | AINT32    | Get    | -         | ms       |
| 1681         | Average Amplitude                         | AINT32    | Get    | -         | %        |
| 1682         | Recalled Digital Tune                     | AINT32    | Get    | -         | Hz       |
| 1683         | Start Frequency                           | AINT32    | Get    | -         | Hz       |
| 1684         | End Frequency                             | AINT32    | Get    | -         | Hz       |
| 1685         | Stored Frequency                          | AINT32    | Get    | -         | Hz       |
| 1686         | Res. Frequency OK                         | AINT32    | Get    | Selection |          |
| 1687         | End Amplitude Set                         | AINT32    | Get    | -         | %        |
| 1688         | End Amplitude                             | AINT32    | Get    | -         | %        |
| 1689         | End PSV                                   | AINT32    | Get    | -         | %        |
| 1690         | End Power                                 | AINT32    | Get    | -         | %        |
| 1691         | End Current                               | AINT32    | Get    | -         | %        |
| 1692         | End Phase                                 | AINT32    | Get    | -         | deg. (°) |
| 1693         | End Temperature                           | AINT32    | Get    | -         | °C       |
| 1694         | Reserved                                  | AINT32    | Get    | -         | -        |

| Table B 9 | Stack Status | Class ( | (Seek) |
|-----------|--------------|---------|--------|
|           | Juack Juanus | 01033   | JUUR   |

| Table B.10 Stack Status Cla | ss (Test) |
|-----------------------------|-----------|
|-----------------------------|-----------|

| Attribute ID | Name                       | Data Type | Access | Format | Unit |
|--------------|----------------------------|-----------|--------|--------|------|
| 1725-1778    | Same as 1625-1678 for test | -         | -      | -      | -    |
| 1780         | Time                       | AINT32    | Get    | -      | ms   |
| 1781         | Average Amplitude A        | AINT32    | Get    | -      | %    |

| Attribute ID | Name                    | Data Type | Access | Format    | Unit     |
|--------------|-------------------------|-----------|--------|-----------|----------|
| 1782         | Average Amplitude B     | AINT32    | Get    | -         | %        |
| 1783         | Recalled Res. Frequency | AINT32    | Get    | -         | Hz       |
| 1784         | Res. Frequency OK       | AINT32    | Get    | Selection | -        |
| 1785         | Start Frequency         | AINT32    | Get    | -         | Hz       |
| 1786         | End Frequency           | AINT32    | Get    | -         | Hz       |
| 1787         | End Amplitude Set       | AINT32    | Get    | -         | %        |
| 1788         | End Amplitude           | AINT32    | Get    | -         | %        |
| 1789         | End PSV                 | AINT32    | Get    | -         | %        |
| 1790         | End Power               | AINT32    | Get    | -         | %        |
| 1791         | End Current             | AINT32    | Get    | -         | %        |
| 1792         | End Phase               | AINT32    | Get    | -         | deg. (°) |
| 1793         | End Temperature         | AINT32    | Get    | -         | °C       |
| 1794         | Reserved                | AINT32    | Get    | -         | -        |

#### Table B.10 Stack Status Class (Test)

\*(Date) It's given in the order: day, month, year - for example 180810

18 Hex = 24 decimal = day

08 Hex = 08 decimal = month

10 Hex = 16 decimal = year

Date = 24/08/16

\*\*(Time) It's given in the order: seconds, minutes, hours - for example 371EOF

37 Hex = 55 decimal = seconds

1E Hex = 30 decimal = minutes

OF Hex = 15 decimal = hours

Time = 15:30:55

#### Table B.11 Stack Status Class (Scan)

| Attribute ID | Name                              | Data Type | Access | Format | Unit     |
|--------------|-----------------------------------|-----------|--------|--------|----------|
| 1825-1878    | Same as 1625-1678 except for scan | -         | -      | -      | -        |
| 1880         | Time                              | AINT32    | Get    | -      | ms       |
| 1881         | Start Frequency                   | AINT32    | Get    | -      | Hz       |
| 1882         | End Frequency                     | AINT32    | Get    | -      | Hz       |
| 1883         | End Amplitude                     | AINT32    | Get    | -      | %        |
| 1884         | End PSV                           | AINT32    | Get    | -      | %        |
| 1885         | End Power                         | AINT32    | Get    | -      | %        |
| 1886         | End Current                       | AINT32    | Get    | -      | %        |
| 1887         | End Phase                         | AINT32    | Get    | -      | deg. (°) |
| 1888         | End Temperature                   | AINT32    | Get    | -      | °C       |

### B.5.1 Common Services

| Table B.12 | Common Services |
|------------|-----------------|
|------------|-----------------|

| Service Code | Service Name         |
|--------------|----------------------|
| 14           | Get_Attribute_Single |

### B.6 Alarm Data Class 104 (1 Instances)

| Table B.13 | Alarm Data | Class |
|------------|------------|-------|

| Attribute ID | Name                                      | Data Type | Access | Format |
|--------------|-------------------------------------------|-----------|--------|--------|
| 200          | OL - Overload Group 0 (bit 0-31)          | UINT32    | Get    | OEPB   |
| 204          | CU - Cutoffs Group 1 (bit 0-31)           | UINT32    | Get    | OEPB   |
| 208          | SE - Setup Group 2 (bit 0-31)             | UINT32    | Get    | OEPB   |
| 212          | CM - Cycle Modified Group 3 (bit 0-31)    | UINT32    | Get    | OEPB   |
| 216          | WA - Warnings Group 4 (bit 0-31)          | UINT32    | Get    | OEPB   |
| 220          | LM - Limits Group 5 (bit 0-31)            | UINT32    | Get    | OEPB   |
| 224          | EQ - Equipment Failure Group 6 (bit 0-31) | UINT32    | Get    | OEPB   |
| 228          | NC - No Cycle Group 7 (bit 0-31)          | UINT32    | Get    | OEPB   |
| 232          | CF - Comm. Failure Group 8 (bit 0-31)     | UINT32    | Get    | OEPB   |
| 240          | HW - Hardware Group A (bit 0-31)          | UINT32    | Get    | OEPB   |
| 244          | NO - No Cycle Overload Group B (bit 0-31) | UINT32    | Get    | OEPB   |
| 245          | Reserved                                  | UINT32    | Get    | OEPB   |

### B.6.1 Common Services

| Service Code | Service Name         |
|--------------|----------------------|
| 14           | Get_Attribute_Single |

### B.7 System Information Class 105 (1 Instances)

| Attribute ID | Name             | Format |
|--------------|------------------|--------|
| 150          | PS Frequency     | Hz     |
| 151          | PS Wattage       | Watts  |
| 154          | PS Serial Number | -      |

#### Table B.15 System Information Class

### B.7.1 Common Services

Table B.16 Common Services

| Service Code | Service Name         |
|--------------|----------------------|
| 14           | Get_Attribute_Single |

### B.8 Other Information Class 112 (1 Instances)

| Attribute ID | Name                    | Data Type | Access  |
|--------------|-------------------------|-----------|---------|
| 50           | Get Access Token        | UINT8     | Get     |
| 51           | Put Access Token        | UINT8     | Get/Set |
| 100          | DCP, HW Version         | UINT32    | Get     |
| 101          | DCP, FPGA-Version       | UINT32    | Get     |
| 102          | DCP, Bootloader-Version | UINT32    | Get     |
| 103          | DCP, Firmware-Version   | UINT32    | Get     |
| 110          | WC, HW Version          | UINT32    | Get     |
| 112          | WC, Bootloader-Version  | UINT32    | Get     |
| 113          | WC, Firmware-Version    | UINT32    | Get     |
| 170*         | RTC, Date (DD/MM/YY)    | UINT32    | Get/Set |
| 171**        | RTC, Time (SS:MM:HH)    | UINT32    | Get/Set |

| Table B.17 | Other | Information | Class |
|------------|-------|-------------|-------|
|            | Other | mormation   | 01035 |

\*(Date) It's given in the order: day, month, year - for example 180810
18 Hex = 24 decimal = day
08 Hex = 08 decimal = month
10 Hex = 16 decimal = year
Date = 24/08/16
\*\*(Time) It's given in the order: seconds, minutes, hours - for example 371E0F
37 Hex = 55 decimal = seconds
1E Hex = 30 decimal = minutes
OF Hex = 15 decimal = hours

Time = 15:30:55

#### Table B.18 System Configuration Parameters

| Attribute ID | Name                            | Data Type | Access  |
|--------------|---------------------------------|-----------|---------|
| 950          | Clear Memory Before Seek        | UINT32    | Get/Set |
| 951          | Clear Memory with Reset         | UINT32    | Get/Set |
| 952          | Set digital Tine with Horn Scan | UINT32    | Get/Set |
| 953          | Clear Memory at Power Up        | UINT32    | Get/Set |

### B.8.1 Common Services

| Table B.19 | Common Services |
|------------|-----------------|
|------------|-----------------|

| Service Code | Service Name         |
|--------------|----------------------|
| 14           | Get_Attribute_Single |
| 16           | Set_Attribute_Single |

### B.9 Identity Object 1 (1 Instance)

The Identity Class provides identification and general information about the device. The first instance identifies the whole device. It is used for electronic keying and by applications wishing to determine what devices are on the network. The following tables contain the attribute, status, common services, and vendor specific services information for the Identity Object.

| Attribute ID | Name         | Data Type      | Data Value | Access |
|--------------|--------------|----------------|------------|--------|
| 1            | Vendor ID    | UINT           | 1283       | Get    |
| 2            | Product Type | UINT           | 43         | Get    |
| 3            | Product Code | UINT           | 2          | Get    |
| 4            | Revision     | UINT           | 1          | Get    |
| 6            | Serial #     | AINT           |            | Get    |
| 7            | Product Name | SHORT STRING32 | DCX-FE     | Get    |

 Table B.20
 Identity Object (1 - 1 Instance)

### B.9.1 Common Services

| Service Code | Service Name         |
|--------------|----------------------|
| 14           | Get_Attribute_Single |

### **Appendix C: Timing Diagrams**

| C.1 | Timing Diagrams | <br> | <br> |   |
|-----|-----------------|------|------|---|
| C.1 | Timing Diagrams | <br> | <br> | 2 |

# Branson

### C.1 Timing Diagrams

### C.1.1 RF Switching Direct With Feedback, With And Without Alarm

Figure C.1 RF Switching Direct With Feedback, With And Without Alarm



### C.1.2 RF Switching I/O Direct With Feedback, With And Without Alarm

Figure C.2 RF Switching I/O Direct With Feedback, With And Without Alarm



#### C.1.3 RF Switching I/O Direct With Feedback With And Without Alarm And Load On Start



Figure C.3 RF Switching I/O Direct With Feedback With And Without Alarm And Load On Start

## C.1.4 RF Switching I/O With Off, With And Without Alarm, And Load On Start

Figure C.4 RF Switching I/O With Off, With And Without Alarm, And Load On Start



### C.1.5 RF Switching I/O With Off, With Feedback, With And Without Alarm

Figure C.5 RF Switching I/O With Off, With Feedback, With And Without Alarm



### C.1.6 RF Switching With Off, With Feedback, With And Without Alarm

Figure C.6 RF Switching With Off, With Feedback, With And Without Alarm



### C.1.7 Timing Diagram For All Other Modes With Actuator

|                                  | 1 | 2 | 3 | 4 | 1 | 5 | 6      | 7    |   | 8    | 9 |   | 10 |
|----------------------------------|---|---|---|---|---|---|--------|------|---|------|---|---|----|
|                                  |   |   |   |   |   |   |        |      |   |      |   |   |    |
| Actuator Present                 |   |   |   |   |   |   |        |      |   | 1    |   | 1 |    |
| Part In Place/Interlock in Place |   |   |   |   |   |   |        |      |   | 1    |   |   |    |
| Deadu                            |   |   |   |   |   |   |        |      |   |      |   | 1 |    |
| Ready                            |   |   |   |   |   |   |        |      |   |      |   | 1 |    |
| Cycle Start In                   |   |   |   |   |   |   |        |      |   | 1    |   | 1 |    |
| ULS                              |   |   |   |   |   |   |        |      |   |      |   | 1 |    |
| тре                              |   |   |   |   |   |   |        |      | 1 |      |   |   |    |
|                                  |   |   |   |   |   |   |        |      |   |      |   | 1 |    |
| Start Signal Release             |   |   |   |   |   |   |        |      |   |      |   |   |    |
| Load New Preset                  |   |   |   |   |   |   |        |      |   |      |   |   |    |
| Preset Num                       | _ |   | - |   |   |   |        |      |   |      |   |   |    |
|                                  |   |   |   |   |   |   |        |      |   |      |   | 1 |    |
| Preset Confirmation              |   |   |   |   |   |   | ноја т | inte |   |      |   | 1 |    |
| Sonics ON                        |   |   |   |   |   |   |        | 1    |   |      |   |   |    |
| Cycle Start Out                  |   |   |   |   |   |   |        | -    |   |      |   |   |    |
|                                  |   | _ |   |   |   |   | _      |      |   |      |   | 1 |    |
| O/L Alarm                        |   |   |   |   |   |   |        |      |   |      |   |   |    |
| Limit Alarms                     |   |   |   |   |   |   |        |      |   | <br> |   |   |    |

Figure C.7 Timing Diagram For All Other Modes With Actuator

### C.1.8 Timing Diagram For Cycle Abort With Actuator

#### 1 2 3 4 5 6 7 8 9 10 Actuator Present Part In Place/Interlock in Place Ready Cycle Start In ULS TRS Start Signal Release Load New Preset Preset Num Preset Confirmation Sonics ON Cycle Start Out Cycle Abort Weld Cycle Complete

Figure C.8 Timing Diagram For Cycle Abort With Actuator

### C.1.9 Timing Diagram For Ground Detect With Actuator

| Part In Place/Interlock in Place | 1 |   | 2 | 3                     | 4 |   | : | 5 | 6     | 1                          | 7                |          | 8 |          | 9                | 10   |
|----------------------------------|---|---|---|-----------------------|---|---|---|---|-------|----------------------------|------------------|----------|---|----------|------------------|------|
| Ready                            |   |   |   | 8<br>8<br>8<br>8<br>8 |   |   |   | - |       | 8<br>8<br>8<br>8<br>8      |                  |          |   |          |                  |      |
| Ready                            |   |   |   | 1<br>1<br>1<br>1      |   | - |   |   |       | 1<br>1<br>1<br>1           |                  |          |   |          |                  |      |
| Cycle Start In                   |   |   |   |                       |   |   |   |   | <br>  | 1<br>1<br>1<br>1           |                  |          |   |          |                  | <br> |
| ULS                              |   |   |   | <u> </u>              |   | - |   |   | <br>  | 1<br>1<br>1<br>1<br>1      |                  |          |   | <b>_</b> | 1<br>1<br>1<br>1 |      |
| TRS                              |   |   |   | 1<br>1<br>1<br>1      |   |   |   |   |       | 1                          |                  |          | L |          | 1<br>1<br>1<br>1 |      |
| Start Signal Release             |   |   |   | -<br>-<br>-<br>-<br>- |   | - |   |   | <br>  | *<br>1<br>1<br>1<br>1<br>1 |                  |          |   |          | L                |      |
| Load New Preset                  |   |   |   | <br>                  |   |   |   |   |       |                            |                  |          |   |          |                  |      |
| Preset Num                       |   |   |   |                       |   |   |   |   |       | -<br>                      |                  |          |   |          |                  |      |
| Preset Confirmation              |   |   |   |                       |   | - |   |   |       |                            |                  |          |   |          |                  |      |
|                                  |   |   |   |                       |   |   |   |   | So    | irub Ti                    | me               |          |   |          |                  |      |
| Sonics ON                        |   |   |   | 1<br>1<br>1<br>1      |   |   |   |   |       | н                          | -<br>sia ⊤i<br>∎ | ne<br>R  |   |          | 1<br>1<br>1<br>1 | <br> |
| Cycle Start Out                  |   | [ |   | 1<br>1<br>1<br>1      |   |   |   |   |       |                            |                  | <u>}</u> |   |          |                  |      |
| Ground Detect                    |   |   |   | 1<br>1<br>1<br>1      |   | - |   |   | <br>- | F                          |                  |          |   | 1        | 1<br>1<br>1<br>1 |      |
| Limit Alarms                     |   |   |   |                       |   | - |   |   |       | 1<br>1<br>1<br>1<br>1      |                  |          |   |          |                  | <br> |
| Weld Cycle Complete              |   |   |   |                       |   |   |   |   |       |                            | 1                |          |   |          |                  |      |
|                                  |   |   |   |                       |   |   |   |   |       |                            |                  |          |   |          |                  |      |

Figure C.9 Timing Diagram For Ground Detect With Actuator

### Appendix D: Signal Diagrams

| D.1 | Signal Diagrams | 30 |
|-----|-----------------|----|
|     |                 |    |

### D.1 Signal Diagrams

Figure D.1 Continuous Mode



\*Inputs/Outputs are configurable on the User I/O Configuration webpage.

--- If Reset Required is unchecked for Overload in Alarm Webpage interface, Ready signal will be enabled after Start switch is released.

### Branson

#### Figure D.2 Time Mode



\*Inputs/Outputs are configurable on the User I/O Configuration webpage.

--- If Reset Required is unchecked for Overload in Alarm Webpage interface, Ready signal will be enabled when General Alarm becomes active.

Figure D.3 AE Actuator



\*Inputs/Outputs are configurable on the User I/O Configuration webpage.

UStart signal should be released by Sonic Active

--- If Reset Required is unchecked for Overload in Alarm Webpage interface, Ready signal will be enabled when Upper Limit Switch becomes active.

### Branson

### Index

#### **Numerics**

24 V Indicator 21

#### Α

Acoustic Stack 75 Actuator 18, 27 Afterburst 74 Alarm 27 Alarm Data 216 Alarm Icon 24 Alarm Reset Key 20 Alarms 111, 189 Amplitude 27, 109 Amplitude Control 27 Analog Input Functions 64 Analog Output Functions 65 Autotuning 17

### В

Booster 18, 27, 95 Boosters 179 Branson how to contact 8

### С

Cables 33 Circle Icon 24 Circuit Breaker / Power Switch 25 **Clamping Force 27** Cold Start 27, 187 **Communication Failure Alarms 200** Compatibility 16 Configuration Key 20 **Connections 25** Continuous 98 Continuous Mode 99 Continuous Mode Icon 22 Control Word (STW1) 135 Control Word (STW2) 138 Controls and Indicators 20 Converter 18, 27, 95 **Converter Cooling 80** Converters 178 **Converters and Boosters 85** Counters 27 Cutoff Alarms 192 Cutoffs 74 Cycle Modified Alarms 194

### D

DCX Inputs/PLC Outputs 144 DCX Outputs/PLC Inputs 139 Declaration of Conformity 40 Degating 27 Delivery 31 Delivery and Handling 29 Digital Amplitude Setting 17 Digital Input Functions 60 Digital Output Functions 62 Drop Test 30

#### Ε

**Electrical Connections 54** Electrical Problems 184 **Electrical Specifications 36 Emissions 6** End of Weld Store 74 Energy 98 Energy Brake 74 **Energy Director 27** Energy Mode 103 Energy Mode Icon 22 **Environmental Requirements 50** Environmental Specifications 30, 36 Equipment Failure Alarms 197 Ethernet Port 21, 25 EtherNet/IP 17, 27, 124 EtherNet/IP Commands 205 EtherNet/IP Connectors 21 EtherNet/IP Operation 123 EtherNet/IP Overview 127 EtherNet/IP Specifications 126 EtherNet/IP Status Indicator 21 Explicit Message 128 External Amplitude Control 27, 110 **External Frequency Control 27** 

### F

Features 17 Fieldbus 27 Fixture 27 Flash 27 Forming 27 Frequency 27 Frequency Offset 17, 27, 74 Fretting Corrosion 27 Front Panel 20

### G

Gain 27 General Maintenance 168 General Precautions 4 Glossary 27 Ground Detect 98 Ground Detect Icon 23

Ground Detect Mode 107 Ground Screw 25

#### Н

Hardware Alarms 201 Horizontal (Benchtop) Mounting 52 Horn 19, 27, 95 Horn Amplitude 27 Horn Signature 17, 27 how to contact Branson 8 Humidity 30

#### I

I/O Connections 122 Identity Object 219 Implicit (I/O) Message 128 Implicit Message for Reset 145 Implicit Message for Run 144 Implicit Message for Scan 145 Implicit Message for Seek 144 **Implicit Messaging 133 Input Power Connection 72 Insertion 27** Installation and Setup 43 Installation Requirements 45 **Installation Steps 51** Intended Use of the System 6 Interface 27 Introduction 13 **Inventory 33** 

#### J

Joint 27 Joule Icon 23

#### L

LCD 17, 20 LCD Bar-Graph 117 LED Status Indicator 124 Limit Alarms 196 Limits 74 Line Input Connector 25 Line Regulation 17 Load Regulation 17 Location 45

#### Μ

Maintenance 167 Membrane Keys 17 Mode 74 Mount the Power Supply 52 Mounting Considerations 53

#### Ν

No Cycle Alarms 199

Non-Cycle Overload Alarms 202 Number Sign Icon 23 Numeric Display 22

#### 0

Operation 97 Other Information 218 Other Items 181 Output Power 71 Overload Alarms 190 Overview 15

#### Ρ

Parameter 27 Parameter Range 27 Parameter Set Object 206 Passcodes 17 Peak Power 98 Peak Power Icon 23 Peak Power Mode 105 Percentage Icon 23 Physical Description 39 Pneumatic Requirements 50 Power Supply 28 Power Up 74 Power/Frequency Bar-Graph 24 Power-On Indicator 21 **Preventive Maintenance 170** Primary Parameters 98

#### R

Ramp Starting 17 Receiving 31 Recondition the Stack 171 Registers 112, 114 Regulatory Compliance 6 Returning Equipment 34 RF Connector 25

### S

Safety and Support 1 Safety Requirements 2 Seek 17, 28 Seek Ramp 74 Seek Time 74 Setup 74 Setup 74 Setup Alarms 193 Shipping and Handling 30 Shock / Vibration (transit) 30 Solid Mount Boosters 96 Sonics Active Indicator 23 Spare Stock 176 Stack Function 144 Stack Parameter Object 211 Stack Status Object 213

Stack Torque Values 173 Staking 28 Start Ramp 74 Start-up Diagnostics 17 Status Word (ZSW1) 140 Status Word (ZSW2) 143 Storage / Shipping Temperature 30 STW1 135 STW2 138 Suggested Spares 177 Swaging 28 Symbols 2 System Cables 176 System Information 217 System Protection 17

#### Т

Technical Specifications 35 Test Procedure 120 Thermoplastic 28 Thermoset 28 Time 98 Time Icon 23 Time Mode 101 Time Mode Icon 22 Timed Seek 18, 74 Timing Diagrams 221 Token 28 Troubleshooting 183 True Wattmeter 18

#### U

Ultrasonic Power 28 Ultrasonic Power Problems 185 Ultrasonic Stack 95 Ultrasonic Welding 28 Ultrasonics Test Key 21 Unpacking 32 Up/Down Keys 20 User I/O Cable Pin Assignments 58 User I/O Connections 56 User I/O Connector 25 User ID 17, 28

### V

Vertical Mounting 52

#### W

Warning Alarms 195 Warnings 2 Web Page Interface 18 Weld Amplitude 74 Weld Cycle Problems 186 Weld Data Object 209 Weld System 28



Welding System 17 Wiring Considerations 45

Ζ

ZSW1 140 ZSW2 143