February 2016

Type Y696 Vapor Recovery Regulator

Figure 1. Type Y696 Vapor Recovery Regulator

Introduction

Scope of the Manual

This Instruction Manual includes installation, startup, maintenance and parts information for the Type Y696 vapor recovery regulator.

Product Description

The Type Y696 vapor recovery regulator is a directoperated regulator with internal registration requiring no downstream control line. It is used to sense increase in vessel pressure and vent excessive internal vessel pressure to an appropriate vapor recovery disposal or reclamations system.

Principle of Operation

The Type Y696 is used to maintain a constant inlet (blanket) pressure with the outlet flowing to a system whose pressure is lower than that at the inlet.

When vessel pressure increases above the setpoint of the regulator due to pumping in or thermal heating, the force of the control spring is overcome by

Specifications

The Specifications section lists maximum pressures, temperatures and other specifications. Specifications for a given regulator as it originally comes from the factory are stamped on the spring case nameplate.

Body Size and End Connection Style(1)

See Table 1

Maximum Allowable Inlet and Outlet Pressure⁽²⁾

15 psig / 1.0 bar

Control Pressure Ranges

See Table 2

Pressure Registration

Internal or External

Spring Case and Vent Connections

1/4 in. NPT

Maximum Temperature Capabilities(2)

Nitrile (NBR): -20 to 180°F / -29 to 82°C Fluorocarbon (FKM): 40 to 300°F / 4 to 149°C Perfluoroelastomer (FFKM): 0 to 300°F /

-18 to 149°C

Ethylenepropylene (EPDM): -20 to 275°F /

-29 to 135°C

- 1. End connections for other than U.S. standard can usually be provided, consult your local Sales Office.

 2. The pressure/temperature limits in this Instruction Manual or any applicable standard limitation should not be exceeded

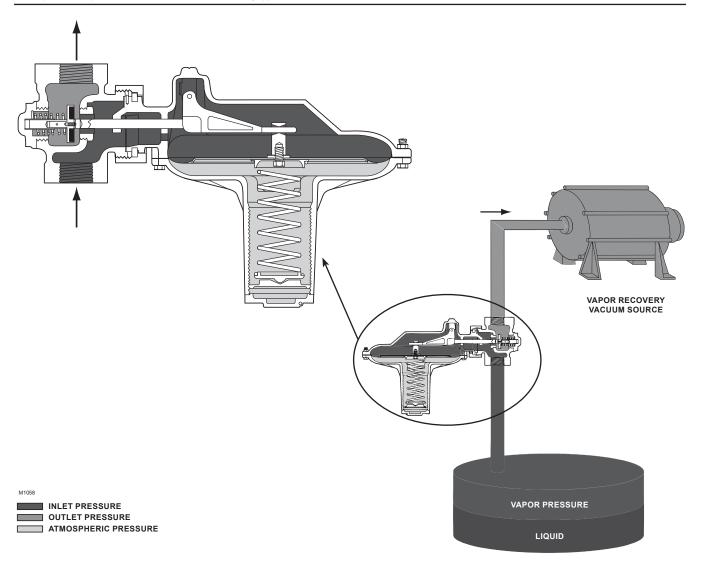


Figure 2. Type Y696 Vapor Recovery Operational Schematic

Table 1. Body Sizes and End Connection Styles

BODY SIZE		BODY MATERIAL				
In.	In. DN Cast Iron		Steel	Stainless Steel	Hastelloy® C	
1-1/2 and 2	40 and 50	NPT	NPT, SWE, CL150 RF, CL300 RF, PN 16/25/40	NPT, SWE, CL150 RF, CL300 RF, PN 16/25/40	CL150 RF	

Table 2. Control Pressure Ranges

CONTROL PRESSURE RANGE		SPRING PART	SPRING COLOR	SPRING WIRE DIAMETER		SPRING FREE LENGTH	
In. w.c.	mbar	NUMBER	SPRING COLOR	ln.	mm	ln.	mm
2 to 5 ⁽¹⁾⁽²⁾	5 to 12 ⁽¹⁾⁽²⁾	1A200127022	Red	0.135	3.43	5.38	137
5 to 15 ⁽¹⁾⁽²⁾	12 to 37 ⁽¹⁾⁽²⁾	1B766627062	Gray	0.156	3.96	6.63	168
8 in. w.c. to 1 psig	20 to 69	0B019427052	Dark Green	0.187	4.75	6.00	152
1 to 2.8 psig	69 mbar to 0.19 bar	0A081127202	Orange	0.250	6.35	6.00	152
2 to 3.5 psig	0.14 to 0.24 bar	0Y066427022	Green stripe	0.363	9.22	6.00	152
4 to 7 psig	0.28 to 0.48 bar	1H802427032	Red	0.406	10.3	6.00	152

^{1.} Spring ranges based on spring case installed pointed down. When installed pointed up, spring range increases 2 in. w.c. / 5 mbar. 2. Do not use Fluorocarbon (FKM) diaphragm with these springs at diaphragm temperatures lower than 60°F / 16°C.

pressure acting on the diaphragm. This moves the disk away from the orifice allowing gas to flow from the vessel to the vapor recovery system.

As vessel pressure is reduced, the force of the control spring causes the disk to move toward the orifice decreasing the flow of gas out of the vessel. As vessel pressure drops below the setpoint of the regulator, the disk will seat against the orifice shutting off the flow of gas.

Installation

Personal injury, equipment damage or leakage due to escaping accumulated gas or bursting of pressure-containing parts may result if the vapor recovery regulator is overpressured or installed where service conditions could exceed the limits given in the Specifications section or where conditions exceed any ratings of the adjacent piping or piping connections. To avoid such injury or damage, provide pressure-relieving or pressure-limiting devices to prevent service conditions from exceeding those limits.

Additionally, physical damage to the vapor recovery regulator could result in personal injury and property damage due to escaping accumulated gas. To avoid such injury and damage, install the vapor recovery regulator in a safe and well ventilated location.

- Use qualified personnel when installing, operating and maintaining the regulator. Before installing, inspect the regulator for any shipment damage or foreign material that may have collected during crating and shipment. Make certain the body interior is clean and the pipelines are free of foreign material. Apply pipe compound only to the male pipe threads.
- 2. Install the regulator using a straight run of pipe the same size or larger as the regulator body (as shown in Figure 2). Flow through the regulator body is indicated by the flow arrow cast on the body. If a block valve is required, install a full flow valve between the regulator and the blanketed vessel. For proper operation, the regulator should be installed with the spring case barrel pointed down. Key numbers referenced in this section are shown in Figure 3.

WARNING

A regulator may vent some gas to the atmosphere. In hazardous or flammable gas service, vented gas may accumulate and cause personal injury, death or property damage due to fire or explosion. Vent a regulator in hazardous gas service to a remote, safe location away from air intakes or any hazardous location. The vent line or stack opening must be protected against condensation or clogging.

To keep the spring case vent from being plugged or the spring case from collecting moisture, corrosive chemicals or other foreign material, point the vent down or otherwise protect it.

- 4. To remotely vent the regulator, remove the vent (key 56) and install obstruction-free tubing or piping into the 1/4 in. NPT vent tapping. Provide protection on a remote vent by installing a screened vent cap into the remote end of the vent pipe.
- 5. If continuous operation of the system is required during inspection or maintenance, install a three-valve bypass around the regulator.
- 6. Vapor recovery regulators are used to maintain a constant inlet (blanket) pressure with the outlet flowing to a system whose pressure is lower than that at the inlet. The vapor recovery regulators are not intended to be used as an ASME certified relief device for overpressure protection. They are to be used as part of a gas blanketing system to control the outflow of blanketing gas under normal conditions and to collect tank vapors for the vapor disposal or reclamation system. You should provide alternate methods of emergency overpressure protection.

Startup and Adjustment

To avoid personal injury, property damage or equipment damage caused by bursting of pressure containing parts or explosion of accumulated gas, never adjust the control spring to produce an outlet pressure higher than the upper limit of the outlet pressure range of that particular spring. If the desired outlet pressure is not within the range of the control spring, install a spring of the proper range according to the Diaphragm and Spring Case Area section of the maintenance procedure.

With installation completed, the regulator can be placed in operation by slowly opening the upstream and downstream block valves, if used, while using gauges to monitor pressure.

The regulator has been adjusted at the factory to provide approximately the pressure requested. The range of allowable pressure settings is stamped on the spring casing nameplate. If a pressure setting beyond the stamped range is required, install a spring with the desired range by following the procedures for changing

the spring and diaphragm in the Maintenance section. To adjust the pressure setting, perform the following steps (key numbers are referenced in Figure 3):

- 1. Remove the closing cap (key 3).
- 2. Turn the adjusting screw (key 2) either clockwise to increase control pressure or counterclockwise to decrease control pressure. The regulator will go into immediate operation. To ensure correct operation always use a pressure gauge to monitor the vapor recovery pressure when making adjustments.
- 3. Replace the closing cap (key 3).

Shutdown

First close the nearest upstream shutoff valve and then close the nearest downstream shutoff valve to vent the equipment properly. Next, open the vent valves on both the upstream and downstream sides of the regulator. All pressure between the shutoff valves is released through the open vent valves.

Maintenance

Regulator parts are subject to normal wear and must be inspected and replaced as necessary. The frequency of inspection and replacement of parts depends upon the severity of service conditions or the requirements of local, state and federal regulations. Due to the care Emerson™ takes in meeting all manufacturing requirements (heat treating, dimensional tolerances, etc.), use only replacement parts manufactured or furnished by Fisher.

Key numbers are referenced in Figure 3.

To avoid personal injury, property damage or equipment damage caused by sudden release of pressure, isolate the regulator from all pressure and cautiously release trapped pressure from the regulator before attempting disassembly.

Body Area

This procedure is for gaining access to the disk assembly, orifice, body gasket and split ring. All pressure must be released from the regulator, before the following steps can be performed.

- To inspect and replace the disk assembly (key 25) or orifice (key 27), remove the body cap assembly (key 38).
- 2. Remove the disk screw (key 47) and cotter pin (key 14) from the disk shutoff stem (key 40) if it is necessary to replace the disk assembly (key 25).
- 3. To inspect and replace the orifice (key 27), loosen the union nut (key 19) and separate the diaphragm case assembly from the body (key 28).
- 4. Remove and inspect the body gasket (key 16).
- Inspect and replace the orifice (key 27) if necessary.
 Lubricate the threads of the replacement orifice with a good grade of pipe thread sealant. Install and tighten using 75 to 100 ft-lbs / 102 to 136 N•m of torque.
- 6. If necessary, install the replacement body gasket (key 16) into the body (key 28).
- 7. Slide the union nut (key 19) as far as it will go onto the lower casing assembly (key 20). Install both halves of the split ring (key 17) into the slots of the lower casing assembly (key 20) and secure them by sliding the union nut down on the split ring.

Note

In the following step, be sure to install the spring case barrel pointed down as shown in Figure 1.

- 8. Install the lower casing assembly (key 20) by tightening the union nut (key 19) until the lower casing assembly is secure on the body (key 28).
- 9. Install the disk spring (key 41) and disk assembly (key 25) and secure it to the disk stem (key 40) with the cotter pin (key 14). Install the disk screw (key 47).
- 10. Use a good quality thread sealer when replacing the body cap assembly (key 38).

Diaphragm and Spring Case Area

This procedure is for gaining access to the control spring, diaphragm and lever assembly stem. All pressure must be released from the diaphragm case assembly before the following steps can be performed.

To Change the Control Spring:

- Remove the closing cap (key 3) and turn the adjusting screw (key 2) counterclockwise until all compression is removed from the control spring (key 1).
- Remove the adjusting screw (key 2) and the upper spring seat (key 44) and change the control spring to match the desired spring range.
- 3. Replace the upper spring seat (key 44) and the adjusting screw (key 2).
- 4. Install a replacement closing cap gasket (key 35), if necessary and reinstall the closing cap (key 2).
- If the spring range was changed, be sure to change the stamped spring range on the spring case nameplate.

To Maintain Diaphragm Parts:

- 1. Remove the closing cap (key 3) and the adjusting screw (key 2).
- 2. Remove the hex nuts (key 22), cap screws (key 21) and spring case (key 23).
- 3. Lift the upper spring seat (key 44) and control spring (key 1) off the diaphragm and plate assembly (key 5).
- 4. Remove the diaphragm and plate assembly (key 5) by tilting them so that the pusher post (key 8) slips off the lever assembly (key 9).
- 5. To separate the diaphragm assembly (key 5) from the attached parts, unscrew the cap screw (key 30) from the pusher post (key 8).
- 6. To replace the lever assembly (key 9), remove the machine screws (key 11). To replace the stem (key 13) pull the stem (key 13) out of the lower casing assembly (key 20).
- 7. Install the stem (key 13) into the lower casing assembly (key 20).
- 8. Install the lever assembly (key 9) into the stem (key 13) and secure the lever assembly (key 9) with the machine screws (key 11).
- During the assembly procedure, use lubricants on parts as indicated in Figure 3 and replace parts as required.

- 10. Install the parts on the pusher post in the order listed below:
 - Diaphragm plate gasket (key 7)
 - Lower diaphragm plate (key 6)
 - Diaphragm and plate assembly (key 5) pattern side up
 - · Control spring seat (key 4)
- 11. Insert and tighten the diaphragm cap screw (key 30) to secure the diaphragm parts to the pusher post (key 8).
- 12. Install the assembled parts in the lower casing (key 20). Make sure that the lever (key 9) fits in the pusher post (key 8) and that the holes in the diaphragm align with the holes in the lower casing.
- 13. Install the spring case (key 23) on the lower casing assembly (key 20) so that the vent assembly (key 56) is correctly oriented and secure with the cap screws (key 21) and hex nuts (key 22) fingertight only.
- 14. Place the spring (key 1) in the spring case assembly (key 23), then install the upper spring seat (key 44) and the adjusting screw (key 2).
- 15. Turn the adjusting screw (key 2) clockwise until there is enough control spring (key 1) force to provide proper slack to the diaphragm (key 5). Using a crisscross pattern, finish tightening the cap screws (key 21) and hex nuts (key 22) to 15 to 20 ft-lbs / 20 to 27 N•m of torque. To adjust the outlet pressure to the desired setting, refer to the Startup and Adjustment section.
- 16. Install a replacement closing cap gasket (key 35) if necessary and then install the closing cap (key 3).

Parts Ordering

When contacting your local Sales Office about this regulator, include the type number and all other pertinent information stamped on the nameplate. Specify the complete 11-character part number from the following parts list when ordering replacement parts.

Parts List

In this parts list, parts marked NACE are intended for corrosion-resistant service as detailed in the NACE International Standards MR0175 and MR0103.

Type Y696 Regulator (Figure 3)

Type receivegulater (rigule e)						
Key	Description	Part Number				
1 2 3	Control Spring, Plated steel Adjusting Screw, Zinc Closing Cap	See Table 2 1A5896X0022				
4	Zinc Steel Lower Control Spring Seat, Zinc	1A589544022 1J880124092 0X014744012				
5*	Diaphragm Nitrile (NBR)	0R032502072				
6	Fluorocarbon (FKM) Lower Diaphragm Plate Stainless steel	0R0325X0032 0V003935032				
7 8	Stainless steel (NACE) Diaphragm Plate Gasket, Composition Pusher Post, Stainless steel (NACE)	0V0039X0022 1A348704022 0Y096435072				
9	Lever Assembly Stainless steel	1E3409000B2				
11	Stainless steel (NACE) Machine Screw (2 required) Stainless steel	1E3409X0012 1A866935032				
13	Stainless steel (NACE) Stem Stainless steel	1A8669X0012 1A630935032				
14*	Stainless steel (NACE) Cotter Pin	1A630935032 1A630935032				
16*	Stainless steel Stainless steel (NACE) Body Gasket, Composition	1A866537022 1A8665X00A2 1A348004032				
17 19	Split Ring, Zinc-plated steel Union Nut	0Y095828982				
	Cast iron Steel Stainless steel	0Z0176X0032 0Z017624092 0Z0176X0012				
20	Lower Casing Cast iron	3B973519012				
21	Steel Stainless steel Diaphragm Case Cap Screw,	3F191622012 3F191633092				
22	Plated steel (12 required) Hex Nut, Zinc-plated steel (12 required)	1B596124052 1A309324122				
23	Spring Case Cast iron Steel	2B155719042 34B2157X012				
24	Stainless steel Diaphragm Plate	34B2157X022				
	Up to 1.25 psig / 0.09 bar setpoint Over 1.25 psig / 0.09 bar setpoint	0B006628982 1A347825022				

^{*}Recommended spare part.

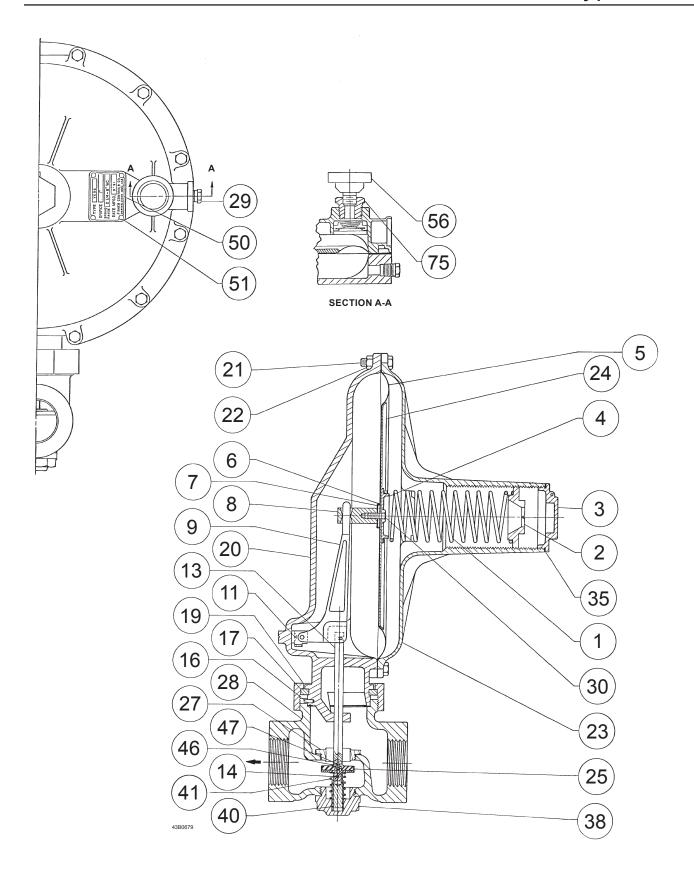


Figure 3. Type Y696 Assembly

Key	Description	Part Number	Key	Description	Part Number
25*	Disk Assembly		29	Pipe Plug, Zinc-plated steel	1C333528992
	Stainless Steel Disk Holder with		30	Diaphragm Cap Screw, Plated steel	1C473224052
	Nitrile (NBR) disk	1D6405X0202	35*	Closing Cap Gasket, Neoprene (CR)	1N446206992
	Nitrile (NBR) disk (NACE)	1D6405X0202	38	Body Cap Assembly	
	Fluorocarbon (FKM) disk (NACE)	1D6405X0212		Stainless steel	15A2185X022
27	Orifice			Stainless steel (NACE)	15A2185X012
	Stainless steel	0L025335032	40	Disk Shutoff Stem	
	Stainless steel (NACE)	0L0253X0042		Stainless steel	0L025135032
28	Body			Stainless steel (NACE)	0L0251X0022
	NPT		41	Disk Spring	
	Cast iron			Stainless steel	
	1-1/2 in. size	1B403419012		Up to 1.25 psig / 0.09 bar setpoint	1A866837022
	2 in. size	1B403519012		Over 1.25 psig / 0.09 bar setpoint	0D002827022
	Steel			Stainless steel (NACE)	
	1-1/2 in. size	2P2573X0022		Up to 1.25 psig / 0.09 bar setpoint	10B6026X012
	1-1/2 in. size (NACE)	2P2573X0032		Over 1.25 psig / 0.09 bar setpoint	10B6027X012
	Stainless steel		44	Upper Spring Seat	0Y095644012
	1-1/2 in. size	2P2573X0012	46	Valve Disk Washer	
	CL150 RF flanged			Stainless steel	0X014635032
	Steel			Stainless steel (NACE)	0X0146X0012
	1-1/2 in. / DN 40 size (NACE)	22B4316X022	47	Disk screw, Stainless steel (NACE)	1A866435042
	2 in. / DN 50 size	22B9226X022	50	Nameplate	
	Stainless steel		51	Drive Screws (4 required)	
	1-1/2 in. / DN 40 size (NACE)	22B4316X012	75	Bushing, Steel	1A3424X00A2
	2 in. / DN 50 size	22B9226X012	78	Pipe Plug, Steel	1D754828982

Industrial Regulators

Emerson Process Management Regulator Technologies, Inc.

USA - Headquarters McKinney, Texas 75070 USA Tel: +1 800 558 5853 Outside U.S. +1 972 548 3574

Asia-Pacific

Shanghai 201206, China Tel: +86 21 2892 9000

Europe

Bologna 40013, Italy Tel: +39 051 419 0611

Middle East and Africa Dubai, United Arab Emirates Tel: +971 4811 8100

For further information visit www.fisherregulators.com

Natural Gas Technologies

Emerson Process Management Regulator Technologies, Inc.

USA - Headquarters McKinney, Texas 75070 USA Tel: +1 800 558 5853 Outside U.S. +1 972 548 3574

Asia-Pacific

Singapore 128461, Singapore

Tel: +65 6770 8337

Europe

Bologna 40013, Italy Tel: +39 051 419 0611 Chartres 28008. France Tel: +33 2 37 33 47 00

Middle East and Africa **Dubai. United Arab Emirates** Tel: +971 4811 8100

TESCOM

Emerson Process Management Tescom Corporation

USA - Headquarters

Elk River, Minnesota 55330-2445, USA

Tels: +1 763 241 3238 +1 800 447 1250

Europe

Selmsdorf 23923, Germany Tel: +49 38823 31 287

Asia-Pacific

Shanghai 201206, China Tel: +86 21 2892 9499

The Emerson logo is a trademark and service mark of Emerson Electric Co. All other marks are the property of their prospective owners. Fisher is a mark owned by Fisher Controls International LLC, a business of Emerson Process Management.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. We reserve the right to modify or improve the designs or specifications of such products at any time without notice

Emerson Process Management Regulator Technologies, Inc. does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Emerson Process Management Regulator Technologies, Inc. product remains solely with the purchaser.

^{*}Recommended spare part.