Transmisores modelo 2700 de Micro Motion® con salidas analógicas

Suplemento al manual de configuración y uso

2700***A

Micro Motion servicio al cliente

Ubicación		Número telefónico
EEUU		800-522-MASS (800-522-6277) (sin costo)
Canadá y Latinoamérica		+1 303-527-5200 (EEUU)
Asia	Japón	3 5769-6803
	Todas las demás ubicaciones	+65 6777-8211 (Singapur)
Europa	Reino Unido	0870 240 1978 (sin costo)
	Todas las demás ubicaciones	+31 (0) 318 495 555 (Países Bajos)

Copyrights y marcas comerciales

© 2009 Micro Motion, Inc. Todos los derechos reservados. Los logotipos de Micro Motion y de Emerson son marcas comerciales y marcas de servicio de Emerson Electric Co. Micro Motion, ELITE, MVD, ProLink, MVD Direct Connect y PlantWeb son marcas de una de las empresas del grupo Emerson Process Management. Todas las otras marcas comerciales son de sus respectivos propietarios.

Contenido

Capítulo 1	Confi	igure las opciones y preferencias para el dispositivo	1
	1.1	Configuración de las variables del indicador y precisión del indicador	
Capítulo 2	Integ	ración del medidor con el sistema de control	3
	2.1 2.2 2.3 2.4 2.5 2.6	Configuración del Canal B Configuración de la salida de mA Configuración de la salida de frecuencia Configuración de la salida discreta Configuración de la comunicación digital Configuración de eventos	
Capítulo 3	Instal	lación de la aplicación de Pesos y Medidas Comisionamiento específico a la ubicación	
Capítulo 4	Func 4.1	ionamiento del transmisor	
Apéndice A	Códi	gos y abreviaciones del indicador	37
	A.1 A.2	Códigos del indicador para las variables de proceso	

Acerca de este suplemento

Este suplemento está diseñado para usarlo con el siguiente manual: *Transmisores de las series 1000 y 2000 de Micro Motion: Manual de configuración y uso*. Reemplaza las secciones del manual con secciones nuevas o modificadas para la v6.0 del Transmisor modelo 2700 con salidas analógicas. Vea una guía de reemplazo de secciones en la siguiente tabla.

Guía de reemplazo de secciones

Sección de Transmisores de las series 1000 y 2000 de Micro Motion: Manual de configuración y uso	Reemplace esta sección con la siguiente sección de este suplemento
6.3.2 Canal B	Sección 2.1
6.5 Configuración de la(s) salida(s) de mA	Sección 2.2
6.6 Configuración de la salida de frecuencia	Sección 2.3
6.7 Configuración de la salida de discreta	Sección 2.4
7.4.1 Visualización de las variables de proceso con el indicador	Sección 4.1.1
8.11 Configuración de eventos	Sección 2.6
8.14.6 Configuración de las variables del indicador y de la precisión del indicador	Sección 1.1
8.15 Configuración de la comunicación digital	Sección 2.5
11.2 Comisionamiento específico a la ubicación	Sección 3.1
Tabla H-1 Códigos del indicador utilizados para las variables de proceso	Sección A.1
Tabla H-2 Códigos del indicador utilizados en el menú off-line	Sección A.2

Herramientas de comunicación y sus versiones

En la información de este suplemento se supone que usted está utilizando una de las siguientes herramientas para configurar su transmisor:

- El indicador del transmisor
- ProLink II v2.9
- Comunicador de campo 375 con la siguiente descripción de dispositivo: 2000 Mass flo, Dev v6, DD v1

Si está utilizando una versión anterior de ProLink II o de la descripción de dispositivos del comunicador, es posible que algunas características descritas en este suplemento no estén disponibles.

Capítulo 1

Configure las opciones y preferencias para el dispositivo

Temas que se describen en este capítulo:

♦ Configuración de las variables del indicador y precisión del indicador

1.1 Configuración de las variables del indicador y precisión del indicador

Indicador	No disponible
ProLink II	ProLink→Configuration→Display
Comunicador	5,7,2 Detailed Setup→Display Setup→Display Variables 5,7,3 Detailed Setup→Display Setup→Display Precision

El indicador puede mostrar hasta 15 variables de proceso una a una en cualquier orden. Usted puede configurar las variables de proceso que se van a mostrar en el orden en que aparecerán. Usted puede repetir variables, y puede dejar posiciones vacías.

También puede configurar la precisión del indicador para cada variable de proceso. La precisión del indicador controla la cantidad de dígitos que se muestran a la derecha del lugar decimal en el indicador cuando se selecciona la variable de proceso como una variable del indicador. La precisión del indicador se puede configurar a cualquier valor desde 0 hasta 5. Entre menor sea la precisión, mayor debe ser un cambio en el proceso para que se refleje en el valor mostrado. La precisión del indicador no afecta el valor de la variable de proceso transmitido mediante otros métodos o utilizado en los cálculos.

Restricciones

- Usted puede configurar la Variable del indicador 1 a Ninguna. La Variable del indicador
 1 siempre debe configurarse a una variable de proceso.
- Si usted ha fijado la Variable del indicador 1 a la salida primaria de mA, no podrá cambiar el ajuste de la Variable del indicador 1 usando este método. Para cambiar el ajuste de la Variable del indicador 1, usted debe cambiar la configuración de la Variable de proceso de la salida de mA para la salida primaria de mA.

Nota

Si usted ha configurado una variable de proceso de volumen como una variable del indicador, y después cambia el ajuste de Tipo de caudal volumétrico, la variable del indicador se cambia automáticamente a la variable de proceso equivalente. Por ejemplo, si se configuró Variable del indicador 2 a Caudal volumétrico, cambiará a Caudal volumétrico estándar de gas.

♦ Ejemplo: Configuración de las variables del indicador

Variable del indicador	Asignación de la variable de proceso
Variable del indicador 1	Caudal másico
Variable del indicador 2	Totalizador de masa
Variable del indicador 3	Caudal volumétrico
Variable del indicador 4	Totalizador de volumen
Variable del indicador 5	Densidad
Variable del indicador 6	Temperatura
Variable del indicador 7	Presión externa
Variable del indicador 8	Caudal másico
Variable del indicador 9	Ninguna
Variable del indicador 10	Ninguna
Variable del indicador 11	Ninguna
Variable del indicador 12	Ninguna
Variable del indicador 13	Ninguna
Variable del indicador 14	Ninguna
Variable del indicador 15	Ninguna

1.1.1 Configuración de la Variable del indicador 1 desde el menú del indicador

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→DSPLY→VAR 1	
ProLink II	No disponible	
Comunicador	No disponible	

Si se desea, usted puede configurar la Variable del indicador 1 desde el menú del indicador fijándola a la variable de proceso asignada a la salida primaria de mA, que también es la variable primaria HART. Si hace esto, la Variable del indicador 1 siempre será la variable de proceso asignada a la salida primaria de mA. Esta es la única manera de configurar una variable del indicador desde el menú de éste.

Si se fija la Variable del indicador 1 a la salida primaria de mA, la única manera de fijar la Variable del indicador 1 a una variable de proceso diferente es cambiar la asignación de la salida de mA. Si no fija la Variable del indicador 1 a la salida primaria de mA, debe utilizar una herramienta de comunicación tal como ProLink II o el comunicador para cambiar la Variable del indicador 1.

Incluso si la Variable del indicador 1 está fija, usted todavía puede configurar su precisión. Para configurar su precisión, usted debe utilizar una herramienta de comunicación.

Nota

Esta opción es sólo para la Variable del indicador 1. Para cambiar cualquier otra variable del indicador, usted todavía necesita una herramienta de comunicación.

Capítulo 2

Integración del medidor con el sistema de control

Temas que se describen en este capítulo:

- ◆ Configuración del Canal B
- ◆ Configuración de la salida de mA
- ♦ Configuración de la salida de frecuencia
- ♦ Configuración de la salida discreta
- ◆ Configuración de la comunicación digital
- ◆ Configuración de eventos

2.1 Configuración del Canal B

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→IO→CH B→SET FO/SET DO
ProLink II	ProLink→Configuration→Frequency/Discrete Output
Comunicador	5,3,2,1 Detailed Setup→Config Outputs→FO/DO Config→Freq/DO Setup

Los pares de terminales de E/S del transmisor se llaman "canales" y se identifican como Canal A, Canal B y Canal C. Usted puede configurar el Canal B para que funcione como una salida de frecuencia o una salida discreta. La configuración de los canales debe coincidir con el cableado.

iPRECAUCIÓN! Siempre verifique la configuración de la salida después de cambiar la configuración de canales. Cuando se cambie la configuración de un canal, el comportamiento del canal será controlado por la configuración que se almacena para el tipo de salida seleccionado, el cual puede o no ser adecuado para el proceso. Para evitar que se ocasione un error de proceso:

- Configure los canales antes de configurar las salidas.
- Cuando se cambie la configuración de los canales, asegúrese de que todos los lazos de control afectados por este canal estén en control manual.
- Antes de regresar el lazo a control automático, asegúrese de que la salida esté configurada correctamente para su proceso.

Opciones para el Canal B

Tabla 2-1 Opciones para el Canal B

Canal	Operación
Canal B Salida de frecuencia (FO)	
	Salida discreta (DO)

2.2 Configuración de la salida de mA

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→IO→CH A	
ProLink II	ProLink→Configuration→Analog Output	
Comunicador	5,3,1 Detailed Setup→Config Outputs→Analog Output 1	

La salida de mA se utiliza para transmitir una variable de proceso. Los parámetros de salida de mA controlan la manera en que se transmite la variable de proceso. Su transmisor tiene una salida de mA: Canal A.

Los parámetros de la salida de mA incluyen:

- mA Output Process Variable (Variable de proceso de la salida de mA)
- Lower Range Value (LRV) y Upper Range Value (URV)
- AO Cutoff (Cutoff de la AO)
- Added Damping (Atenuación agregada)
- AO Fault Action (Acción de fallo de la AO) y AO Fault Value (Valor de fallo de la AO)

Prerrequisitos

Si usted piensa configurar una salida de mA para transmitir caudal volumétrico, asegúrese de haber configurado Volume Flow Type (Tipo de caudal volumétrico) como se desea: Liquid o Gas Standard Volume.

Si piensa configurar una salida de mA para transmitir una variable de proceso de medición de concentración, asegúrese de que la aplicación de medición de concentración esté configurada de modo que la variable deseada esté disponible.

Requisitos posteriores

Importante

Cuando cambie un parámetro de la salida de mA, verifique todos los demás parámetros de la salida de mA antes de volver a poner el dispositivo a funcionar. En algunas situaciones, el transmisor carga automáticamente un conjunto de valores almacenados, y estos valores podrían no ser adecuados para su aplicación.

2.2.1 Configuración de la variable de proceso de la salida de mA

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→IO→CH A→AO SRC
ProLink II	ProLink→Configuration→Analog Output→Primary Variable Is
Comunicador	5,3,1,1 Detailed Setup→Config Outputs→Analog Output 1→PV Is

La Variable de proceso de la salida de mA controla la variable que se transmite sobre la salida de mA.

Prerrequisitos

Si utiliza variables HART, tenga en cuenta que al cambiar la configuración de la Variable de proceso de la salida de mA se cambiará la configuración de la variable primaria (PV) HART y de la variable terciaria (TV) HART.

Opciones para la variable de proceso de la salida de mA

Tabla 2-2 Opciones para la variable de proceso de la salida de mA

Variable de proceso	Código del indicador	ProLink II código	Código del comunicador
	MFLOW		Mass flo
Caudal másico		Mass Flow Rate	
Caudal volumétrico	VFLOW	Volume Flow Rate	Vol flo
Caudal volumétrico estándar de gas (1)	GSV F	Gas Std Vol Flow Rate	Gas vol flo
Temperatura	TEMP	Temp	Temp
Densidad	DENS	Density	Dens
Presión externa (1)	EXT P	External Pressure	External pres
Temperatura externa (1)	EXT T	External Temperature	External temp
Densidad corregida por temperatura (2)	TCDEN	API: Temp Corrected Density	TC Dens
Caudal volumétrico (estándar) corregido por temperatura ⁽²⁾	TCVOL	API: Temp Corrected Volume Flow	TC Vol
Ganancia de la bobina impulsora	DGAIN	Drive Gain	Driv signl
Densidad corregida promedio (2) (3)	AVE D	API: Avg Density	TC Avg Dens
Temperatura promedio (2) (3)	AVE T	API: Avg Temperature	TC Avg Temp
Densidad a temperatura de referencia (4)	RDENS	CM: Density @ Reference	ED Dens at Ref
Gravedad específica (4)	SGU	CM: Density (Fixed SG units)	ED Dens (SGU)
Caudal volumétrico estándar (4)	STD V	CM: Std Vol Flow Rate	ED Std Vol flo
Caudal másico neto (4)	NET M	CM: Net Mass Flow Rate	ED Net Mass flo
Caudal volumétrico neto (4)	NET V	CM: Net Vol Flow Rate	ED Net Vol flo
Concentración (4)	CONC	CM: Concentration	ED Concentration
Baume (4)	BAUME	CM: Density (Fixed Baume Units)	ED Dens (Baume)

2.2.2 Configuración del valor inferior del rango (LRV) y valor superior del rango (URV)

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→CH A→AO 4 mA OFF-LINE MAINT→OFF-LINE CONFG→CH A→AO 20 mA
ProLink II	ProLink→Configuration→Analog Output→Lower Range Value ProLink→Configuration→Analog Output→Upper Range Value
Comunicador	5,3,1,2 Detailed Setup→Config Outputs→Analog Output 1→Range Values

⁽¹⁾ Requiere el software del transmisor v5.0 ó posterior.

⁽²⁾ Disponible sólo si la aplicación para mediciones en la industria petrolera está habilitada en su transmisor.

⁽³⁾ Requiere el software del transmisor v3.3 ó posterior. Se puede asignar sólo mediante el indicador o ProLink II v1.2 ó posterior.

⁽⁴⁾ Disponible sólo si la aplicación de medición de concentración está habilitada en su transmisor.

El valor inferior del rango (LRV) y el valor superior del rango (URV) se utilizan para escalar la salida de mA, es decir, para definir la relación entre la variable de proceso de la salida de mA y el nivel de la salida de mA.

La salida de mA usa un rango de 4–20 mA para representar la variable de proceso de la salida de mA:

- LRV especifica el valor de la variable de proceso de la salida de mA que será representada por una salida de 4 mA.
- URV especifica el valor de la variable de proceso de la salida de mA que será representada por una salida de 20 mA.
- Entre LRV y URV, la salida de mA es lineal con la variable de proceso.
- Si la variable de proceso cae por debajo del LRV o si aumenta más del URV, el transmisor emite una alarma de saturación de la salida.

Introduzca los valores de LRV y URV en las unidades de medición configuradas para la variable de proceso de la salida de mA.

Notas

- Usted puede establecer el URV por debajo del LRV. Por ejemplo, usted puede establecer el URV a 50 y el LRV a 100.
- Para el software del transmisor v5.0 y posterior, si usted cambia los valores predeterminados de fábrica del LRV y del URV, y más tarde cambia la variable de proceso de la salida de mA, el LRV y el URV no se restablecerán a los valores predeterminados. Por ejemplo, si usted configura la variable de proceso de la salida de mA como caudal másico y cambia el LRV y el URV para caudal másico, luego configura la variable de proceso de la salida de mA como densidad, y finalmente regresa la variable de proceso de la salida de mA a caudal másico, el LRV y el URV para caudal másico se restablecen a los valores configurados. En versiones anteriores del software del transmisor, el LRV y el URV se restablecían a los valores predeterminados de fábrica.

Valores predeterminados para valor inferior del rango (LRV) y valor superior del rango (URV)

Cada opción para mA Output Process Variable (Variable de proceso para la salida de mA) tiene su propios valores de LRV y URV. Si usted cambia la configuración de mA Output Process Variable, se cargan y se usan los valores LRV y URV correspondientes.

Los ajustes predeterminados de LRV y URV se muestran en la Tabla 2-3.

Tabla 2-3 Valores predeterminados para valor inferior del rango (LRV) y valor superior del rango (URV)

Variable de proceso	LRV	URV
Todas las variables de caudal másico	-200,000 g/seg	200,000 g/seg
Todas las variables de caudal volumétrico de líquido	-0,200 l/seg	0,200 l/seg
Todas las variables de densidad	0,000 g/cm ³	10,000 g/cm ³
Todas las variables de temperatura	-240,000	450,000
Ganancia de la bobina impulsora	0.00%	100.00%
Caudal volumétrico estándar de gas	-423,78 SCFM	423,78 SCFM
Temperatura externa	-240,000 °C	450,000
Presión externa	0,000 bar	100,000 bar
Concentración	0%	100%

Tabla 2-3 Valores predeterminados para valor inferior del rango (LRV) y valor superior del rango (URV) continuación

Variable de proceso	LRV	URV
Densidad Baume	0	10
Peso específico relativo (gravedad específica)	0	10

2.2.3 Configuración del cutoff de AO

Indicador	No disponible
ProLink II	ProLink→Configuration→Analog Output→AO Cutoff
Comunicador	5,3,1,3 Detailed Setup→Config Outputs→Analog Output 1→PV AO Cutoff

El cutoff de AO especifica el caudal más bajo, sea másico, volumétrico o volumétrico estándar de gas, que será transmitido a través de la salida de mA. Cualquier caudal menor al cutoff de AO será reportado como 0.

Restricción

El cutoff de AO se aplica sólo si mA Output Process Variable (Variable de proceso de la salida de mA) está configurada a Mass Flow Rate (Caudal másico), Volume Flow Rate (Caudal volumétrico) o Gas Standard Volume Flow Rate (Caudal volumétrico estándar de gas). Si mA Output Process Variable (Variable de proceso de la salida de mA) se configura a una variable de proceso diferente, el cutoff de AO no es configurable, y el transmisor no implementa la función de cutoff de AO.

Consejo

Para la mayoría de las aplicaciones, se debe usar el cutoff de AO predeterminado. Contacte con el departamento de servicio al cliente de Micro Motion antes de cambiar el cutoff de AO.

Interacción del cutoff

Cuando se configura la Variable de proceso de la salida de mA a una variable de caudal (caudal másico, caudal volumétrico o caudal volumétrico estándar de gas), el valor de Cutoff de la AO interactúa con el de Cutoff de caudal másico, Cutoff de caudal volumétrico o Cutoff de caudal volumétrico estándar de gas. El transmisor pone el cutoff en efecto al caudal más alto al cual se aplica un cutoff.

♦ Ejemplo: Interacción del cutoff

Configuración:

- Variable de proceso de la salida de mA = Caudal másico
- Variable de proceso de la salida de frecuencia = Caudal másico
- Cutoff de la AO = 10 g/s
- Cutoff de caudal másico = 15 g/s

Resultado: Si el caudal másico cae por debajo de 15 g/s, todas las salidas que representan caudal másico transmitirán caudal cero.

♦ Ejemplo: Interacción del cutoff

Configuración:

- Variable de proceso de la salida de mA = Caudal másico
- Variable de proceso de la salida de frecuencia = Caudal másico
- Cutoff de la AO = 15 g/s
- Cutoff de caudal másico = 10 g/s

Resultado:

- Si el caudal másico cae por debajo de 15 g/s, pero no por debajo de 10 g/s:
 - La salida de mA transmitirá caudal cero.
 - La salida de frecuencia transmitirá el caudal real.
- Si el caudal másico cae por debajo de 10 g/s, ambas salidas transmitirán caudal cero.

2.2.4 Configuración de la atenuación agregada

Indicador	No disponible
ProLink II	ProLink→Configuration→Analog Output→AO Added Damp
Comunicador	5,3,1,4 Detailed Setup→Config Outputs→Analog Output 1→PV AO Added Damping

La atenuación agregada controla la cantidad de atenuación que será aplicada a la salida de mA. Afecta la transmisión de mA Output Process Variable (Variable de proceso de la salida de mA) sólo a través de la salida de mA. No afecta la transmisión de esa variable de proceso mediante otro método (v.g., la salida de frecuencia o comunicación digital), ni afecta el valor de la variable de proceso usada en cálculos.

Nota

No se aplica atenuación agregada si la salida de mA está fija (por ejemplo, durante la prueba de lazo) o si está reportando un fallo. La atenuación agregada se aplica mientras el modo de simulación está activo.

Opciones para la atenuación agregada

Cuando usted configura el valor de Added Damping (Atenuación agregada), el transmisor ajusta automáticamente el valor al valor válido más cercano. Los valores válidos se muestran en la tabla 2-4.

Nota

Los valores de Added Damping (Atenuación agregada) son afectados por el ajuste de Update Rate (Rapidez de actualización) y 100 Hz Variable (Variable de 100 Hz).

Tabla 2-4 Valores válidos para Added Damping (Atenuación agregada)

Ajuste de Update Rate (Rapidez de actualización)	Variable de proceso	Rapidez de actua- lización vi- gente	Valores válidos para Added Damping (Atenuación agregada)
Normal	Todas	20 Hz	0,0, 0,1, 0,3, 0,75, 1,6, 3,3, 6,5, 13,5, 27,5, 55,0, 110, 220, 440
Especial	Variable de 100 Hz (si se asigna a la salida de mA)	100 Hz	0,0, 0,04, 0,12, 0,30, 0,64, 1,32, 2,6, 5,4, 11,0, 22,0, 44, 88, 176, 350

Tabla 2-4 Valores válidos para Added Damping (Atenuación agregada) continuación

Ajuste de Update Rate (Rapidez de actualización)	Variable de proceso	Rapidez de actua- lización vi- gente	Valores válidos para Added Damping (Atenuación agregada)
	Variable de 100 Hz (si no se asigna a la salida de mA)	6,25 Hz	0,0, 0,32, 0,96, 2,40, 5,12, 10,56, 20,8, 43,2, 88,0, 176,0, 352
	Todas las demás variables de proceso	6,25 Hz	0,0, 0,32, 0,96, 2,40, 5,12, 10,56, 20,8, 43,2, 88,0, 176,0, 352

Interacción de los parámetros de atenuación

Cuando se establece la Variable de proceso de la salida de mA a una variable de caudal, densidad o temperatura, la Atenuación agregada interactúa con la Atenuación de caudal, Atenuación de densidad o Atenuación de temperatura. Si se pueden aplicar múltiples parámetros de atenuación, primero se calcula el efecto de atenuar la variable de proceso, y se aplica el cálculo de la atenuación agregada al resultado de aquél cálculo.

♦ Ejemplo: Interacción de la atenuación

Configuración:

- Atenuación de caudal = 1 seg
- Variable de proceso de la salida de mA = Caudal másico
- Atenuación agregada = 2 seg

Resultado: Un cambio en el caudal másico será reflejado en la salida de mA sobre un período de tiempo mayor que 3 segundos. El período de tiempo exacto es calculado por el transmisor de acuerdo con los algoritmos internos que no son configurables.

2.2.5 Configuración de la acción de fallo de la salida de mA y del nivel de fallo de la salida de mA

Display	Not available
ProLink II	ProLink→Configuration→Analog Output→AO Fault Action ProLink→Configuration→Analog Output→AO Fault Level
Comunicador	5,3,1,5 Detailed Setup→Config Outputs→Analog Output 1→AO1 Fault Setup

La acción de fallo de la salida de mA controla el comportamiento de la salida de mA si el transmisor encuentra una condición de fallo interno.

Nota

Si se configura Timeout del último valor medido a un valor diferente de cero, el transmisor no implementará la acción de fallo hasta que el timeout haya transcurrido.

Opciones para la acción de fallo de la salida de mA y el nivel de fallo de la salida de mA

Tabla 2-5 Opciones para la acción de fallo de la salida de mA y el nivel de fallo de la salida de mA

ProLink II código	Código del comunicador	Nivel de fallo de la salida de mA	Comportamiento de la salida de mA
Upscale (5)	Upscale (5)	Predeterminado: 22 mA Rango: 21–24 mA	Toma el valor configurado de nivel de fallo
Downscale (predeterminado) (5)	Downscale (predeterminado) (5)	Predeterminado: 2.0 mA Rango: 1,0-3,6 mA	Toma el valor configurado de nivel de fallo
Internal Zero	IntrnI Zero	No aplicable	Toma el nivel de salida de mA asociado con un valor de 0 (cero) de la variable de proceso, como lo determinan los ajustes Lower Range Value y (Valor inferior del rango) Upper Range Value (Valor superior del rango)
None	None	No aplicable	Rastrea los datos para la variable de proceso asignada; no hay acción de fallo

iPRECAUCIÓN! Si configura la Acción de fallo de la salida de mA o la Acción de fallo de la salida de frecuencia a Ninguna, asegúrese de configurar la Acción de fallo de comunicación digital a Ninguna. Si no lo hace, la salida no transmitirá los datos reales del proceso, y esto puede ocasionar errores de medición o consecuencias no deseadas para su proceso.

iPRECAUCIÓN! Si usted configuró la Acción de fallo de comunicación digital a NAN, no puede configurar la Acción de fallo de la salida de mA o la Acción de fallo de la salida de frecuencia a Ninguna. Si intenta hacer esto, el transmisor no aceptará la configuración.

2.3 Configuración de la salida de frecuencia

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→IO→CH B→SET FO
ProLink II	ProLink→Configuration→Frequency/Discrete Output
Comunicador	5,3,2 Detailed Setup→Config Outputs→FO/DO Config

La salida de frecuencia se utiliza para transmitir una variable de proceso. Los parámetros de salida de frecuencia controlan la manera en que se transmite la variable de proceso. Es posible que su transmisor tenga ninguna o una salida de frecuencia: El Canal B se puede configurar como una salida de frecuencia o una salida discreta.

⁽⁵⁾ Si usted selecciona Upscale o Downscale, también debe configurar el valor de Fault Level.

Los parámetros de la salida de frecuencia incluyen:

- Frequency Output Process Variable (Variable de proceso de la salida de frecuencia)
- Frequency Output Scaling Method (Método de escalamiento de la salida de frecuencia)
- Frequency Output Maximum Pulse Width (Ancho máximo de pulso de la salida de frecuencia)
- Frequency Output Polarity (Polaridad de la salida de frecuencia)
- Frequency Output Fault Action (Acción de fallo de la salida de frecuencia) y Frequency
 Output Fault Value (Valor de fallo de la salida de frecuencia)

Requisitos posteriores

Importante

Cuando cambie un parámetro de la salida de frecuencia, verifique todos los demás parámetros de la salida de frecuencia antes de volver a poner el medidor de caudal a funcionar. En algunas situaciones, el transmisor carga automáticamente un conjunto de valores almacenados, y estos valores podrían no ser adecuados para su aplicación.

2.3.1 Configuración de la variable de proceso de la salida de frecuencia

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→IO→CH B→SET FO→FO SRC
ProLink II	ProLink→Configuration→Frequency/Discrete Output→Tertiary Variable
Comunicador	5,3,2,2 Detailed Setup→Config Outputs→FO/DO Config→TV Is

La Variable de proceso de la salida de frecuencia controla la variable que se transmite sobre la salida de frecuencia.

Prerrequisitos

Si utiliza variables HART, tenga en cuenta que al cambiar la configuración de la Variable de proceso de la salida de frecuencia se cambiará la configuración de la variable terciaria (TV) HART.

Opciones para la variable de proceso de la salida de frecuencia

Tabla 2-6 Opciones para la variable de proceso de la salida de frecuencia

Variable de proceso	Código del indicador	ProLink II código	Código del comunicador
Caudal másico	MFLOW	Mass Flow Rate	Mass flo
Caudal volumétrico	VFLOW	Volume Flow Rate	Vol flo
Caudal volumétrico estándar de gas ⁽⁶⁾	GSV F	Gas Std Vol Flow Rate	Gas vol flo
Caudal volumétrico (estándar) corregido por temperatura (7)	TCVOL	API: Temp Corrected Volume Flow	TC Vol
Caudal volumétrico estándar (8)	STD V	CM: Std Vol Flow Rate	ED Std Vol flo
Caudal másico neto (8)	NET M	CM: Net Mass Flow Rate	ED Net Mass flo
Caudal volumétrico neto (8)	NET V	CM: Net Vol Flow Rate	ED Net Vol flo

⁽⁶⁾ Requiere el software del transmisor v5.0 ó posterior.

⁽⁷⁾ Disponible sólo si la aplicación para mediciones en la industria petrolera está habilitada en su transmisor.

⁽⁸⁾ Disponible sólo si la aplicación de medición de concentración está habilitada en su transmisor.

2.3.2 Configuración del método de escalamiento de la salida de frecuencia

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→IO→CH B→SET FO→FO SCALE
ProLink II	ProLink→Configuration→Frequency/Discrete Output→Scaling Method
Comunicador	5,3,2,3 Detailed Setup→Config Outputs→FO/DO Config→FO Scale Method

El método de escalamiento de la salida de frecuencia define la relación entre el pulso de salida y las unidades de caudal. Configure el método de escalamiento de la salida de frecuencia según lo requiera su dispositivo receptor de frecuencia.

Procedimiento

- Configure el canal para que funcione como una salida de frecuencia, si aún no lo ha hecho.
- 2. Configure Frequency Output Scaling Method.

Frequency=Flow (Frecuencia=Caudal)

Pulses/Unit Una cantidad de pulsos especificada por el usuario representa una unidad (Pulsos/unidad)

Units/Pulse Un pulso representa una cantidad de unidades de caudal especificada (Unidades/pulso)

- 3. Configure los parámetros adicionales que se requieran.
 - Si configura Frequency Output Scaling Method a Frequency=Flow, configure Rate Factor y Frequency Factor.
 - Si configura Frequency Output Scaling Method a Pulses/Unit, defina la cantidad de pulsos que representarán una unidad de caudal.
 - Si configura Frequency Output Scaling Method a Units/Pulse, defina la cantidad de unidades que será indicada por cada pulso.

Frecuencia=Caudal

La opción Frequency=Flow (Frecuencia=Caudal) se utiliza para personalizar la salida de frecuencia para su aplicación cuando no se conocen los valores adecuados para Units/Pulse (Unidades/pulso) o Pulses/Unit (Pulsos/unidad).

Si usted selecciona Frequency=Flow (Frecuencia=Caudal), debe proporcionar los valores de Rate Factor (Factor de caudal) y Frequency Factor (Factor de frecuencia):

Rate Factor (Factor de caudal máximo que usted quiere que transmita la salida de frecuencia. Por encima de este caudal, el transmisor reportará Al10: Frequency Output Saturated.

Frequency Factor

(Factor de frecuencia)

Un valor calculado como se indica a continuación:

Factor Caudal

Factor Caudal

FactorFrecuencia = FactorCaudal x N

donde:

T Factor para convertir a segundos la

base de tiempo seleccionada

Número de pulsos por unidad de caudal,

como está configurado en el dispositivo

receptor

El valor resultante de Frequency Factor debe estar dentro del rango de la salida de frecuencia (0 a 10.000 Hz):

- Si Frequency Factor es menor que 1 Hz, vuelva a configurar el dispositivo receptor para un mayor ajuste de pulsos/unidad.
- Si Frequency Factor es mayor que 10.000 Hz, vuelva a configurar el dispositivo receptor para un menor ajuste de pulsos/unidad.

Consejo

Si Frequency Output Scale Method (Método de escala de la salida de frecuencia) está configurado a Frequency=Flow (Frecuencia=Caudal), y Frequency Output Maximum Pulse Width (Ancho máximo de pulso) es un valor diferente de cero, Micro Motion recomienda ajustar Frequency Factor (Factor de frecuencia) a un valor menor que 200 Hz.

♦ Ejemplo: Configure Frequency=Flow (Frecuencia=Caudal)

Usted quiere que la salida de frecuencia transmita todos los caudales hasta 2000 kg/min.

El dispositivo receptor de frecuencia está configurado para 10 pulsos/kg.

Solución:

FactorFrecuencia =
$$\frac{\text{FactorCaudal}}{\text{T}}$$
 x N

FactorFrecuencia = $\frac{2000}{60}$ x 10

FactorFrecuencia = 333.33

Configure los parámetros como se indica a continuación:

• Rate Factor: 2000

Frequency Factor: 333.33

2.3.3 Configuración del ancho máximo de pulso de la salida de frecuencia

Indicador	No disponible
ProLink II	ProLink→Configuration→Frequency/Discrete Output→Freq Pulse Width
Comunicador	5,3,2,5/6 Detailed Setup→Config Outputs→FO/DO Config→Max Pulse Width

El ancho máximo de pulso de la salida de frecuencia se usa para garantizar que la duración de la señal de activación (ON) sea suficiente para que la detecte su dispositivo receptor de frecuencia.

La señal de activación (ON) puede ser el voltaje alto o 0,0 V, dependiendo de la polaridad de la salida de frecuencia, como se muestra en la tabla 2-7.

Tabla 2-7 Interacción del ancho máximo de pulso de la salida de frecuencia y de la polaridad de la salida de frecuencia

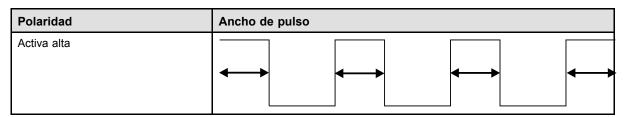
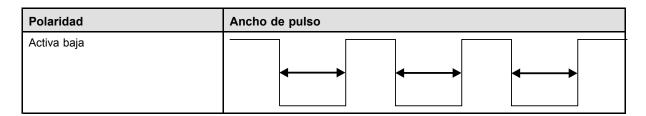
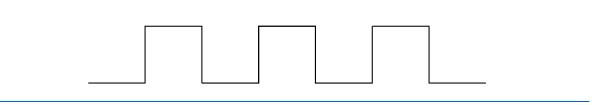



Tabla 2-7 Interacción del ancho máximo de pulso de la salida de frecuencia y de la polaridad de la salida de frecuencia continuación

Consejos


- Para aplicaciones típicas, el valor predeterminado (0) es adecuado para el ancho máximo de pulso de la salida de frecuencia. El valor predeterminado produce una señal de frecuencia con un ciclo de trabajo de 50%. Los contadores de alta frecuencia tales como convertidores de frecuencia a voltaje, convertidores de frecuencia a corriente y periféricos de Micro Motion generalmente requieren un ciclo de trabajo de 50% aproximadamente.
- Los contadores electromecánicos y PLCs que tienen ciclos de bajo scan (baja exploración) generalmente utilizan una entrada con una duración fija de estado diferente de cero y una duración variable de estado cero. La mayoría de los contadores de baja frecuencia tienen un requerimiento especificado para el ancho máximo de pulso de la salida de frecuencia.

Ancho máximo de pulso de la salida de frecuencia

Usted puede configurar el Ancho máximo de pulso de la salida de frecuencia a 0, o a valores entre 0,5 milisegundos y 277,5 milisegundos. El valor introducido por el usuario se ajusta automáticamente al valor válido más cercano.

• Si configura el Ancho máximo de pulso de la salida de frecuencia a 0 (el valor predeterminado), la salida tendrá un ciclo de trabajo de 50%, independientemente de la frecuencia de la salida. Vea la figura 2-1.

Figura 2-1 50% del ciclo de trabajo

 Si configura el Ancho máximo de pulso de la salida de frecuencia a un valor diferente de cero, el ciclo de trabajo es controlado por la frecuencia de crossover.

La frecuencia de crossover se calcula como se muestra a continuación:

FrecuenciaCrossover = 1 2 x AnchoMáximoPulso

- A frecuencias inferiores a la frecuencia de crossover, el ciclo de trabajo está determinado por el ancho de pulso y por la frecuencia.
- A frecuencias mayores que la frecuencia de crossover, la salida cambia a un 50% del ciclo de trabajo.

♦ Ejemplo: Ancho máximo de pulso de la salida de frecuencia con requerimientos de PLC específicos

El dispositivo receptor de frecuencia es un PLC que requiere un ancho de pulso específico de 50 milisegundos. La frecuencia de crossover es de 10 Hz.

Solución: Configure el Ancho máximo de pulso de la salida de frecuencia a 50 milisegundos.

Resultado:

- Para frecuencias menores que 10 Hz, la salida de frecuencia tendrá un estado activo (ON) de 50 mseg, y el estado inactivo (OFF) se ajustará según se requiera.
- Para frecuencias mayores que 10 Hz, la salida de frecuencia será una onda cuadrada con un ciclo de trabajo de 50%.

2.3.4 Configuración de la polaridad de la salida de frecuencia

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→IO→CH B→SET FO→FO POLAR
ProLink II	ProLink→Configuration→Frequency/Discrete Output→Freq Output Polarity
Comunicador	5,3,2,6/7 Detailed Setup→Config Outputs→FO/DO Config→Polarity

La polaridad de la salida de frecuencia controla la manera en que la salida indica el estado ON (activo). El valor predeterminado, Active High (activa alta), es adecuado para la mayoría de las aplicaciones. Se puede requerir Active Low (Activa baja) para aplicaciones que utilizan señales de baja frecuencia.

Opciones para la polaridad de la salida de frecuencia

Tabla 2-8 Opciones para la polaridad de la salida de frecuencia

Polaridad	Voltaje de referencia (OFF)	Voltaje de pulso (ON)
Activa alta	0	Como lo determina la fuente de alimentación, la resistencia pull-up y la carga (vea el manual de instalación para su transmisor)
Activa baja	Como lo determina la fuente de alimentación, la resistencia pull-up y la carga (vea el manual de instalación para su transmisor)	0

Configuración de la acción de fallo de la salida de frecuencia y nivel de fallo de la salida de frecuencia

Indicador	No disponible
ProLink II	ProLink→Configuration→Frequency/Discrete Output→Freq Fault Action ProLink→Configuration→Frequency/Discrete Output→Freq Fault Level
Comunicador	5,3,2,7/8 Detailed Setup→Config Outputs→FO/DO Config→FO Fault Indicator 5,3,2,8/9 Detailed Setup→Config Outputs→FO/DO Config→FO Fault Value

La acción de fallo de la salida de frecuencia controla el comportamiento de la salida de frecuencia si el transmisor encuentra una condición de fallo interno.

Nota

Si se configura Timeout del último valor medido a un valor diferente de cero, el transmisor no implementará la acción de fallo hasta que el timeout haya transcurrido.

Opciones para la acción de fallo de la salida de frecuencia

Tabla 2-9 Opciones para la acción de fallo de la salida de frecuencia

ProLink II código	Código del comunicador	Comportamiento de la salida de frecuencia
Upscale (Fin de la escala) (9)	Upscale (Final de la escala) (9)	Toma el valor configurado de Upscale: Rango: 10–15000 Hz Predeterminado: 15000 Hz
Downscale (Principio de la escala)	Downscale (Principio de la escala)	0 Hz
Internal Zero (Cero interno)	Intrnl Zero	0 Hz
None (Ninguno) (predeterminado)	None (Ninguno) (predeterminado)	Rastrea los datos para la variable de proceso asignada

iPRECAUCIÓN! Si configura la Acción de fallo de la salida de mA o la Acción de fallo de la salida de frecuencia a Ninguna, asegúrese de configurar la Acción de fallo de comunicación digital a Ninguna. Si no lo hace, la salida no transmitirá los datos reales del proceso, y esto puede ocasionar errores de medición o consecuencias no deseadas para su proceso.

PRECAUCIÓN! Si usted configuró la Acción de fallo de comunicación digital a NAN, no puede configurar la Acción de fallo de la salida de mA o la Acción de fallo de la salida de frecuencia a Ninguna. Si intenta hacer esto, el transmisor no aceptará la configuración.

2.4 Configuración de la salida discreta

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→IO→CH B→SET DO
ProLink II	ProLink→Configuration→Frequency/Discrete Output
Comunicador	5,3,2 Detailed Setup→Config Outputs→FO/DO Config

⁽⁹⁾ Si usted selecciona Upscale, también debe configurar el valor de Upscale.

La salida discreta se utiliza para transmitir condiciones específicas del medidor de caudal o del proceso. Los parámetros de la salida discreta controlan qué condición se transmite y cómo se transmite. Es posible que su transmisor tenga ninguna o una salida discreta: El Canal B se puede configurar como una salida de frecuencia o una salida discreta.

Los parámetros de la salida discreta incluyen:

- Discrete Output Source (Origen de la salida discreta)
- Discrete Output Polarity (Polaridad de la salida discreta)
- Discrete Output Fault Action (Acción de fallo de la salida discreta)

Restricción

Antes de que usted pueda configurar la salida discreta, debe configurar un canal para que funcione como una salida discreta.

Requisitos posteriores

Importante

Cuando cambie un parámetro de la salida discreta, verifique todos los demás parámetros de la salida discreta antes de volver a poner el medidor de caudal a funcionar. En algunas situaciones, el transmisor carga automáticamente un conjunto de valores almacenados, y estos valores podrían no ser adecuados para su aplicación.

2.4.1 Configuración del origen de la salida discreta

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→IO→CH B→SET DO→DO SRC
ProLink II	ProLink→Configuration→Frequency/Discrete Output→DO Assignment
Comunicador	5,3,2,DO Is Detailed Setup→Config Outputs→FO/DO Config→DO Is

El origen de la salida discreta controla qué condición del medidor de caudal o del proceso se transmite mediante la salida discreta.

Opciones para el origen de la salida discreta

Tabla 2-10 Opciones para el origen de la salida discreta

Opción	Código del indicador	ProLink II código	Código del comunicador	Condición	Voltaje de la salida discreta
Eventos discreto	D EV x	Evento Discreto x	Evento Discreto x	ON	Específico al sitio
1–5 (11)				OFF	0 V
Evento 1–2 (12)	EVNT1	Evento 1	Evento 1	ON	Específico al sitio
	EVNT2 E1OR2	Evento 2 Evento 1 ó Evento 2	Evento 2 Evento 1 ó Evento 2	OFF	0 V

⁽¹⁰⁾ Se supone que Discrete Output Polarity está configurada a Active High (Activa alta). Si Discrete Output Polarity está configurada a Active Low (Activa baja), invierta los valores de voltaje.

⁽¹¹⁾ Eventos configurados usando el modelo de evento mejorado.

⁽¹²⁾ Eventos configurados usando el modelo de evento básico.

Tabla 2-10 Opciones para el origen de la salida discreta continuación

Opción	Código del indicador	ProLink II código	Código del comunicador	Condición	Voltaje de la salida discreta
Conmutación de	FL SW	Flow Switch	Flow Switch	ON	Específico al sitio
caudal (13) (14)		Indication (Indicación de conmutación de caudal)		OFF	0 V
Dirección de	FLDIR	Forward/Reverse	Forward/Reverse	Caudal directo	0 V
caudal		Indication (Indicación de caudal directo/inverso)		Caudal inverso	Específico al sitio
Calibración en	ZERO	Calibration	Calibration	ON	Específico al sitio
progreso		in Progress (Calibración en progreso)	in Progress (Calibración en progreso)	OFF	0 V
Fallo	FAULT	Fault Condition Indication (Indicación de condición de fallo)	Fault (Fallo)	ON	Específico al sitio
				OFF	0 V
Fallo de verificación del medidor	No disponible	Meter Verification Fault (Fallo de verificación del medidor)	No disponible	ON	Específico al sitio
				OFF	0 V

Configuración de los parámetros de conmutación de caudal

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→IO→CH B→SET DO→CONFIG FL SW
ProLink II	ProLink→Configuration→Flow→Flow Switch Setpoint ProLink→Configuration→Flow→Flow Switch Variable ProLink→Configuration→Flow→Flow Switch Hysteresis
Comunicador	5,3,2,Flow Switch Setpoint Detailed Setup→Config Outputs→FO/DO Config→Flow Switch Setpoint 5,3,2,Flow Switch Variable Detailed Setup→Config Outputs→FO/DO Config→Flow Switch Variable 5,3,2,Hysteresis Detailed Setup→Config Outputs→FO/DO Config→Hysteresis

La conmutación de caudal se utiliza para indicar que el caudal (medido por la variable de caudal configurada) ha caído por debajo del punto de referencia configurado. La conmutación de caudal se implementa con una histéresis configurada por el usuario.

Procedimiento

- 1. Configure Discrete Output Source a Flow Switch, si aún no lo ha hecho.
- 2. Configure Flow Switch Variable a la variable de caudal que se usará para controlar la conmutación de caudal.

⁽¹³⁾ Si configura Discrete Output Source a Flow Switch, también debe configurar Flow Switch Variable, Flow Switch Setpoint y Hysteresis.

⁽¹⁴⁾ Si su transmisor está configurado con dos salidas discretas, puede configurar ambas a Flow Switch Variable. Sin embargo, éstas compartirán los ajustes para Flow Switch Variable, Flow Switch Setpoint y Hysteresis.

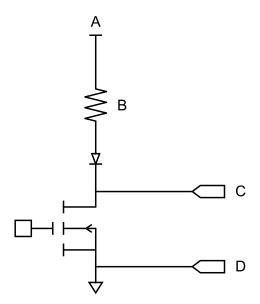
- 3. Configure Flow Switch Setpoint al caudal debajo del cual se debe activar la conmutación de caudal.
- 4. Configure Hysteresis al porcentaje de variación por encima y por debajo del punto de referencia que funcionará como una banda muerta.

La histéresis define un rango en torno al punto de referencia, dentro del cual la conmutación de caudal no cambiará. El valor predeterminado es de 5%. El rango es de 0,1% a 10%.

Por ejemplo, si Flow Switch Setpoint = 100 g/seg e Hysteresis = 5%, y si el caudal cae por debajo de 95 g/seg, la salida discreta se activará. Permanecerá activa hasta que el caudal suba por encima de 105 g/seg. En este momento se desactiva y permanecerá desactivada hasta que el caudal sea menor que 95 g/seg.

2.4.2 Configuración de la polaridad de la salida discreta

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→IO→CH B→SET DO→DO POLAR
ProLink II	ProLink→Configuration→Frequency/Discrete Output→DO Polarity
Comunicador	5,3,2,DO 1 Polarity Detailed Setup→Config Outputs→FO/DO Config→DO 1 Polarity


Las salidas discretas tienen dos estados: ON (activa) y OFF (inactiva). Se utilizan dos niveles de voltaje diferentes para representar estos estados. La polaridad de la salida discreta controla qué nivel de voltaje representa cuál estado.

Opciones para la polaridad de la salida discreta

Tabla 2-11 Opciones para la polaridad de la salida discreta

Polaridad	Descripción
Activa alta	 Cuando es cierto (la condición asociada a la DO es verdadera), el circuito proporciona un pull-up a 24 V. Cuando no es cierto (la condición asociada a la DO es falsa), el circuito proporciona 0 V.
Activa baja	 Cuando es cierto (la condición asociada a la DO es verdadera), el circuito proporciona 0 V. Cuando no es cierto (la condición asociada a la DO es falsa), el circuito proporciona un pull-up a 24 V.

Figura 2-2 Circuito de la salida discreta típico

- 24 V (Nom)
- 3,2 ΚΩ
- Salida+
- Salida-

2.4.3 Configuración de la acción de fallo de la salida discreta

Indicador	No disponible
ProLink II	ProLink→Configuration→Frequency/Discrete Output→DO Fault Action
Comunicador	5,3,2,DO Fault Indication Detailed Setup→Config Outputs→FO/DO Config→DO Fault Indication

La acción de fallo de la salida discreta controla el comportamiento de la salida discreta si el transmisor encuentra una condición de fallo interno.

Nota

Si se configura Timeout del último valor medido a un valor diferente de cero, el transmisor no implementará la acción de fallo hasta que el timeout haya transcurrido.

iPRECAUCIÓN! No utilice la acción de fallo de la salida discreta como un indicador de fallo. Debido a que la salida discreta siempre está activada o desactivada, tal vez usted no pueda distinguir su acción de fallo con respecto a su estado operativo normal. Para utilizar la salida discreta como un indicador de fallo, vea Sección 2.4.4.

Opciones para la acción de fallo de la salida discreta

Tabla 2-12 Opciones para la acción de fallo de la salida discreta

			Voltaje de la salida discreta	
ProLink II código	Código del comunicador	Estado de fallo	Polaridad=Activa alta	Polaridad=Activa baja
Upscale (Final de escala)	Upscale (Final de escala)	Fallo	Voltaje específico al sitio	0 V
		Sin fallo	La salida discreta es con Output Source (Origen	'
Downscale (Principio de la escala)	Downscale (Principio de la escala)	Fallo	0 V	Voltaje específico al sitio
		Sin fallo	La salida discreta es con Output Source (Origen	•
Ninguno (predeterminado)	Ninguno (predeterminado)	No aplicable	La salida discreta es controlada por Discrete Output Source (Origen de la salida discreta)	

2.4.4 Indicación de fallo con la salida discreta

Para indicar fallos mediante la salida discreta, configure los parámetros como se muestra a continuación:

- Discrete Output Source = Fault (Origen de la salida discreta = Fallo)
- Discrete Output Fault Action = None (Acción de fallo de la salida discreta = Ninguna)

Nota

Si se configura el Origen de la salida discreta a Fallo y ocurre un fallo, la salida discreta siempre está activa. El ajuste de la Acción de fallo de la salida discreta se ignora.

2.5 Configuración de la comunicación digital

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→COMM
ProLink II	ProLink→Configuration→Device ProLink→Configuration→RS-485
Comunicador	5,3,3 Detailed Setup→Config Outputs→HART Output 5,3,4 Detailed Setup→Config Outputs→RS485 Setup

Los parámetros de comunicación digital controlan la manera en que el transmisor se comunicará utilizando comunicación digital.

El Transmisor modelo 2700 con salidas analógicas soporta los siguientes tipos de comunicación digital:

- HART/Bell 202 sobre los terminales de la salida primaria de mA
- HART/RS-485 sobre los terminales RS-485
- Modbus/RS-485 sobre los terminales RS-485
- Modbus/RS-485 mediante el puerto de servicio

La acción de fallo de comunicación digital se aplica a todos los tipos de comunicación digital.

Nota

El puerto de servicio responde automáticamente a una amplia gama de solicitudes de conexión. No se puede configurar.

2.5.1 Configuración de la comunicación HART/Bell 202

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→COMM
ProLink II	ProLink→Configuration→Device→Digital Comm Settings
Comunicador	5,3,3 Detailed Setup→Config Outputs→HART Output

Los parámetros de comunicación HART/Bell 202 soportan comunicación HART con los terminales de salida primaria de mA del transmisor sobre una red HART/Bell 202.

Los parámetros de comunicación HART/Bell 202 incluyen:

- HART Address (Polling Address) (Dirección HART) (Dirección de sondeo)
- Loop Current Mode (ProLink II) (Modo de corriente de lazo) o mA Output Action (Acción de salida de mA) (comunicador)
- Parámetros burst (opcional)
- Variables HART (opcional)

Procedimiento

1. Establezca Protocol a HART/Bell 202.

Parity, Stop Bits y Baud Rate se configuran automáticamente.

2. Establezca HART Address (Dirección HART) a un valor entre 0 y 15.

La dirección HART debe ser única en la red. Generalmente se utiliza la dirección predeterminada (0), a menos que usted esté en un entorno multipunto.

Consejo

Los dispositivos que utilicen el protocolo HART para comunicarse con el transmisor pueden utilizar la dirección HART o la etiqueta HART (Etiqueta (tag) virtual) para identificar el transmisor. Usted puede configurar una o las dos, según lo requieran sus otros dispositivos HART.

3. Revise el ajuste de Loop Current Mode (mA Output Action) y cámbielo si se requiere.

Enabled (habilitado)	La salida primaria de mA transmitirá los datos de proceso como se configuren.
Disabled (inhabilitado)	La salida primaria de mA está fija a 4 mA y no transmite datos de proceso.

Consejo

Cuando usted utiliza ProLink II para configurar la dirección HART a 0, ProLink II también activa el modo de corriente de lazo. Cuando usted utiliza ProLink II para configurar la dirección HART a cualquier otro valor, ProLink II también desactiva el modo de corriente de lazo. Esto está diseñado para facilitar la configuración del transmisor para comportamiento anterior. Asegúrese de verificar el parámetro Loop Current Mode (Modo de corriente de lazo) después de configurar la dirección HART.

4. (Opcional) Habilite y configure los parámetros burst.

Consejo

En instalaciones típicas, el modo burst está desactivado. Active el modo burst sólo si otro dispositivo de la red requiere comunicación en modo burst.

(Opcional) Configure las variables HART.

Configuración de los parámetros burst

Indicador	No disponible
ProLink II	ProLink→Configuration→Device→Burst Setup
Comunicador	5,3,3 Detailed Setup→Config Outputs→HART Output

El modo burst es un modo especializado de comunicación durante el cual el transmisor emite regularmente información digital HART sobre la salida de mA. Los parámetros burst controlan la información que se transmite cuando el modo burst está activado.

Consejo

En instalaciones típicas, el modo burst está desactivado. Active el modo burst sólo si otro dispositivo de la red requiere comunicación en modo burst.

Procedimiento

- 1. Active el modo burst.
- 2. Configure Burst Mode Output (Salida de modo burst).

Primary Variable (ProLink II) PV (comunicador)	El transmisor envía la variable primaria (PV) en las unidades de medición configuradas en cada burst (v.g., 14,0 g/s, 13,5 g/s, 12,0 g/s).
PV current & % of range (ProLink II) % range/current (comunicador)	El transmisor envía el porcentaje de rango de la PV y el nivel real de mA de la PV en cada burst (v.g., 25%, 11,0 mA).
Dynamic vars & PV current (ProLink II) Process variables/current (comunicador)	El transmisor envía los valores PV, SV, TV y QV en las unidades de medición y la lectura real de miliamperios de la PV en cada burst (v.g., 50 g/s, 23 °C, 50 g/s, 0,0023 g/cm³, 11,8 mA). (15)
Transmitter vars (ProLink II) Fld dev var (comunicador)	El transmisor envía cuatro variables de proceso especificadas por el usuario en cada burst.

- Configure o verifique las variables de salida burst.
 - Si está utilizando ProLink II y configura Burst Mode Output (Salida de modo burst) a Transmitter Vars (ProLink II), configure las cuatro variables de proceso para que sean enviadas en cada burst:
 - ProLink→Configuration→Device→Burst Setup→Burst Var 1–4
 - Si está utilizando el comunicador y configura Burst Mode Output (Salida de modo burst) a Fld Dev Var, configure las cuatro variables de proceso para que sean enviadas en cada burst:
 - Detailed Setup \rightarrow Config Outputs \rightarrow HART Output \rightarrow Burst Var 1–4

⁽¹⁵⁾ Este ajuste del modo burst se usa generalmente con el convertidor de señales HART Tri-Loop™. Vea el manual del Tri-Loop para obtener más información.

 Si configura Burst Mode Output a cualquier otra opción, verifique que las variables HART estén configuradas como se desea.

Configuración de las variables HART (PV, SV, TV, QV)

Indicador	No disponible
ProLink II	ProLink→Configuration→Variable Mapping
Comunicador	 PV: Configure mA Output Process Variable (Variable de proceso de la salida de mA) SV: Process Variables→View Output Vars→View SV Analog 2 TV: Configure Frequency Output Process Variable (Variable de proceso de la salida de frecuencia). QV: Process Variables→View Output Vars→View QV

Las variables HART son un conjunto de cuatro variables predefinidas para usarlas con HART. Las variables HART incluyen Variable primaria (PV), Variable secundaria (SV), Variable terciaria (TV) y Variable cuaternaria (QV). Usted puede asignar variables de proceso específicas a las variables HART, y luego usar métodos HART estándar para leer o transmitir los datos de proceso asignados.

Opciones para las variables HART

Tabla 2-13 Opciones para las variables HART

Variable de proceso	PV	sv	TV	QV
Caudal másico	✓	✓	✓	✓
Caudal volumétrico	✓	✓	✓	✓
Temperatura	✓	✓		✓
Densidad	✓	✓		✓
Ganancia de la bobina impulsora	✓	✓		✓
Total de masa				✓
Totalizador de volumen				✓
Inventario de masa				✓
Inventario de volumen				✓
Frecuencia de los tubos				✓
Temperatura del medidor				✓
Amplitud de pick-off izquierdo (LPO)				✓
Amplitud de pick-off derecho (RPO)				✓
Temperatura de la tarjeta				✓
Presión externa (16)	✓	✓		✓
Temperatura externa (16)	✓	✓		✓
Caudal volumétrico estándar de gas (16)	✓	✓	✓	✓
Total de volumen estándar de gas (16)				✓
Inventario de volumen estándar de gas (16)				✓
Cero vivo				✓
Caudal volumétrico (estándar) corregido por temperatura (17)	✓	✓	✓	✓

⁽¹⁶⁾ Requiere el software del transmisor v5.0 ó posterior.

⁽¹⁷⁾ Disponible sólo si la aplicación para mediciones en la industria petrolera está habilitada en su transmisor.

Tabla 2-13 Opciones para las variables HART continuación

Variable de proceso	PV	sv	TV	QV
Total de volumen (estándar) corregido por temperatura (17)				✓
Inventario de volumen (estándar) corregido por temperatura (17)				√
Temperatura promedio (17)	✓	✓		✓
Densidad promedio (17)	✓	✓		✓
CTL (17)				✓
Densidad a temperatura de referencia (18)	✓	✓		✓
Gravedad específica (18)	✓	✓		✓
Caudal volumétrico estándar (18)	✓	✓	✓	✓
Total de volumen estándar (18)				✓
Inventario de volumen estándar (18)				✓
Caudal másico neto (18)	✓	✓	✓	✓
Total de masa neto (18)				✓
Inventario de masa neto (18)				✓
Caudal volumétrico neto (18)	✓	✓	✓	✓
Total de volumen neto (18)				✓
Inventario de volumen neto (18)				✓
Concentración (18)	✓	✓		✓
Baume (18)	✓	✓		✓

Interacción de las variables HART y de las salidas del transmisor

Las variables HART son transmitidas automáticamente a través de salidas específicas del transmisor, como se describe en la tabla 2-14.

Tabla 2-14 Variables HART y salidas del transmisor

Variable HART	Transmitida mediante	Comentarios
Variable primaria (PV)	Salida primaria de mA	Si se cambia una asignación, la otra cambia automáticamente, y viceversa.
Variable secundaria (SV)	No asociada con una salida	Se debe configurar la SV directamente, y el valor de la SV está disponible sólo mediante comunicación digital.
Variable terciaria (TV)	Salida de frecuencia (si su transmisor la tiene)	Si se cambia una asignación, la otra cambia automáticamente, y viceversa. Si su transmisor no tiene una salida de frecuencia, se debe configurar la TV directamente, y el valor de la TV está disponible sólo mediante comunicación digital.
Variable cuaternaria (QV)	No asociada con una salida	Se debe configurar la QV directamente, y el valor de la QV está disponible sólo mediante comunicación digital.

⁽¹⁸⁾ Disponible sólo si la aplicación de medición de concentración está habilitada en su transmisor.

2.5.2 Configuración de la comunicación HART/RS-485

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→COMM
ProLink II	ProLink→Configuration→Device→Digital Comm Settings→HART Address ProLink→Configuration→RS-485
Comunicador	5,3,3,1 Detailed Setup→Config Outputs→HART Output→Poll Address 5,3,4 Detailed Setup→Config Outputs→RS485 Setup

Los parámetros de comunicación HART/RS-485 soportan comunicación HART con los terminales RS-485 del transmisor.

Los parámetros de comunicación HART/RS-485 incluyen:

- Protocol (Protocolo)
- HART Address (Polling Address) (Dirección HART) (Dirección de sondeo)
- Parity (Paridad), Stop Bits (Bits de paro) y Baud Rate (Velocidad de transmisión)

Procedimiento

- 1. Configure Protocol a HART/RS-485.
- 2. Establezca HART Address (Dirección HART) a un valor entre 0 y 15.

La dirección HART debe ser única en la red. Generalmente se utiliza la dirección predeterminada (0), a menos que usted esté en un entorno multipunto.

Consejo

Los dispositivos que utilicen el protocolo HART para comunicarse con el transmisor pueden utilizar la dirección HART o la etiqueta HART (Etiqueta (tag) virtual) para identificar el transmisor. Usted puede configurar una o las dos, según lo requieran sus otros dispositivos HART.

3. Establezca Parity (Paridad), Stop Bits (Bits de paro) y Baud Rate (Velocidad de transmisión) según sea adecuado para su red.

Parity (paridad)	Odd (Impar) (predeterminado) Even (Par) None (Ninguna)
Stop Bits (Bits de paro)	1 (predeterminado) 2
Velocidad de transmisión	1200 a 38.400 (predeterminado: 1200)

2.5.3 Configuración de la comunicación Modbus/RS-485

Indicador	OFF-LINE MAINT→OFF-LINE CONFG→COMM
ProLink II	ProLink→Configuration→Device ProLink→Configuration→RS-485
Comunicador	5,3,4 Detailed Setup→Config Outputs→RS485 Setup

Los parámetros de comunicación Modbus/RS-485 controlan la comunicación Modbus con los terminales RS-485 del transmisor.

Los parámetros de comunicación Modbus/RS-485 incluyen:

- Protocol (Protocolo)
- Modbus Address (Slave Address) (Dirección Modbus) (Dirección de esclavo)
- Parity (Paridad), Stop Bits (Bits de paro) y Baud Rate (Velocidad de transmisión)
- Floating-Point Byte Order (Orden de bytes de punto flotante)
- Additional Communications Response Delay (Retardo adicional de la respuesta de comunicación)

Restricción

Para configurar Floating-Point Byte Order o Additional Communications Response Delay, usted debe utilizar ProLink II.

Procedimiento

1. Configure Protocol como se requiere:

Modbus RTU (predeterminado)	Comunicación de 8 bits
Modbus ASCII	Comunicación de 7 bits

- 2. Establezca Modbus Address a un valor entre 1 y 247, excluyendo 111. (111 está reservada para el puerto de servicio.)
- 3. Establezca Parity (Paridad), Stop Bits (Bits de paro) y Baud Rate (Velocidad de transmisión) según sea adecuado para su red.

Parity (paridad)	Odd (Impar) (predeterminado) Even (Par) None (Ninguna)
Stop Bits (Bits de paro)	1 (predeterminado) 2
Velocidad de transmisión	1200 a 38.400 (predeterminado: 1200)

4. Establezca Floating-Point Byte Order para que coincida con el orden de bytes utilizado por su host Modbus.

Código	Orden de bytes
0	1–2 3–4
1	3–4 1–2
2	2–1 4–3
3	4–3 2–1

La estructura de bits de los bytes 1, 2, 3 y 4 se muestra en la Tabla 2-15.

Tabla 2-15 Estructura de bits de los bytes de punto flotante

Byte	Bits	Definición
1	SEEEEEE	S=Signo E=Exponente
2	ЕММММММ	E=Exponente M=Mantisa

Tabla 2-15 Estructura de bits de los bytes de punto flotante continuación

Byte	Bits	Definición
3	МММММММ	M=Mantisa
4	МММММММ	M=Mantisa

5. (Opcional) Establezca Additional Communications Response Delay en "unidades de retardo".

Una unidad de retardo es 2/3 del tiempo requerido para transmitir un caracter, como se calcula para el puerto serial utilizado actualmente y los parámetros de transmisión del caracter. Los valores válidos están en un rango de 1 a 255.

Se utiliza retardo adicional de respuesta de comunicación para sincronizar la comunicación Modbus con los hosts que funcionan a una menor velocidad que el transmisor. El valor especificado aquí será agregado a cada respuesta que el transmisor envíe al host.

Consejo

No configure el retardo adicional de respuesta de comunicación a menos que su host Modbus lo requiera.

2.5.4 Configuración de la acción de fallo de comunicación digital

Indicador	No disponible
ProLink II	ProLink→Configuration→Device→Digital Comm Settings→Digital Comm Fault Setting
Comunicador	5,3,6 Detailed Setup→Config Outputs→Comm Fault Indication

La acción de fallo de comunicación digital especifica los valores que serán transmitidos mediante comunicación digital si el transmisor encuentra una condición de fallo interno.

Nota

Si se configura Timeout del último valor medido a un valor diferente de cero, el transmisor no implementará la acción de fallo hasta que el timeout haya transcurrido.

Opciones para la acción de fallo de comunicación digital

Tabla 2-16 Opciones para la acción de fallo de comunicación digital

ProLink II código	Código del comunicador	Descripción
Upscale (Final de escala)	Upscale (Final de escala)	 Los valores de las variables de proceso indican que el valor es mayor que el límite superior del sensor. Los totalizadores dejan de incrementarse.
Downscale (Principio de la escala)	Downscale (Principio de la escala)	 Los valores de las variables de proceso indican que el valor es mayor que el límite superior del sensor. Los totalizadores dejan de incrementarse.

Tabla 2-16 Opciones para la acción de fallo de comunicación digital continuación

ProLink II código	Código del comunicador	Descripción
Zero (Ajuste del cero)	IntZero-All 0	 Las variables de caudal toman el valor que representa un caudal de 0 (cero). La densidad se transmite como 0. La temperatura se transmite como 0 °C, o el equivalente si se utilizan otras unidades (v.g., 32 °F). La ganancia de la bobina impulsora se transmite como se mide. Los totalizadores dejan de incrementarse.
Not-a-Number (NAN) (no es un número)	Not-a-Number	 Las variables de proceso son transmitidas como IEEE NAN. La ganancia de la bobina impulsora se transmite como se mide. Los enteros escalados Modbus son transmitidos como Max Int. Los totalizadores dejan de incrementarse.
Flow to Zero (El caudal se va a cero)	IntZero-Flow 0	 Los caudales se transmiten como 0. Otras variables de proceso son transmitidas como se miden. Los totalizadores dejan de incrementarse.
None (Ninguno) (predeterminado)	None (Ninguno) (predeterminado)	 Todas las variables de proceso son transmitidas como se miden. Los totalizadores se incrementan si están en ejecución.

iPRECAUCIÓN! Si configura la Acción de fallo de la salida de mA o la Acción de fallo de la salida de frecuencia a Ninguna, asegúrese de configurar la Acción de fallo de comunicación digital a Ninguna. Si no lo hace, la salida no transmitirá los datos reales del proceso, y esto puede ocasionar errores de medición o consecuencias no deseadas para su proceso.

iPRECAUCIÓN! Si usted configuró la Acción de fallo de comunicación digital a NAN, no puede configurar la Acción de fallo de la salida de mA o la Acción de fallo de la salida de frecuencia a Ninguna. Si intenta hacer esto, el transmisor no aceptará la configuración.

2.6 Configuración de eventos

Indicador	No disponible
ProLink II	ProLink→Configuration→Events ProLink→Configuration→Discrete Events
Comunicador	5,6 Detailed Setup→Config Events 5,5 Detailed Setup→Config Discrete Event

Un evento ocurre si el valor en tiempo real de una variable de proceso especificada por el usuario cambia más allá de un punto de referencia especificado por el usuario. Los eventos se utilizan para proporcionar notificación de los cambios de proceso o para ejecutar acciones específicas del transmisor si ocurre un cambio en el proceso.

El Transmisor modelo 2700 soporta dos modelos de evento:

- Modelo de evento básico
- Modelo de evento mejorado

2.6.1 Configuración de un evento básico

Indicador	No disponible
ProLink II	ProLink→Configuration→Events
Comunicador	5,6 Detailed Setup→Config Events

Un evento "básico" se utiliza para proporcionar notificación de los cambios del proceso. Un evento básico ocurre (se activa) si el valor en tiempo real de una variable de proceso especificada por el usuario sube (HI) por encima o baja (LO) por debajo de un punto de referencia especificado por el usuario. Usted puede definir hasta dos eventos básicos. El estatus de los eventos se puede buscar mediante comunicación digital, y se puede configurar una salida discreta para transmitirlo.

Procedimiento

- 1. Seleccione Event 1 ó Event 2 en Event Number.
- 2. Especifique Event Type (tipo de evento).

HI	El evento ocurrirá si el valor de la variable de proceso asignada (x) es mayor que el punto de referencia (Setpoint A), punto final no incluido. $x > A$
LO	El evento ocurrirá si el valor de la variable de proceso asignada (x) es menor que el punto de referencia (Setpoint A), punto final no incluido. $x < A$

- 3. Asigne una variable de proceso al evento.
- 4. Establezca un valor para el punto de referencia (Setpoint A).
- 5. (Opcional) Configure una salida discreta para cambiar los estados de acuerdo al estatus del evento.

2.6.2 Configuración de un evento mejorado

Indicador	No disponible
ProLink II	ProLink→Configuration→Discrete Events
Comunicador	5,5 Detailed Setup→Config Discrete Event

Un evento "mejorado" se utiliza para ejecutar acciones del transmisor específicas si ocurre el evento. Un evento mejorado ocurre (se activa) si el valor en tiempo real de una variable de proceso especificada por el usuario sube (HI) por encima o baja (LO) por debajo de un punto de referencia especificado por el usuario, o si se mueve dentro del rango (IN) o fuera del rango (OUT) con respecto a dos puntos de referencia definidos por el usuario. Usted puede definir hasta cinco eventos mejorados. Para cada evento mejorado, usted puede asignar una o más acciones que el transmisor ejecutará si ocurre el evento mejorado.

Procedimiento

- 1. Seleccione Event 1, Event 2, Event 3, Event 4 ó Event 5 en Event Name.
- 2. Especifique Event Type (tipo de evento).

Н	El evento ocurrirá si el valor de la variable de proceso asignada (x) es mayor que el punto de referencia (Setpoint A), punto final no incluido. x > A
LO	El evento ocurrirá si el valor de la variable de proceso asignada (x) es menor que el punto de referencia (Setpoint A), punto final no incluido. x < A
IN	El evento ocurrirá si el valor de la variable de proceso asignada (x) está "dentro del rango", es decir, entre Setpoint A y Setpoint B, puntos finales incluidos. A $\leq x \leq B$
OUT	El evento ocurrirá si el valor de la variable de proceso asignada (x) está "fuera del rango", es decir, menor que Setpoint A o mayor que Setpoint B, puntos incluidos. $x \le A$ o $x \ge B$

- 3. Asigne una variable de proceso al evento.
- 4. Establezca valores para los puntos de referencia requeridos.
 - Para los eventos tipo HI o LO, establezca Setpoint A.
 - Para los eventos tipo IN o OUT, configure Setpoint A y Setpoint B.
- 5. (Opcional) Configure una salida discreta para cambiar los estados de acuerdo al estatus del evento.
- 6. (Opcional) Especifique la acción o las acciones que el transmisor ejecutará cuando ocurra el evento. Para hacer esto:
 - Con ProLink II: ProLink→Configuration→Discrete Input
 - Con el comunicador: Detailed Setup→Discrete Actions→Assign Discretes

Opciones para la acción de un evento mejorado

Tabla 2-17 Opciones para la acción de evento mejorado

Acción	ProLink II código	Código del comunicador
Ninguna (predeterminado)	None	None
Iniciar el ajuste del cero del sensor	Start Sensor Zero	Start Sensor Zero
Iniciar/detener todos los totalizadores	Start/Stop All Totalization	Start/Stop Totals
Poner a cero el total de masa	Reset Mass Total	Reset Mass Total
Poner a cero el total de volumen	Reset Volume Total	Reset Volume Total
Poner a cero el total de volumen estándar de gas	Reset Gas Std Volume Total	Reset Gas Standard Volume Total
Poner a cero todos los totales	Reset All Totals	Reset All Totals
Poner a cero el total de volumen corregido por temperatura	Reset API Ref Vol Total	Reset Corrected Volume Total
Poner a cero el total de volumen de referencia	Reset CM Ref Vol Total	No disponible
Poner a cero el total de masa neto	Reset CM Net Mass Total	No disponible
Poner a cero el total de volumen	Reset CM Net Vol Total	No disponible
Incrementar curva	Increment Current CM Curve	No disponible
Iniciar una prueba de verificación del medidor	Start Meter Verification	No disponible

iPRECAUCIÓN! Antes de asignar acciones a un evento mejorado o a una entrada discreta, revise el estatus del evento o del dispositivo de entrada remoto. Si está activo, todas las acciones asignadas se ejecutarán cuando se implemente la nueva configuración. Si esto no es aceptable, espere hasta que llegue el momento adecuado para asignar las acciones al evento o a la entrada discreta.

Capítulo 3

Instalación de la aplicación de Pesos y Medidas

Temas que se describen en este capítulo:

◆ Comisionamiento específico a la ubicación

La información de este capítulo es útil sólo si pidió su transmisor con la aplicación de Pesos y Medidas.

3.1 Comisionamiento específico a la ubicación

3.1.1 Lectura del ajuste del cero de verificación in situ (FVZ)

Indicador	Presione SCROLL hasta que aparezca FVZ. (1)
ProLink II	ProLink→Diagnostic Information
Comunicador	No disponible

La variable de diagnóstico Field Verification Zero (FVZ) (ajuste del cero de verificación in situ, FVZ) se lee durante el comisionamiento del medidor para cumplir con los requerimientos de MID para aplicaciones de Pesos y Medidas.

3.1.2 Lectura del checksum del firmware

Indicador	OFF-LINE MAINT→SW REV
ProLink II	ProLink→Configuration→Device→Firmware Checksum ProLink→Configuration→Device→CP Firmware Checksum ProLink→Core Processor Diagnostics
Comunicador	5,4,Transmitter Firmware Detailed Setup→Device Information→Transmitter Firmware 5,4,Core Processor Firmware Detailed Setup→Device Information→Core Processor Firmware

Los valores de checksum para el firmware del transmisor y firmware del procesador central se leen durante el comisionamiento del medidor para cumplir con los requerimientos de Pesos y Medidas para aplicaciones de gas en Alemania. También pueden ser útiles para informes de prueba de MID/Welmec 7.2.

⁽¹⁾ Para tomar la lectura de FVZ desde el indicador, se debe configurar como una variable del indicador.

Capítulo 4

Funcionamiento del transmisor

Temas que se describen en este capítulo:

♦ Visualización de los datos de proceso

4.1 Visualización de los datos de proceso

Indicador	Variables del indicador mostradas automáticamente. Active SCROLL para desplazarse en la lista del indicador.
ProLink II	ProLink→Process Variables ProLink→API Process Variables ProLink→CM Process Variables
Comunicador	1,1 Process variables→View fld dev vars

Usted puede ver los valores actuales de las variables de proceso, incluyendo los totalizadores y los inventarios.

4.1.1 Visualización de los datos de proceso con el indicador

Prerrequisitos

Para ver una variable de proceso en particular en el indicador, debe estar configurada como una variable del indicador.

Procedimiento

- Si Auto Scroll (Desplazamiento automático) está habilitado, usted puede esperar hasta que el indicador muestre la variable de proceso que quiere, o puede activar SCROLL para desplazarse a través de la lista del indicador.
- Si Auto Scroll no está habilitado, active SCROLL hasta que se muestre la variable de proceso deseada.

El valor actual de la variable de proceso se muestra en la primera línea del indicador. La segunda línea del indicador muestra lo siguiente:

- La unidad de medición asociada
- La unidad de medición asociada, alternándola con información adicional, v.g., el nombre del totalizador o inventario
- Para variables de medición en la industria petrolera, el nombre de la variable de proceso, alternándola con la unidad de medición asociada y la temperatura de referencia configurada
- Para variables de medición de concentración, el nombre de la variable de proceso, alternándola con la unidad de medición asociada y la temperatura de referencia configurada

♦ Ejemplo: Variable de proceso de medición en la industria petrolera

Temperature-Corrected Volume Flow se configura como una variable del indicador, con la unidad de medición configurada a L/S y la temperatura de referencia configurada a 15 °C. Cuando Temperature-Corrected Volume Flow (Caudal volumétrico corregido por temperatura) se muestre en el indicador, la primera línea mostrará el valor actual. La segunda línea alternará entre TCVOL, L/S y 15°C.

Apéndice A

Códigos y abreviaciones del indicador

Temas que se describen en este apéndice:

- ♦ Códigos del indicador para las variables de proceso
- ♦ Códigos y abreviaciones usados en los menús del indicador

A.1 Códigos del indicador para las variables de proceso

La tabla A-1 muestra y define los códigos usados para las variables de proceso en el indicador.

Tabla A-1 Códigos del indicador para las variables de proceso

Código	Definición	Comentario o referencia
AVE_D	Densidad promedio	
AVE_T	Temperatura promedio	
BRD_T	Temperatura de la tarjeta	
CONC	Concentración	
DRIVE%	Ganancia de la bobina impulsora	
EXT_P	Presión externa	
EXT_T	Temperatura externa	
FVZ	Ajuste del cero de verificación in situ	Sólo aplicación de Pesos y Medidas
GSV F	Caudal volumétrico estándar de gas	
GSV I	Inventario de volumen estándar de gas	
GSV T	Total de volumen estándar de gas	
LPO_A	Amplitud de pickoff izquierdo	
LVOLI	Inventario de volumen	
LZERO	Caudal de cero vivo	
MASSI	Inventario de masa	
MTR_T	Temperatura de la caja (sólo sensores de la serie T)	
NET M	Caudal másico neto	Sólo aplicación de medición de concentración
NET V	Caudal volumétrico neto	Sólo aplicación de medición de concentración
NETMI	Inventario de masa neta	Sólo aplicación de medición de concentración
NETVI	Inventario de volumen neto	Sólo aplicación de medición de concentración
PWRIN	Voltaje de entrada	Se refiere a la entrada de alimentación al procesador central
RDENS	Densidad a temperatura de referencia	Sólo aplicación de medición de concentración
RPO_A	Amplitud del pickoff derecho	

Tabla A-1 Códigos del indicador para las variables de proceso continuación

Código	Definición	Comentario o referencia
SGU	Unidades de gravedad específica	
STD V	Caudal volumétrico estándar	Sólo aplicación de medición de concentración
STDVI	Inventario de volumen estándar	Sólo aplicación de medición de concentración
TCDENS	Densidad corregida por temperatura	Sólo aplicación para mediciones en la industria petrolera
TCORI	Inventario corregido por temperatura	Sólo aplicación para mediciones en la industria petrolera
TCORR	Total corregido por temperatura	Sólo aplicación para mediciones en la industria petrolera
TCVOL	Volumen corregido por temperatura	Sólo aplicación para mediciones en la industria petrolera
TUBEF	Frecuencia de tubos vacíos	
WTAVE	Promedio ponderado	

A.2 Códigos y abreviaciones usados en los menús del indicador

La tabla A-2 muestra y define los códigos y las abreviaciones usados en los menús del indicador.

Tabla A-2 Códigos y abreviaciones usados en los menús del indicador

Código o abreviación	Definición	Comentario o referencia
ACK ALARM	Reconocer alarma	
ACK ALL	Reconocer todas las alarmas	
ACT	Acción	
ADDR	Dirección	
AO 1 SRC	Fijo a la variable de proceso asignada a la salida primaria	
AO1	Salida analógica 1 (salida primaria de mA)	
AO2	Salida analógica 2 (salida secundaria de mA)	
AUTO SCRLL	Desplazamiento automático	
BKLT B LIGHT	Luz de fondo	
CAL	Calibrar	
CH A	Canal A	
СН В	Canal B	
CH C	Canal C	
CHANGE PASSW CHANGE CODE	Cambiar la contraseña o el código de acceso	Cambiar la contraseña o el código requeridos para tener acceso a las funciones del indicador
CONFG	Configuración	
CORE	Procesador central	
CUR Z	Ajuste del cero actual	

Tabla A-2 Códigos y abreviaciones usados en los menús del indicador continuación

Código o abreviación	Definición	Comentario o referencia
CUSTODY XFER	Transferencia de custodia	
D EV	Evento discreto	Eventos configurados usando el modelo de evento mejorado
DENS	Densidad	
DGAIN, DRIVE %	Ganancia de la bobina impulsora	
DI	Entrada discreta	
DISBL	Inhabilitar	Presionar Select para inhabilitar
DO1	Salida discreta 1	
DO2	Salida discreta 2	
DSPLY	Indicador	
E10R2	Evento 1 ó Evento 2	Eventos configurados usando el modelo de evento básico
ENABL	Habilitar	Presionar Select para habilitar
ENABLE ACK	Habilitar la función para reconocer todas las alarmas	Habilitar o inhabilitar la funcionalidad ACK ALL
ENABLE ALARM	Habilitar el menú de alarmas	Tener acceso al menú de alarmas desde el indicador
ENABLE AUTO	Habilite el parámetro Auto Scroll (Desplazamiento automático)	Habilitar o inhabilitar la función de desplazamiento automático
ENABLE OFFLN	Habilitar off-line	Tener acceso al menú off-line desde el indicador
ENABLE PASSW	Habilitar la contraseña	Habilitar o inhabilitar la protección por contraseña para las funciones del indicador
ENABLE RESET	Habilitar la puesta a cero de totalizadores	Habilitar o inhabilitar la puesta a cero de totalizadores desde el indicador
ENABLE START	Habilitar el inicio de totalizador	Habilitar o inhabilitar el inicio/paro de totalizadores desde el indicador
EVNT1	Evento 1	Evento configurado usando sólo el modelo de evento básico
EVNT2	Evento 2	Evento configurado usando sólo el modelo de evento básico
EXTRN	Externa	
FAC Z	Ajuste del cero de fábrica	
FCF	Factor de calibración de caudal	
FL SW FLSWT	Conmutación de caudal	
FLDIR	Dirección de caudal	
FO	Salida de frecuencia	
FO FREQ	Factor de frecuencia	
FO RATE	Factor de caudal	
FR FL	Frecuencia=Caudal	
FREQ	Frecuencia	

Tabla A-2 Códigos y abreviaciones usados en los menús del indicador continuación

Código o abreviación	Definición	Comentario o referencia
GSV	Volumen estándar de gas	
HYSTRSIS	Histéresis	
INTERN	Interna	
Ю	Entrada/salida	
LANG	Idioma	
LOCK	Protección contra escritura	
LOOP CUR	Corriente de lazo	
MTR F	Factor del medidor	
M_ASC	Modbus ASCII	
M_RTU	Modbus RTU	
MAO1	Salida de mA 1 (salida primaria de mA)	
MAO2	Salida de mA 2 (salida secundaria de mA)	
MASS	Caudal másico	
MBUS	Modbus	
MFLOW	Caudal másico	
MSMT	Medición	
OFFLN	Off-line	
OFF-LINE MAINT	Mantenimiento off-line	
P/UNT	Pulsos/unidad	
POLAR	Polaridad	
PRESS	Presión	
QUAD	Cuadratura	
r.	Revisión	
SCALE	Método de escalamiento	
SIM	Simulación	Se usa para pruebas de lazo, no modo de simulación. El modo de simulación no es accesible mediante el indicador.
SPECL	Especial	
SRC	Fuente	Asignación de variables
TEMP, TEMPR	Temperatura	
UNT/P	Unidades/pulso	
VAR 1	Variable del indicador 1	
VER	Versión	
VERFY	Verificar	
VFLOW	Caudal volumétrico	
VOL	Volumen, caudal volumétrico	
WRPRO	Protección contra escritura	
XMTR	Transmisor	

© 2009, Micro Motion, Inc. Todos los derechos reservados. P/N MMI-20015883, Rev. AA

Para las últimas especificaciones de los productos Micro Motion, vea la sección PRODUCTS de nuestra página electrónica en www.micromotion.com

Emerson Process Management S.L.

España

C/ Francisco Gervás, nº 1 28108 Alcobendas – Madrid T +34 913 586 000 F +34 629 373 289 www.emersonprocess.es

Emerson Process Management

Micro Motion Europa

Neonstraat 1 6718 WX Ede Paises Bajos T +31 318 495 555 F +31 318 495 556

Micro Motion Inc. EE.UU.

Oficinas centrales

7070 Winchester Circle Boulder, Colorado 80301 T +1 303-527-5200 +1 800-522-6277 F +1 303-530-8459

Emerson Process Management S.L.

España

Edificio EMERSON Pol. Ind. Gran Via Sur C/ Can Pi, 15, 3^a 08908 Barcelona T +34 932 981 600 F +34 932 232 142

Emerson Process Management

Micro Motion Asia

1 Pandan Crescent Singapur 128461 República de Singapur T +65 6777–8211 F +65 6770–8003

Emerson Process Management

Micro Motion Japón

1–2–5, Higashi Shinagawa Shinagawa-ku Tokio 140–0002 Japón T +81 3 5769–6803 F +81 3 5769–6844

