Bettis XTE3000 PROFIBUS DPV1 Module

BETTIS

Revision Details

Revision	Date	Description	Prepared	Checked	Approved
7	February 2022	Migration to new template			

Table of Contents

Introduction uction
Operation and Storage tion and Storage
Communication Features
ICON2000v4_DPV1 Module On Board Indication
PROFIBUS DP Description BUS DP Description
RS485 Transmission Mode Transmission Mode
Slave Redundancy Redundancy
ICON2000v4_DPV1 Power-Up 2000v4_DPV1 Power Up
Data Exchanged During Parameterization

Section 10: Data Exchange Mode

10.1	Cyclic Communications DPV0	. 15
	10.1.1 Output Data	
	10.1.2 Input Data	
	10.1.3 Diagnosis Message	
10.2	Acyclic Communication DPV1	. 23
	10.2.1 Nameplate	. 23
	10.2.2 General Data	
	10.2.3 Maintenance Information	. 24
	10.2.4 Alarm and Warning Log	. 26
	10.2.5 Maintenance Commands	. 27

Section 11: Data at Local Operator Interface

11.1	Bus Control	28
11.2	Node Report	29
	Bus Signal Failure Indication	

Appendix A: PROFIBUS Certificate

Appendix B: Note for Base Card FW 7.00

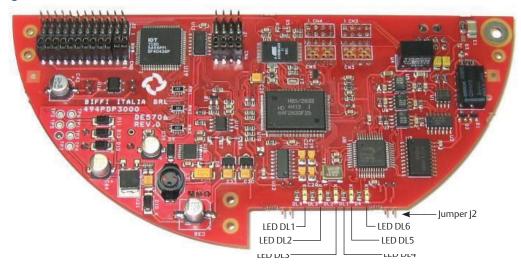
Section 1: Introduction

The ICON2000v4_DPV1 is an electronic module that allows connecting the Bettis electrical actuator XTE3000 to a PROFIBUS DP network. The module has its microprocessor and a program stored internally controls it, it works as a pure bus interface and does not affect the actuator control integrity. It is installed inside the actuator housing and takes the electrical power from the actuator power supply module. The RS485 interface is located on the module board. The PROFIBUS network is fully isolated from the actuator electronics.

The ICON2000v4_DPV1 is designed to support PROFIBUS redundant communication by installing two electronic modules on the same Bettis electrical actuator XTE3000.

Section 2: Operation and Storage

The module is designed to work and to be stored in the same environment of the actuator.


Section 3: Communication Features

Communication protocol	: PROFIBUS DP according to EN 50170			
Network topology	: Line (bus) structure. With repeaters tree structures can also be realized			
Transmission medium	: Twisted, screened copper cable according to EN 50170			
Data rate	:9.6 19.2 45.45 93.75 187.5 500 1500 Kbit/second			
Cable length without repeater	:1200 1200 1200 1200 1000 400 200 m			
Station type	: DPV0 and DPV1 slave			
Device number	: 32 devices per segment without repeater (max 126, with repeaters)			
Bus access	: Token-passing between masters and polling for slaves			
Electrical power	: Actuator powered (as option: auxiliary external voltage supply)			
Bus termination	: Configurable on board via local operator interface of actuator			
Temperature	: -40 °C, +85 °C			
Fieldbus redundancy	: Two independent communication interfaces			
EMC protections	: EN 50081-2 and EN 50082-2			
Types of operation	: Cyclic data exchange, Sync mode, Freeze mode, Fail-safe mode			
Baud rate	: Automatic recognition			
Addressing	: Configurable via local operator interface			

Section 4: ICON2000v4_DPV1 Module

The module consists in a single PCB that is installed inside the actuator housing. It is connected to the XTE3000 base card via strip connector. The internal wiring connects the PROFIBUS data lines to the actuator terminal board.

Figure 1

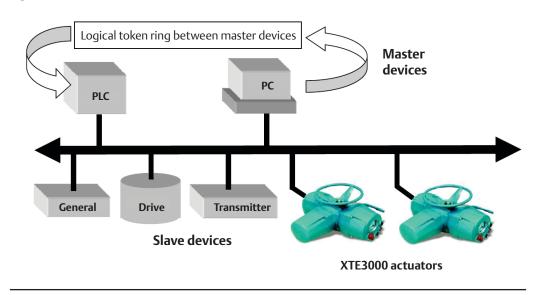
4.1 On Board Indication

Five LEDs are mounted on the ICON2000v4_DPV1 to give the following indications for Field service. LEDs indications are active only when jumper JP2 is closed.

DL1 (Red) Data Area Empty:	ON when Data Area on interface card is not yet loaded. BLINK when Data Area is being read from base card. OFF when Data Area is completely loaded.		
DL2 (Red) Base comm:	ON when the communication between the base card and the interface is not working properly. OFF when the communication between the base card and the interface is correct.		
DL3 (Orange) Slave State:	ON when the interface acts as an Primary Slave (i.e. it is the interface with a valid communication with the Master). BLINK when the interface acts as a Backup Slave and it is ready (only for redundant configuration). OFF when the interface is not communicating with any Master.		
DL4 (Green) Termination:	ON when the on bard PROFIBUS termination has been inserted. OFF when the on bard PROFIBUS termination has not been inserted.		
DL5 (Green) PROFIBUS:	ON when PROFIBUS communication has been established and the interface has entered in DATA_EX state.		
DL6 (Green) Power:	ON when the interface is correctly powered.		
Man to the structure of the state of the structure for the structure the structure of the New Arrows of			

More indications are given on local operator interface as described in Section 11.2, Node Report.

Section 5: PROFIBUS DP Description


PROFIBUS is a vendor-independent, open field bus standard used in a wide range of application in process automation. Vendor independence and openness are ensured by the international standards EN 50170 and EN 50254. The DP communication profile is designed for data exchange at the field level. The central controllers (as PLC) communicate via serial connection with field devices (as sensors and actuators). Data exchange is mainly cyclic. The central controller (called Master) cyclically reads the input information from the field devices (called Slaves) and cyclically writes the output information to the slaves. In addition, PROFIBUS DP provides communication services for parameterization, alarm handling and monitoring of intelligent field devices. The maximum number of Master and Slave devices in a bus segment is 32 without repeaters. With repeaters, the number can be extended to 126. The maximum cable length depends on the speed of transmission. Higher is the speed, shorter is the length. For instance, with baud rate 93.75 kb/s, the max cable length is 1,200 m without repeaters.

Mono-master or multi-master system configuration can be provided. Bus access is controlled by token passing procedure between masters and master-slave procedure (polling) between master and slaves.

Types of devices:

DP Master Class 1 (DPM 1):	This is the central controller that cyclically exchange information with the field devices. Typical devices are PLC or PC.
DP Master Class 2 (DPM 2):	These devices are necessary for commissioning, maintenance and diagnostics.
Slave:	Field device such transmitters, actuators, drives, etc.

Figure 2 below shows a PROFIBUS DP configuration with two Master devices and different Slave devices.

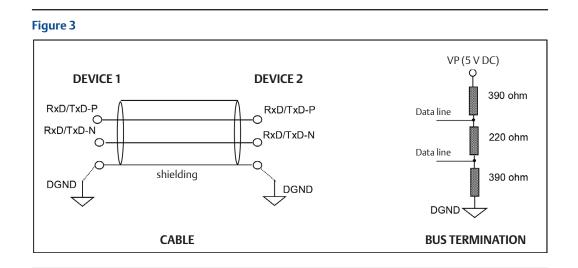
Figure 2

Section 6: RS485 Transmission Mode

The ICON2000v4_DPV1 module uses a half duplex, multidrop, serial communication line RS485. The module communicates with the Masters via its RS485 interface and the transmission media consists in a shielded twisted pair cable. Transmission speed from 9.6 kbit/s to 1.5 Mbit/s are available. One unique transmission speed is allowed for all devices on the bus when the system works.

All devices are connected in a bus structure. Up to 32 station (Master and Slaves) can be connected in one segment without repeaters. Repeaters can be used to extend the number of device up to 126 and to enlarge the network area. Table 1 shows the relationship between baud rate and segment length.

Table 1.


Baud Rate	Maximum segment length (no repeater)
9.6 K	1200 m
19.2 K	1200 m
45.45 K	1200 m
93.75 K	1000 m
187.5 K	1000 m
500 K	400 m
1500 K	200 m

The bus must be terminated by an active bus terminator at the beginning and at the end of each segment. Only two terminations in one bus segment must be provided. To ensure error-free operation, both bus terminators must be powered. The maximum cable length depends on the transmission speed. Cable lengths indicated in Table 1 are based on type A cable, as specified by the EN 50170, having the following characteristics.

- Impedance from 135 to 165 ohm
- Capacity < 30 pF/m
- Loop resistance 110 ohm/km
- Wire gauge 0.64 mm
- Conductor area > 0.34 mm²

The use of cable of previously used type B is not recommended.

The data lines must not be reversed. Use of shielded cable is mandatory for having high system immunity against electromagnetic disturbs. The shield should be connected to ground on both sides. The data lines should be kept separate from all other cables. It should be laid in separate, conductive and earthed cable trunking. It must be ensured that there are no voltage difference between individual nodes of PROFIBUS DP.

The ICON2000v4_DPV1 module takes its electrical supply from the actuator power supply module. The RS485 bus transceiver is isolated from the actuator electronics. Also, the voltage supply of the bus termination is isolated. The ICON2000v4_DPV1 module is equipped with on-board bus termination that should be used when the actuator is at the beginning or at the end of the bus segment and if there is no external termination. The bus termination can be switched on the data lines by means of a link, configurable via local operator interface.

Since the bus termination is a crucial component to ensure error-free operation, it is important that termination remains powered also when the actuator supply has left. If the internal termination are used, it is suggested to connect to the actuator also an auxiliary 18/36 V AC/DC generated by safe source that will supply just the actuator electronics and the PROFIBUS termination.

Figure 4 below shows the wiring in case of not redundant connection. The termination must be linked to the data lines only if the actuator is at the beginning or at the end of the bus segment.

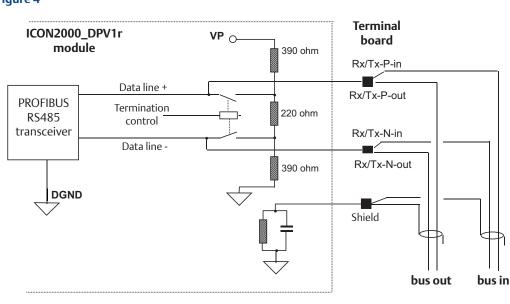
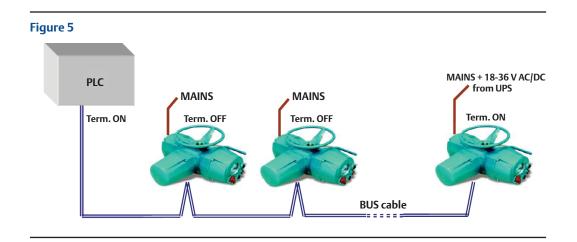
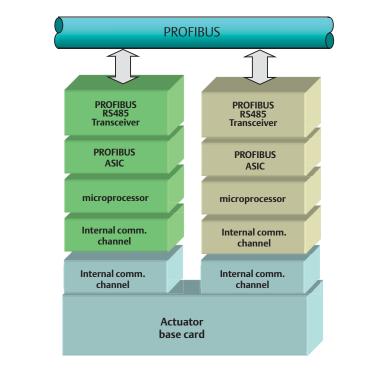



Figure 5 below shows the bus with an actuator at the end of the bus segment. Ensure that the terminations are supplied. Also, if the mains fails, an auxiliary voltage supply generated by an UPS is connected to the actuator to supply the electronics and the termination.


Figure 4

Section 7: Slave Redundancy

The ICON2000v4_DPV1 is designed to allow the actuator to acts as a redundant slave as described in this section.

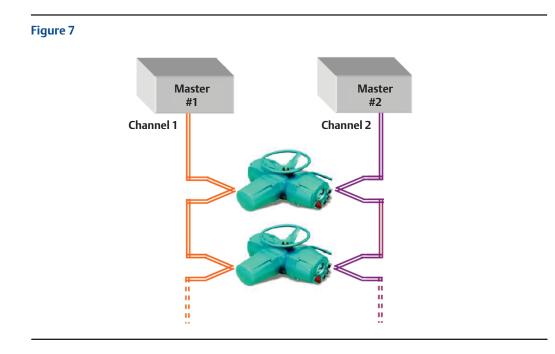
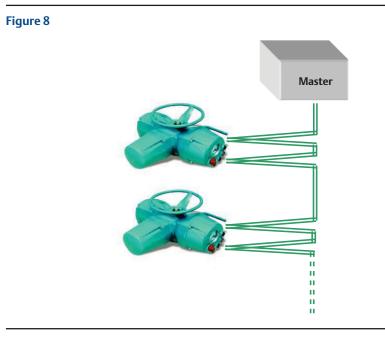

To achieve the Slave Redundancy, two ICON2000v4_DPV1 modules are mounted in the actuator: in this way the actuator is equipped with a full redundant communication interface as specified by the PROFIBUS Guideline. The schematic of the Redundant Slave is as follow:

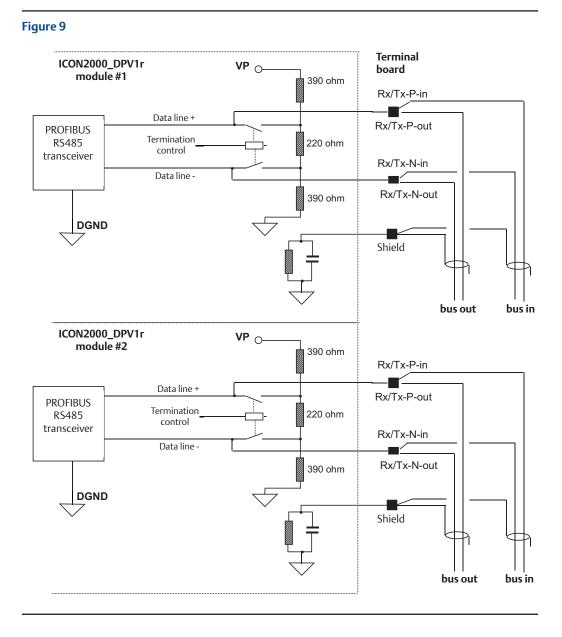
Figure 6



The two interfaces are indicated as Primary Slave and Backup Slave. The following simple rules define the redundancy strategy:

- An internal arbitration defines the role of the interfaces during the start-up.
- The base card tries first to establish a valid communication with the Primary Slave.
- There is always just one Slave (Primary or Backup) with a valid communication with the PROFIBUS line. It is indicated Active Slave.
- Both Slaves can answer to PROFIBUS interrogation: only the Active Slave has valid data and this condition is indicated by a specific bit in the cyclic communication.
- Both Slaves receive the commands from Master but the base card can execute only the commands from the Active Slave.
- When the Primary Slave stops to work or its interface does not sense any PROFIBUS communication, the base card enables the Backup Slave that becomes Active.
- After the Primary Slave fails, the PROFIBUS communication continues via the current Active Slave. A maintenance service is necessary to restore the Primary Slave.
- The PROFIBUS slave addresses are assigned for each interface from the Local Operator Interface of the actuator and the addressing is depending on the redundant system structures that has been selected.

In this layout, the two interfaces may have the same address because the two interfaces are on different channels. A synchronization method must be active between the Master stations to take the information from the Active Slave.



In this layout, the two interfaces shall have different addresses because the two interfaces are on the same channel.

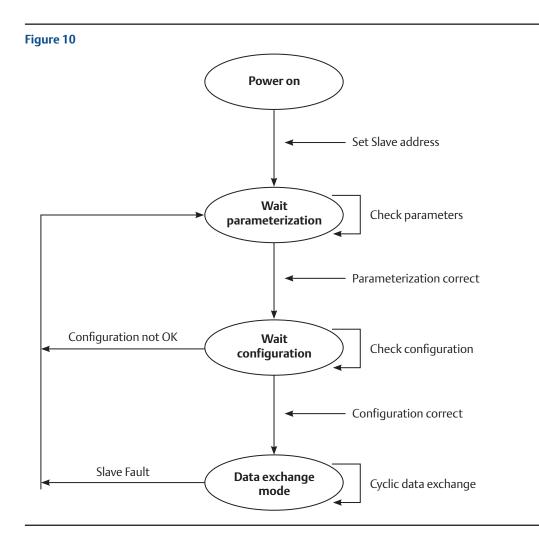
The very flexible redundancy strategy implemented in the ICON2000v4_DPV1 module allows also different layout that the Master station can drive. The bus terminations can be switched on each data lines by means of two links, configurable via local operator interface.

Slave Redundancy

Figure 9 below shows the wiring necessary in case of redundant slave. The termination must be linked to the data lines only if the actuator is at the beginning or at the end of the bus segment.

Slave Redundancy

Section 8: ICON2000v4_DPV1 Power-Up


On power-up, the module checks the baud rate and then it waits for the "parameterization" telegram from the Master. The parameterization message contains user information needed for actuator operation and listed in the Section 9: 'Data exchanged during parameterization'.

After that, the module waits for the "configuration" telegram from Master. The configuration message contains the number of input and output bytes reserved in the memory of the Master device for each slave. Only the number of bytes determined in the configuration is transmitted between Master and Slave. This information is called "module". The ICON2000v4_DPV1 board implements the following modules:

- Module 1 : 1 byte output; 2 bytes input
- Module 2 : 4 byte output; 8 bytes input
- Module 3 : 1 byte output; 2 bytes input Consistent
- Module 4 : 4 byte output; 8 bytes input Consistent

Consistent is an attribute that specify the capability of the module to maintains data consistency over the entire data length. In this way, the data will not change during the reading by the PROFIBUS DP-Master. For example, if module 2 is selected, the output telegram consists in 4 bytes and the input telegram in 8 bytes.

When parameters and configuration are correct, the module enters in "data exchange mode" and starts with normal operation. The Master cyclically sends commands to the Slave and read its status. Figure 10 shows the state machine of a DP slave:

Section 9: Data Exchanged During Parameterization

The following data are sent to the ICON2000v4_DPV1 interface:

ble 2.					
Byte	Name	Туре	Range	Default	EU
0	Reserved DP V1	1 byte	-	-	-
1	Reserved DP V1	1 byte	-	-	-
2	Reserved DP V1	1 byte	-	-	-
2	Storage Format	1 byte	0	LSB first	LSB first
3			1	LSB first	MSB first
			0		Off
			1		Close
4	Fail-safe Action	1 byte	2	Off	Open
			3		Stayput
			4		Go to position
5	Delay before initiating safe operation	1 byte	0-255	4	seconds
6	Safe Position	1 byte	0-100	50	%
7		1 byte	0	Off	Off
/	Timer Open direction – status	Tbyte	1	011	On
8	Timer Open direction – on time	1 byte	2-200	2	seconds
9	Timer Open direction – off time	1 byte	1-200	2	seconds
10	Timer Open direction – start position	1 byte	0-100	0	%
11	Timer Open direction – stop position	1 byte	0-100	100	%
12	Timer Close direction – status	1 byte	0	Off	Off
12			1		On
13	Timer Close direction – on time	1 byte	2-200	2	sec
14	Timer Close direction – off time	1 byte	1-200	2	sec
15	Timer Close direction – start position	1 byte	0-100	100	%
16	Timer Close direction – stop position	1 byte	0-100	0	%
17	Reserved	1 byte	-	-	-
18	Dead band	1 byte	1-255	10	tenth of %
19	Motion inhibit	1 byte	1-255	6	seconds

It should be noted that every time the PROFIBUS communication is established, the parameterization string will be sent to the device, writing the parameters to the set up values. The values in parameterization string shall be modified at the Master station.

Byte 0-2 Reserved for DPV1

Byte 3

Storage format

It defines the format of the variables that are transmitted on 2 or 4 bytes. The setting of this parameter affects the format of the following data:

—	Output Data	(if Module 2 is selected)
		Position Request
—	Input Data	(if Module 2 is selected)
		Actuator Position, Output Torque
—	General Maintenance Info	Slot 2 Index 0
		Actuator Position, Output Torque, Opening
		Time, Closing Time, Contactor Cycles, Motor
		Run Time, Time Without Power, Utilization Rate
_	Recent Maintenance Info	Slot 2 Index 1
		Recent Contactor Cycles, Recent Motor Run
		Time, Recent Time Without Power, Recent
		Utilization Rate
_	Value	0: LSB byte is transmitted first (default setting)
		1: MSB byte is transmitted first

Byte 4	place only if the l	ion of the actuator in case of loss of the bus signal. The action takes ocal selector is on REMOTE position and if the bus is operating. gnal restores, the actuator also restores at its normal functioning.		
	— Value	0: Off - disable (default setting) 1: Close 2: Open 3: Stayput 4: Go to position indicated in the parameter 'Safe position'		
Byte 5		tiating fail-safe operation ay before execute the programmed Safe Action.		
	— Value	minimum: 0 second maximum: 255 seconds default value: 4 seconds		
Byte 6	Safe position It defines the Saf	e position when 'Safe Action: go to position' is selected.		
	— Value	minimum: 0 % maximum: 100% default value: 50%		
Byte 7	Timer Open Direction - Status It enables the Timer function in Open direction.			
	— Value	0: Off - disable (default setting) 1: On		
Byte 8		ection – On time time of the Timer function in opening.		
	— Value	minimum: 2 seconds maximum: 200 seconds default value: 2 seconds		
Byte 9		ection – Off time time of the Timer function in opening.		
	— Value	minimum: 1 second maximum: 200 seconds default value: 2 seconds		
Byte 10		ection – Start position rt position of the Timer function in opening.		
	— Value	minimum: 0 % maximum: 100% default value: 0%		
Byte 11		e ction – Stop position p position of the Timer function in opening.		
	— Value	minimum: 100 % maximum: 0% default value: 100%		

Byte 12	Timer Close Dire It enables the Tim	ction - Status her function in close	directior	۱.
	– Value	0: Off - disable (de 1: On	efault sett	ing)
Byte 13	Timer Close Dire It defines the On t	ction – On time time of the Timer fu	unction in	closing.
	— Value	minimum: 2 seco maximum: 200 se default value: 2 se	conds	
Byte 14	Timer Close Dire It defines the Off	ction – Off time time of the Timer fu	unction in	closing.
	— Value	minimum: 1 seco maximum: 200 se default value: 2 se	conds	
Byte 15		ction – Start posit t position of the Tir		ion in closing.
	— Value	minimum: 100 % maximum: 0% default value: 100)%	
Byte 16		ction – Stop positi position of the Tin		on in closing.
	— Value	minimum: 0 % maximum: 100% default value: 0%		
Byte 17	Reserved			
Byte 18	modulating actua	ator. The movemen	t is inhibit	ositioning function available on the red until the difference between rion error) is lower than Dead band.
	— Value	minimum: maximum: default value:	1 255 10	0.1% 22.5% 1.0%
Byte 19		imum delay betwee		cles of the motor when the actuator number of start per hour of the
	– Value	minimum: 1 seco maximum: 255 se default value: 6 se	econds	

Section 10: Data Exchange Mode

The following paragraph describes the input and output messages of ICON2000v4_DPV1 interface when working in "data exchange mode" for "cyclic data" and "acyclic data". In all cases, it is called "input signal" a data flowing from actuator to bus, vice-versa it is called "output signal" a data flowing from bus to slave.

10.1 Cyclic Communications DPV0

10.1.1 Output Data

		: Close Command : Open Command : Stop Command : ESD Command * * * : Enable Positioner *	Bit 1 = 1 Bit 2 = 1 Bit 3 = 1
		: Reserved	
MODULE 1 / 3		: Reserved	
		: Reserved	Bit 7
BYTE = 3	BYTE = 2		BYTE = 1
		: Reserved	Bit 0 = 1
		: Reserved	Bit 1 = 1
		: Reserved	Bit 2 = 1
POSITION REQUEST**	POSITION REQUEST**	: Reserved	Bit 3 = 1
		: Reserved	Bit 4
		: Reserved	Bit 5
		: Reserved	Bit 6
		: Reserved	Bit 7

* In case of module 1: Reserved

** Position request: Integer 16 bits (value 0 = 0%; value 1000 = 100.0%)

*** See Appendix C: Note for Base card FW 7.00

10.1.2 Input Data

BYTE = 0 Bit 0 = 1 : Close limit Bit 1 = 1 : Open limit Bit 2 = 1 : Closing Bit 3 = 1 : Opening Bit 4 = 1 : ESD active ***	BYTE = 1 Bit 0 = 1 : Interlock open active Bit 1 = 1 : Interlock close active Bit 2 = 1 : Fail-safe action Bit 3 = 1 : Int. data updated* Bit 4 = 1 : Warning	
Bit 5 = 1: Loc. Sel. on RemoteBit 6 = 1: Loc. Sel. on LocalBit 7 = 1: Loc. Sel. on Off	Bit 5 = 1 : Channel 1 active Bit 6 = 1 : Valid data ^{**} Bit 7 = 1 : Alarm	MODULE 1 / 3
BYTE = 2	BYTE = 3	
ACTUATOR POSITION §	ACTUATOR POSITION §	
BYTE = 4 Bit 0 = 1 : Monitor relay Bit 1 = 1 : Motion inhibited Bit 2 = 1 : DIN 1 Bit 3 = 1 : DIN 2 Bit 4 = 1 : DIN 3 Bit 5 = 1 : DIN 4 Bit 6 = 1 : DIN 5 Bit 7 = 1 : DIN 6	BYTE = 5 Bit 0 = 1 : Aux_in_open Bit 1 = 1 : Aux_in_close Bit 2 = 1 : Aux_in_stop Bit 3 = 1 : Aux_in_bus-on Bit 4 = 1 : HW remote mode Bit 5 = 1 : Positioner mode Bit 6 : Reserved Bit 7 : Reserved	
BYTE = 6	BYTE = 7	
OUTPUT TORQUE §§	OUTPUT TORQUE §§	
		MODULE 2 / 4

* 'Internal data updated' is set to 1 when the Active Slave has updated its internal data area and the acyclic communications can read updated values.

** 'Valid data' is set to 1 when the PROFIBUS interface is the Active Slave and the cyclic communications contains valid data.

*** See Appendix B: Note for Base card FW 7.00.

§ Position: Integer 16 bits (value 0 = 0%; value 1000 = 100.0%)
 §§ Torque: Integer 16 bits (OP: value 0 = 0%; value -100 = 100% - CL: value 0 = 0%; value +100 = 100%)

DIN setting

Via local operator interface of actuator, the DIN bits can be individually set to 1 if one of the conditions occurs:

- open limit - closed limit

- opening

- position >=xx%

- position <=xx%

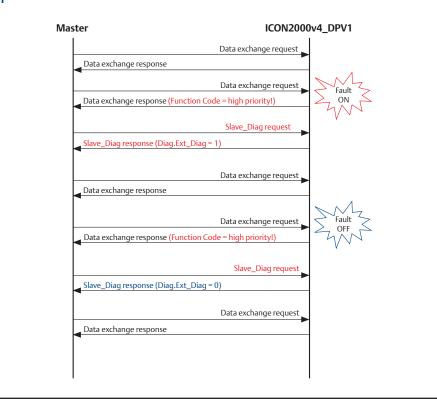
- local selected - remote selected

- local stop active

- manual operation

- ESD signal on

- high-high torque in CL
 - valve jammed
 - valve jammed in OP
 - valve jammed in CL
 - low alkaline battery (if present)
- motor over-temperature mid travel alarm in OP or CL
- motor running - blinker
- high-high torque
- mid-travel position

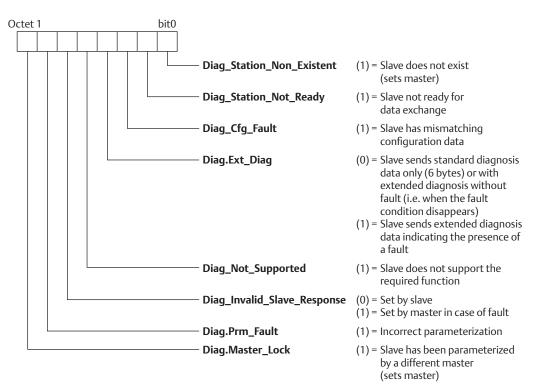

- high-high torque in OP

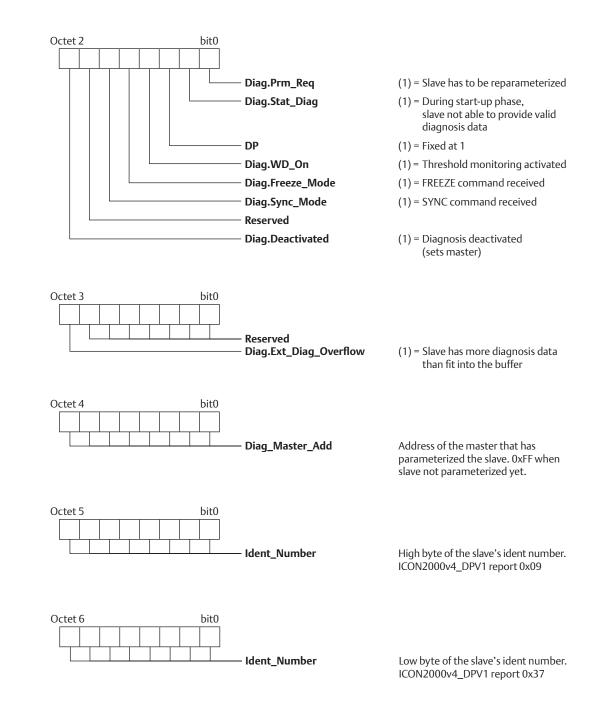
- The following settings are supplied by factory:
- DIN 1: mid-travel position •
- DIN 2: local stop active •
- DIN 3: motor over-temperature (motor thermostat alarm) •
- DIN 4: over-torque (hi-hi torque alarm) .
- DIN 5: valve jammed alarm •
- DIN 6: mid-travel alarm in OP/CL •

10.1.3 Diagnosis Message

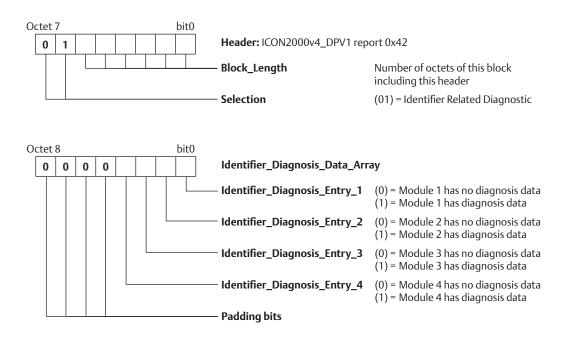
The ICON2000v4_DPV1 interface manages the diagnosis indication coming from the actuator as stated by the PROFIBUS DP V1 standard.

When the ICON2000v4_DPV1 interface needs to notify a fault to the master while in data exchange mode, it changes the function code in its response message to "high priority". During the next regular bus cycle, the master in turn send a "Slave_Diag" request that is answered with a "Slave_Diag" response. The availability of XTE specific diagnosis information is notified by Dia.Ext_Diag flag set to 1. Once the master was able to catch the diagnosis information, it returns to the standard cyclic data exchange mode. To notify the termination of the diagnosis incident, the ICON2000v4_DPV1 interface send a "high priority" response. The master answers with a "Slave_Diag" request that is followed by a "Slave_Diag" response with Dia.Ext_Diag flag set to 0.

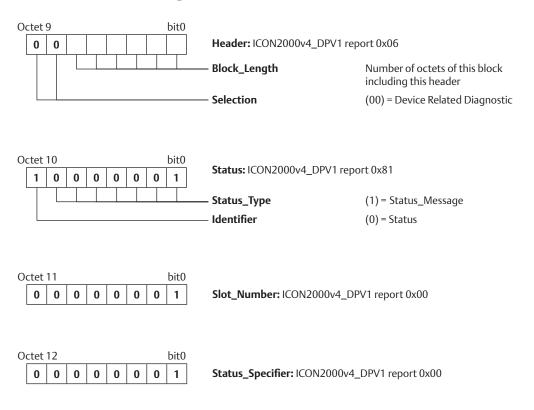


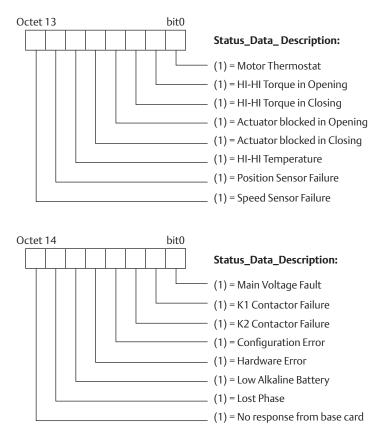

Figure 11

The diagnose message implemented by ICON2000v4_DPV1 has the following structure:


Figure 12	
MSB LSE	3
Octet 1	
Octet 2	
Octet 3	Standard Diagnosis Block
Octet 4	6 octets
Octet 5	
Octet 6	
Type IPD length	Identifier Related Diagnosis Block
Type IRD, length	
0000aaaa	2 octets
Type DRD, Length	
Identifier, Status_Type	
Slot_Number	Device Related Diagnosis Block Status Messages
Status_Specifier	
d d d d d d	6 octets
d d d d d d	

10.1.3.1 Standard Diagnosis Block





10.1.3.2 Identifier Related Diagnosis Block

10.1.3.3 Device Related Diagnosis Block

The meaning of every diagnosis event listed in the extended diagnosis block is documented in GSD file, where each bit corresponds a specific text to describe the device related diagnosis.

A full PROFIBUS DP Master compliant should be able to show directly the correspondent text in the event of a diagnostic incident.

10.2 Acyclic Communication DPV1

This section explains the composition of the acyclic communication defined as per PROFIBUS DPV1. These information can be reached by PROFIBUS class 2 Master with MS2 services. For this purpose and graphical interface, device specific DTM and EDD interface are available for most of host systems.

10.2.1 Nameplate

Slot 0, Index 0, length 26 byte: Actuator type

Byte	Name	Dim	Range	EU
0 - 15	Actuator Type	16 byte	Bettis XTE3000 Biffi F01 2000	Bettis XTE3000 Biffi F01 2000
16 - 25	Software revision*	10 byte	-	String ##

NOTES:

If the character 'decimal point' (ASCII 0x2e) appears in the Software revision string, the actuator is a Bettis XTE3000; if the character 'comma' (ASCII 0x2c) appears, the actuator is a Biffi F01 2000.

The Software revision string is made up of the base software revision and PROFIBUS interface revision with this format:

SW rev. base (4 byte) – obj. #5 blank blank SW rev. interface (4 byte)
--

Slot 0, Index 1, length 28 byte: Actuator Serial number

Byte	Name	Dim	Range	EU
0 - 27	Serial number	28 byte	-	String

Slot 0, Index 2, length 28 byte: Valve Tag name

Byte	Name	Dim	Range	EU
0 - 27	Valve Tag name	28 byte	-	String

10.2.2 General Data

Byte	Name	bit	Description
0	Byte 0	0 1 2 3 4 5 6 7	Close limit Open limit Moving Monitor relay Selector in local Selector in remote Alarm Warning
1	Byte 1	0 1 2 3 4 5 6 7	DIN 1 DIN 2 DIN 3 DIN 4 DIN 5 DIN 6 Interlock open Interlock close
2	Byte 2	0 1 2 3 4 5 6 7	Fail-safe action Opening Closing Selector in off ESD active HW remote mode Positioner mode Motion inhibited
3	Byte 3	0 1 2 3 4 5 6 7	Channel 1 active Aux. in open Aux. in close Aux. in stop Aux. in bus on Reserved Reserved Reserved

Slot 1, Index 0, length 4 byte: General data about current working condition

10.2.3 Maintenance Information

Slot 2, Index 0, length 22 byte: General maintenance information

Byte	Name	Dim	Range	EU
0 - 1	Actuator position	2 byte	0 - 1000	-
2 - 3	Output torque	2 byte	-100,+100	-
4 - 5	Opening time	2 byte	0 - 65, 535	Seconds
6 - 7	Closing time	2 byte	0 - 65, 535	Seconds
8 - 11	Contactor cycles	4 byte	0 - 4, 294, 967, 295	Unit
12 - 15	Motor Run Time	4 byte	0 - 4, 294, 967, 295	Hours
16 - 19	Time Without Power	4 byte	0 - 4, 294, 967, 295	Hours
20 - 21	Utilization Rate	2 byte	0 - 65, 535	%

Slot 2, Index 1, length 22 byte: Recent maintenance information

Byte	Name	Dim	Range	EU
0 - 3	Test Date	4 bytes	dd-mm-20yy	BCD format
4 - 7	Recent log date	4 bytes	dd-mm-20yy	BCD format
8 - 11	Recent Contactor Cycles	4 bytes	0 - 4, 294, 967, 295	Unit
12 - 13	Recent motor Run Time	4 bytes	0 - 4, 294, 967, 295	Hours
14 - 17	Recent Time Without Power	4 bytes	0 - 4, 294, 967, 295	Hours
18 - 21	Recent Utilization Rate	2 bytes	0 - 65, 535	%

Slot 2, Index 2, length 20 byte: Torque profile

Byte	Name	Dim	Range	EU
0	Reserved	1 byte	-	-
1	Opening Break out	1 byte	0 - 255	%
2	Reserved	1 byte	-	-
3	Opening Peak	1 byte	0 - 255	%
4	Reserved	1 byte	-	-
5	Opening Ending	1 byte	0 - 255	%
6 - 9	Date Opening	4 byte	dd-mm-20yy	BCD format
10	Reserved	1 byte	-	-
11	Closing Break out	1 byte	0 - 255	%
12	Reserved	1 byte	-	-
13	Closing Peak	1 byte	0 - 255	%
14	Reserved	1 byte	-	-
15	Closing Ending	1 byte	0 - 255	%
16 - 19	Date Closing	4 byte	dd-mm-20yy	BCD format

Slot 2, Index 3, length 20 byte: Reference torque profile

Byte	Name	Dim	Range	EU
0	Reserved	1 byte	-	-
1	Ref. Opening Break out	1 byte	0 - 255	%
2	Reserved	1 byte	-	-
3	Ref. Opening Peak	1 byte	0 - 255	%
4	Reserved	1 byte	-	-
5	Ref. Opening Ending	1 byte	0 - 255	%
6 - 9	Date Ref. Opening	4 byte	dd-mm-20yy	BCD format
10	Reserved	1 byte	-	-
11	Ref. Closing Break out	1 byte	0 - 255	%
12	Reserved	1 byte	-	-
13	Ref. Closing Peak	1 byte	0 - 255	%
14	Reserved	1 byte	-	-
15	Ref. Closing Ending	1 byte	0 - 255	%
16 - 19	Date Ref. Closing	4 byte	dd-mm-20yy	BCD format

Slot 2, Index 4, length 20 byte: Nominal torque and maintenance date

Byte	Name	Dim	Range	EU
			0	Torque lbf
0	Nominal Torque EU	1 huto	1	Torque Nm
0	Nominal lorque EO	1 byte	2	Thrust lb
			3	Thrust kN
1 - 7	Nominal Torque value	7 byte	-	string
8 - 11	Next Maintenance Date	4 byte	dd-mm-20yy	BCD format
12 - 15	Last Maintenance Date	4 byte	dd-mm-20yy	BCD format
16 - 19	Start-up Date	4 byte	dd-mm-20yy	BCD format

10.2.4 Alarm and Warning Log

Slot 3, Index 0, length 30 byte: Alarm log: the first three records

Byte	Name	Dim	Range	EU
0	Alarm #1: Code	1 byte	0 - 255	-
1	Reserved	1 byte	-	-
2 - 5	Alarm #1: Date	4 byte	dd-mm-20yy	BCD format
6 - 9	Alarm #1: Time	4 byte	00-hh-mm-ss	BCD format
10	Alarm #2: Code	1 byte	0 - 255	-
11	Reserved	1 byte	-	-
12 - 15	Alarm #2: Date	4 byte	dd-mm-20yy	BCD format
16 - 19	Alarm #2: Time	4 byte	00-hh-mm-ss	BCD format
20	Alarm #3: Code	1 byte	0 - 255	-
21	Reserved	1 byte	-	-
22 - 25	Alarm #3: Date	4 byte	dd-mm-20yy	BCD format
26 - 29	Alarm #3: Time	4 byte	00-hh-mm-ss	BCD format

Slot 3, Index 1, length 20 byte: Alarm log: the last two records

Byte	Name	Dim	Range	EU
0	Alarm #4: Code	1 byte	0 - 255	-
1	Reserved	1 byte	-	-
2 - 5	Alarm #4: Date	4 byte	dd-mm-20yy	BCD format
6 - 9	Alarm #4: Time	4 byte	00-hh-mm-ss	BCD format
10	Alarm #5: Code	1 byte	0 - 255	-
11	Reserved	1 byte	-	-
11 - 15	Alarm #5: Date	4 byte	dd-mm-20yy	BCD format
16 - 19	Alarm #5: Time	4 byte	00-hh-mm-ss	BCD format

Byte	Name	Dim	Range	EU
0	Warning #1: Code	1 byte	0 - 255	-
1	Reserved	1 byte	-	-
2 - 5	Warning #1: Date	4 byte	dd-mm-20yy	BCD format
6 - 9	Warning #1: Time	4 byte	00-hh-mm-ss	BCD format
10	Warning #2: Code	1 byte	0 - 255	-
11	Reserved	1 byte	-	-
11 - 15	Warning #2: Date	4 byte	dd-mm-20yy	BCD format
16 - 19	Warning #2: Time	4 byte	00-hh-mm-ss	BCD format
20	Warning #3: Code	1 byte	0 - 255	-
21	Reserved	1 byte	-	-
22 - 15	Warning #3: Date	4 byte	dd-mm-20yy	BCD format
26 - 29	Warning #3: Time	4 byte	00-hh-mm-ss	BCD format

Slot 3, Index 2, length 30 byte: Warning log: the first three records

Slot 3, Index 3, length 20 byte: Warning log: the last two records

Byte	Name	Dim	Range	EU
0	Warning #4: Code	1 byte	0 - 255	-
1	Reserved	1 byte	-	-
2 - 5	Warning #4: Date	4 byte	dd-mm-20yy	BCD format
6 - 9	Warning #4: Time	4 byte	00-hh-mm-ss	BCD format
10	Warning #5: Code	1 byte	0 - 255	-
11	Reserved	1 byte	-	-
12 - 15	Warning #5: Date	4 byte	dd-mm-20yy	BCD format
16 - 19	Warning #5: Time	4 byte	00-hh-mm-ss	BCD format

10.2.5 Maintenance Commands

Slot 4, Index 0, length 1 byte: Maintenance information (Only Write)

Byte	Name	Dim	Range	EU
0	Maintenance command	1 byte	bit0 = 1 bit1 = 1	Clear Recent Data Log Set Torque Reference

Slot 4, Index 1, length 4 byte: Maintenance information (Read and Write)

Byte	Name	Dim	Range	EU
0 - 3	Next Maintenance Date	4 byte	dd-mm-20yy	BCD format

Slot 4, Index 2, length 4 byte: Maintenance information (Read and Write)

Byte	Name	Dim	Range	EU
0 - 3	Last Maintenance Date	4 byte	dd-mm-20yy	BCD format

Slot 4, Index 3, length 4 byte: Maintenance information (Read and Write)

Byte	Name	Dim	Range	EU
0 - 3	Startup Date	4 byte	dd-mm-20yy	BCD format

Slot 4, Index 4, length 8 byte: Date and Time (Only Write)

Byte	Name	Dim	Range	EU
0 - 3	Current Date	4 bytes	dd-mm-20yy	BCD format
4 - 7	Current Time	4 bytes	00-hh-mm-ss	BCD format

Section 11: Data at Local Operator Interface

Below are the description of the facilities available by the view and setup menu of XTE3000.

11.1 Bus Control

DIN 1 - DIN 6

• By this routine, it is possible to choose the condition that sets the status of bits DIN1 - 6 of byte 4 when module 2 has been selected. See Table 3 for the list of the available conditions:

Table 3.

STATUS	ALARM
 open limit closed limit position >= xx % local selecte remote select closing local stop ac ESD signal o manual open 	 over-torque in OP over-torque in CL valve jammed warnings low alkaline battery (if present) mid travel alarm in CL/OF

The following setting is supplied as standard:

- DIN 1: mid-travel position
- DIN 2: local stop active
- DIN 3: motor over-temperature (motor thermostat alarm)
- DIN 4: over-torque (HI-HI torque alarm)
- DIN 5: valve jammed alarm
- DIN 6: mid-travel alarm in OP/CL

NODE

• By this function, it is possible to enter the PROFIBUS slave node address of the Primary Slave. The available address range is from 1 to 126. The address must be selected according to the PROFIBUS network layout where the actuator is inserted.

NODE-B

• By this function, it is possible to enter the PROFIBUS slave node address of the Backup Slave. The available address range is from 1 to 126. The address must be selected according to the PROFIBUS network layout where the actuator is inserted.

TERMIN 1

• Status: by this routine, the internal termination of the Primary Slave can be connected to the bus line (ON / OFF). Set "TERMIN 1 = ON" only if the actuator is at the beginning or at the end of the PROFIBUS line.

TERMIN 2

• Status: by this routine, the internal termination of the Backup Slave can be connected to the bus line (ON / OFF). Set "TERMIN 2 = ON" only if the actuator is at the beginning or at the end of the PROFIBUS line.

MODE

By this routine, the redundant or not redundant slave is selected. Set "MODE = CH1" if a not redundant slave is used: in this case only the Primary Slave will be present. The option AUTO has to be set when a redundant slave is used.

Configuration procedure:

- Move the local selector to OFF and then press simultaneously OPEN and STOP. Select the language and then enter the password according to the instructions "entering the set-up mode". When the message of display is "SET-UP MODE OK?" press YES. Press YES to select "ACTUATOR SET-UP" menu, press NO to scroll the list of available routines and then press YES to select BUS CONTROL.
- Press YES if the condition linked to DIN 1 is correct, or press NO to change, then press YES.
- Repeat the previous step for DIN 2, DIN 3 DIN 6
- Press YES if the configured value of the node address (NODE) is correct (from 1 to 126), or press NO to change, then press YES.
- Press YES if the configured value of the node address (NODE-B) is correct (from 1 to 126), or press NO to change, then press YES.
- Press YES if the configured status of termination 1 (TERMIN 1) is correct (ON / OFF), or press NO to change, then press YES.
- Press YES if the configured status of termination 2 (TERMIN 2) is correct (ON / OFF), or press NO to change, then press YES.
- Press YES if the configured MODE is correct (CH1, CH2, AUTO), or press NO to change, then press YES.

View procedure:

- Move the local selector to OFF and then press simultaneously OPEN and STOP. Select the language and then enter the password according to the instructions "entering the view mode". When the message of display is "VIEW MODE OK?" press YES. Press YES to select "ACTUATOR SET-UP" menu, press NO to scroll the list of available routines and then press YES to select BUS CONTROL.
- Press YES to scroll the list of BUS CONTROL parameters.

11.2 Node Report

The following procedure allows seeing the most significant info relevant to the bus data transmission of the actual Active Slave.

The following indication are reported:

CARD REPORT

• By this routine, it is possible to show the 64 characters identification string relevant to the Active Slave interface card.

STATUS 0

• These informations are from the Active Slave PROFIBUS module.

Table 4.

b7	b6	b5	b4	b3	b2	b1	Ь0	Description
-	-	-	-	-	-	Х	-	Status of the Active Slave 1 = active
Х	-	-	-	-	-	-	-	Status of the Primary Slave 1 = active
-	х	-	-	-	-	-	-	Status of the Backup Slave 1 = active
-	-	х	х	-	-	-	-	Status of the Internal Data Area 0 0 = Data Area empty 0 1 = Data Area being read from base card 1 0 = Data Area completely transferred

STATUS 1

• These informations are from the Active Slave PROFIBUS module.

Table 5.

b7	b6	b5	b4	b3	b2	b1	Ь0	Description
-	-	-	-	Х	Х	Х	Х	Reserved
-	-	х	х	-	-	-	-	DP state 00 = 'Wait_Prm' state 01 = 'Wait_Cfg' state 10 = 'DATA_EX' state
x	Х	-	-	-	-	-	-	Watchdog State 00 = 'Baud_Search' state 01 = 'Baud_Control' state 10 = 'DP_Control' state

STATUS 2

• These informations are from the Active Slave PROFIBUS module.

Table 6.

b7	b 6	b5	b4	b3	b2	b1	Ь0	Description
-	-	-	-	x	х	x	x	Baud rate of PROFIBUS communications: 0000 = 12 Mbaud 0001 = 6 Mbaud 0010 = 3 Mbaud 0011 = 1.5 Mbaud 0100 = 500 Kbaud 0101 = 187.5 Kbaud 0110 = 93.75 Kbaud 0111 = 45.45 Kbaud 1000 = 19.2 Kbaud 1001 = 9.6 KBaud
x	х	х	х	-	-	-	-	Current MODULE selected for PROFIBUS cyclic communications 0000 = No module selected 0001 = 1 Byte output, 2 Bytes input 0010 = 4 Bytes output, 8 Bytes input

STATUS 3

•

Reserved

NODE RESET

• By this routine, it is possible to force a reset to the PROFIBUS interfaces connected to the base card restoring the conditions defined in the BUS CONTROL menu.

View procedure:

Move the local selector to OFF or REMOTE and then press YES until the display shows NODE REPORT. Press NO to exit or press YES to scroll the list of transmission information.

11.3 Bus Signal Failure Indication

In case of loss of bus signal, a warning is generated. It is signalled by the flashing of the relevant ALARM / WARNING LED and by indication on the local 2 lines / 16 character display.

Appendix A: PROFIBUS Certificate

PROFIL PROCESS FIELD BUS									
Certificate									
PROFIBUS Nutzerorganisation e.V. grants to									
Biffi Italia srl Loc. Caselle S. Pietro 420, 29017 Fiorenzuola d'Arda - Piacenza									
the Certificate No.: Z01071 for the PROFIBUS Slave:									
Model Name: ICON2000V4 DPV1 Revision: HW: 0.1; SW: 4.01 GSD: ICON0937.gsd, Rel. 4.0; GSD_Rev. 4									
This certificate confirms that the product has successfully passed the certification tests with the following scope:									
✓ DP-V0 MS0, Sync, Freeze, Fail_safe ✓ DP-V1 MS2 ✓ Physical Layer RS485									
Test Report Number: PCN052-DPS-01 Authorized Test Laboratory: PROCENTEC, Wateringen, The Netherlands									
The tests were executed in accordance with the following documents: "Test Specifications for PROFIBUS DP Slaves, Version 2.0 from February 2000". This certificate is granted according to the document "Framework for testing and certification of PROFIBUS products". For all products that are placed in circulation by May 12, 2011 the certificate is valid for life.									
(Official in Charge) Board of PROFILIS Nutzerorganisation e. V.									
Mus-P. Jench Bench (KP. Lindner) (Prof. K. Bender)									

Appendix B: Note for Base Card FW 7.00

This appendix explains the ESD command functionality introduced with base card Firmware version 7.00.

The revision of base card can be checked with acyclic data; Nameplate Slot 0, index 0, byte 16 - 25 "SW_VERSION".

If revision of base card is less than 7.00, this appendix is not relevant.

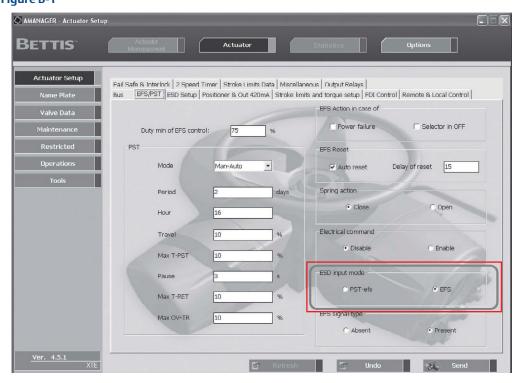

The ESD command and status (issued with the output data byte 0, bit 3 and cyclic input data byte 0, bit 4) can assume the meaning of PST signal, based on type of actuator and setting of "ESD INPUT MODE" parameter.

Table B-1 explicit its functionality.

Table B-1

Actuator Model	ESD Input Mode Parameter	ESD Command (CH 53) Functionality	ESD Status (CH 18) Functionality
XTE	PST-efs	Electrical ESD	ESD in Progress
XTE	EFS	Electrical ESD	ESD in Progress
EFS	PST-efs	PST	PST in Progress
EFS	EFS	Spring ESD	ESD in Progress

The ESD input mode parameter can be set on "Actuator Setup" menu of local control or DCMlink software (see Figure B-1).

Figure B-1

This page is intentionally left blank

World Area Configuration Centers (WACC) offer sales support, service, inventory and commissioning to our global customers. Choose the WACC or sales office nearest you:

NORTH & SOUTH AMERICA

MIDDLE EAST & AFRICA

19200 Northwest Freeway Houston TX 77065 USA T +1 281 477 4100

Av. Hollingsworth 325 Iporanga Sorocaba SP 18087-105 Brazil T +55 15 3413 8888

ASIA PACIFIC

No. 9 Gul Road #01-02 Singapore 629361 T +65 6777 8211

No. 1 Lai Yuan Road Wuqing Development Area Tianjin 301700 P. R. China T +86 22 8212 3300 P. O. Box 17033 Jebel Ali Free Zone Dubai T +971 4 811 8100

P. O. Box 10305 Jubail 31961 Saudi Arabia T +966 3 340 8650

24 Angus Crescent Longmeadow Business Estate East P.O. Box 6908 Greenstone 1616 Modderfontein Extension 5 South Africa T +27 11 451 3700

EUROPE

Holland Fasor 6 Székesfehérvár 8000 Hungary T +36 22 53 09 50

Strada Biffi 165 29017 Fiorenzuola d'Arda (PC) Italy T +39 0523 944 411

For complete list of sales and manufacturing sites, please visit www.emerson.com/actuationtechnologieslocations or contact us at info.actuationtechnologies@emerson.com

www.emerson.com/bettis

VCIOM-17023-EN ©2022 Emerson. All rights reserved.

The Emerson logo is a trademark and service mark of Emerson Electric Co. Bettis^M is a mark of one of the Emerson family of companies. All other marks are property of their respective owners.

The contents of this publication are presented for information purposes only, and while effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available on request. We reserve the right to modify or improve the designs or specifications of our products at any time without notice.

