Fisher™ Slurry Vee-Ball™ V150S and V300S Control Valve NPS 3 through 12

Contents

Figure 1. Fisher Slurry Vee-Ball Control Valve

Introduction

Scope of Manual

This instruction manual provides installation, operation, maintenance, and parts information for Fisher Slurry Vee-Ball V150S and V300S rotary control valves, NPS 3 through 12 (see figure 1).

Refer to separate manuals for information concerning the actuator, positioner and accessories.

Do not install, operate, or maintain V150S or V300S valves without being fully trained and qualified in valve, actuator, and accessory installation, operation, and maintenance. To avoid personal injury or property damage, it is important to carefully read, understand, and follow all the contents of this manual, including all safety cautions and warnings. If you have any questions about these instructions, contact your Emerson sales office before proceeding.

Instruction Manual

April 2021 D103164X012

Table 1. Specifications

Valve Sizes

NPS \blacksquare 3, \blacksquare 4, \blacksquare 6, \blacksquare 8, \blacksquare 10, and \blacksquare 12

End Connection

V150S: CL150 Raised-face flange V300S: CL300 Raised-face flange

Shutoff Classification

Construction does not provide tight shutoff. Nominal gap between ball and flow ring seat is 0.035 inch for high chrome iron construction and 0.015 inch for ceramic insert construction.

Construction Materials

Standard Construction: See table 2

Flow Direction

Reverse flow recommended (into concave face of ball, out through the flow ring)

Valve Installation

Shaft axis shall be horizontal

Actuator Mounting

Right-hand or left-hand, as viewed from upstream end of valve

Maximum Ball Rotation

90 degrees

Valve/Actuator Action

Standard ball rotation is clockwise (CW) to close with right hand mount actuator. Left hand mount actuator with counterclockwise (CCW) to close ball action is optional. For horizontal pipe run and horizontal shaft orientation, it is recommended the ball rotate to the top of valve body upon opening.

With diaphragm or piston rotary actuator and splined shaft, the valve is field-reversible between push-down-to-close or push-down-to-open: ■ PDTC (extending actuator rod closes valve) and ■ PDTO (extending actuator rod opens valve)

Educational Services

For information on available courses for the Fisher Slurry Vee-Ball valve, as well as a variety of other products, contact:

Emerson Automation Solutions Educational Services - Registration

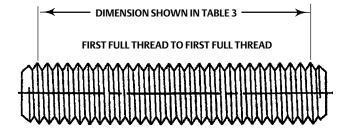
Phone: 1-641-754-3771 or 1-800-338-8158

E-mail: education@emerson.com emerson.com/fishervalvetraining

Description

The Slurry Vee-Ball valve shown in figure 1 mates with CL150 or CL300 raised face flanges. Rugged construction, highly wear-resistant trim materials, and an unrestricted straight through flow path make the design ideal for controlling the most abrasive of slurries.

A shaft with a choice of drive connections will allow a variety of power operated actuators and valve positioners or controllers to be used.


The design is particularly effective in minimizing erosive damage to the adjoining pipework, thereby providing greater operational safety and service life when compared with other valve types.

Instruction Manual
D103164X012
Slurry Vee-Ball Valve
April 2021

Table 2. Standard Construction Materials

		MATERIAL TEMPERATURE CAPABILITY							
Part	Material	(°C	°F					
		Minimum	Maximum	Minimum	Maximum				
Valve Body	Carbon Steel ASME SA216 WCC	-29	427	-20	800				
Body Liner	High Chrome Iron (HCI) ASTM A532 Class III Type A	-29	427	-20	800				
V-Notch Ball	High Chrome Iron ASTM A532 Class III Type A	-29	427	-20	800				
	Ceramic (optional)	-29	427	-20	800				
Flow Ring	High Chrome Iron ASTM A532 Class III Type A	-29	427	-20	800				
j	HCI with Ceramic Insert (optional)	-29	230	-20	450				
Flow Ring Retainer	Carbon Steel ASME SA105	-29	427	-20	800				
Bearing Shroud	High Chrome Iron ASTM A532 Class III Type A	-29	427	-20	800				
Bearing	S44004	-29	427	-20	800				
Drive Shaft	S17400	-29	427	-20	800				
Follower Shaft	S17400	-29	427	-20	800				
Shaft Pins	S42000	-29	427	-20	800				
Gaskets	Graphite SST Laminate	-198	538	-325	1000				
Da alvina Cat	PTFE V-ring	-46	230	-50	450				
Packing Set	Graphite	-198	538	-325	1000				
Packing Box Ring and Follower	S31600	-198	538	-325	1000				
Studs	B8M Class 2	-45	538	-50	1000				
Nuts	S31600	-45	538	-50	1000				
Retainer Screws and Clips	S31600	-45	538	-50	1000				
Spring	S30400	-29	427	-20	800				
Plug	S41000	-45	538	-50	1000				

Figure 2. Flange Stud Length for Seal Protector End

1A4520

Table 3. Flange Stud Len	aths Reauired for Flow Ri	ing End of Fisher V150S Valves

VALVE SIZE,	V1:	50S	V300S		
NPS	mm	Inches	mm	Inches	
3	95	3.75	121	4.75	
4	108	4.25	217	5	
6	114	4.50	140	5.5	
8	183	7.19	215	8.44	
10	222	8.72	260	10.22	
12	256	10.10	301	11.85	

Specifications

Specifications for these valves are shown in table 1 and in Fisher Bulletin 51.3:V150S Slurry Vee-Ball V150S and V300S Rotary Control Valves (<u>D103154X012</u>).

Installation

A WARNING

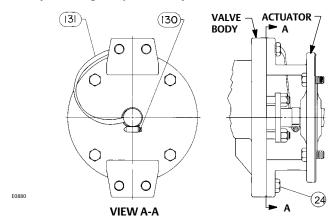
Safe work practices should be followed when handling the valve and actuator.

Some types of ceramic trim, including PSZ, can create a spark under certain conditions when an edge of one ceramic part is struck against a second ceramic part with enough force. Do not use ceramic trim where the process fluid has volatile or combustible properties.

The valve drive shaft is not necessarily grounded to the pipeline when installed. Personal injury or property damage could result from an explosion caused by a discharge of static electricity from valve components if the process fluid or the atmosphere around the valve is flammable. If the valve is installed in a hazardous area, electrically bond the drive shaft to the valve.

Always wear protective gloves, clothing, and eyewear when performing any installation operations to avoid personal injury.

Personal injury or equipment damage caused by sudden release of pressure may result if the valve assembly is installed where service conditions could exceed either the valve body rating or the mating pipe flange joint rating. To avoid such injury or damage, provide a relief valve for overpressure protection as required by government or accepted industry codes and good engineering practices.


Check with your process or safety engineer for any additional measures that must be taken to protect against process media.

If installing into an existing application, also refer to the WARNING at the beginning of the Maintenance section in this instruction manual.

CAUTION

When ordered, the valve configuration and construction materials were selected to meet particular pressure, temperature, pressure drop, and controlled fluid conditions. Responsibility for the safety of process media and compatibility of valve materials with process media rests solely with the purchaser and end-user. Because some valve/trim material combinations are limited in their pressure drop and temperature ranges, do not apply any other conditions to the valve without first contacting your Emerson sales office.

Figure 3. Optional Shaft-to-Body Bonding Strap Assembly

- 1. Install the valve in the direction of the flow arrow fitted to the valve body.
- 2. Install the valve with the shaft axis in the horizontal position.
- 3. If required, fit a bonding strap assembly (key 131) to the drive shaft (key 8) with the clamp, (key 130, figure 3) and connect the other end of the bonding strap assembly to the valve body with actuator mounting cap screw.
- 4. If the valve and actuator have been purchased separately or if the actuator has been removed, mount the actuator according to the Actuator Mounting section and the appropriate actuator instruction manual.
- 5. The actuator can be right- or left-hand mounted with the shaft in a horizontal orientation as shown in figure 1. If necessary, refer to the appropriate actuator instruction manual for actuator installation and adjustment procedures.

Table 4. Fisher V150S Dimensions

VALVE 617E	V150S DIMENSIONS ⁽¹⁾											
VALVE SIZE	Α	В	D	G	K	M ⁽²⁾	N ⁽²⁾	S Diameter	Т	U	W	
DN						mm						
80	165	80.0	235	140	130	104	98.0	19.1	152	31.8	14.2	
100	194	102	214	152	140	117	98.0	19.1	152	31.8	14.2	
150	230	111	214	175	164	124	112	25.4	152	31.8	14.2	
200	304	184	208	220	231	195	124	31.8	235	46.0	17.5	
250	385	235	208	250	261	235	132	31.8	235	46.0	17.5	
300	455	291	208	300	304	270	132	38.1	235	46.0	17.5	
NPS						Inch						
3	6.49	3.15	9.26	5.51	5.12	4.11	3.86	0.75	6.00	1.25	0.56	
4	7.62	4.02	8.44	5.98	5.53	4.61	3.86	0.75	6.00	1.25	0.56	
6	9.06	4.38	8.44	6.89	6.45	4.90	4.40	1.00	6.00	1.25	0.56	
8	11.96	7.25	8.19	8.66	9.11	7.68	4.90	1.25	9.25	1.81	0.69	
10	15.16	9.26	8.18	9.84	10.26	9.25	5.19	1.25	9.25	1.81	0.69	
12	17.91	11.47	8.18	11.81	11.97	10.63	5.19	1.50	9.25	1.81	0.69	

⁵

Table 5. Fisher V300S Dimensions

VALVE CIZE	V300S DIMENSIONS										
VALVE SIZE	Α	В	D	G	K	M(1)	N ⁽¹⁾	S Diameter	T	U	W
DN	mm										
80	165	80.0	235	140	130	127	121	19.1	152	31.8	14.2
100	194	102	214	152	140	146	127	19.1	152	31.8	14.2
150	230	111	214	175	164	152	140	25.4	152	31.8	14.2
200	304	184	208	220	231	223	152	31.8	235	46.0	17.5
250	385	235	208	250	261	276	137	31.8	235	46.0	17.5
300	455	291	208	300	304	324	186	38.1	235	46.0	17.5
NPS						Inch					
3	6.49	3.15	9.26	5.51	5.12	5	4.75	0.75	6.00	1.25	0.56
4	7.62	4.02	8.44	5.98	5.53	5.75	5	0.75	6.00	1.25	0.56
6	9.06	4.38	8.44	6.89	6.45	6	5.5	1.00	6.00	1.25	0.56
8	11.96	7.25	8.19	8.66	9.11	8.78	6	1.25	9.25	1.81	0.69
10	15.16	9.26	8.18	9.84	10.26	10.87	6.81	1.25	9.25	1.81	0.69
12	17.91	11.47	8.18	11.81	11.97	12.75	7.31	1.50	9.25	1.81	0.69
Clearance necessary to	remove flange b	olts.									

Figure 4. Fisher Slurry Vee-Ball Dimensions (see table 4 and 5)

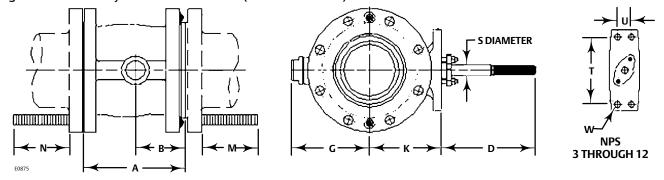
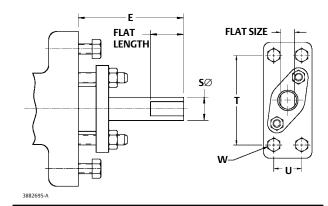



Table 6. Fisher Slurry Vee-Ball Dimensions for Double D Shaft Drive

VALVE SIZE	E	S ⁽¹⁾ FLAT LENGTH		Т	U	w					
DN		mm									
80	83	19.0	25.4	95	25						
100	83	19.0	25.4	95	25						
150	83	25.4	25.4	95	25	see					
200	83	31.8	25.4	133	38	below					
250	89	31.8	25.4	133	38						
300	89	38.1	38.1	133	38						
NPS			Inch								
3	3.25	3/4	1.0	3.75	1.0	1/2-13					
4	3.25	3/4	1.0	3.75	1.0	1/2-13					
6	3.25	1	1.0	3.75	1.0	1/2-13					
8	3.25	1-1/4	1.0	5.25	1.5	5/8-11					
10	3.5	1-1/4	1.0	5.25	1.5	5/8-11					
12	3.5	1-1/2	1.5	5.25	1.5	5/8-11					
			ter is the shaft diam Fisher actuators.	neter throug	Jh the packi	ng box.					

Figure 5. Fisher Slurry Vee-Ball Dimensions for Double D Shaft Drive (see table 6)

Maintenance

A WARNING

The V-notch ball closes with a shearing, cutting motion, which could result in personal injury. To avoid injury, keep hands, tools, and other objects away from the V-notch ball while stroking the valve.

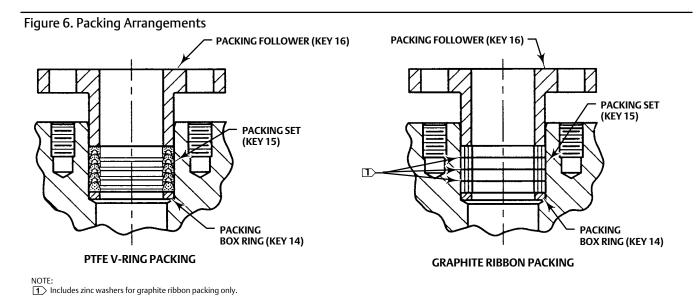
Avoid personal injury from sudden release of process pressure. Before performing any maintenance operations:

- Do not remove the actuator from the valve while the valve is still pressurized.
- Disconnect any operating lines providing air pressure, electric power, or a control signal to the actuator. Be sure the actuator cannot suddenly open or close the valve.
- Use bypass valves or completely shut off the process to isolate the valve from process pressure. Relieve process pressure from both sides of the valve. Drain the process media from both sides of the valve.
- Vent the power actuator loading pressure and relieve any actuator spring precompression.
- Use lock-out procedures to be sure that the above measures stay in effect while you work on the equipment.
- Always wear protective gloves, clothing, and eyewear when performing any maintenance operations to avoid personal
 injury.
- The valve packing area may contain process fluids that are pressurized, even when the valve has been removed from the pipeline. Process fluids may spray out under pressure when removing the packing hardware or packing rings.
- Check with your process or safety engineer for any additional measures that must be taken to protect against process media.

Packing Maintenance

- 1. It is recommended that the valve be removed from the line when replacing packing to allow correct set up of the actuator after actuator removal.
- 2. Remove the packing follower nuts and packing follower (keys 18 and 16).
- 3. Remove the packing parts (see figure 4 and keys 15 and 14) using a purposed designed packing extraction tool to avoid damaging the packing box bore and shaft surfaces.

4. Install the new packing parts using the sequence shown in figure 4. Fit the packing follower (key 16). Fit nuts (key 18).


5. Tighten the packing nuts to compress the packing to seal for operating conditions. At the same time push the ball and shroud on the drive end against the valve body inside location face to center the ball. This can be done by using a lever (wood) against the inside ball lug face and the valve body liner inlet.

Disassembly

A WARNING

Observe the steps in the WARNING at the beginning of the Maintenance section.

Reference figures 9 and 10.

STANDARD PACKING

CAUTION

Trim parts are made from brittle material, handle with care to avoid chipping or breakage.

- 1. Remove the actuator cover (where applicable). Take note of the orientation of the actuator with respect to the valve body and the lever orientation with respect to the valve drive shaft.
- 2. Remove the actuator.
- 3. Remove the flow ring retainer screws, clips and flow ring retainer (keys 22, 23, and 5).
- 4. Knock or press out the flow ring (key 4).

5. Position the ball to allow access to the shaft pins. Use a modified parallel pin punch (figure 7) to to knock out the shaft pins, (key 10) through the shaft and ball lugs.

Note

The punch dimensions should be as per table 7 to avoid damaging the ball and shaft. The hole diameter in the ball is larger than the hole in the shaft and the punch needs to be centrally located with the pin.

- 6. Remove packing follower (key 16). Remove plug (key 20) and spring (key 19).
- 7. Knock or press each shaft (key 9) out through the ball and the bearings (key 7).
- 8. Remove ball (key 3) and shrouds (key 6).
- 9. Knock, press, or pull out bearings (key 7).
- 10. Knock or press out body liner (key 2).
- 11. Remove packing (key 15).

For service applications involving scale formation that sets up and "freezes" mating parts, supplementary recommendations for disassembly can be provided by your <u>Emerson sales office</u>.

Assembly

A WARNING

Observe the steps in the WARNING at the beginning of the Maintenance section.

Reference figures 9 and 10.

CAUTION

Trim parts are made from brittle material, handle with care to avoid chipping or breakage.

- 1. Clean all surfaces of the parts to be used. Ensure all mating surfaces are in good condition and free from scratches and dents. Replace worn parts. Fit new gaskets (key 13 and 21) and packing (key 15).
- 2. Position the valve body with flow arrow uppermost.
- 3. Fit the valve body liner (key 2) into the valve body, aligning cross-holes with shaft bore axis.
- 4. Fit the bearings (key 7) through the valve body liner into the valve body.
- 5. Place bearing shrouds (key 6) over the bearings and through the valve body liner to contact faces in the valve body bore.
- 6. Orientate the ball (key 3) so that the lug with the location slot will be on the non-drive side of the valve body, that is opposite from the actuator. Place the ball on a wad of rag to rest in the bottom of the valve body with the lugs uppermost. Fit the drive shaft (key 8) through the bearing on the drive side and into the hexagon hole of the ball, aligning the holes for the shaft pins. With a splined shaft, the indicator line on the splined shaft end should be on the ball side to indicate the ball "seat location." Fit the follower shaft (key 9).
- 7. Fit the shaft pins (key 10) through the ball and into the shaft using a pin punch (figure 7). Position the pins approximately centrally about the shaft axis.

8. Next install the packing. Fit the studs (key 17), packing box ring (key 14), packing set (key 15), packing follower (key 16), and nuts (key 18). Adjust the packing tightness for use.

- 9. Before fitting the flow ring, tap the end of the bearing on the drive end to ensure that the ball/shroud assembly is hard against the valve body inner recess location on the drive end.
- 10. Next fit the flow ring.
 - a. For one piece High Chrome Iron flow ring (key 4), fit into the valve body and valve body liner. Fit the gasket, (key 13) and flow ring retainer (key 5). Secure with retainer screws (key 22) and clips (key 23). Check that the ball rotates freely.
 - b. For flow ring with ceramic insert, position the valve body on the valve body liner flange face with the ball secured and facing upwards. Make sure the flow ring insert type (key 28) and flow ring insert (key 29) are clean and free of grease and oil. Apply a bead of Loctite [™] 620 around the smaller outside diameter of the ceramic insert and push the insert into the flow ring. Place shims on the upper ball face (recommended thickness 0.015 inch) and lower the flow ring assembly into place. Secure with retainer, screws and clips. Push the insert down onto the shims and allow the adhesive to set.
- 11. Coat thread of non-drive end body plug with Loctite 567 and fit gasket (key 21), spring (key 19), and plug (key 20) to body. Tighten plug by hand until gasket contact is achieved. Continue to tighten body plug an additional 1/4-turn from gasket contact.

For service applications involving scale formation that sets up and "freezes" mating parts, supplementary recommendations for assembly can be provided by your Emerson sales office.

Actuator Mounting

Use the appropriate actuator instruction manual, this section of this manual, and figure 8 of this manual when mounting the actuator or changing actuator styles and positions.

1. To help ensure correct centering of the V-notch ball (key 3) on the flow ring (key 4 or 28/29), be sure the ball is closed when mounting the actuator (for applications other than Spring Return Fail-Open).

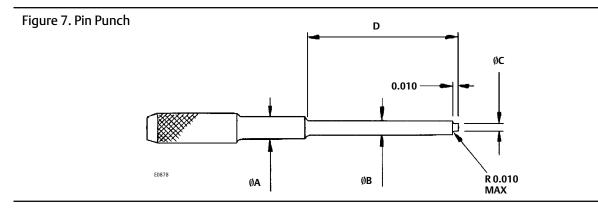


Table 7. Pin Punch Dimensions

Valve Size, NPS	Ball Pin Hole Ø	Shaft Pin Hole ∅	A Min	B Max	C Max	D Min
3 and 4	0.19	0.16	0.25	0.15	0.085	1.45
6	0.22	0.19	0.25	0.18	0.105	1.85
8 and 10	0.28	0.25	0.38	0.24	0.135	2.2
12	0.28	0.25	0.38	0.24	0.135	2.6

2. Clean the valve shaft and actuator lever splines to be sure the actuator lever will slide on easily. Only drive the lever

3. Carefully wedge the ball solidly against the actuator-side bearing to center the ball.

in if absolutely necessary.

4. Keep the wedge in place while installing the lever, if necessary. Remove the wedge after you have clamped the actuator lever on the valve shaft and have connected the lever to the actuator piston rod or diaphragm rod.

Determining Mounting Position for Spline Shaft/Lever Type

The actuator can be either right or left-hand mounted, with the actuator on the right or left side when viewed from upstream (see figure 8).

For right-hand mounting (standard), the ball will be in the top of the valve body when the valve is open and the shaft is horizontal. In this position the ball rotates CW to Close.

For left-hand mounting, the ball will be in the top of the valve body when the valve is open and the shaft is horizontal. In this position the ball rotates CCW to Close.

ACTUATOR ACTUATOR POSITION VALVE OPEN MOUNTING STYLE 1 2 3 STYLE D **PUSH** (OPTIONAL) **DOWN** FLOW LEFT-HAND TO CLOSE BALL **ROTATES** STYLE C COUNTER-**PUSH CLOCKWISE** DOWN TO CLOSE TO **OPEN** STYLE B PUSH (STANDARD) DOWN FLOW **RIGHT-HAND** TO CLOSE **BALL ROTATES** STYLE A **CLOCKWISE PUSH TO CLOSE DOWN** TO **OPEN** NOTE: Arrow on lever indicates direction of actuator thrust to close valve.

Figure 8. Index Marks for Actuator Lever Orientation for NPS 3 through 12 Valves

E0881-1

Determining Closed Position

1. The valve must be removed from the line to check the position of the ball.

A WARNING

The V-notch ball closes with a shearing, cutting motion. To avoid personal injury, keep hands, tools, and other objects away from the ball while stroking the valve.

- 2. Rotate the ball to the closed position.
- 3. Position the ball in the proper location.
- 4. The ball is in its closed position when the Vee plane of the ball, (opposite the convex side) is parallel to the liner end flange face of the valve body. Measure to check. Adjust the actuator linkage or travel stops to position.

CAUTION

To extend operating life of the V-notch ball, always ensure the V-notch ball rotates into the top of the valve body to open.

Figure 9. Exploded View, Fisher Slurry Vee-Ball NPS 3 through 12 (Including Alternative Ceramic Insert Construction, Keys 28 and 29)

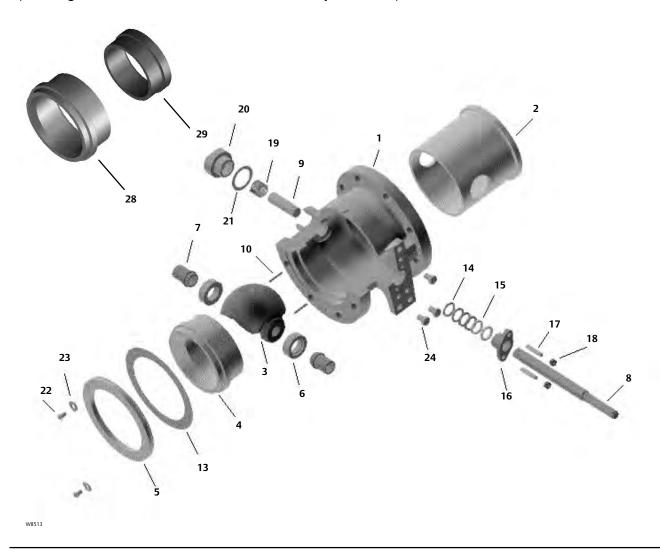
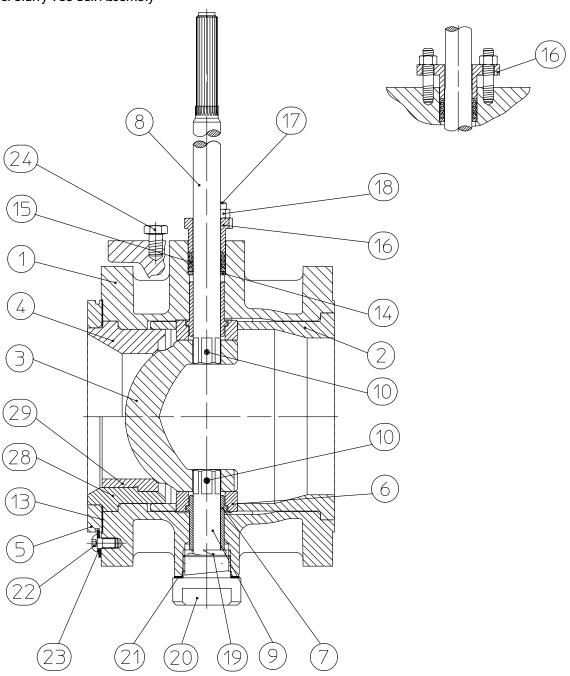



Figure 10. Fisher Slurry Vee-Ball Assembly

E0879

Parts Ordering

A serial number is assigned to each valve and stamped on the nameplate. Always refer to the valve serial number when corresponding with your <u>Emerson sales office</u> regarding spare parts or technical information. When ordering replacement parts, also specify the complete 11-character part number from the parts kits.

A WARNING

Use only genuine Fisher replacement parts. Components that are not supplied by Emerson should not, under any circumstances, be used in any Fisher valve, because they may void your warranty, might adversely affect the performance of the valve, and could cause personal injury and property damage.

Parts List

Note

Contact your Emerson sales office for Part Ordering information.

Common Parts (figures 9 and 10)

Key Description

- If you need a valve body as a replacement part, order by valve size, serial number, and desired valve body material.
- 2* Valve Body Liner
- 3* V-notch Ball
- 4* Flow Ring
- 5 Flow Ring Retainer
- 6* Bearing Shroud (2 req'd)
- 7* Bearing (2 reg'd)
- 8 Drive Shaft Spline
- 8 Drive Shaft
- 9 Follower Shaft
- 10* Shaft Pin (2 req'd)

Key Description

- 13* Gasket
- 14* Packing Box Ring
- 15* Packing Set
- 16 Packing Follower
- 17 Stud (2 req'd)
- 18 Nut (2 req'd)
- 19 Spring
- 20 Plug
- 21* Gasket
- 22 Retainer Screw (2 req'd)
- 23 Retainer Clip (2 req'd)
- 24 Actuator Mounting Screw (4 req'd)
- 25 Nameplate
- 26 Drive Screw (4 req'd)
- 27 Flow Arrow
- 28 Flow Ring Insert
- 29 Flow Ring Insert
- 130 Clamp
- 131 Bearing Clamp Assembly

*Recommended spare parts 15

Neither Emerson, Emerson Automation Solutions, nor any of their affiliated entities assumes responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use, and maintenance of any product remains solely with the purchaser and end user.

Fisher and Vee-Ball are marks owned by one of the companies in the Emerson Automation Solutions business unit of Emerson Electric Co. Emerson Automation Solutions, Emerson, and the Emerson logo are trademarks and service marks of Emerson Electric Co. All other marks are the property of their respective owners.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available upon request. We reserve the right to modify or improve the designs or specifications of such products at any time without notice.

Emerson Automation Solutions Marshalltown, Iowa 50158 USA Sorocaba, 18087 Brazil Cernay, 68700 France Dubai, United Arab Emirates Singapore 128461 Singapore

www.Fisher.com

