Misuratore di portata Vortex Rosemount[™] Serie 8800D

Sommario

Informazioni sulla guida	3
Politica dei resi	
Servizio assistenza clienti Emerson Flow	7
Preinstallazione	8
Installazione di base	22
Configurazione di base	42
Installazione dei sistemi di sicurezza strumentati	52
Certificazioni del prodotto	53

1 Informazioni sulla guida

Questa guida fornisce le istruzioni di base per l'installazione e la configurazione dei misuratori di portata Vortex Rosemount™ serie 8800D con trasmettitori singoli, doppi o quadrupli.

Per ulteriori informazioni su istruzioni di installazione e configurazione, diagnostica, manutenzione, assistenza e risoluzione dei problemi relative a:

- dispositivi Foundation Fieldbus, consultare il manuale 00809-0100-4772
- misuratori non MultiVariable e misuratori con codice opzione MTA per HART e tutti i dispositivi Foundation Fieldbus, consultare il manuale 00809-0100-4004

Per ulteriori informazioni su istruzioni di installazione e configurazione, diagnostica, manutenzione, assistenza e risoluzione dei problemi relative ai misuratori con codice opzione MPA o MCA, consultare il manuale 00809-1100-4004.

Per le installazioni in aree pericolose, incluse quelle a prova di esplosione, a prova di fiamma o a sicurezza intrinseca, consultare il documento di certificazione 00825-VA00-0001.

1.1 Messaggi di pericolo

Questo documento utilizza i seguenti criteri per i messaggi di pericolo in base agli standard ANSI Z535.6-2011 (R2017).

▲ Pericolo

Se non viene evitata una situazione pericolosa, si verificheranno lesioni gravi o morte.

A AVVERTIMENTO

Se non viene evitata una situazione pericolosa, potrebbero verificarsi lesioni gravi o morte.

Avvertenza

Se non viene evitata una situazione pericolosa, si verificheranno o potrebbero verificarsi lesioni lievi o moderate.

AVVISO

Se non viene evitata una situazione pericolosa, possono verificarsi perdita di dati, danni alla proprietà, danni all'hardware o danni al software. Non sussiste un rischio verosimile di lesioni fisiche.

Accesso fisico

AVVISO

Il personale non autorizzato può potenzialmente causare danni significativi e/o configurazione errata delle apparecchiature degli utenti finali. Proteggere da qualsiasi uso non autorizzato intenzionale o non intenzionale.

La sicurezza fisica è una parte importante di qualsiasi programma di sicurezza e fondamentale per la protezione del sistema. Limitare l'accesso fisico per proteggere le risorse degli utenti. Ciò è valido per tutti i sistemi utilizzati all'interno della struttura.

1.2 Messaggi di sicurezza

A AVVERTIMENTO

Rischi di esplosione. La mancata osservanza di queste istruzioni potrebbe provocare un'esplosione, causando lesioni gravi o mortali.

- Verificare che l'atmosfera di esercizio del trasmettitore sia conforme alle certificazioni per aree pericolose appropriate.
- L'installazione di questo trasmettitore in un'area esplosiva deve essere conforme alle procedure, ai codici e agli standard locali, nazionali e internazionali. Esaminare i documenti di certificazione per verificare eventuali limitazioni associate ad un'installazione sicura.
- Non rimuovere i coperchi del trasmettitore o la termocoppia (se presente) in atmosfere esplosive quando il circuito è sotto tensione. Entrambi i coperchi del trasmettitore devono essere completamente serrati per conformarsi ai requisiti della certificazione a prova di esplosione.
- Prima di collegare un comunicatore portatile in un'atmosfera esplosiva, assicurarsi che gli strumenti nel circuito siano installati in conformità con le pratiche di cablaggio sul campo a sicurezza intrinseca o a prova di accensione.

A AVVERTIMENTO

Pericolo di scosse elettriche. La mancata osservanza di queste istruzioni può causare lesioni gravi o mortali. Evitare il contatto con conduttori e terminali. L'alta tensione che può essere presente nei conduttori può causare scosse elettriche.

A AVVERTIMENTO

Pericolo generico. La mancata osservanza di queste istruzioni può causare lesioni gravi o mortali.

- Questo prodotto è destinato ad essere utilizzato come misuratore di portata per applicazioni su liquidi, gas o vapore. Non utilizzarlo per altri scopi.
- Assicurarsi che l'installazione venga eseguita solo da personale qualificato.

2 Politica dei resi

In caso di restituzione delle apparecchiature, è necessario seguire le procedure Emerson. Queste procedure assicurano la conformità legale con gli enti per il trasporto statali e aiutano a fornire un ambiente di lavoro sicuro per i dipendenti Emerson. La mancata osservanza delle procedure Emerson comporterà il rifiuto della consegna delle apparecchiature rese.

3 Servizio assistenza clienti Emerson Flow

E-mail:

• Globale: flow.support@emerson.com

• Asia Pacifico: APflow.support@emerson.com

Telefono:

America del Nord e America del Sud		Europa e Medio Oriente		Asia Pacifico	
Stati Uniti	800 522 6277	Regno Unito	0870 240 1978	Australia	800 158 727
Canada	+1 303 527 5200	Paesi Bassi	+31 (0) 704 136 666	Nuova Zelan- da	+099 128 804
Messico	+41 (0) 41 7686 111	Francia	0800 917 901	India	800 440 1468
Argentina	+54 11 4837 7000	Germania	0800 182 5347	Pakistan	888 550 2682
Brasile	+55 15 3413 8000	Italia	8008 77334	Cina	+86 21 2892 9000
Venezuela	+58 26 1731 3446	Europa cen- trale e orien- tale Europa	+41 (0) 41 7686 111	Giappone	+81 3 5769 6803
		Russia/CSI	+7 495 995 9559	Corea del Sud	+82 2 3438 4600
		Egitto	+0800 000 0015	Singapore	+65 6 777 8211
		Oman	800 70101	Tailandia	+001 800 441 6426
		Qatar	+431 0044	Malesia	800 814 008
		Kuwait	+663 299 01		
		Sud Africa	+800 991 390		
		Arabia Saudi- ta	800 844 9564		
		EAU	+800 0444 0684		

4 Preinstallazione

4.1 Pianificazione

Per un'installazione corretta, considerare ogni aspetto dell'applicazione e del misuratore che si sta installando.

4.1.1 Dimensionamento

Per determinare la dimensione corretta del misuratore in modo da ottenere prestazioni ottimali:

- Determinare i limiti di misura della portata.
- Determinare le condizioni di processo affinché rientrino nei requisiti dichiarati per il numero di Reynolds e la velocità.

Per i dettagli del dimensionamento, consultare il manuale di riferimento del prodotto.

I calcoli di dimensionamento sono necessari per selezionare la dimensione approprita del misuratore di portata. Questi calcoli forniscono dati sulla perdita di pressione, l'accuratezza e la portata minima e massima per guidare nella selezione adeguata. Il software di dimensionamento Vortex si può trovare utilizzando lo strumento di selezione e dimensionamento. Lo strumento di selezione e dimensionamento è accessibile online o scaricabile per l'uso offline tramite questo link: www.Emerson.com/FlowSizing.

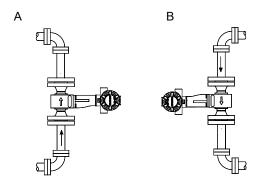
4.1.2 Selezione del materiale a contatto con il processo

Quando si seleziona il modello Rosemount 8800D, accertarsi che il fluido di processo sia compatibile con i materiali a contatto con il processo del corpo del misuratore. La corrosione ridurrà la durata utile del corpo del misuratore. Per ulteriori informazioni, consultare le fonti riconosciute di dati sulla corrosione o contattare il referente Emerson Flow.

Nota

Se è richiesta l'identificazione positiva del materiale (PMI), eseguire il test su una superficie lavorata.

4.1.3 Orientamento


Il miglior orientamento per il misuratore dipende dal fluido di processo, dai fattori ambientali e da eventuali altre apparecchiature in prossimità.

Installazione verticale

L'installazione verticale verso l'alto permette al flusso del liquido di processo di scorrere verso l'alto ed è generalmente consigliata. Il flusso verso l'alto assicura che il corpo del misuratore rimanga sempre pieno e che eventuali solidi nel fluido siano distribuiti uniformemente.

Quando si misurano flussi di gas o vapore, il misuratore può essere montato in posizione verticale verso il basso. Questo tipo di applicazione è fortemente sconsigliato per i flussi di liquido, tuttavia può essere effettuato con una progettazione delle tubazioni appropriata.

Figura 4-1: Installazione verticale

- A. Flusso di liquido o gas
- B. Flusso di gas

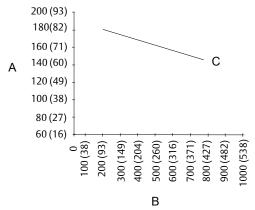
Nota

Per assicurare che il corpo del misuratore rimanga pieno, evitare flussi di liquido verticali verso il basso laddove la contropressione è inadequata.

Installazione orizzontale

Per l'installazione orizzontale, l'orientamento consigliato prevede che l'elettronica sia installata a lato del tubo. Nelle applicazioni su liquidi, questo aiuta a impedire che aria o solidi intrappolati colpiscano la shedder bar e interrompano la frequenza di shedding. Nelle applicazioni su gas o vapore, questo aiuta a impedire che liquidi (ad esempio la condensa) o solidi intrappolati colpiscano la shedder bar e interrompano la frequenza di shedding.

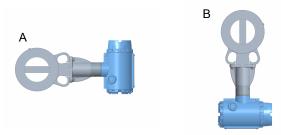
Figura 4-2: Installazione orizzontale


- A. Installazione consigliata: corpo del misuratore installato con l'elettronica a lato del tubo
- B. Installazione accettabile: corpo del misuratore installato con l'elettronica sopra il tubo

Installazioni ad alte temperature

La temperatura di processo massima per l'elettronica integrata dipende dalla temperatura ambiente del luogo in cui è installato il misuratore. L'elettronica non deve superare 85 °C (185 °F).

La Figura 4-3 indica le combinazioni di temperatura ambiente e temperatura di processo necessarie per mantenere la temperatura della custodia a valori inferiori a $85\,^{\circ}$ C ($185\,^{\circ}$ F).


- A. Temperatura ambiente °F (°C)
- B. Temperatura di processo °F (°C)
- C. Limite di temperatura della custodia 85 °C (185 °F).

Nota

I limiti indicati fanno riferimento a tubo in posizione orizzontale e misuratore in posizione verticale, entrambi isolati con 77 mm (3 in.) di fibra di ceramica.

Installare il corpo del misuratore in modo che l'elettronica sia posizionata a lato del tubo o sotto il tubo come mostrato nella Figura 4-4. L'isolamento può inoltre essere necessario intorno al tubo per mantenere una temperatura dell'elettronica inferiore a 85 °C (185 °F). Vedere Figura 5-2 per considerazioni speciali sull'isolamento.

Figura 4-4: Esempi di installazioni ad alte temperature

- A. Installazione consigliata: corpo del misuratore installato con l'elettronica a lato del tubo.
- B. Installazione accettabile: corpo del misuratore installato con l'elettronica sotto al tubo.

4.1.4 Posizione

Area pericolosa

Il trasmettitore presenta una custodia a prova di esplosione e circuiti adatti ad un funzionamento a sicurezza intrinseca e a prova di accensione. I singoli trasmettitori sono dotati di una targhetta che ne indica le certificazioni. Vedere Certificazioni del prodotto.

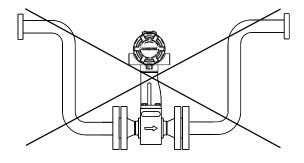
Considerazioni ambientali

Per assicurare la massima durata del misuratore di portata, evitare calore e vibrazioni eccessivi. Le aree problematiche tipiche includono linee ad alta vibrazione con elettronica a montaggio integrale, installazioni in climi caldi alla luce solare diretta e installazioni all'aperto in climi freddi.

Benché le funzioni di condizionamento del segnale riducano la suscettibilità al rumore esterno, alcuni ambienti risultano più adatti di altri. Evitare l'installazione del misuratore o del relativo cablaggio accanto a dispositivi che producono campi elettromagnetici ed elettrostatici ad alta intensità. Tali dispositivi includono apparecchiature per saldatura elettrica, motori e trasformatori elettrici di grandi dimensioni, e trasmettitori di comunicazione.

Tubazioni a monte e a valle

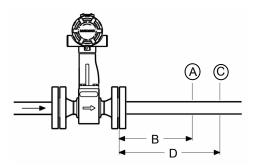
Il misuratore può essere installato con un minimo di 10 diametri (D) di lunghezza di tubo diritto a monte e 5 diametri (D) di lunghezza di tubo diritto a valle.


Per ottenere l'accuratezza di riferimento, sono necessarie lunghezze di tubo diritto di 35 D a monte e 5 D a valle. Il valore del fattore K può aumentare

fino allo 0,5% quando la lunghezza del tubo diritto a monte è compresa tra 10 D e 35 D. Per le correzioni opzionali del fattore K, vedere *Bollettino tecnico* sugli effetti dell'installazione di Rosemount $^{\text{M}}$ 8800 Vortex.

Tubazioni del vapore

Per le applicazioni su vapore, evitare installazioni simili a quella mostrata nella figura seguente. Tali installazioni possono determinare colpi d'ariete all'accensione a causa della condensa intrappolata. L'elevata forza del colpo d'ariete può provocare sollecitazioni al meccanismo di rilevamento e causare danni permanenti al sensore.


Figura 4-5: Installazione errata del tubo del vapore

Posizione dei trasmettitori di pressione e temperatura

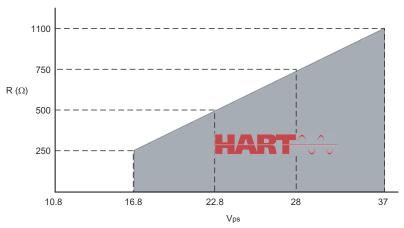
Se si utilizzano trasmettitori di pressione e temperatura insieme al misuratore di portata Vortex per portate in massa compensate, installare i trasmettitori a valle del misuratore di portata Vortex.

Figura 4-6: Posizione dei trasmettitori di pressione e temperatura

- A. Trasmettitore di pressione
- B. Quattro diametri di tubo diritto a valle
- C. Trasmettitore di temperatura
- D. Sei diametri di tubo diritto a valle

4.1.5 Alimentazione (HART)

Alimentazione analogica 4-20 mA


È necessaria una fonte di alimentazione esterna. Ciascun trasmettitore funziona con una tensione del terminale da 10,8 V c.c. a 42 V c.c. Vedere Figura 4-7.

Consumo energetico

Un watt massimo per trasmettitore.

Comunicazione HART

La resistenza massima del circuito è determinata dal livello di tensione dell'alimentazione esterna, come descritto nel grafico.

Tenere presente che la comunicazione HART richiede una resistenza minima del circuito da 250 ohm fino ad un massimo di 1100 ohm.

R(\Omega) Valore della resistenza di carico.

V_{ps} Tensione di alimentazione minima richiesta

 $R(\Omega)$ max = 41,7 (V_{ps} – 10,8 V).

Informazioni aggiuntive sul cablaggio

- L'alimentazione c.c. deve fornire una tensione con un'ondulazione inferiore al due per cento. Il carico di resistenza totale è la somma della resistenza del cablaggio del segnale e della resistenza di carico di controller, indicatore e relative parti. Si noti che la resistenza delle barriere a sicurezza intrinseca, se utilizzate, deve essere inclusa.
- Se un adattatore Smart Wireless THUM[™] viene utilizzato con il misuratore di portata per scambiare informazioni tramite la tecnologia IEC 62591 (protocollo WirelessHART[®]), è necessaria una resistenza del circuito minima di 250 ohm. Inoltre, una tensione di alimentazione minima (Vps) di 19,3 volt sarà richiesta per l'uscita di 24 mA.
- Se viene utilizzato un singolo alimentatore per più di un trasmettitore, l'alimentatore utilizzato e il circuito comune ai trasmettitori non devono presentare più di 20 ohm di impedenza a 1200 Hz. Vedere Tabella 4-1.

Tabella 4-1: Resistenza basata sulla sezione del conduttore

Numero sezione conduttore	Ohm per 1.000 ft (305 m) a 68 °F (20 °C) equivalenti
14 AWG (2 mm ²)	2,5
16 AWG (1 mm ²)	4,0
18 AWG (0,8 mm ²)	6,4
20 AWG (0,5 mm ²)	10
22 AWG (0,3 mm ²)	16
24 AWG (0,2 mm ²)	26

4.1.6 Alimentazione (FOUNDATION fieldbus)

Il misuratore di portata richiede 9–32 V c.c. ai terminali di alimentazione. Per ciascun alimentatore fieldbus è necessario un condizionatore dell'alimentazione per disaccoppiare l'uscita dell'alimentatore dal segmento del cablaggio fieldbus.

4.2 Messa in servizio

Per una configurazione e un funzionamento corretti, eseguire la messa in servizio del misuratore prima di metterlo in funzione. La messa in servizio al banco consente inoltre di controllare le impostazioni hardware, testare l'elettronica del misuratore di portata, verificare i dati di configurazione del misuratore di portata e controllare le variabili di uscita. È possibile correggere eventuali problemi, o modificare le impostazioni di configurazione, prima di passare all'ambiente di installazione. Per la messa in servizio al banco, collegare un dispositivo di configurazione al circuito di segnale secondo le istruzioni del dispositivo.

4.2.1 Configurazione dei cavallotti HART

Due cavallotti presenti sul trasmettitore specificano le modalità di allarme e sicurezza. Impostare questi cavallotti durante la fase di messa in servizio per evitare di esporre l'elettronica all'ambiente dell'impianto. I due cavallotti si trovano sullo stack della scheda dell'elettronica o sull'indicatore LCD.

Allarme

Come parte del normale funzionamento, il trasmettitore esegue in modo continuo una routine di autodiagnostica. Se la routine rileva un guasto interno nell'elettronica, l'uscita del misuratore di portata viene portata a un livello di allarme basso o alto, a seconda della posizione del cavallotto della modalità di guasto. La fabbrica imposta il cavallotto in base al foglio dati di configurazione, se applicabile, o su HI (alto) come impostazione predefinita.

Sicu- È possibile proteggere i dati di configurazione con il cavallotto del rez- blocco di sicurezza. Con il cavallotto del blocco di sicurezza impostato su ON (attivato), qualsiasi modifica alla configurazione tentata sull'elettronica non è consentita. È comunque possibile accedere e rivedere qualsiasi parametro di funzionamento e scorrere i parametri disponibili, ma non è possibile apportare modifiche. La fabbrica imposta il cavallotto in base al foglio dati di configurazione, se applicabile, o su OFF (disattivato) come impostazione predefinita.

Nota

Se si modificano di frequente le variabili di configurazione, può essere utile lasciare il cavallotto del blocco di sicurezza in posizione OFF (disattivato) per evitare di esporre l'elettronica del misuratore di portata all'ambiente dell'impianto.

Per accedere ai cavallotti, rimuovere la custodia dell'elettronica del trasmettitore o il coperchio dell'LCD (se presente) di fronte ai terminali. Vedere Figura 4-8 e Figura 4-9.

Figura 4-8: Cavallotti di allarme e sicurezza (senza opzione LCD)

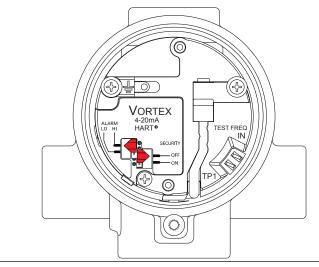


Figura 4-9: Cavallotti di allarme e sicurezza sull'indicatore LCD (con opzione LCD)

Valori di uscita di modalità di quasto e saturazione

I livelli di uscita degli allarmi della modalità di guasto differiscono dai valori di uscita che si presentano quando il flusso di esercizio è al di fuori dei punti del campo. Quando il flusso di esercizio è al di fuori dei punti del campo, l'uscita analogica continua a tracciare il flusso di esercizio fino a raggiungere il valore di saturazione indicato di seguito. L'uscita non supera il valore di saturazione indicato indipendentemente dal flusso di esercizio. Ad esempio, con livelli di allarme e saturazione standard e flussi al di fuori dei punti del campo 4–20 mA, l'uscita si satura a 3,9 mA o 20,8 mA. Quando la diagnostica del trasmettitore rileva un guasto, l'uscita analogica viene impostata su un valore di allarme specifico che differisce dal valore di saturazione per consentire un'adeguata risoluzione dei problemi. I livelli di saturazione e allarme sono selezionabili tramite software tra i livelli Rosemount standard e NAMUR.

Tabella 4-2: Uscita analogica: valori di allarme e valori di saturazione standard

Livello	ello Valore di saturazione 4–20 mA Valore di allarme 4–20 mA	
Basso	3,9 mA	≤ 3,75 mA
Alto	20,8 mA	≥ 21,75 mA

Tabella 4-3: Uscita analogica: valori di allarme e valori di saturazione conformi a NAMUR

Livello	Valore di saturazione 4–20 mA	Valore di allarme 4–20 mA
Basso	3,8 mA	≤ 3,6 mA
Alto	20,5 mA	≥ 22,6 mA

4.2.2 Configurazione dei cavallotti FOUNDATION fieldbus

Due cavallotti sul trasmettitore specificano le modalità di simulazione e sicurezza. Impostare questi cavallotti durante la fase di messa in servizio per evitare di esporre l'elettronica all'ambiente dell'impianto. I due cavallotti si trovano sullo stack della scheda dell'elettronica o sull'indicatore LCD.

Si-mu-lazio-ne
 Il cavallotto di attivazione della simulazione viene utilizzato insieme alla simulazione del blocco funzione dell'ingresso analogico (Al). Il cavallotto viene inoltre utilizzato come funzione di lock-out per il blocco funzione Al. Per abilitare la funzione di attivazione della simulazione, il cavallotto deve passare da OFF (disattivato) a ON (attivato) dopo che l'alimentazione è stata applicata al trasmettitore, evitando che il trasmettitore venga lasciato accidentalmente nella modalità simulatore. L'impostazione del cavallotto predefinita in fabbrica è OFF (disattivato).

Sicu- È possibile proteggere i dati di configurazione con il cavallotto del blocco di sicurezza. Con il cavallotto del blocco di sicurezza impostato su ON (attivato), qualsiasi modifica alla configurazione tentata sull'elettronica non è consentita. È comunque possibile accedere e rivedere qualsiasi parametro di funzionamento e scorrere i parametri disponibili, ma non è possibile apportare modifiche. L'impostazione del cavallotto predefinita in fabbrica è OFF (disattivato).

Per accedere ai cavallotti, rimuovere il coperchio LCD del trasmettitore (se presente) o il coperchio della custodia dell'elettronica di fronte ai terminali. Vedere Figura 4-10 e Figura 4-11.

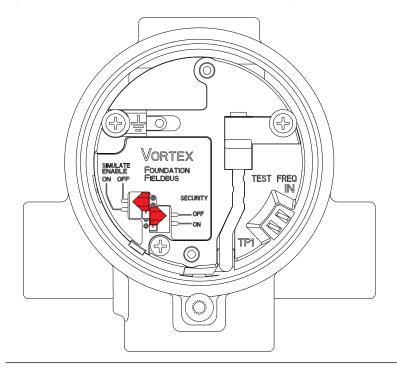
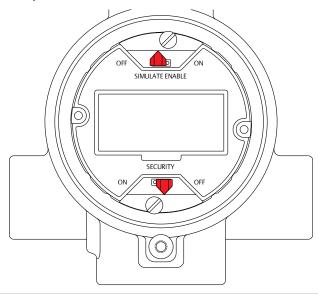



Figura 4-11: Cavallotti di allarme e sicurezza sull'indicatore LCD (con opzione LCD)

4.2.3 Calibrazione

Il misuratore di portata è calibrato con il flusso di fluido in fabbrica e non necessita di ulteriore calibrazione durante l'installazione. Il fattore di calibrazione (fattore K) è indicato sul corpo di ogni misuratore e viene inserito nell'elettronica. È possibile eseguire la verifica con un dispositivo di configurazione.

5 Installazione di base

5.1 Movimentazione

Per evitare danni, movimentare con cautela tutti i componenti. Se possibile, trasportare il sistema presso il sito di installazione negli imballaggi di spedizione originali. Mantenere i tappi di protezione nelle connessioni del conduit fino a che non si procede alla connessione e alla sigillatura.

AVVISO

Per evitare danni al misuratore di portata, non sollevare il misuratore dal trasmettitore, ma sollevarlo dal corpo del misuratore stesso. I supporti di sollevamento possono essere legati attorno al corpo del misuratore come mostrato.

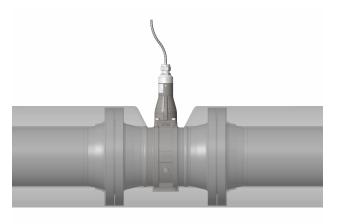
Figura 5-1: Supporti di sollevamento

5.2 Direzione del flusso

Montare il corpo del misuratore in modo che l'estremità anteriore (FORWARD) della freccia del flusso, visibile sul corpo del misuratore, punti nella direzione del flusso nel tubo.

5.3 Guarnizioni

Il misuratore di portata richiede guarnizioni fornite dall'utente. Accertarsi di selezionare un materiale delle guarnizioni che sia compatibile con il fluido di processo e i rating di pressione dell'installazione specifica.


Nota

Assicurarsi che il diametro interno della guarnizione sia maggiore del diametro interno del misuratore di portata e delle tubazioni adiacenti. Se il materiale della guarnizione si estende nel flusso, disturberà il flusso e causerà misurazioni non accurate.

5.4 Isolamento

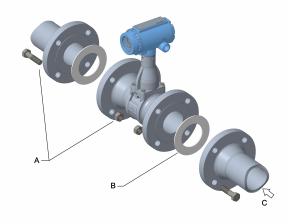
L'isolamento deve estendersi fino all'estremità del bullone sul fondo del corpo del misuratore e deve lasciare almeno 25 mm (1 in.) di spazio intorno alla staffa dell'elettronica. La staffa dell'elettronica e la custodia dell'elettronica non devono essere isolate. Vedere Figura 5-2.

Figura 5-2: Migliori pratiche di isolamento per evitare il surriscaldamento dell'elettronica

A Avvertenza

Al fine di evitare danni all'elettronica in installazioni ad alta temperatura, e per l'elettronica integrale e remota, isolare solo il corpo del misuratore come mostrato, e non isolare l'area intorno all'elettronica.

5.5 Montaggio del misuratore di portata flangiato


La maggior parte dei misuratori di portata Vortex utilizza una connessione al processo di tipo flangiato. Il montaggio fisico di un misuratore di portata flangiato è simile all'installazione di una tipica sezione di tubo. Sono

necessari strumenti, attrezzature e accessori convenzionali (come bulloni e quarnizioni). Serrare i dadi secondo la seguenza mostrata nella Figura 5-4.

Nota

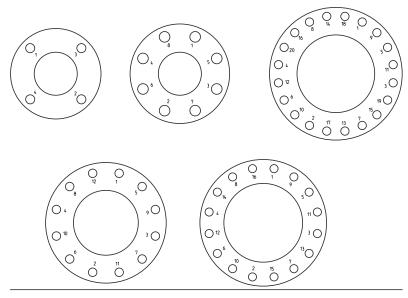

Il carico del bullone richiesto per sigillare il giunto della guarnizione è influenzato da diversi fattori, inclusi la pressione di esercizio e il materiale, la larghezza e le condizioni della guarnizione. Diversi fattori influenzano anche il carico del bullone effettivo derivante da una coppia di serraggio misurata, inclusi le condizioni della filettatura del bullone, l'attrito tra la testa del dado e la flangia e il parallelismo delle flange. A causa di questi fattori dipendenti dall'applicazione, la coppia di serraggio richiesta per ciascuna applicazione può variare. Per il corretto serraggio dei bulloni, attenersi alle linee guida indicate nella norma ASME PCC-1. Accertarsi che il misuratore di portata sia centrato tra flange con dimensioni nominali uguali a quelle del misuratore stesso.

Figura 5-3: Installazione del misuratore di portata flangiato

- A. Prigionieri e dadi per l'installazione (forniti dal cliente)
- B. Guarnizioni (fornite dal cliente)
- C. Flusso

Figura 5-4: Sequenza di serraggio dei bulloni della flangia

Nota

Per istruzioni sul retrofit delle installazioni da 8800D a 8800A, consultare il manuale di riferimento del prodotto.

5.6 Allineamento e montaggio del misuratore di portata tipo wafer

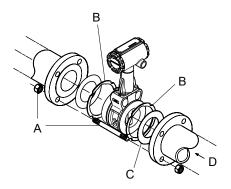
Centrare il diametro interno del corpo del misuratore tipo wafer rispetto al diametro interno delle tubazioni adiacenti a monte e a valle. Ciò assicura che il misuratore di portata raggiunga l'accuratezza specificata. Per facilitare il centraggio, vengono forniti anelli di allineamento con ogni corpo del misuratore tipo wafer. Per allineare il corpo del misuratore durante l'installazione, seguire questi passaggi. Consultare Figura 5-5.

- Posizionare gli anelli di allineamento su ciascuna estremità del corpo del misuratore.
- Inserire i prigionieri per il lato inferiore del corpo del misuratore tra le flange del tubo.
- 3. Posizionare il corpo del misuratore (con gli anelli di allineamento) tra le flange.
 - Controllare che gli anelli di allineamento siano posizionati correttamente sui prigionieri.

 Allineare i prigionieri con i segni sull'anello che corrispondono alla flanqia utilizzata.

• Se viene utilizzato un distanziatore, vedere il manuale di riferimento del prodotto.

Nota


Assicurarsi di allineare il misuratore di portata in modo che l'elettronica sia accessibile, i condotti si drenino e il misuratore di portata non sia soggetto a calore diretto.

- 4. Posizionare i prigionieri rimanenti tra le flange del tubo.
- 5. Serrare i dadi secondo la sequenza mostrata nella Figura 5-4.
- 6. Verificare la presenza di perdite in corrispondenza delle flange dopo aver serrato i relativi bulloni.

Nota

Il carico del bullone richiesto per sigillare il giunto della guarnizione è influenzato da diversi fattori, inclusi la pressione di esercizio e il materiale, la larghezza e le condizioni della guarnizione. Diversi fattori influenzano anche il carico del bullone effettivo derivante da una coppia di serraggio misurata, inclusi le condizioni della filettatura del bullone, l'attrito tra la testa del dado e la flangia e il parallelismo delle flange. A causa di questi fattori dipendenti dall'applicazione, la coppia di serraggio richiesta per ciascuna applicazione può variare. Per il corretto serraggio dei bulloni, attenersi alle linee guida indicate nella norma ASME PCC-1. Accertarsi che il misuratore di portata sia centrato tra flange con dimensioni nominali uguali a quelle del misuratore stesso.

Figura 5-5: Installazione del misuratore di portata tipo wafer con anelli di allineamento

- A. Prigionieri e dadi per l'installazione (forniti dal cliente)
- B. Anelli di allineamento
- C. Distanziatore (per Rosemount 8800D al fine di mantenere le dimensioni di Rosemount 8800A)
- D. Flusso

5.6.1 Prigionieri per misuratori di portata tipo wafer

Le seguenti tabelle indicano le lunghezze minime consigliate dei prigionieri per dimensione del corpo del misuratore tipo wafer e diversi rating delle flange.

Tabella 5-1: Lunghezza dei prigionieri per misuratori di portata tipo wafer con flange ASME B16.5

Diametro del tubo	Lunghezze minime consigliate dei prigionieri (in pollici) per ogni rating della flangia		
	Classe 150	Classe 150 Classe 300 Classe 600	
½ in.	6,00	6,25	6,25
1 in.	6,25	7,00	7,50
1½ in.	7,25	8,50	9,00
2 in.	8,50	8,75	9,50
3 in.	9,00	10,00	10,50
4 in.	9,50	10,75	12,25
6 in.	10,75	11,50	14,00
8 in.	12,75	14,50	16,75

Tabella 5-2: Lunghezza dei prigionieri per misuratori di portata tipo wafer con flange EN 1092

Diametro del tubo	Lunghezze minime consigliate dei prigionieri (in mm) per ogni rating della flangia			
	PN 16	PN 40	PN 63	PN 100
DN 15	160	160	170	170
DN 25	160	160	200	200
DN 40	200	200	230	230
DN 50	220	220	250	270
DN 80	230	230	260	280
DN 100	240	260	290	310
DN 150	270	300	330	350
DN 200	320	360	400	420

Diametro del tubo	Lunghezze minime consigliate dei prigionieri (in mm) per ogni rating della flangia		
	JIS 10k JIS 16k e 20k JIS 40k		JIS 40k
15 mm	150	155	185
25 mm	175	175	190
40 mm	195	195	225
50 mm	210	215	230
80 mm	220	245	265
100 mm	235	260	295
150 mm	270	290	355
200 mm	310	335	410

5.7 Pressacavi

Se si utilizzano i pressacavi invece del conduit, seguire le istruzioni del produttore dei pressacavi per la preparazione ed eseguire i collegamenti in modo convenzionale in conformità con i codici elettrici locali o dell'impianto. Assicurarsi di sigillare adeguatamente le porte inutilizzate per evitare che umidità o altri contaminanti entrino nello scomparto del terminale della custodia dell'elettronica.

5.8 Messa a terra del misuratore di portata

La messa a terra non è richiesta nelle tipiche applicazioni Vortex, tuttavia una messa a terra adeguata elimina la possibilità che l'elettronica capti rumori. Per assicurare la messa a terra del misuratore sulla tubazione di processo, è possibile utilizzare fascette di messa a terra. Se si utilizza l'opzione di protezione da sovratensione (T1), sono necessarie fascette di messa a terra per fornire un'adeguata messa a terra a bassa impedenza.

Nota

Mettere a terra adeguatamente il corpo del misuratore di portata e il trasmettitore secondo il codice locale.

Per utilizzare le fascette di messa a terra, fissare un'estremità della fascetta al bullone che si estende dal lato del corpo del misuratore e collegare l'altra estremità ad una messa a terra adatta. Vedere Figura 5-6.



Figura 5-6: Collegamenti a terra

- A. Collegamento a terra interno
- B. Gruppo di messa a terra esterno

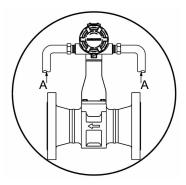
5.9 Messa a terra della custodia del trasmettitore

La custodia del trasmettitore deve essere sempre messa a terra in conformità con i codici elettrici nazionali e locali. Il metodo più efficace di messa a terra della custodia del trasmettitore è il collegamento diretto alla messa a terra con impedenza minima. I metodi per la messa a terra della custodia del trasmettitore includono:

Collegamento di terra interno La vite di collegamento a terra interna si trova nel lato FIELD TERMINALS (terminali di campo) della custodia dell'elettronica. Questa vite è identificata da un simbolo di terra $(\frac{1}{2})$ ed è standard su tutti i trasmettitori Rosemount 8800D.

Gruppo di messa a terra esterno Questo gruppo si trova all'esterno della custodia dell'elettronica ed è incluso con il terminale di protezione da sovratensione opzionale (codice opzione T1). Il gruppo di messa a terra esterno può inoltre essere ordinato con il trasmettitore (codice opzione V5) ed è automaticamente incluso con alcune certificazioni per aree pericolose. Vedere Figura 5-6 per la posizione del gruppo di messa a terra esterno.

Nota


La messa a terra della custodia del trasmettitore tramite il collegamento del conduit filettato potrebbe non fornire una messa a terra sufficiente. Il terminale di protezione da sovratensione (codice opzione T1) non offre protezione da sovratensione se la custodia del trasmettitore non è adeguatamente messa a terra. Per la messa a terra del terminale di protezione da sovratensione, vedere il manuale di riferimento. Utilizzare le linee guida precedenti per mettere a terra la custodia del trasmettitore. Non far passare il filo di terra di protezione da sovratensione accanto al cablaggio del segnale, poiché il filo di terra potrebbe trasportare una corrente elettrica eccessiva in caso venga colpito da un fulmine.

5.10 Installazione del conduit

Per evitare che la condensa presente in un conduit possa infiltrarsi nella custodia, montare il misuratore di portata in corrispondenza di un punto elevato del percorso del conduit. Se il misuratore di portata è montato in un punto più basso del percorso del conduit, lo scomparto del terminale potrebbe riempirsi di fluido.

Se il conduit ha inizio al di sopra del misuratore di portata, disporlo al di sotto del misuratore di portata prima dell'ingresso. In alcuni casi potrebbe essere necessario installare una tenuta di scarico.

Figura 5-7: Installazione corretta del conduit

A. Conduit

5.11 Cablaggio

I terminali di segnale si trovano in uno scomparto della custodia dell'elettronica separato dall'elettronica del misuratore di portata. I collegamenti per uno strumento di configurazione e una connessione di prova della corrente elettrica si trovano sopra i terminali di segnale.

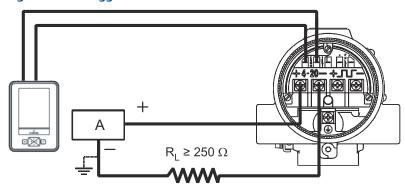
Nota

È necessaria la disconnessione dell'alimentazione per eliminare l'alimentazione dal trasmettitore e poter procedere a manutenzione, rimozione e sostituzione.

Pratiche di cablaggio comuni

Sono necessari doppini intrecciati per ridurre al minimo i rumori nel segnale 4–20 mA e nel segnale di comunicazione digitale. Per ambienti con elevata interferenza elettromagnetica/in radiofrequenza, è necessario un cavo di segnale schermato, inoltre consigliato in tutte le altre installazioni. Per assicurare la comunicazione, il cablaggio deve essere di 24 AWG (0,205 mm²) o superiore, e non superare i 1500 m (5000 ft).

5.11.1 Uscita analogica


Il misuratore di portata fornisce un'uscita di corrente elettrica isolata da 4–20 mA c.c., lineare con la portata. Per effettuare i collegamenti, rimuovere il coperchio laterale FIELD TERMINALS (terminali di campo) della custodia dell'elettronica. Tutta l'alimentazione dell'elettronica viene fornita tramite il cablaggio di segnale 4–20 mA. Collegare i fili come illustrato.

Nota

Sono necessari doppini intrecciati per ridurre al minimo i rumori nel segnale 4–20 mA e nel segnale di comunicazione digitale. Per ambienti con elevata

interferenza elettromagnetica/in radiofrequenza, è necessario un cavo di segnale schermato, inoltre consigliato in tutte le altre installazioni. Per assicurare la comunicazione, il cablaggio deve essere di 24 AWG o superiore, e non superare i 1500 m (5000 ft).

Figura 5-8: Cablaggio 4-20 mA

A. Alimentazione. Vedere Alimentazione (HART).

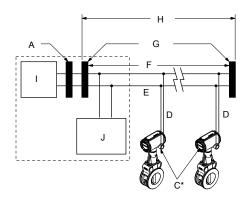
5.11.2 Cablaggio FOUNDATION fieldbus

Per ciascun alimentatore fieldbus è necessario un condizionatore dell'alimentazione per disaccoppiare l'uscita dell'alimentatore dal segmento del cablaggio fieldbus.

Tutta l'alimentazione del trasmettitore viene fornita tramite il cablaggio del segmento. Per ottenere i migliori risultati, utilizzare un doppino intrecciato schermato. Per le nuove installazioni o per ottenere le prestazioni massime, è necessario utilizzare un cavo a doppino intrecciato progettato appositamente per il fieldbus. La Tabella 5-3 indica le caratteristiche e le specifiche ideali del cavo.

Tabella 5-3: Specifiche ideali per il cablaggio fieldbus

Caratteristiche	Specifiche ideali
Impedenza	100 ohm ± 20% a 31,25 kHz
Dimensione cavo	18 AWG (0,8 mm ²)
Copertura	90%
Attenuazione	3 db/km
Squilibrio capacitivo	2 nF/km


Nota

Il numero di apparecchiature su un segmento fieldbus è limitato dalla tensione di alimentazione, dalla resistenza del cavo e dall'assorbimento di corrente di ciascuna apparecchiatura.

Collegamenti elettrici del trasmettitore

Per effettuare il collegamento del cablaggio del trasmettitore, rimuovere il coperchio dell'estremità FIELD TERMINALS (terminali di campo) sulla custodia dell'elettronica. Collegare i cavi di alimentazione ai terminali positivo (+) e negativo (-). I terminali di alimentazione sono insensibili alla polarità, ossia la polarità dei cavi di alimentazione c.c. non è rilevante quando si effettua il collegamento ai terminali di alimentazione. Per il collegamento ai terminali a vite, si consiglia di utilizzare attrezzi di crimpatura. Serrare i terminali per assicurare un contatto adeguato. Non è necessario alcun cablaggio di alimentazione aggiuntivo.

Figura 5-9:

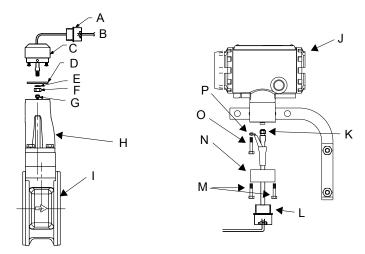
- A. Condizionatore di alimentazione e filtro integrati
- B. L'alimentatore, il filtro, il primo terminatore e lo strumento di configurazione sono solitamente ubicati nella sala controllo.
- C. Dispositivi da 1 a 16 (le installazioni a sicurezza intrinseca potrebbero consentire un numero inferiore di dispositivi per ciascuna barriera a sicurezza intrinseca).
- D. Linea di derivazione
- E. Linea dorsale
- F. Segmento fieldbus
- G. Terminatori
- H. 1900 m (6234 ft) massimo (a seconda delle caratteristiche del cavo)
- I. Alimentazione
- I. Strumento di configurazione fieldbus

5.12 Installazione remota

Se è stata ordinata un'opzione elettronica remota (Rxx o Axx), il gruppo misuratore di portata verrà spedito in due parti:

- Il corpo del misuratore con un adattatore installato nel tubo di supporto e un cavo di collegamento coassiale collegato.
- La custodia dell'elettronica installata su una staffa di montaggio.

Se è stata ordinata un'opzione elettronica remota armata (Axx), seguire le stesse istruzioni valide per il collegamento del cavo remoto standard, salvo che potrebbe non essere necessario far passare il cavo attraverso il conduit. L'armatura include i pressacavi. Le informazioni sull'installazione remota sono disponibili in Collegamenti dei cavi.


5.12.1 Montaggio

Montare il corpo del misuratore sulla tubazione di processo, come illustrato in precedenza in questa sezione. Montare la staffa e la custodia dell'elettronica nella posizione desiderata. La custodia può essere riposizionata sulla staffa per facilitare la disposizione del conduit e del cablaggio sul campo.

5.12.2 Collegamenti dei cavi

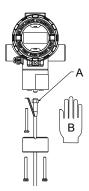
Completare i seguenti passaggi per collegare l'estremità libera del cavo coassiale alla custodia dell'elettronica. Se si collega/si scollega l'adattatore del misuratore al corpo del misuratore, consultare il manuale di riferimento del prodotto.

Figura 5-10: Installazione remota

- A. Adattatore del conduit o pressacavo da ½ NPT (forniti dal cliente)
- B. Cavo coassiale
- C. Adattatore del misuratore
- D. Giunto
- E. Rondella
- F. Dado
- G. Dado del cavo sensore
- H. Tubo di supporto
- I. Corpo del misuratore
- I. Custodia dell'elettronica
- K. Dado del cavo coassiale SMA
- L. Adattatore del conduit o pressacavo da ½ NPT (forniti dal cliente)
- M. Viti adattatore della custodia
- N. Adattatore della custodia
- O. Viti base della custodia
- P. Collegamento a terra

A Avvertenza

Per evitare infiltrazioni di umidità nelle connessioni del cavo coassiale, installare il cavo di collegamento coassiale in un singolo conduit dedicato o utilizzare pressacavi sigillati su entrambe le estremità del cavo.


Nelle configurazioni a montaggio remoto, se ordinati con un codice opzione area pericolosa, il cavo del sensore remoto e il cavo di interconnessione della termocoppia (opzione MTA o MCA) sono protetti da circuiti a sicurezza intrinseca distinti, e devono essere separati l'uno dall'altro, nonché da altri circuiti a sicurezza intrinseca e circuiti non a sicurezza intrinseca in base al codice di cablaggio locale e nazionale.

A Avvertenza

Il cavo remoto coassiale non può essere dotato di terminali o tagliato alla lunghezza desiderata sul campo. Avvolgere il cavo coassiale in eccesso con un raggio minimo di 51 mm (2 in.).

- Se si desidera installare il cavo coassiale in un conduit, tagliare con cautela il conduit alla lunghezza necessaria per un montaggio corretto sulla custodia. È possibile montare sul conduit una scatola di giunzione per fornire lo spazio necessario per il cavo coassiale in eccesso.
- Inserire l'adattatore del conduit o il pressacavo sull'estremità libera del cavo coassiale e fissarlo all'adattatore sul tubo di supporto del corpo del misuratore.
- Se si utilizza un conduit, far passare il cavo coassiale all'interno del conduit.
- 4. Posizionare un adattatore del conduit o un pressacavo sull'estremità del cavo coassiale.
- 5. Rimuovere l'adattatore della custodia dalla custodia dell'elettronica.
- 6. Inserire l'adattatore della custodia sul cavo coassiale.
- 7. Rimuovere una delle quattro viti della base della custodia.
- 8. Collegare il filo di messa a terra del cavo coassiale alla custodia tramite la vite di messa a terra della base della custodia.
- 9. Collegare e serrare a mano il dado SMA del cavo coassiale alla custodia dell'elettronica a 0,8 N-m (7 in-lb).

Figura 5-11: Collegamento e serraggio del dado SMA

- A. Dado SMA
- B. Serrare a mano

Nota

Non serrare eccessivamente il dado del cavo coassiale alla custodia dell'elettronica.

- Allineare l'adattatore della custodia alla custodia e fissarlo con due viti.
- Serrare l'adattatore del conduit o il pressacavo all'adattatore della custodia.

5.12.3 Rotazione della custodia

Per migliorare la visualizzazione, è possibile ruotare la custodia dell'elettronica con incrementi di 90°. Per modificare l'orientamento della custodia, attenersi alla procedura seguente.

- 1. Allentare le tre viti di rotazione della custodia alla base della custodia dell'elettronica con una chiave esagonale da 5/32 di pollice girandole in senso orario (verso l'interno) fino a liberare il tubo di supporto.
- 2. Sfilare lentamente la custodia dell'elettronica dal tubo di supporto.

A Avvertenza

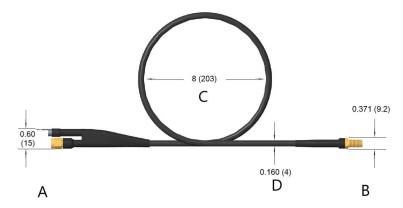
Non estrarre la custodia più di 40 mm (1,5 in.) dalla parte superiore del tubo di supporto finché il cavo del sensore non è scollegato. Se il cavo del sensore viene sottoposto ad eccessiva tensione, il sensore potrebbe subire danni.

3. Svitare il cavo del sensore dalla custodia con una chiave fissa doppia da 5/16 di pollice.

- 4. Ruotare la custodia nell'orientamento desiderato.
- Mantenere la custodia in posizione ed avvitare il cavo del sensore sulla base della custodia.

▲ Avvertenza

Non ruotare la custodia mentre il cavo del sensore è collegato alla base della custodia. Ciò sottoporrebbe il cavo ad una tensione eccessiva causando danni al sensore.


- 6. Posizionare la custodia dell'elettronica sulla parte superiore del tubo di supporto.
- 7. Utilizzando una chiave esagonale, avvitare le tre viti di rotazione della custodia in senso antiorario (verso l'esterno), in modo da innestarle nel tubo di supporto.

5.12.4 Specifiche e requisiti per il cavo del sensore remoto

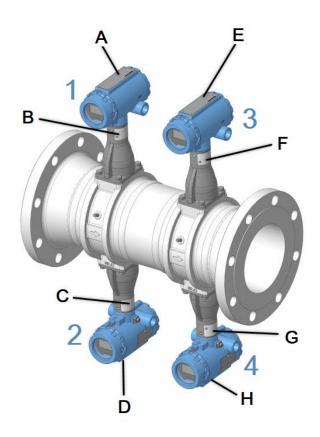
Se si utilizza un cavo del sensore remoto Rosemount, osservare le specifiche e i requisiti seguenti.

- Il cavo del sensore remoto è un cavo triassiale di design proprietario
- È considerato un cavo di segnale a bassa tensione
- È classificato per e/o come parte di installazioni a sicurezza intrinseca
- La versione non armata è progettata per passare attraverso un conduit metallico
- Il cavo è resistente all'acqua, ma non è sommergibile. Come migliore pratica, l'esposizione all'umidità deve essere evitata, se possibile
- La temperatura di funzionamento nominale è compresa tra −50 °C e +200 °C (−58 °F e +392 °F)
- Resistente alla fiamma in conformità con IEC 60332-3
- Il diametro minimo di curvatura delle versioni non armata e armata è di 203 mm (8 in.)
- Il diametro esterno nominale della versione non armata è di 4 mm (0,160 in.)
- Il diametro esterno nominale della versione armata è di 7,1 mm (0,282 in.)

Figura 5-12: Cavo non armato

- A. Estremità trasmettitore
- B. Estremità sensore
- C. Diametro minimo di curvatura
- D. Diametro esterno nominale

Figura 5-13: Cavo armato

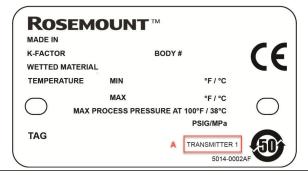

- A. Estremità trasmettitore
- B. Estremità sensore
- C. Diametro minimo di curvatura

5.12.5 Numerazione e orientamento dei trasmettitori Quad

Se vengono ordinati misuratori di portata Vortex Quad, ai fini della configurazione i trasmettitori sono identificati come Trasmettitore 1, Trasmettitore 2, Trasmettitore 3 e Trasmettitore 4. La targhetta dei trasmettitori e del corpo del misuratore di un misuratore di portata Vortex Quad può essere utilizzata per identificare e verificare il numero dei

trasmettitori. Vedere Figura 5-14 per le posizioni delle targhette e l'orientamento dei trasmettitori Quad. Vedere le figure 4-14 e 4-15 per la posizione della numerazione nelle targhette sui trasmettitori e sul corpo del misuratore Quad.

Figura 5-14: Numerazione dei trasmettitori Quad



- A. Targhetta Trasmettitore 1 sul trasmettitore
- B. Targhetta Trasmettitore 1 sul corpo del misuratore
- C. Targhetta Trasmettitore 2 sul trasmettitore
- D. Targhetta Trasmettitore 2 sul corpo del misuratore
- E. Targhetta Trasmettitore 3 sul trasmettitore
- F. Targhetta Trasmettitore 3 sul corpo del misuratore
- G. Targhetta Trasmettitore 4 sul trasmettitore
- H. Targhetta Trasmettitore 4 sul corpo del misuratore

Figura 5-15: Targhetta sui trasmettitori Quad

Figura 5-16: Targhetta sul corpo del misuratore Quad

6 Configurazione di base

Il trasmettitore deve essere configurato per determinate variabili di base affinché sia operativo. Nella maggior parte dei casi, tutte le variabili sono preconfigurate in fabbrica. Se il trasmettitore non è configurato o le variabili di configurazione richiedono una revisione, potrebbe essere necessario eseguire la configurazione. La sezione della configurazione di base include i parametri generalmente richiesti per il funzionamento di base.

Nota

I percorsi ProLink III sono applicabili solo ai dispositivi HART. Per ulteriori informazioni sui dispositivi Fieldbus, fare riferimento al manuale del prodotto 8800D per il protocollo Fieldbus (00809-0100-4772).

6.1 Variabili di processo

Le variabili di processo definiscono l'uscita del misuratore di portata. Durante la messa in servizio di un misuratore di portata, rivedere ciascuna variabile di processo, la sua funzione e la sua uscita, e intraprendere azioni correttive, se necessario, prima di utilizzare il misuratore di portata in un'applicazione di processo.

6.1.1 Mappatura della variabile primaria

Consente all'utente di selezionare le variabili in uscita dal trasmettitore.

Device Tools (Strumenti dispositivo) → Configuration (Configurazione) → Communications (HART) (Comu-
nicazioni (HART))

Nota

La variabile primaria è anche la variabile dell'uscita analogica.

Può essere Process Temperature (Temperatura processo), solo per l'opzione MTA o MCA, o Flow (Flusso). Le variabili di flusso disponibili sono Corrected Volume Flow (Portata in volume corretto), Mass Flow (Portata in massa), Velocity Flow (Velocità di flusso) o Volume Flow (Portata in volume). Durante la messa in servizio al banco, i valori della portata per ciascuna variabile devono essere pari a zero e il valore della temperatura deve essere la temperatura ambiente.

Se le unità per le variabili di portata o temperatura non sono corrette, fare riferimento a Unità delle variabili di processo. Utilizzare la funzione Process Variable Unità (Unità variabili di processo) per selezionare le unità per l'applicazione specifica.

6.1.2 Percentuale del campo

	Device Tools (Strumenti dispositivo) → Configuration (Configurazione) → Outputs (Uscite) → Analog Output (Uscita analogica)
	par (oscila analogica)

La variabile primaria come percentuale del campo fornisce un indicatore del punto in cui la portata misurata dal misuratore si trova all'interno del campo configurato del misuratore. Ad esempio, il campo può essere definito come 0 gal/min - 20 gal/min. Se la portata misurata è 10 gal/min, la percentuale del campo è pari al 50 percento.

6.1.3 Uscita analogica

ProLink III	Device Tools (Strumenti dispositivo) → Configuration
	(Configurazione) \rightarrow Outputs (Uscite) \rightarrow Analog Out-
	put (Uscita analogica)

La variabile dell'uscita analogica fornisce il valore analogico per la variabile primaria. L'uscita analogica fa riferimento all'uscita standard del settore nel campo 4–20 mA. Verificare il valore dell'uscita analogica con la lettura effettiva del circuito fornita da un multimetro. Se non c'è corrispondenza, è necessario un trim 4–20 mA.

6.1.4 Unità delle variabili di processo

Device Tools (Strumenti dispositivo) → Configuration (Configurazione) → Process Measurement (Misura
processo) → (selezionare il tipo)

Consente la visualizzazione e la configurazione di unità delle variabili di processo quali Volume Flow (Portata in volume), Velocity Flow(Velocità di flusso), Mass Flow (Portata in massa), Electronics Temperature (Temperatura dell'elettronica), Process Density (Densità di processo) e Corrected Volume (Volume corretto), inclusa la configurazione di unità speciali del volume corretto.

Volume flow (Portata in volume)

Consente all'utente di visualizzare il valore della portata volumetrica.

Volume flow units (Unità portata in volume)

Consente all'utente di selezionare le unità della portata volumetrica dall'elenco disponibile.

Tabella 6-1: Volume flow units (Unità portata in volume)

gallons per second (galloni al secondo)	gallons per minute (galloni al minuto)	gallons per hour (galloni all'ora)
gallons per day (galloni al giorno)	cubic feet per second (pie- di cubi al secondo)	cubic feet per minute (pie- di cubi al minuto)
cubic feet per hour (piedi cubi all'ora)	cubic feet per day (piedi cubi al giorno)	barrels per second (barili al secondo)
barrels per minute (barili al minuto)	barrels per hour (barili al- l'ora)	barrels per day (barili al giorno)
imperial gallons per se- cond (galloni imperiali al secondo)	imperial gallons per minu- te (galloni imperiali al mi- nuto)	imperial gallons per hour (galloni imperiali all'ora)
imperial gallons per day (galloni imperiali al gior- no)	liters per second (litri al secondo)	liters per minute (litri al minuto)
liters per hour (litri all'ora)	liters per day (litri al gior- no)	cubic meters per second (metri cubi al secondo)
cubic meters per minute (metri cubi al minuto)	cubic meters per hour (metri cubi all'ora)	cubic meters per day (me- tri cubi al giorno)
mega cubic meters per day (milioni di metri cubi al giorno)	special units (unità specia- li)	

Corrected volumetric flow units (Unità portata in volume corretta)

Consente all'utente di selezionare le unità della portata volumetrica corretta dall'elenco disponibile.

Tabella 6-2: Corrected volume flow units (Unità portata in volume corretta)

gallons per second (galloni al secondo)	gallons per minute (galloni al minuto)	gallons per hour (galloni all'ora)
gallons per day (galloni al giorno)	cubic feet per second (piedi cubi al secondo)	standard cubic feet per minute (piedi cubi stan- dard al minuto)
standard cubic feet per hour (piedi cubi standard all'ora)	cubic feet per day (piedi cubi al giorno)	barrels per second (barili al secondo)
barrels per minute (barili al minuto)	barrels per hour (barili al- l'ora)	barrels per day (barili al giorno)
imperial gallons per se- cond (galloni imperiali al secondo)	imperial gallons per minu- te (galloni imperiali al mi- nuto)	imperial gallons per hour (galloni imperiali all'ora)

Tabella 6-2: Corrected volume flow units (Unità portata in volume corretta) (continua)

imperial gallons per day (galloni imperiali al gior- no)	liters per second (litri al secondo)	liters per minute (litri al minuto)
liters per hour (litri all'ora)	liters per day (litri al gior- no)	normal cubic meters per minute (metri cubi norma- li al minuto)
normal cubic meters per hour (metri cubi normali all'ora)	normal cubic meters per day (metri cubi normali al giorno)	cubic meters per second (metri cubi al secondo)
cubic meters per minute (metri cubi al minuto)	cubic meters per hour (metri cubi all'ora)	cubic meters per day (me- tri cubi al giorno)
special units (unità speciali)		

Nota

Quando si misura la portata in volume corretta, è necessario fornire una densità di base e una densità di processo.

Mass flow (Portata in massa)

Consente all'utente di visualizzare i valori e le unità della portata in massa.

Mass flow units (Unità portata in massa)

Consente all'utente di selezionare le unità della portata in massa dall'elenco disponibile. (1 STon = 2000 lb; 1 MetTon = 1000 kg)

Tabella 6-3: Mass flow units (Unità portata in massa)

grams per hour (grammi	grams per minute (gram-	grams per second (gram-
all'ora)	mi al minuto)	mi al secondo)
kilograms per day (chilo-	kilograms per hour (chilo-	kilograms per minute (chi-
grammi al giorno)	grammi all'ora)	logrammi al minuto)
kilograms per second (chi- logrammi al secondo)	pounds per minute (libbre al minuto)	pounds per hour (libbre al- l'ora)
pounds per day (libbre al giorno)	special units (unità specia- li)	short tons per day (tonnel- late corte al giorno)
short tons per hour (ton- nellate corte all'ora)	short tons per minute (tonnellate corte al minu- to)	pounds per second (libbre al secondo)
tons (metric) per day (ton-	tons (metric) per hour	tons (metric) per minute
nellate (metriche) al gior-	(tonnellate (metriche) al-	(tonnellate (metriche) al
no)	l'ora)	minuto)

Nota

Se si seleziona un'opzione Mass flow units (Unità portata in massa), è necessario immettere la densità del processo nella configurazione.

Velocity flow (Velocità di flusso)

Consente all'utente di visualizzare i valori e le unità della velocità di flusso.

Velocity flow units (Unità velocità di flusso)

Consente all'utente di selezionare le unità di velocità di flusso dall'elenco disponibile.

- feet per second (piedi al secondo)
- meters per second (metri al secondo)

Velocity measurement base (Base misura velocità)

Determina se la misura della velocità è basata sul diametro interno del tubo compatibile o sul diametro interno del corpo del misuratore. Questo elemento è rilevante per le applicazioni Vortex Reducer™.

6.2 Targhetta

ProLink III	Device Tools (Strumenti dispositivo) → Configuration
	(Configurazione) → Informational Parameters (Para-
	metri informativi) → Transmitter (Trasmettitore)

Si tratta del modo più rapido per identificare e distinguere i misuratori di portata. È possibile assegnare targhette ai misuratori di portata a seconda dei requisiti dell'applicazione. La targhetta può contenere fino a 8 caratteri.

6.3 Targhetta estesa

ProLink III	Device Tools (Strumenti dispositivo) → Configuration
I	(Configurazione) → Informational Parameters (Parameteris information)
	metri informativi) → Transmitter (Trasmettitore)

È disponibile per HART 7 e consente di utilizzare fino a 32 caratteri.

6.4 Configurazione del processo

Device Tools (Strumenti dispositivo) → Configuration (Configurazione) → Device Setup (Setup dispositivo)
(Louis de la company de la com

Il misuratore di portata può essere utilizzato per applicazioni su liquidi, gas o vapore, tuttavia deve essere configurato specificamente per l'applicazione. Se il misuratore di portata non è configurato per il processo appropriato, le

letture non saranno accurate. Selezionare i parametri di configurazione del processo appropriati per l'applicazione specifica.

Set process fluid (Impostazione fluido di processo)

Misura-	Selezionare il tipo di fluido: Liquid (Liquido), Gas/Steam (Gas/
tori	Vapore), Tcomp Sat Steam (Vapore saturo compensato in tem-
non-	peratura) o Tcomp Liquids (Liquidi compensati in temperatura).
Multi-	Tcomp Sat Steam e Tcomp Liquids richiedono l'opzione MTA e
Varia-	forniscono una compensazione dinamica della densità basata
ble e	sulla lettura della temperatura di processo. Per ulteriori informa-
MTA	zioni sulla configurazione della compensazione della temperatu-
	ra, consultare le funzionalità avanzate nella sezione sul funziona-
	mento del manuale 00809-0100-4004.

Misura-
toriSelezionare il tipo di fluido: Liquid (Liquido), Gas (Gas) o Steam
(Vapore). Per ulteriori informazioni sulla configurazione dellaMPA ecompensazione di pressione e temperatura, consultare le sezioni
sull'installazione avanzata e la configurazione avanzata del manuale 00809-1100-4004.

Fixed process temperature (Temperatura di processo fissa)

È necessaria all'elettronica per compensare l'espansione termica del misuratore quando la temperatura di processo è diversa dalla temperatura di riferimento. Per temperatura di processo si intende la temperatura del liquido o del gas nelle tubazioni durante il funzionamento del misuratore.

Può inoltre essere utilizzata come valore della temperatura di backup in caso di guasto del sensore di temperatura se è installata l'opzione MTA o MCA.

Fixed process density (Densità di processo fissa)

Una densità di processo fissa deve essere accuratamente configurata se si utilizzano misure della portata in massa o della portata in volume corretta. Nella portata in massa, il valore viene utilizzato per convertire la portata in volume nella portata in massa. Nella portata in volume corretta, il valore viene utilizzato con la densità di processo di base per ricavare un rapporto di densità, il quale a sua volta viene utilizzato per convertire la portata in volume nella portata in volume corretta. Nei fluidi compensati in temperatura, la densità di processo fissa è di nuovo richiesta, poiché viene utilizzata per convertire i limiti del sensore della portata in volume nei limiti del sensore per i fluidi compensati in temperatura.

Nota

Se si selezionano unità di massa o volume corretto, è necessario immettere la densità del fluido di processo nel software. Fare attenzione a immettere la densità appropriata. La portata in massa e il rapporto di densità vengono calcolati utilizzando questa densità immessa dall'utente, salvo:

> ri con opzione MTA

Misurato- Il trasmettitore è impostato su TComp Sat Steam o TComp Liquids per i misuratori MTA. Quando il fluido di processo è impostato su Tcomp Sat Steam o TComp Liquids, le variazioni di densità vengono automaticamente compensate e qualsiasi errore nella densità immessa dall'utente causa un errore nella misura.

Misuratori con opzione MPA o MCA

La compensazione effettiva legge la compensazione di temperatura, pressione o pressione e temperatura. Se la compensazione effettiva legge la compensazione di temperatura, pressione o pressione e temperatura, la densità viene compensata automaticamente, e qualsiasi errore nella densità immessa dall'utente comporta un errore nella misura.

Base process density (Densità di processo base)

Si tratta della densità del fluido alle condizioni di base. Questa densità viene utilizzata nella misura della portata in volume corretta. Non è richiesta per portata in volume, portata in massa o velocità di flusso. La densità di processo base viene utilizzata con la densità di processo per calcolare il rapporto di densità. Nei fluidi compensati in temperatura, la densità di processo viene calcolata dal trasmettitore. Nei fluidi non compensati in temperatura, la densità di processo fissa viene utilizzata per calcolare un rapporto di densità fisso. Il rapporto di densità viene utilizzato per convertire la portata in volume effettiva nella portata in volume standard in base alla seguente equazione:

Rapporto di densità = densità alle condizioni effettive (di flusso)/densità alle condizioni standard (di base)

6.5 Fattore K di riferimento

ProLink III	Device Tools (Strumenti dispositivo) → Configuration
	(Configurazione) → Device Setup (Setup dispositivo)

Si tratta di un numero di calibrazione di fabbrica che mette in relazione il flusso che attraversa il misuratore con la freguenza di distacco misurata dall'elettronica. Ogni misuratore Vortex prodotto da Emerson viene sottoposto ad una calibrazione ad acqua per determinare questo valore.

6.6 Tipo di flangia

Device Tools (Strumenti dispositivo) → Configuration
(Configurazione) → Device Setup (Setup dispositivo)

Consente all'utente di specificare il tipo di flangia sul misuratore di portata per riferimento futuro. Questa variabile è preimpostata in fabbrica, ma può essere modificata se necessario.

Tabella 6-4: Tipi di flangia

Wafer	ASME 150	ASME 150 Reducer
ASME 300	ASME 300 Reducer	ASME 600
ASME 600 Reducer	ASME 900	ASME 900 Reducer
ASME 1500	ASME 1500 Reducer	ASME 2500
ASME 2500 Reducer	PN10	PN10 Reducer
PN16	PN16 Reducer	PN25
PN25 Reducer	PN40	PN40 Reducer
PN64	PN64 Reducer	PN100
PN100 Reducer	PN160	PN160 Reducer
JIS 10K	JIS 10K Reducer	JIS 16K/20K
JIS 16K/20K Reducer	JIS 40K	JIS 40K Reducer
Spcl		

6.7 Diametro interno del tubo

ProLink III	Device Tools (Strumenti dispositivo) → Configuration	
	(Configurazione) → Device Setup (Setup dispositivo)	

Il diametro interno del tubo annesso al misuratore di portata può causare effetti di ingresso che potrebbero alterare le letture del misuratore. La configurazione del diametro interno effettivo del tubo compatibile correggerà questi effetti. Immettere il valore appropriato per questa variabile.

I valori del diametro interno del tubo per tubazioni con schedula 10, 40 e 80 sono riportati nella tabella seguente. Se il diametro interno del tubo compatibile non è indicato nella tabella, verificarlo con il produttore o misurarlo autonomamente.

Tabella 6-5: Diametri interni del tubo per tubazioni con schedula 10, 40 e 80

Dimensioni tubo in. (mm)	Schedula 10 in. (mm)	Schedula 40 in. (mm)	Schedula 80 in. (mm)
½ (15)	0,674 (17,12)	0,622 (15,80)	0,546 (13,87)
1 (25)	1,097 (27,86)	1,049 (26,64)	0,957 (24,31)

Tabella 6-5: Diametri interni del tubo per tubazioni con schedula 10, 40 e 80 (continua)

Dimensioni tubo in. (mm)	Schedula 10 in. (mm)	Schedula 40 in. (mm)	Schedula 80 in. (mm)
1½ (40)	1,682 (42,72)	1,610 (40,89)	1,500 (38,10)
2 (50)	2,157 (54,79)	2,067 (52,50)	1,939 (49,25)
3 (80)	3,260 (82,80)	3,068 (77,93)	2,900 (73,66)
4 (100)	4,260 (108,2)	4,026 (102,3)	3,826 (97,18)
6 (150)	6,357 (161,5)	6,065 (154,1)	5,761 (146,3)
8 (200)	8,329 (211,6)	7,981 (202,7)	7,625 (193,7)
10 (250)	10,420 (264,67)	10,020 (254,51)	9,562 (242,87)
12 (300)	12,390 (314,71)	12,000 (304,80)	11,374 (288,90)

6.8 Valori massimo e minimo del campo

ProLink III	Device Tools (Strumenti dispositivo) → Configuration
	(Configurazione) → Outputs (Uscite) → Analog Out-
	put (Uscita analogica)

Consente di impostare i valori massimo e minimo del campo per massimizzare la risoluzione dell'uscita analogica. Il misuratore è più preciso se utilizzato entro i campi di portata previsti per l'applicazione. L'impostazione del campo sui limiti delle letture previste massimizza le prestazioni del misuratore di portata.

Il campo delle letture previste è definito dal valore minimo del campo e dal valore massimo del campo. Impostare i valori entro i limiti di funzionamento del misuratore di portata come definito dal diametro del tubo e dal materiale di processo per l'applicazione specifica. I valori impostati al di fuori di tale campo non saranno accettati.

Upper Range Value
(Valore massimo del
campo)

Questo è il punto di regolazione di 20 mA per il misuratore.

Lower Range Value (Valore minimo del campo)

Questo è il punto di regolazione di 4 mA per il misuratore, ed è generalmente impostato su 0 quando la variabile primaria è una variabile di flusso.

6.9 Damping

ProLink III	Device Tools (Strumenti dispositivo) → Configuration
	(Configurazione) \rightarrow Outputs (Uscite) \rightarrow Analog Out-
	put (Uscita analogica)

Il damping modifica il tempo di risposta del misuratore di portata per attenuare le variazioni nelle letture dell'uscita causate da rapidi cambiamenti nell'ingresso. Il damping viene applicato all'uscita analogica, alla variabile primaria, alla percentuale del campo e alla frequenza di vortice.

Il valore di damping predefinito è pari a 2,0 secondi. Può essere configurato su qualsiasi valore compreso tra 0,2 e 255 secondi quando PV è una variabile di flusso o tra 0,4 e 32 secondi quando PV è la temperatura di processo. Determinare l'impostazione di damping appropriata in base al tempo di risposta necessario, alla stabilità del segnale e ad altri requisiti della dinamica di circuito del sistema.

Nota

Se la frequenza di distacco del vortice è più lenta del valore di damping selezionato, non viene applicato alcun damping. Il damping della temperatura di processo può essere modificato quando PV è impostato sulla temperatura di processo.

6.10 Ottimizzazione dell'elaborazione del segnale digitale (DSP)

ProLink III	Device Tools (Strumenti dispositivo) → Configuration	
	(Configurazione) → Process Measurement (Misura	
	processo) → Signal Processing (Elaborazione segna-	
	le)	

Si tratta di una funzione che può essere utilizzata per ottimizzare il campo del misuratore di portata in base alla densità del fluido. L'elettronica utilizza la densità di processo per calcolare la portata minima misurabile, mantenendo almeno un rapporto di 4:1 tra segnale e livello di trigger. Questa funzione resetta inoltre tutti i filtri per ottimizzare le prestazioni del misuratore di portata sul nuovo campo. Se la configurazione del dispositivo è cambiata, è necessario eseguire questo metodo per assicurare che i parametri di elaborazione del segnale siano impostati sui valori ottimali. Per le densità di processo dinamiche, selezionare un valore di densità che sia inferiore alla densità di flusso minima prevista.

7 Installazione dei sistemi di sicurezza strumentati

Per le installazioni con certificazione di sicurezza, consultare il manuale sulla sicurezza del modello Rosemount 8800D (Documento N. 00809-0200-4004) per la procedura di installazione e i requisiti di sistema.

8 Certificazioni del prodotto

Per informazioni sulle certificazioni del prodotto, fare riferimento al documento di certificazione del misuratore di portata Vortex Rosemount™ serie 8800D (00825-VA00-0001). È possibile trovarlo sul sito emerson.com oppure contattare un referente Emerson Flow (vedere l'ultima pagina).

Guida rapida 00825-0102-4004, Rev. FG Agosto 2020

Emerson Automation Solutions Emerson Process Management s.r.l.

Italia Sede Via Montello, 71/73 20038 Seregno (MI) T+39 0362 2285.1

F+39 0362 243655

www.emersonprocess.it

Servizio assistenza cliente: T+31 (0) 318 495 650 F+31 (0) 318 495 659

Emerson Automation Solutions Emerson Process Management s.r.l.

Italia Filiale: Centro Direzionale Napoli Via Emanuele Gianturco, 23 Area Mecfond 80146 Napoli T +39 081 5537340 F +39 081 5540055

Emerson Automation Solutions

Micro Motion Asia 1 Pandan Crescent Singapore 128461 Republic of Singapore T +65 6363-7766 F +65 6770-8003

Emerson Automation Solutions

Micro Motion Europe Neonstraat 1 6718 WX Ede The Netherlands T +31 (0) 70 413 6666 F +31 (0) 318 495 556

Micro Motion Inc. USA

Worldwide Headquarters 7070 Winchester Circle Boulder, Colorado 80301, USA T+1303-527-5200 +1800-522-6277 F+1303-530-8459

©2020 Rosemount, Inc. Tutti i diritti riservati.

Il logo Emerson è un marchio di fabbrica e di servizio di Emerson Electric Co. Rosemount, 8600, 8700, 8800 sono marchi di proprietà di una delle società del gruppo Emerson Process Management. Tutti gli altri marchi appartengono ai rispettivi proprietari.

