Transmetteur de température Rosemount 248 à montage sur rail

avec option RK et protocole HART ® 7

Caractéristiques et avantages

Ce transmetteur de température de base offre une solution économique pour les points de mesure de la température

- Protocole HART®/4-20 mA
- Capacité une sonde avec entrées universelles de sonde (sonde à résistance, T/C, mV, ohms)
- Appariement de la sonde avec le transmetteur et prise en charge des constantes Callendar Van Dusen
- Conforme aux normes NAMUR NE21, NE43, NE44, NE89 et informations de diagnostic conformes à la norme NE107

La conception standard du transmetteur offre des performances souples et fiables dans les environnements de procédés

- Offre une précision de mesure et une fiabilité améliorées par rapport au câblage direct d'une sonde au système de contrôlecommande numérique, réduisant ainsi les coûts généraux d'installation
- La stabilité garantie sur un an réduit les coûts d'entretien
- Des diagnostics de sonde ouverte/court-circuitée permettent de détecter les problèmes inhérents aux boucles des sondes
- La compensation des températures ambiantes améliore les performances du transmetteur

Table des matières

Caractéristiques et avantages	2
Informations à fournir pour la commande	
Spécifications	
Certifications du produit	.22
Schémas dimensionnels.	3(

Découvrez les avantages de Complete Point Solution offerts par Rosemount Temperature Measurement

 Emerson propose un grand choix de sondes à résistance, de thermocouples et de puits thermométriques qui vous offrent une durabilité renforcée et la fiabilité Rosemount pour la mesure de la température, constituant le parfait complément au portefeuille de transmetteurs Rosemount.

Découvrir une offre cohérente au niveau international et une assistance locale fournie par de nombreux sites internationaux de fabrication d'instruments de mesure de la température Rosemount.

- Des conseillers spécialisés dans les instruments aident à choisir le bon produit pour toute application de température et fournissent des conseils sur les meilleures approches pratiques à suivre en matière d'installation
- Un réseau mondial de professionnels Emerson spécialisés dans le service après-vente peut se rendre sur place lorsque leur assistance est nécessaire
- La fabrication à l'échelle mondiale permet de bénéficier d'un produit de facture identique d'une usine à l'autre et de répondre aux attentes de n'importe quel projet, petit ou grand.

Accéder aux informations quand vous en avez besoin grâce aux étiquettes d'équipement

Les appareils récemment expédiés portent une étiquette d'équipement sur laquelle figue un code QR qui permet d'accéder à des informations sérialisées directement depuis l'appareil. Cette fonctionnalité permet :

- d'accéder aux schémas, diagrammes, documents techniques et informations de dépannage de l'appareil dans le compte MyEmerson de l'utilisateur
- d'écourter la durée moyenne de réparation et de maintenir un niveau élevé d'efficacité
- de garantir l'identification de l'appareil correct
- d'éliminer le long processus de recherche et de transcription des plaques signalétiques pour consulter les informations relatives à l'équipement

Informations à fournir pour la commande

Configurateur de produits en ligne

De nombreux produits sont configurables en ligne à l'aide du configurateur de produits. Sélectionner le bouton **Configure (Configurer)** ou visiter le site Web pour démarrer. Grâce à la logique intégrée et à la validation continue de cet outil, il est possible de configurer les produits plus rapidement et de manière plus précise.

Codes de modèle

Les codes de modèle contiennent les informations détaillées sur chaque produit. Les codes de modèle exacts varient. Un exemple de code de modèle typique est illustré dans la Illustration 1.

Illustration 1 : Exemple de code de modèle

3144P D1 A 1 NA M5 DA1 Q4

1

- 1. Composants du modèle requis (choix disponibles sur la plupart des modèles)
- 2. Options supplémentaires (diverses fonctionnalités et fonctions pouvant être ajoutées aux produits)

Spécifications et options

Voir la section Spécifications et options pour plus de détails sur chaque configuration. La spécification et la sélection des matériaux du produit, des options ou des composants incombent à l'acquéreur de l'équipement. Pour plus d'informations, voir la section Sélection des matériaux.

Composants du modèle requis

Modèle

Code	Description	
248	Transmetteur de température	

Type de transmetteur

Code	Description	
R	Montage sur rail – une seule entrée de sonde	

Sortie

Code	Description	
Α	4-20 mA avec signal numérique transmis par le protocole de communication HART®	

Certifications produit

Code	Description	
NA	Aucune certification	
15	États-Unis – Sécurité intrinsèque ; non incendiaire	
16	Canada – Sécurité intrinsèque	
I1	ATEX – Sécurité intrinsèque	
N1	ATEX Type « n »	
17	IECEx – Sécurité intrinsèque	
N7	IECEx - Type « n »	
13	Chine Sécurité intrinsèque	
N3	Chine Type « n »	

Version du transmetteur HART® à montage sur rail

Code	Description	
RK ⁽¹⁾	Transmetteur HART 7 à montage sur rail	

⁽¹⁾ Ce document concerne les dispositifs avec cette option.

Options supplémentaires

Configuration du logiciel

Code	Description	
C1	Configuration personnalisée des paramètres de date, de descripteur et de message (fiche de configuration requise avec la commande)	

Configuration du niveau d'alarme

Code	Description	
A1	Niveaux d'alarme et de saturation NAMUR, alarme haute	
CN	Niveaux d'alarme et de saturation NAMUR, alarme basse	

Ajustage de la cellule

Code	Description	
C2	Appariement de la sonde avec le transmetteur – Ajuster selon les tables d'étalonnage des sondes à résistance Rosemount (constantes CVD)	

Étalonnage sur 5 points

Code	Description	
C4	Étalonnage sur 5 points (utiliser le code d'option Q4 pour générer un certificat d'étalonnage)	

Certificat d'étalonnage

Code	Description	
Q4	Certificat d'étalonnage (étalonnage sur 3 points)	

Filtre antiparasite

Code	Description	
F5	Filtre de tension de ligne 50 Hz	
F6	Filtre tension de ligne 60 Hz	

Garantie étendue du produit

Code	Description	
WR3	Garantie limitée de 3 ans	
WR5	Garantie limitée de 5 ans	

Spécifications

Conditions atmosphériques

Plage de température ambiante de service Standard : -50 à +85 °C

Température de stockage-50 à +85 °CÉtalonnage de température23...25 °C

Humidité < 99 % d'humidité relative (sans cond.)

Indice de protection IP20

Spécifications mécaniques

Dimensions (hauteur x largeur x profondeur) 109 x 23,5 x 104 mm

Poids, entrée simple 150 g

Taille maximum du fil Fil torsadé de 0,13...2,08 mm²/AWG 26...14

Couple des vis de fixation des bornes 0,5 Nm

Vibrations : CEI 60068-2-6, ■ 2...25 Hz : ±1,6 mm

■ 25...100 Hz: ±4 g

Spécifications communes

Tension d'alimentation, CC ■ Zone ordinaire Rosemount 248R : 7,5⁽¹⁾...48⁽²⁾Vcc

Autorisation de risque Rosemount 248R: 7,5⁽¹⁾...30⁽²⁾Vcc
 Tension d'alimentation minimale supplémentaire
 0,8 V

Tension d'alimentation minimale supplémentaire lors de l'utilisation des bornes de test

Dissipation de puissance interne maximale

Résistance de charge minimale à > alimentation de

Tension d'isolation, test/fonctionnement

(Tension d'alimentation - 37)/23 mA

≤ 850 mW par canal

■ Zone ordinaire Rosemount 248R: 2,5 kVca/55 Vca

■ Autorisation de risque Rosemount 248R: 2,5 kVca/42 Vca

Protection contre la polaritéToutes les entrées et sorties

Verrouillage en écritureBretelle ou logiciel

Temps de mise en température < 5 minutes

Temps de démarrage < 2,75 secondes

Programmation Protocole HART®

Rapport signal/bruit > 60 dB

Stabilité à long terme, meilleure que ■ ±0,05 % de l'étendue d'échelle/an

■ ±0,18 % de l'étendue d'échelle/5 ans

Temps de réponse70 msAmortissement programmable0...60 sDynamique du signal, entrée24 bitsDynamique du signal, sortie18 bits

Effet de la variation de tension d'alimentation < 0,005 % de l'étendue d'échelle/Vcc

(1) La tension d'alimentation minimale doit être celle mesurée aux bornes du Rosemount 248R (c'est-à-dire que toutes les chutes externes doivent être considérées).

Précisions en entrée

Tableau 1: Précision du transmetteur Rosemount 248R

Options de son- de	Référence de la sonde	α	Plages d'	entrée	Étendue e minimale		Précision que ⁽²⁾	numéri-	Précisions N/A ⁽³⁾
Sondes à résis- tance à 2, 3, 4 fils			°C	°F	°C	°F	°C	°F	% de l'éten- due d'échelle
Pt 10	CEI 60751	0,003851	-200 à 850	-328 à 1562	10	18	±0,80	±1,44	±0,10 %
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200					
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562					
Pt 20	CEI 60751	0,003851	-200 à 850	-328 à 1562	10	18	±0,40	±0,72	±0,10 %
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200					
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562					
Pt 50	CEI 60751	0,003851	-200 à 850	-328 à 1562	10	18	±0,40	±0,72	±0,10 %
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200					
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562					
Pt 100	CEI 60751	0,003851	-200 à 850	-328 à 1562	10	18	±0,20	±0,36	±0,10 %
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200					
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562					
Pt 200	CEI 60751	0,003851	-200 à 850	-328 à 1562	10	18	±0,44	±0,79	±0,10 %

⁽²⁾ Assurez-vous de protéger l'appareil contre les surtensions en utilisant une alimentation adaptée ou en installant des dispositifs de protection contre les surtensions.

Tableau 1: Précision du transmetteur Rosemount 248R (suite)

	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200					
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562					
Pt 500	CEI 60751	0,003851	-200 à 850	-328 à 1562	10	18	±0,28	±0,50	±0,10 %
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200					
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562					
Pt 1000	CEI 60751	0,003851	-200 à 850	-328 à 1562	10	18	±0,23	±0,41	±0,10 %
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200					
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562					
Pt 2000	CEI 60751	0,003851	-200 à 850	-328 à 1562	10	18	±0,40	±0,72	±0,10 %
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200					
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562					
Pt 10000	CEI 60751	0,003851	-200 à 850	-328 à 1562	10	18	±0,40	±0,72	±0,10 %
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200					
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562					
Ni 10	DIN 43760-19 87	0,006180	-60 à 250	-76 à 482	10	18	±1,60	±2,88	±0,10 %
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356					
Ni 20	DIN 43760-19 87	0,006180	-60 à 250	-76 à 482	10	18	±0,80	±1,44	±0,10 %
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356					
Ni 50	DIN 43760-19 87	0,006180	-60 à 250	-76 à 482	10	18	±0,32	±0,58	±0,10 %
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356					

Tableau 1 : Précision du transmetteur Rosemount 248R (suite)

Ni 100	DIN 43760-19 87	0,006180	-60 à 250	-76 à 482	10	18	±0,20	±0,36	±0,10 %
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356					
Ni 120	DIN 43760-19 87	0,006180	-60 à 250	-76 à 482	10	18	±0,20	±0,36	±0,10 %
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356					
Ni 200	DIN 43760-19 87	0,006180	-60 à 250	-76 à 482	10	18	±0,20	±0,36	±0,10 %
	GOST 6651-2 009/ OIML R84:20 03	0,00617	-60 à 180	-76 à 356					
Ni 500	DIN 43760-19 87	0,006180	-60 à 250	-76 à 482	10	18	±0,20	±0,36	±0,10 %
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356					
Ni 1000	DIN 43760-19 87	0,006180	-60 à 250	-76 à 482	10	18	±0,20	±0,36	±0,10 %
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356					
Ni 2000	DIN 43760-19 87	0,006180	-60 à 250	-76 à 482	10	18	±0,20	±0,36	±0,10 %
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356					
Ni 10000	DIN 43760-19 87	0,006180	-60 à 250	-76 à 482	10	18	±0,32	±0,58	±0,10 %
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356					
Cu 5	Bobinage cuivre Edison n° 15	0,004270	-200 à 260	-328 à 500	10	18	±1,6	±2,88	±0,10 %

Tableau 1 : Précision du transmetteur Rosemount 248R (suite)

	GOST 6651-2 009/ OIML R84:20 03	0,004280	-180 à 200	-292 à 392					
	GOST 6651-9 4	0,004260	-50 à 200	-58 à 392					
Cu 10	Bobinage cuivre Edison n° 15	0,004270	-200 à 260	-328 à 500	10	18	±2,00	±3,60	±0,10 %
	GOST 6651-2 009/ OIML R84:20 03	0,004280	-180 à 200	-292 à 392	10				
	GOST 6651-9 4	0,004260	-50 à 200	-58 à 392					
Cu 20	Bobinage cuivre Edison n° 15	0,004270	-200 à 260	-328 à 500	10	18	±2,00	±3,60	±0,10 %
	GOST 6651-2 009/ OIML R84:20 03	0,004280	-180 à 200	-292 à 392					
	GOST 6651-9 4	0,004260	-50 à 200	-58 à 392					
Cu 50	Bobinage cuivre Edison n° 15	0,004270	-200 à 260	-328 à 500	10	18	±1,34	±2,41	±0,10 %
	GOST 6651-2 009/ OIML R84:20 03	0,004280	-180 à 200	-292 à 392					
	GOST 6651-9 4	0,004260	-50 à 200	-58 à 392					
Cu 100	Bobinage cuivre Edison n° 15	0,004270	-200 à 260	-328 à 500	10	18	±0,67	±1,20	±0,10 %
	GOST 6651-2 009/ OIML R84:20 03	0,004280	-180 à 200	-292 à 392					
	GOST 6651-9 4	0,004260	-50 à 200	-58 à 392					
Cu 200	Bobinage cuivre Edison n° 15	0,004270	-200 à 260	-328 à 500	10	18	±0,67	±1,20	±0,10 %

Tableau 1 : Précision du transmetteur Rosemount 248R (suite)

	T		`	, , , , , , , , , , , , , , , , , , ,	1				1
	GOST 6651-2 009/ OIML R84:20 03	0,004280	-180 à 200	-292 à 392					
	GOST 6651-9 4	0,004260	-50 à 200	-58 à 392					
Cu 500	Bobinage cuivre Edison n° 15	0,004270	-200 à 260	-328 à 500	10	18	±0,67	±1,20	±0,10 %
	GOST 6651-2 009/ OIML R84:20 03	0,004280	-180 à 200	-292 à 392					
	GOST 6651-9 4	0,004260	-50 à 200	-58 à 392					
Cu 1000	Bobinage cuivre Edison n	0,004270	-200 à 260	-328 à 500	10	18	±0,67	±1,20	±0,10 %
	GOST 6651-2 009/ OIML R84:20 03	0,004280	-180 à 200	-292 à 392					
	GOST 6651-9 4	0,004260	-50 à 200	-58 à 392					
Options de son- de	Référence de	la sonde	Plages d'	entrée	Étendue minimal	d'échelle e ⁽¹⁾	Précision que ⁽²⁾⁽⁴⁾	numéri-	Incertitude N/A ⁽³⁾
Thermocou- ples ⁽⁵⁾			°C	°F	°C	°F	°C	°F	% de l'éten- due d'échelle
Type B	CEI 60584-1		85 à 160	185 à 320	100	180	±8,00	±14,40	±0,10 %
			160 à 400	320 à 752			±3,00	±5,40	
			400 à 1820	752 à 3308			±1,50	±2,70	
Type E	CEI 60584-1		-200 à 1000	-328 à 1832	50	90	±0,40	±0,72	±0,10 %
Type J	CEI 60584-1		-100 à 1200	-148 à 2192	50	90	±0,50	±0,90	±0,10 %
Туре К	CEI 60584-1		-180 à 1372	-292 à 2501	50	90	±0,50	±0,90	±0,10 %
Type L	DIN 43710		-200 à 900	-328 à 1652	50	90	±0,70	±1,26	±0,10 %
			2003	2203	50	90	±0,50	±0,90	±0,10 %
Type Lr	GOST 3044-84		-200 à 800	-328 à 1472					

Tableau 1: Précision du transmetteur Rosemount 248R (suite)

Entrée en millivolts		-20 à 100 mV -100 à	2,5 mV 2,5 mV		±0,030 n		±0,10% ±0,10%		
Potentiomètre	(6)	0 à 100 %	10%		±0,005%		±0,10 %		
		0 à 100 kΩ					±0,10 %		
Résistance liné	aire	0 à 400 Ω	25 Ω		±0,70 Ω		±0,10 %		
Autres types d	l'entrées	Plages d'entrée	Étendue minimale		Précision que ⁽²⁾⁽⁴⁾	n numéri-	Précisio d'échell		de l'étendue
Type W5	ASTM E988-96		0 à 2300	32 à 4172	100	180	±0,40	±0,72	±0,10 %
Type W3	ASTM E988-96	i	0 à 2300	32 à 4172	100	180	±0,60	±1,08	±0,10 %
			0 à 600	32 à 1112			±0,70	±1,26	
Type U	DIN 43710		-200 à 0	-328 à 32	50	90	±0,80	±1,44	±0,10 %
Туре Т	CEI 60584-1		-200 à 400	-328 à 752	50	90	±0,50	±0,90	±0,10 %
Type S	CEI 60584-1		-50 à 1760	-58 à 3200	100	180	±1,00	±1,80	±0,10 %
Type R	CEI 60584-1		-50 à 1760	-58 à 3200	100	180	±1,20	±2,16	±0,10 %

⁽¹⁾ Aucune restriction minimale ou maximale d'étendue de l'échelle à l'intérieur de la plage. L'étendue d'échelle minimale recommandée maintient le bruit dans les limites de précision spécifiées avec l'amortissement réglé à zéro seconde.

Exemple de précision

Pour une entrée de capteur Pt 100 (α = 0,00385) avec une étendue d'échelle de 0 à 100 °C :

- Précision numérique = ± 0,20 °C
- Précision N/A = $\pm 0,10\%$ de $100 \,^{\circ}$ C ou $\pm 0,10 \,^{\circ}$ C
- Précision totale = ±0,30 °C

CEM - Influence de l'immunité $< \pm 0,1\%$ de l'étendue d'échelle Immunité CEM étendue (NAMUR NE 21, critère A, éclatement) $< \pm 1\%$ de l'étendue d'échelle éclatement)

⁽²⁾ La précision numérique publiée est valable sur l'ensemble de la plage d'entrée de la sonde. Le système de contrôle-commande de Rosemount ou de l'interface de communication HART ®permet d'accéder à la sortie numérique.

⁽³⁾ La précision analogique totale est la somme des précisions N/A et numériques.

⁽⁴⁾ La précision numérique correspond aux valeurs indiquées ou au 0,01 % du relevé, quelle que soit la valeur la plus élevée.

⁽⁵⁾ Précision numérique totale pour une mesure par thermocouple : somme de la précision numérique et la précision N/A +0,5 °C (précision de la soudure froide).

⁽⁶⁾ La plage d'entrée pour le potentiomètre est de 10Ω à $100 k\Omega$.

Tableau 2 : Effets de la température ambiante

Options de sonde	Référence de la sonde	α	Plages d'ent	rée	par variatio	a température	Effet N/A
Sondes à résistance à 2, 3, 4 fils			°C	°F	°C	°F	% de l'éten- due d'échel- le
Pt 10	CEI 60751	0,003851	-200 à 850	-328 à 1562	±0,020	±0,0036	±0,004%
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200			
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562			
Pt 20	CEI 60751	0,003851	-200 à 850	-328 à 1562	±0,010	±0,0180	±0,004 %
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200			
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562			
Pt 50	CEI 60751	0,003851	-200 à 850	-328 à 1562	±0,004	±0,0072	±0,004 %
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200			
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562			
Pt 100	CEI 60751	0,003851	-200 à 850	-328 à 1562	±0,002	±0,0036	±0,004 %
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200			
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562			
Pt 200	CEI 60751	0,003851	-200 à 850	-328 à 1562	±0,002	±0,0036	±0,004 %
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200			
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562			
Pt 500	CEI 60751	0,003851	-200 à 850	-328 à 1562	±0,002	±0,0036	±0,004 %
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200			
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562			
Pt 1000	CEI 60751	0,003851	-200 à 850	-328 à 1562	±0,002	±0,0036	±0,004 %
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200			
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562			
Pt 2000	CEI 60751	0,003851	-200 à 850	-328 à 1562	±0,002	±0,0036	±0,004 %
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200			
	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562			
Pt 10000	CEI 60751	0,003851	-200 à 850	-328 à 1562	±0,002	±0,0036	±0,004 %
	JIS C 1604-8	0,003916	-200 à 649	-328 à 1200			

Tableau 2 : Effets de la température ambiante (suite)

	GOST 6651-2 009	0,003910	-200 à 850	-328 à 1562			
Ni 10	DIN 43760-1 987	0,006180	-60 à 250	-76 à 482	±0,020	±0,0360	±0,004 %
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356			
Ni 20	DIN 43760-1 987	0,006180	-60 à 250	-76 à 482	±0,010	±0,0180	±0,004 %
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356			
Ni 50	DIN 43760-1 987	0,006180	-60 à 250	-76 à 482	±0,004	±0,0072	±0,004 %
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356			
Ni 100	DIN 43760-1 987	0,006180	-60 à 250	-76 à 482	±0,002	±0,0036	±0,004 %
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356			
Ni 120	DIN 43760-1 987	0,006180	-60 à 250	-76 à 482	±0,002	±0,0036	±0,004 %
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356			
Ni 200	DIN 43760-1 987	0,006180	-60 à 250	-76 à 482	±0,002	±0,0036	±0,004%
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356			
Ni 500	DIN 43760-1 987	0,006180	-60 à 250	-76 à 482	±0,002	±0,0036	±0,004 %
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356			
Ni 1000	DIN 43760-1 987	0,006180	-60 à 250	-76 à 482	±0,002	±0,0036	±0,004%

Tableau 2 : Effets de la température ambiante (suite)

	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356			
Ni 2000	DIN 43760-1 987	0,006180	-60 à 250	-76 à 482	±0,002	±0,0036	±0,004 %
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356			
Ni 10000	DIN 43760-1 987	0,006180	-60 à 250	-76 à 482	±0,002	±0,0036	±0,004%
	GOST 6651-2 009/ OIML R84:20 03	0,006170	-60 à 180	-76 à 356			
Cu 5	Bobinage cuivre Edison n° 15	0,004270	-200 à 260	-328 à 500	±0,040	±0,0720	±0,004%
	GOST 6651-2 009/ OIML R84:20 03	0,004280	-180 à 200	-292 à 392			
	GOST 6651-9 4	0,004260	-50 à 200	-58 à 392			
Cu 10	Bobinage cuivre Edison n° 15	0,004270	-200 à 260	-328 à 500	±0,020	±0,0360	±0,004%
	GOST 6651-2 009/ OIML R84:20 03	0,004280	-180 à 200	-292 à 392			
	GOST 6651-9 4	0,004260	-50 à 200	-58 à 392			
Cu 20	Bobinage cuivre Edison n° 15	0,004270	-200 à 260	-328 à 500	±0,010	±0,0180	±0,004%
	GOST 6651-2 009/ OIML R84:20 03	0,004280	-180 à 200	-292 à 392			
	GOST 6651-9 4	0,004260	-50 à 200	-58 à 392			
Cu 50	Bobinage cuivre Edison n° 15	0,004270	-200 à 260	-328 à 500	±0,004	±0,0072	±0,004%

Tableau 2 : Effets de la température ambiante (suite)

	is de la temperature	ambiance (3a					
	GOST 6651-2 009/ OIML R84:20 03	0,004280	-180 à 200	-292 à 392			
	GOST 6651-9 4	0,004260	-50 à 200	-58 à 392			
Cu 100	Bobinage cuivre Edison n° 15	0,004270	-200 à 260	-328 à 500	±0,002	±0,0036	±0,004%
	GOST 6651-2 009/ OIML R84:20 03	0,004280	-180 à 200	-292 à 392			
	GOST 6651-9 4	0,004260	-50 à 200	-58 à 392			
Cu 200	Bobinage cuivre Edison n° 15	0,004270	-200 à 260	-328 à 500	±0,002	±0,0036	±0,004%
	GOST 6651-2 009/ OIML R84:20 03	0,004280	-180 à 200	-292 à 392			
	GOST 6651-9 4	0,004260	-50 à 200	-58 à 392			
Cu 500	Bobinage cuivre Edison n° 15	0,004270	-200 à 260	-328 à 500	±0,002	±0,0036	±0,004%
	GOST 6651-2 009/ OIML R84:20 03	0,004280	-180 à 200	-292 à 392			
	GOST 6651-9 4	0,004260	-50 à 200	-58 à 392			
Cu 1000	Bobinage cuivre Edison n° 15	0,004270	-200 à 260	-328 à 500	±0,002	±0,0036	±0,004%
	GOST 6651-2 009/ OIML R84:20 03	0,004280	-180 à 200	-292 à 392			
	GOST 6651-9 4	0,004260	-50 à 200	-58 à 392			

Tableau 2 : Effets de la température ambiante (suite)

Options de sonde	Référence de la sonde	Plages d'enti	pour une variation de tem- pérature ambiante de 1,0°C (1,8°F) ⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾			
Thermocouples		°C	°F	°C	°F	% de l'éten- due d'échel- le
Type B	CEI 60584-1	85 à 160	185 à 320	±0,800	±1,440	±0,004 %
		160 à 400	320 à 752	±0,100	±0,180	±0,004 %
		400 à 1820	752 à 3308			
Type E	CEI 60584-1	-200 à 1000	-328 à 1832	±0,025	±0,045	±0,004 %
Type J	CEI 60584-1	-100 à 1200	-148 à 2192	±0,025	±0,045	±0,004 %
Type K	CEI 60584-1	-180 à 1372	-292 à 2501	±0,025	±0,045	±0,004 %
Type L	DIN 43710	-200 à 900	-328 à 1652	±0,025	±0,045	±0,004%
Type Lr	GOST 3044-84	-200 à 800	-328 à 1472	±0,100	±0,180	±0,004%
Type N	CEI 60584-1	-180 à 1300	-292 à 2372	±0,025	±0,045	±0,004%
Type R	CEI 60584-1	-50 à 200	-58 à 392	±0,100	±0,180	±0,004%
		200 à 1760	392 à 3200			
Type S	CEI 60584-1	-50 à 200	-58 à 392	±0,100	±0,180	±0,004%
		200 à 1760	392 à 3200			
Туре Т	CEI 60584-1	-200 à 400	-328 à 752	±0,025	±0,045	±0,004%
Type U	DIN 43710	-200 à 0	-328 à 32	±0,025	±0,045	±0,004%
		0 à 600	32 à 1112			
Type W3	ASTM E988-96	0 à 2300	32 à 4172	±0,100	±0,180	±0,004%
Type W5	ASTM E988-96	0 à 2300	32 à 4172	±0,100	±0,180	±0,004 %
Autres types d'entr	ées	Plages d'enti	rée	pour une v	température ariation de tem- mbiante de ² F) ⁽¹⁾⁽²⁾⁽³⁾⁽⁴⁾	Effet N/A
Résistance linéaire		0 à 400 Ω		±2 mΩ		±0,004%
		0 à 100 kΩ		±0,2 Ω		±0,004%
Potentiomètre		0 à 100 %		±0,005 %		±0,004%
Entrée en millivolts		-20 à 100 mV		±0,2 μV		±0,004%
		-100 à 1700 n	nV	±36 μV		±0,004 %
		±800 mV		±32 μV		±0,004 %

⁽¹⁾ Valeurs répertoriées ou 0,002 % de l'étendue d'échelle d'entrée par °C, quelle que soit la valeur la plus élevée

Changement dans la température ambiante par rapport à l'étalonnage température du transmetteur de 25 °F (77 °F) en usine.

⁽³⁾

Spécification de l'effet de la température ambiante valide au-dessus du minimumplage de température de 28 °C (50 °F). Les effets de la température (changement/ °C) ne sont pas destinés à limiter la variation des erreursdans un même degré, mais ils servent plutôt à définir une bande d'erreurs « papillon » sur toute la plage de température ambiante et inclut les erreurs définies par « précision » au point le plus étroit (température ambiante).

Exemple d'effets de la température

Pour une entrée de capteur Pt 100 (α = 0,00385) avec une étendue d'échelle de 0 à 100 °C à une température ambiante de 35 °C:

- Effets de température numérique : 0,002 °C × (35 25) = 0,02 °C
- Effets N/A: $[0,004\% \text{ de } 100] \times (35 25) = 0,04 ^{\circ}\text{C}$
- Erreur dans le pire des cas : Numér. + N/A + Effets temp. numér. + Effets N/A = 0,20 °C + 0,10 °C + 0,02 °C + 0,04 °C = 0,36 °C

 $\sqrt{0.20^2 + 0.10^2 + 0.02^2 + 0.04^2} = 0.228 \,^{\circ} \,^{\circ} \,^{\circ}$

■ Erreur totale probable :

Spécifications d'entrée

Entrée de sonde à résistance

Type de raccordement 2, 3 et 4 fils Précision de base (p. ex. Pt100) $\leq 0.20\,^{\circ}\mathrm{C}$ Résistance du câble par fil (max.) 50 Ω Alimentation de la sonde $< 0.15\,\mathrm{mA}$ Effet de la résistance du câble de la sonde (3-/4 fils) $< 0.002\,\Omega/\Omega$

Câble de la sonde, capacité de boucleMax. 30 nF (Pt 1 000 & Pt 10 000 CEI et JIS + Ni 1 000 et Ni 10 000)

Max. 50 nF (autres qu'au-dessus)

Détection d'erreur de sonde, programmableAucun, court-circuité, cassé, court-circuité ou cassé

REMARQUER

Quelle que soit la configuration de la détection d'erreur de sonde, la détection d'erreur de sonde court-circuitée sera désactivée si la limite inférieure pour le type de sonde configuré est inférieure à la limite de détection constante pour la sonde court-circuitée.

 $\mbox{Limite de détection pour une sonde court-circuitée} \mbox{ } 15\,\Omega$

Temps de détection d'erreur de sonde (élément de sonde ≤ 70 ms à résistance)

Temps de détection d'erreur de sonde (pour le 3e et 4e

fil)

≤ 2 000 ms

Entrée de la résistance linéaire

Plage d'entrée $0 \Omega ... 100 k\Omega$

Étendue d'échelle minimale 25Ω

Type de raccordement 2, 3 ou 4 fils

Résistance du câble par fil (max.) 50Ω

Alimentation de la sonde < 0,15 mA

Effet de la résistance du câble de la sonde (3-/ $< 0.002 \Omega/\Omega$

4 fils)

Câble de la sonde, capacité de boucle 30 nF maximal (Lin. R > 400 Ω)

50 nF maximal (Lin. $R \le 400 \Omega$)

Détection d'erreur de sonde, programmable Aucun, cassé

Entrée du potentiomètre

 Potentiomètre
 10 Ω... 100 kΩ

 Plage d'entrée
 0... 100 %

 Étendue d'échelle minimale
 10 %

 Type de raccordement
 3 ou 4 fils

 Résistance du câble par fil (max.)
 50 Ω

 Alimentation de la sonde
 < 0,15 mA

Effet de la résistance du câble de la sonde (4-/

5 fils)

 $< 0.002 \Omega/\Omega$

Câble de la sonde, capacité de boucle 30 nF maximal (potentiomètre > 400 Ω)

50 nF maximal (potentiomètre $\leq 400 \Omega$)

Détection d'erreur de sonde, programmableAucun, court-circuité, cassé, court-circuité ou cassé

Remarque

Quelle que soit la configuration de la détection d'erreur de sonde, la détection d'erreur de sonde court-circuitée sera désactivée si la taille du potentiomètre configuré est inférieure à la limite de détection constante pour la sonde court-circuitée.

Limite de détection pour une sonde court-circui-

tée

 15Ω

Temps de détection d'erreur de sonde, bras du

curseur

≤ 70 ms (aucune détection de la sonde court-circuitée)

Temps de détection d'erreur de sonde, élément Temps de détection d'erreur de sonde (4e et 5e

fil)

≤ 2 000 ms ≤ 2 000 ms

Entrée mV

Plage de mesure -800...+800 mV (bipolaire)

-100 à 1700 mV

Étendue d'échelle minimale 2,5 mV **Résistance d'entrée** $10 \, \text{M}\Omega$

Câble de la sonde, capacité de boucle 30 nF maximal (plage d'entrée : -100...1700 mV)

50 nF maximal (plage d'entrée : -20...100 mV)

Détection d'erreur de sonde, programmable Aucun, cassé

Temps de détection d'erreur de sonde (élément

TC)

≤ 70 ms

Spécifications de sortie et HART®

Plage normale, program- 3,8...20,5/20,5...3,8 mA

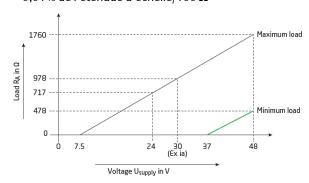
mable

Plage étendue (limites de 3,5...23/23...3,5 mA sortie), programmable

Mise à jour de l'heure

10 ms

Charge (sortie de cou-


 $\leq (V_{alim} - 7,5)/0,023 [\Omega]$

rant)

Stabilité de la charge

< 0.01 % de l'étendue d'échelle/ $100 \Omega^{(1)}$

Charge de la sortie

Indication d'erreur de sonde, programmable 3,5...23 mA⁽²⁾

NAMUR NE43 haut de

> 21 mA

gamme

NAMUR NE43 bas de gam- < 3,6 mA

Révisions du protocole **HART®**

HART® 7

Limites d'entrée/sortie

Courant d'erreur : Activ/désact fonct.

programmables⁽³⁾

Définir le courant d'erreur : 3,5 mA... 23 mA

Entrée

Lorsque le signal d'entrée dépasse l'une ou l'autre des limites inférieure et supérieure programmables, l'appareil émet un courant d'erreur défini par l'utilisateur. La définition de limites d'entrée permet d'identifier et de signaler de manière unique toute mesure hors plage via la sortie du transmetteur, ce qui permet d'améliorer la protection des biens et des matériaux (par exemple, l'emballement thermique d'un processus de réaction).

Tableau 3: Valeurs d'alarme et de saturation Rosemount

Unités - mA	Min.	Max.	Rosemount	NAMUR
Alarme haute	21	23	21,75	21,0
Alarme basse ⁽¹⁾	3,5	3,75	3,75	3,6
Saturation haute	20,5	20,9 ⁽²⁾	20,5	20,5
Saturation basse	3,7 ⁽³⁾	3,9	3,9	3,8

- (1) Nécessite un écart de 0.1 mA entre les valeurs d'alarme basse et de saturation basse.
- Les transmetteurs montés sur rail ont une saturation haute maximale inférieure de 0,1 mA au réglage d'alarme haute, avec une valeur maximale inférieure de 0,1 mA à celle de l'alarme haute maximale.
- Les transmetteurs montés sur rail ont une saturation basse minimale supérieure de 0,1 mA au réglage de l'alarme basse, avec une valeur minimale supérieure de 0,1 mA à celle de l'alarme basse minimale.

⁽¹⁾ de l'étendue d'échelle = de la plage actuellement sélectionnée.

⁽²⁾ Une détection d'erreur de sonde différente est ignorée aux entrées TC et mV.

⁽³⁾ Des limites d'entrée et de sortie de courant programmables sont disponibles pour augmenter la sécurité et l'intégrité du système

Sortie

Lorsque le courant de sortie dépasse l'une ou l'autre des limites supérieure et inférieure programmables, l'appareil émet un courant d'erreur défini par l'utilisateur.

Certifications du produit

Rév.: 1,1

Informations relatives aux directives européennes

Une copie de la déclaration de conformité UE se trouve à la fin du guide condensé. La version la plus récente de la déclaration de conformité UE est disponible à l'adresse suivante : Emerson.com/Rosemount.

Certification pour zones ordinaires

Conformément aux procédures standard, le transmetteur a été inspecté et testé afin de déterminer si sa conception satisfait aux exigences de base, aux niveaux électrique et mécanique et relativement à la protection contre l'incendie. Cette inspection a été effectuée par un laboratoire d'essais reconnu au niveau national (NRTL) accrédité par l'OSHA (Administration fédérale pour la sécurité et la santé au travail).

Installation de l'équipement en Amérique du Nord

Le Code national de l'électricité des États-Unis[®] (NEC) et le Code canadien de l'électricité (CCE) autorisent l'utilisation d'équipements marqués pour division dans des zones et d'équipements marqués pour zone dans des divisions. Les marquages doivent être adaptés à la classification de la zone et à la classe de température et de gaz. Ces informations sont clairement définies dans les codes respectifs.

États-Unis

15 États-Unis – Sécurité intrinsèque (SI) et division 2/zone 2

Certificat 80072530

Normes Norme UL n° 913 Ed. 8, UL 60079-0 Ed. 5, UL 60079-11 Ed. 6, UL 60079-15 Ed. 4, UL 61010-1 Ed. 3

Repères Classe I, division 1, groupes A, B, C et D

Classe I, zone 0 : AEx ia IIC T6... T4
Classe I, zone 1 : AEx ib [ia] IIC T6... T4
Classe I, division 2, groupes A, B, C et D
Classe I, zone 2 : AEx nA IIC T6... T4
Classe I, zone 2 : AEx nA [ic] IIC T6... T4

si l'installation est conforme au schéma de contrôle 00248-8000

Tableau 4 : Paramètres d'entrée SI par rapport à la plage de température

Paramètres d'entrée (bor- nes 11, 12)	Plage de température	Paramètres d'entrée (bor- nes 11, 12)	Plage de température
U _i : 30 Vcc	T4: -50 °C ≤ T _a ≤ +85 °C	U _i :30 Vcc	T4: -50 °C ≤ T _a ≤ +85 °C

s d'entrée (bor- s 11, 12)	Plage de température	Paramètres d'entrée (bor- nes 11, 12)	Plage de température
120 mA	T5: -50 °C \leq T _a \leq +70 °C	I _i : 100 mA	T5: -50 °C \leq T _a \leq +75 °C

P_i: 750 mW

 $L_i: 0 uH$

 $C_i: 1,0 nF$

T6: $-50 \,^{\circ}\text{C} \le T_a \le +60 \,^{\circ}\text{C}$

S.O.

S.O.

Tableau 4 : Paramètres d'entrée SI par rapport à la plage de température (suite)

Tableau 5 : Paramètres d	le sortie SI selon	la configuration	des bornes

Paramètres nes I_i: 1

P_i: 900 mW

 $L_i: 0 uH$

 $C_i: 1,0 nF$

Paramètres	Une sonde utilisant toutes les bornes de sortie (41-54)	Sonde utilisant un ensemble de bornes de sortie (41-44 ou 51-54)
U _o	7,2 Vcc	7,2 Vcc
Io	12,9 mA	7,3 mA
P _o	23,3 mW	13,2 mW
Lo	200 mH	667 mH
C _o	13,5 uF	13,5 uF

Tableau 6 : Paramètres d'entrée division 2/zone 2 par rapport à la plage de température

T6: -50 °C \leq T_a \leq +55 °C

S.O.

S.O.

Tension d'ali- mentation	Plage de température
37 Vcc max.	T4: $-50 ^{\circ}\text{C} \le \text{T}_{\text{a}} \le +85 ^{\circ}\text{C}$ T5: $-50 ^{\circ}\text{C} \le \text{T}_{\text{a}} \le +70 ^{\circ}\text{C}$ T6: $-50 ^{\circ}\text{C} \le \text{T}_{\text{a}} \le +55 ^{\circ}\text{C}$
30 Vcc max.	T4: $-50 ^{\circ}\text{C} \le \text{T}_{\text{a}} \le +85 ^{\circ}\text{C}$ T5: $-50 ^{\circ}\text{C} \le \text{T}_{\text{a}} \le +75 ^{\circ}\text{C}$ T6: $-50 ^{\circ}\text{C} \le \text{T}_{\text{a}} \le +60 ^{\circ}\text{C}$
NIFW Vmax = 30 Vcc, C _i = 1 nF, L _i = 0	T4: $-50 ^{\circ}\text{C} \le T_a \le +85 ^{\circ}\text{C}$ T5: $-50 ^{\circ}\text{C} \le T_a \le +75 ^{\circ}\text{C}$ T6: $-50 ^{\circ}\text{C} \le T_a \le +60 ^{\circ}\text{C}$

Conditions spéciales pour une utilisation en toute sécurité (X) :

- 1. Installer conformément au schéma d'installation 00248-8000 selon le cas.
- 2. Installer conformément au US National Electrical Code (NEC) pour les États-Unis et conformément au Code canadien de l'électricité (CCE) pour le Canada.
- 3. Le transmetteur doit être installé dans un boîtier adapté pour répondre aux codes d'installation stipulés par le Code canadien de l'électricité (CCE) ou pour les États-Unis, le National Electrical Code (NEC).
- 4. Si le boîtier est constitué de matériaux non métalliques ou de métal peint, éviter l'accumulation de charge électrostatique.
- 5. Pour les applications en division 2/zone 2, le transmetteur doit être installé dans un boîtier offrant un degré de protection IP54 au minimum conformément à la norme CEI 60529 qui convient pour l'application et est correctement installé. Les dispositifs d'entrée de câble et les bouchons obturateurs doivent satisfaire aux mêmes exigences.
- 6. Utiliser des fils d'alimentation dont la valeur nominale est d'au moins 5 K au-dessus de la température ambiante.
- 7. Pour les applications division 2/zone 2, le transmetteur de température doit être connecté à une alimentation électrique de classe 2 avec protection contre les transitoires. Voir le schéma d'installation selon le cas.

Canada

16 Canada – Sécurité intrinsèque (SI) et division 2/zone 2

Certificat: 80072530

Normes: CSA C22.2 n° 157-92 (R2012), CAN/CSA C22.2 n° 60079-0:11, CAN/CSA C22.2 n° 60079-11:11, CAN/CSA C22.2 n

° 60079-15:12, CSA 61010-1-12

Marquages: Classe I, division 1, groupes A, B, C et D

Ex ia IIC T6...T4 Ex ib [ia] IIC T6... T4

Classe I, division 2, groupes A, B, C et D

Ex nA IIC T6... T4 Ex nA [ic] IIC T6... T4

si l'installation est conforme au schéma de contrôle 00248-8000

Tableau 7 : Paramètres d'entrée SI par rapport à la plage de température

Paramètres d'entrée (bor- nes 11, 12)	Plage de température	Paramètres d'entrée (bor- nes 11, 12)	Plage de température
U _i : 30 Vcc	T4: -50 °C ≤ T _a ≤ +85 °C	U _i : 30 Vcc	T4: -50 °C \leq T _a \leq +85 °C
I _i : 120 mA	T5: -50 °C ≤ T _a ≤ +70 °C	l _i : 100 mA	T5: -50 °C ≤ T _a ≤ +75 °C
P _i : 900 mW	T6: -50 °C ≤ T _a ≤ +55 °C	P _i : 750 mW	T6: -50 °C ≤ T _a ≤ +60 °C
L _i : 0 uH	S.O.	L _i : 0 uH	S.O.
C _i : 1,0 nF	S.O.	C _i : 1,0 nF	S.O.

Tableau 8 : Paramètres de sortie SI selon la configuration des bornes

Paramètres	Une sonde utilisant toutes les bornes de sortie (41-54)	Sonde utilisant un ensemble de bornes de sortie (41-44 ou 51-54)
U _o	7,2 Vcc	7,2 Vcc
Io	12,9 mA	7,3 mA
Po	23,3 mW	13,2 mW
Lo	200 mH	667 mH
C _o	13,5 uF	13,5 uF

Tableau 9 : Paramètres d'entrée division 2/zone 2 par rapport à la plage de température

Tension d'ali- mentation	Plage de température
37 Vcc max.	T4: $-50 ^{\circ}\text{C} \le \text{T}_{\text{a}} \le +85 ^{\circ}\text{C}$ T5: $-50 ^{\circ}\text{C} \le \text{T}_{\text{a}} \le +70 ^{\circ}\text{C}$ T6: $-50 ^{\circ}\text{C} \le \text{T}_{\text{a}} \le +55 ^{\circ}\text{C}$
30 Vcc max.	T4: $-50 ^{\circ}\text{C} \le \text{T}_{\text{a}} \le +85 ^{\circ}\text{C}$ T5: $-50 ^{\circ}\text{C} \le \text{T}_{\text{a}} \le +75 ^{\circ}\text{C}$ T6: $-50 ^{\circ}\text{C} \le \text{T}_{\text{a}} \le +60 ^{\circ}\text{C}$

Tableau 9 : Paramètres d'entrée division 2/zone 2 par rapport à la plage de température (suite)

Tension d'ali- mentation	Plage de température	
NIFW	T4: -50 °C ≤ T _a ≤ +85 °C	
Vmax = 30 Vcc,	T5: -50 °C ≤ T _a ≤ +75 °C	
$C_i = 1 \text{ nF, } L_i = 0$	T6: -50 °C ≤ T _a ≤ +60 °C	

Conditions spéciales pour une utilisation en toute sécurité (X):

- 1. Installer conformément au schéma d'installation 00248-8000 selon le cas.
- 2. Installer conformément au US National Electrical Code (NEC) pour les États-Unis et conformément au Code canadien de l'électricité (CCE) pour le Canada.
- 3. Le transmetteur doit être installé dans un boîtier adapté pour répondre aux codes d'installation stipulés par le Code canadien de l'électricité (CCE) ou pour les États-Unis, le National Electrical Code (NEC).
- 4. Si le boîtier est constitué de matériaux non métalliques ou de métal peint, éviter l'accumulation de charge électrostatique.
- 5. Pour les applications en division 2/zone 2, le transmetteur doit être installé dans un boîtier offrant un degré de protection IP54 au minimum conformément à la norme CEI 60529 qui convient pour l'application et est correctement installé. Les dispositifs d'entrée de câble et les bouchons obturateurs doivent satisfaire aux mêmes exigences.
- 6. Utiliser des fils d'alimentation dont la valeur nominale est d'au moins 5 K au-dessus de la température ambiante.
- 7. Pour les applications division 2/zone 2, le transmetteur de température doit être connecté à une alimentation électrique de classe 2 avec protection contre les transitoires. Voir le schéma d'installation selon le cas.

Europe

11 ATEX – Sécurité intrinsèque

Certificat: DEKRA 21ATEX0003X

Normes: EN60079-0:2012+A11:2013, EN60079-11:2012

II 2(1) G Ex ib [ia Ga] IIC T6... T4 Gb

II 1 D Ex ia IIIC Da I 1 M Ex ia I Ma

si l'installation est conforme au schéma de contrôle 00248-8001

Paramètres d'entrée (bornes d'alimentation)	Param è tres de sortie (Bornes du capteur)
U _i : 30 Vcc	U _o : 7,2 Vcc
I _i : 120 mA	I _o : 7,3 mA
P _i : Voir le tableau ci-dessous	P _o : 13,2 mW
L _i : 0 uH	L _o : 667 mH
C _i : 1,0 nF	C _o : 13,5 uF

Pi par canal	Classe de température	Température ambiante maximale
900 mW	T6	+50 °C
	T5	+65 °C
	T4	+85 °C
750 mW	T6	+55 ℃
	T5	+70 °C
	T4	+85 °C
610 mW	T6	+60 °C
	T5	+75 ℃
	T4	+85 °C

Conditions spéciales pour une utilisation en toute sécurité (X) :

1. Pour toutes les atmosphères potentiellement explosives, si le boîtier est en acier non métallique ou s'il est fabriqué en métal ayant une couche de peinture d'une épaisseur supérieure à 0,2 mm (groupe IIC), ou 2 mm (groupe IIB, IIA, I), ou toute épaisseur (groupe III), éviter l'accumulation de charges électrostatiques.

- 2. Pour EPL Ga, si le boîtier est en aluminium, il doit être installé de manière à éviter les sources d'inflammation telles que des étincelles résultant d'un impact ou d'un frottement.
- 3. Pour EPL Da, la température de surface « T » du boîtier, pour une couche de poussière avec une épaisseur maximale de 5 mm, est la température ambiante +20 K.

N1 ATEX Zone 2

Certificat: DEKRA 21ATEX0004X

Normes: EN60079-0:2012+A11:2013, EN60079-7:2015+A1:2018, EN60079-11:2012, EN60079-15:2010

Marquages: © II 3 G Ex nA IIC T6... T4 Gc

II 3 G Ex ec IIC T6... T4 Gc II 3 G Ex ic IIC T6... T4 Gc

II 3 D Ex ic IIIC Dc

si l'installation est conforme au schéma de contrôle 00248-8001

Alimentation/entr é e du transmetteur		Classe de température	Temp é rature ambiante maximale	
Ex nA et Ex ec	Ex ic L _i = 0 μH C _i = 1,0 nF	Ex ic $U_i = 48 \text{ Vcc}$ $L_i = 0 \mu\text{H}$ $C_i = 1,0 \text{ nF}$		Entrée simple et dou- ble
V _{max} = 37 Vcc	U _i = 37 Vcc	P _i = 851 mW par canal	T4	+85 °C
			T5	+70 °C
			T6	+55 ℃
V _{max} = 30 Vcc	U _i = 30 Vcc	P _i = 700 mW par canal	T4	+85 °C
			T5	+75 ℃
			T6	+60 °C

Tableau 10: Sortie maximale du transmetteur

Ex nA et Ex ec	Ex ic
Vmax = 7,2 Vcc	U _o = 7,2 Vcc
	I _o = 7,3 mA
	$P_0 = 13,2 \text{ mW}$
	$L_0 = 667 \text{mH}$
	C _o = 13,5 μF

Conditions spéciales pour une utilisation en toute sécurité (X) :

- 1. Pour toutes les atmosphères potentiellement explosives, si le boîtier de jonction est constitué de matériaux non métalliques, ou s'il est constitué de métal dont la couche de peinture a une épaisseur supérieure à 0,2 mm (groupe IIC), ou 2 mm (groupe IIB, IIA, I), ou toute épaisseur (groupe III), les charges électrostatiques doivent être évitées.
- 2. Le transmetteur doit être installé dans un boîtier offrant un degré de protection non inférieur à IP54 conformément à la norme EN 60079-0, adapté à l'application et correctement installé, par exemple dans un boîtier de jonction de type de protection Ex n ou Ex e.
- 3. De plus, pour Ex nA ou Ex ec, la zone à l'intérieur du boîtier de jonction doit être de degré de pollution 2 ou supérieur, comme défini dans la norme EN 60664-1.
- 4. Pour l'EPL Dc, la température de surface « T » du boîtier de jonction, pour une couche de poussière d'une épaisseur maximale de 5 mm, est la température ambiante +20 K.

International

17 IECEx Sécurité intrinsèque

Certificat IECEx DEK 21.0002X

Normes CEI 60079-0:2011, CEI 60079-11:2011

Repères Ex ia IIC T6...T4 Ga

Ex ib [ia Ga] IIC T6... T4 Gb

Ex ia IIIC Da Ex ia I Ma

si l'installation est conforme au schéma de contrôle 00248-8002

Paramètres d'entrée (bornes d'alimentation)	Paramètres de sortie (Bornes du capteur)
U _i : 30 Vcc	U _o : 7,2 Vcc
I _i : 120 mA	I _o : 7,3 mA
P _i : Voir le tableau ci-dessous	P _o : 13,2 mW
L _i : 0 uH	L _o : 667 mH
C _i : 1,0 nF	C _o : 13,5 uF

Pi par canal	Classe de tem- pérature	Température ambiante maxi- male
900 mW	Т6	+50 °C

Pi par canal	Classe de tem- pérature	Température ambiante maxi- male
	T5	+65 °C
	T4	+85 °C
750 mW	Т6	+55 °C
	T5	+70 °C
	T4	+85 °C
610 mW	T6	+60 °C
	T5	+75 °C
	T4	+85 °C

Conditions spéciales pour une utilisation en toute sécurité (X):

1. Pour toutes les atmosphères potentiellement explosives, si le boîtier de jonction est constitué de matériaux non métalliques, ou s'il est constitué de métal dont la couche de peinture a une épaisseur supérieure à 0,2 mm (groupe IIC), ou 2 mm (groupe IIB, IIA, I), ou toute épaisseur (groupe III), les charges électrostatiques doivent être évitées.

- 2. Pour l'EPL Ga, si le boîtier de jonction est en aluminium, il doit être installé de manière à exclure les sources d'inflammation dues aux chocs et aux étincelles de friction.
- 3. Pour l'EPL Da, la température de surface « T » du boîtier de jonction, pour une couche de poussière d'une épaisseur maximale de 5 mm, est la température ambiante +20 K.

N7 IECEx Zone 2

Certificat: IECEx DEK 21.0002X

Normes: CEI 60079-0:2011, CEI 60079-7:2017, CEI 60079-11:2011, CEI 60079-15:2010

Marquages: Ex nA IIC T6...T4 Gc

Ex ec IIC T6... T4 Gc Ex ic IIC T6... T4 Gc Ex ic IIIC Dc

si l'installation est conforme au schéma de contrôle 00248-8002

Alimentation/entrée du transmetteur		Classe de température	Température ambian- te maximale	
Ex nA et Ex ec	Ex ic $L_i = 0 \mu H$ $C_i = 1,0 \text{ nF}$	Ex ic $U_i = 48 \text{ Vcc}$ $L_i = 0 \mu\text{H}$ $C_i = 1,0 \text{ nF}$		Entrée simple et dou- ble
Vmax = 37 Vcc	U _i = 37 Vcc	P _i = 851 mW par canal	T4	+85 °C
			T5	+70 °C
			T6	+55 ℃
Vmax = 30 Vcc	U _i = 30 Vcc	P _i = 700 mW par canal	T4	+85 ℃
			T5	+75 ℃
			T6	+60 °C

Tableau 11: Sortie maximale du transmetteur

Ex nA et Ex ec	Ex ic
Vmax = 7,2 Vcc	U _o = 7,2 Vcc
	$I_0 = 7.3 \text{ mA}$
	P _o = 13,2 mW
	$L_0 = 667 \text{mH}$
	$C_0 = 13,5 \mu F$

Conditions spéciales pour une utilisation en toute sécurité (X):

- 1. Pour toutes les atmosphères potentiellement explosives, si le boîtier de jonction est constitué de matériaux non métalliques, ou s'il est constitué de métal dont la couche de peinture a une épaisseur supérieure à 0,2 mm (groupe IIC), ou 2 mm (groupe IIB, IIA, I), ou toute épaisseur (groupe III), les charges électrostatiques doivent être évitées.
- 2. Le transmetteur doit être installé dans un boîtier offrant un degré de protection non inférieur à IP54 conformément à la norme EN 60079-0, adapté à l'application et correctement installé, par exemple dans un boîtier de jonction de type de protection Ex n ou Ex e.
- 3. De plus, pour Ex nA ou Ex ec, la zone à l'intérieur du boîtier de jonction doit être de degré de pollution 2 ou supérieur, comme défini dans la norme EN 60664-1.
- 4. Pour l'EPL Dc, la température de surface « T » du boîtier de jonction, pour une couche de poussière d'une épaisseur maximale de 5 mm, est la température ambiante +20 K.

Chine

13 Chine (NEPSI) Sécurité intrinsèque

Certificat GY|21.1036X

GB3836.1-2010, GB3836.4-2010, GB3836.20-2010, GB12476.1-2013, GB12476.4-2010 **Normes**

Marquages Ex ia IIC T4/T5/T6 Ga

> Ex ib [ia Ga] IIC T4/T5/T6 Gb Ex iaD 20 T80 °C/T95 °C/T130 °C

Ex ibD [iaD 20]21 T80 °C/T95 °C/T130 °C

Conditions spéciales pour une utilisation en toute sécurité (X):

Voir le certificat pour les conditions spéciales.

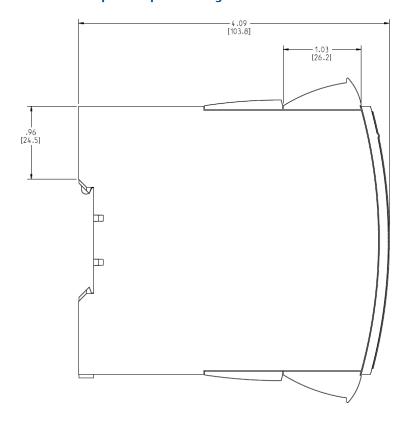
N3 Chine (NEPSI) Zone 2

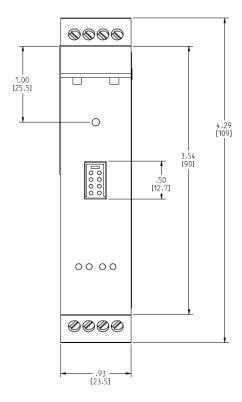
Certificat GY|21.1036X

Normes GB3836.1-2010, GB3836.4-2010, GB3836.8-2014, GB3836.20-2010

Ex nA [ic Gc] IIC T6... T4 Gc Marquages

Ex ic IIC T6... T4 Gc


Conditions spéciales pour une utilisation en toute sécurité (X):


Voir le certificat pour les conditions spéciales.

Schémas dimensionnels

Transmetteur à montage sur rail Rosemount 248R avec option RK

Illustration 2: Option RK pour montage sur rail Rosemount 248R

Les dimensions sont en pouces (millimètres).

Illustration 3: Option RK pour montage sur rail Rosemount 248R

Pour plus d'informations: **Emerson.com**

©2022 Emerson. Tous droits réservés.

Les conditions générales de vente d'Emerson sont disponibles sur demande. Le logo Emerson est une marque de commerce et une marque de service d'Emerson Electric Co. Rosemount est une marque de l'une des sociétés du groupe Emerson. Toutes les autres marques sont la propriété de leurs détenteurs respectifs.

