
FBx Script Developer User Manual
D301953X012

November 2024

Energy and Transportation Solutions

FBx Script Developer User Manual

FBx Script Developer User Manual
D301953X012
November 2024

ii

Application & Device Safety Considerations
 Reading these Instructions

Before operating a device or application, read these instructions carefully and understand their safety implications. In some
situations, improper use may result in damage or injury. Keep this manual in a convenient location for future reference. Note
that these instructions may not cover all details or variations in equipment or cover every possible situation regarding
installation, operation, or maintenance. Should problems arise that are not covered sufficiently in the text, immediately contact
Energy and Transportation Solutions (ETS) Customer Support for further information.

 Protecting Operating Processes
The failure of a device or application – for whatever reason – may leave an operating process without appropriate protection and
could result in possible damage to property or injury to persons. To protect against this, review the need for additional backup
equipment or provide alternate means of protection (such as alarm devices, output limiting, fail-safe valves, relief valves,
emergency shutoffs, emergency switches, etc.). Contact ETS for additional information.

 Using Qualified Personnel
Installation, configuration, and any subsequent modifications to a device or application should only be performed by qualified,
suitably trained personnel.

 System Training
A well-trained workforce is critical to the success of your operation. Knowing how to correctly install, configure, program,
calibrate, and troubleshoot your Emerson equipment provides your engineers and technicians with the skills and confidence to
optimize your investment. ETS offers a variety of ways for your personnel to acquire essential system expertise. Our full-time
professional instructors can conduct classroom training at several of our corporate offices, at your site, or even at your regional
Emerson office. You can also receive the same quality training via our live, interactive Emerson Virtual Classroom and save on
travel costs. For our complete schedule and further information, contact the ETS Training Department at 800-338-8158 or email
us at education@emerson.com.

 Grounding Equipment
Ground metal enclosures and exposed metal parts of electrical instruments in accordance with relevant safety standards. For the
USA, refer to OSHA rules and regulations as specified in Design Safety Standards for Electrical Systems, 29 CFR, Part 1910, Subpart S,
dated: May 16, 1981 (OSHA rulings are in agreement with the National Electrical Code). For international locations, refer to IEC
60364-4-41: PROTECTION AGAINST ELECTRIC SHOCK. You must also ground mechanical or pneumatic instruments that include
electrically operated devices such as lights, switches, relays, alarms, or chart drives. The chassis (or earth ground) lug provides a
safe connection point to a customer-designated ground location for ESD and transient voltage suppression. Do not use the
chassis ground lug for signal, common, or return connections. Do not connect the chassis ground lug directly to a lightning
arrestor/lightning rod. Do not run signal wiring in conduit or open trays with power wiring or near heavy electrical equipment.
If shielded wiring is used, ground the shield of the signal wiring at any one point of the signal loop.

Important: Complying with the codes and regulations of authorities having jurisdiction is essential to ensuring personnel safety.
The guidelines and recommendations in this manual are intended to meet or exceed applicable codes and regulations. If
differences occur between this manual and the codes and regulations of authorities having jurisdiction, those codes and
regulations must take precedence.

 Protecting from Electrostatic Discharge (ESD)
Any device contains sensitive electronic components which can be damaged by exposure to an ESD voltage. Depending on the
magnitude and duration of the ESD, it can result in erratic operation or complete failure of the equipment. Ensure that you
correctly care for and handle ESD-sensitive components.

 Ethernet Connectivity
This automation device is intended to be used in an Ethernet network which does not have public access. The inclusion of this
device in a publicly accessible Ethernet-based network is not recommended.

 Returning Equipment
If you need to return any equipment to ETS, it is your responsibility to ensure that the equipment has been cleaned to safe levels,
as defined and/or determined by applicable federal, state and/or local law regulations or codes. You also agree to indemnify ETS
and hold ETS harmless from any liability or damage which ETS may incur or suffer due to your failure to ensure device
cleanliness.

mailto:education@emerson.com

FBx Script Developer User Manual
D301953X012

November 2024

Contents iii

Contents

Chapter 1. Introduction – What is FBx Script Developer? 1

1.1 How Are Scripts Used? ... 1
1.2 Commands .. 2
1.3 Local Variables .. 2

Chapter 2 – Starting FBx Script Developer and Creating a Script 3

2.1 Before You Begin .. 3
2.2 Starting the FBx Script Developer ... 3
2.3 Creating a Simple Script ... 3
2.4 Saving the Script ... 6
2.5 Modifying Lines of a Script .. 6
2.6 Making a Copy of the Current Script File with a Different Name 7
2.7 Entering Arguments in the Command Arguments dialog box 7
2.8 Using the Set Arguments dialog box .. 8
2.9 Creating an all New Script ... 9
2.10 Opening an Existing Script .. 9
2.11 Printing the Script .. 9
2.12 Packaging a Script and its Associated Files ... 9

Chapter 3. Running Scripts 11

3.1 Launching a Script from Within Field Tools ... 11
3.1.1 Generating a Support Bundle for a Device ... 12

3.2 FBxScriptRunner Command Line Arguments ... 13
3.2.1 Example – Collecting Alarms and Events .. 14

3.2.1.1 Including a Date/Time Stamp in the Output Filename 15

Chapter 4. Debugging Scripts 17

4.1 Error Reporting ... 17
4.2 Working with Breakpoints ... 18

4.2.1 Setting a Breakpoint .. 18
4.2.2 Stepping through the Script using Step Mode ... 19
4.2.3 Clearing a Single Breakpoint .. 19
4.2.4 Clearing All Breakpoints .. 19

FBx Script Developer User Manual
D301953X012
November 2024

iv Contents

4.3 Manually Breaking Execution of the Currently Executing Script 19
4.4 Stopping Execution of the Currently Executing Script ... 19

Appendix A. – Script Commands 21

A.1 Output File Commands ... 21
A.1.1 OUTPUTFILE <Function> <Target file>.. 21
A.1.2 WRITE <Text> [<Text> ….] ... 22
A.1.3 WRITE_WITH_STAMP <Text> [<Text> ….] .. 23
A.1.4 IMPORT <File path> .. 23
A.1.1 DIR <Function> <Folder> .. 24
A.1.2 ZIP <Folder to Zip> <Zip file name> .. 25

A.2 Script Control Commands ... 25
A.2.1 RUN <File path> [<arg1> <arg2> …] .. 25
A.2.2 GOTO <Label> ... 26
A.2.3 PAUSE <Number of seconds to wait> ... 26
A.2.4 ABORT [<Text> <Text> …] ... 27
A.2.5 EXIT [<Text> <Text> …] ... 27
A.2.6 PROMPT <Message><Show entry text box><top button text><bottom button text>
 28
A.2.7 ECHO <Text>[<Text> …] ... 30

A.3 Local Variable Commands .. 30
A.3.1 VAR_SET <Destination Variable> <Value or Variable> 31
A.3.2 VAR_ADD <Destination Variable> <Value or Variable> 31
A.3.3 VAR_SUB <Destination Variable> <Value or Variable> 32
A.3.4 VAR_MULT <Destination Variable> <Value or Variable> 33
A.3.5 VAR_DIV <Destination Variable> <Value or Variable> 34
A.3.6 VAR_DECR <Variable> ... 35
A.3.7 VAR_INCR <Variable> .. 35
A.3.8 IF <Left Operand Variable> <Condition> <Right Operand Variable or Value> <Label to
jump when condition is true> ... 36

A.4 Device Connection Command .. 37
A.4.1 CONNECT <connection name> .. 37

A.5 Device System Commands .. 38
A.5.1 WARM_START <Time to wait for device to reboot> ... 39
A.5.2 COLD_START <start type> <timeout> ... 39
A.5.3 TIME_SYNCH .. 40

A.6 Device Parameter Commands .. 40
A.6.1 READ_PARAM <Parameter name> <Variable name> .. 41
A.6.2 WRITE_PARAM <Parameter name> <Data type> <Value or Variable> 41
A.6.3 RECIPE <Function> <Recipe file> ... 43

A.7 Device File Commands .. 44
A.7.1 FILE_DELETE <Device file path> <File Not Found flag> 45
A.7.2 FILE_DOWNLOAD <PC file path> <Device file path> ... 45
A.7.3 FILE_UPLOAD <Device file path> <PC file path> [<File Not Found flag>]........ 46

A.8 Device Application Commands ... 47
A.8.1 GET_APPS_INFO [<slot>] ... 47

FBx Script Developer User Manual
D301953X012

 November 2024

Contents v

A.8.2 APPLICATION <Function> <Slot> ... 48
A.9 Device Firmware Commands .. 49

A.9.1 UPDATE_FIRMWARE <Firmware file> [<Time to wait for device to reboot>] .. 49
A.10 Solution Commands .. 49

A.10.1 SOLUTION_UPLOAD <File path> .. 49
A.10.2 SOLUTION_DOWNLOAD <File path> ... 50
A.10.3 FLASH_DOWNLOAD <File path> ... 50
A.10.4 PARTIAL_DOWNLOAD <File path> ... 51
A.10.5 PARTIAL_UPLOAD <Objects & Instances file> <Partial Configuration File> .. 51
A.10.6 FLASH_SAVE .. 53

A.11 Device Report Generation Commands .. 53
A.11.1 DIAG_REPORT <ClearDump or ReportType> <File Name> 53
A.11.2 ALARM_REPORT <File Name> <Format> <Sorting> <Collection Period> [<From
Time> <End_Time] .. 54
A.11.1 EVENT_REPORT <File Name> <Format> <Sorting> <Collection Period> [<From time>
<End_time>] [<Sub-type>] .. 56
A.11.1 HISTORY_REPORT <File Name> <Format> <Sorting> <Collection Period> [<From
time> <End_time>] <History Group(s)> <Interval(s)> ... 57
A.11.1 TRANSHISTORY_REPORT <File Name> <Format> <Sorting> <Collection Period>
[<From time> <End_time>] <History Group(s)> <Sub-type(s)> 59

FBx Script Developer User Manual
D301953X012
November 2024

vi Contents

FBx Script Developer User Manual
D301953X012

November 2024

Introduction 1

Chapter 1. Introduction – What is FBx
Script Developer?

FBx Script Developer allows you to create pre-defined sets of instructions – called
scripts – which you can use to access an FB3000 RTU or an
FB1100/FB1200/FB2100/FB2200 flow computer.

You edit scripts directly in FBx Script Developer.

Scripts have the file extension *.SCR. The FBx Script Developer stores the scripts on the
PC.

Figure 1-1. FBx Script Developer Overview

1 Script executes on the PC/laptop
2 Commands from the script sent to the device (RTU or flow computer)

1.1 How Are Scripts Used?
Scripts are typically used for testing and to verify that the RTU/flow computer is

FBx Script Developer User Manual
D301953X012
November 2024

2 Introduction

operating as expected.

Scripts can also serve as a method for automating certain day-to-day tasks you might
need to perform. For example, you might want to create a script that collects periodic
history records from your flow computers. You can test it out in the FBx Script
Developer, and then save the script (.SCR) file.

You can launch a script manually through Field Tools, or you can run it from the
command line using FBxScriptRunner.

1.2 Commands
Appendix A includes a full list of the available commands you can use in your scripts.

When you create your scripts, you can type the command parameters in directly, or
optionally, you can click the Command icon and enter the text there, or depending on
the command, make selections that enter the text for you.

1.3 Local Variables
Since scripts are essentially programs that FBx Script Developer can run, scripts can
include local variables to store values. Based on these values you can make logical
decisions for executing portions of the script or use the local variables as arguments for
particular script commands.

FBx Script Developer User Manual
D301953X012

November 2024

Starting FBx Script Developer and Creating Scripts 3

Chapter 2 – Starting FBx Script Developer
and Creating a Script

2.1 Before You Begin
When you install Field Tools, you automatically install FBx Script Developer.

2.2 Starting the FBx Script Developer
To start the FBx Script Developer, click: Start > Emerson Field Tools > FBxScripting.

Note

You can also start the tool from the command line. Typically, you would use this
technique to automate execution of scripts you already created. See Chapter 3 for more
information.

2.3 Creating a Simple Script
These steps outline how to make a very simple script.

1. Start FBx Script Developer by clicking: Start > Emerson Field Tools > FBxScripting.
FBx Script Developer opens:

Figure 2-1. FBx Script Developer Screen

FBx Script Developer User Manual
D301953X02
November 2024

4 Starting FBx Script Developer and Creating Scripts

1 Title bar
2 Menu bar
3 Toolbar
4 Script pane
5 Variable status pane

2. Either click Script > Commands > Add Command or click the Add command
toolbar icon to add a line for the script.

Figure 2-2. Inserting a Line into the Script

Line The line number of the script

Time The timestamp when the command is executed

Command/Argument The Command name and any arguments.

3. Click in the center of the Command/Argument column, then click on the down
arrow to open the command selection menu.

Figure 2-3. Command Selection Menu

4. Scroll through the command list and select the first command. In this case, we

FBx Script Developer User Manual
D301953X012

November 2024

Starting FBx Script Developer and Creating Scripts 5

choose the PAUSE command, which pauses execution of a script for a specified
number of seconds.

Figure 2-4. Selecting a Command

5. Now, enter “60” which means that execution should pause for 60 seconds and press
the [Enter] key.

6. Click the Add command icon to select another command, in this case we
choose the ECHO command, which displays whatever text is specified after it.

Figure 2-5. Selecting a Command

 : :

7. Now enter the text “Hello everybody” after the ECHO command and press
[Enter].

FBx Script Developer User Manual
D301953X02
November 2024

6 Starting FBx Script Developer and Creating Scripts

Figure 2-6. Entering an argument for a command

8. We can now test this simple 2-line script. Click the “Run” toolbar icon or click
Script > Run > Run. The script starts and you can watch the timing of the PAUSE
command count down in the Status field.

Figure 2-7. Script Executes a PAUSE command

9. When the 60 seconds have expired, the Status column shows the echoed text
“Hello everybody:”

Figure 2-8. Script Executes an ECHO command

10. When you finish adding commands to the script, save the script.

2.4 Saving the Script

Click File > Save or click the Save icon.

Enter a name for the script and click Save.

FBx Script Developer saves the script with an extension of .SCR.

By default, scripts are saved in the folder:

\\Users\Public\Public Documents\Emerson\FieldTools\FBxScripts\

2.5 Modifying Lines of a Script
When you edit a script, you can use standard editing techniques to cut, paste, copy, etc.
entire lines in a script. The table, below, shows the supported editing commands:

Table 2-1. Editing Functions
Editing
Function

Toolbar Icon Menu Bar Sequence Description

Cut

Edit > Cut Cuts the selected line
of the script and stores
it in the paste buffer.

Copy Edit > Copy Copies the selected
line of the script and

FBx Script Developer User Manual
D301953X012

November 2024

Starting FBx Script Developer and Creating Scripts 7

Editing
Function

Toolbar Icon Menu Bar Sequence Description

puts it in the paste
buffer.

Paste Edit > Paste Pastes the contents of
the paste buffer to the
current script line.

Insert
Command

 Script >Commands > Insert
Command

Inserts a blank line in
the script between two
other lines.

2.6 Making a Copy of the Current Script File with
a Different Name
Click File > Save As.

Enter a name for the script and click Save.

2.7 Entering Arguments in the Command
Arguments dialog box
While you can enter some arguments directly after the command, as we showed in
Section 2.3, for anything more than the simplest commands, you should use the
Command Arguments dialog box.

1. Enter the command on the desired line of the script and press the [Enter] key.

2. Position the cursor in the line after the command and click the Command icon.

3. This launches a dialog box that allows you to enter arguments. The appearance of
the dialog box varies depending on the command. In some cases, you enter
arguments in a text field:

Figure 2-9. Command Arguments dialog box -text only

FBx Script Developer User Manual
D301953X02
November 2024

8 Starting FBx Script Developer and Creating Scripts

In other cases, you make selections to generate the text for you:

Figure 2-10. Command Arguments dialog box – make selections

4. When you finish editing the script, you can run the script as we did, directly in the
FBx Script Developer using the Run icon. Alternatively, you can run the script by
invoking FBxScriptRunner from the command line. See Chapter 3 for information on
command line options.

Note

Because there are dozens of different commands you can include in a script, it is fairly
easy for you to create very complex scripts that might be hundreds of lines long. If you
want to create lengthy scripts, you should review the debugging techniques in Chapter
4.

2.8 Using the Set Arguments dialog box
You can set arguments for the entire script using the Set Arguments dialog box.

1. Click Script > Set Arguments

FBx Script Developer User Manual
D301953X012

November 2024

Starting FBx Script Developer and Creating Scripts 9

Figure 2-11. Script Arguments dialog box

2. Enter the arguments for the script, and click OK.

2.9 Creating an all New Script
Click the New Script icon or click File > New.

2.10 Opening an Existing Script
Click the Open Script icon or click File > Open and select the script you want to
open. By default, scripts are stored in the folder:

 \Users\Public\Public Documents\Emerson\FieldTools\FBxScripts

If the script you want to open was open recently, you can click File > Recent and select
the desired script.

You can also open a script file by double-clicking on the SCR file.

2.11 Printing the Script
Click the Print Script icon, or click File > Print to open the Windows print dialog box
and make your selections to print the current script.

2.12 Packaging a Script and its Associated Files
If desired, you can combine a script, together with the files it uses (.ZSL solution files,
recipe files) into a single zipped file (*.SCZ), place the script and files in a folder, then
click File > Package and browse to the folder containing the files, then select the folder
to create the package file.

FBx Script Developer User Manual
D301953X02
November 2024

10 Starting FBx Script Developer and Creating Scripts

 FBx Script Developer User Manual

D301953X012
November 2024

Running Scripts 11

Chapter 3. Running Scripts

While you can run scripts manually in the FBx Script Developer, that’s really only
intended for trying out the script and debugging it.

The main ways you might run a script are:

 Run the script manually from within the Field Tools tree.

 Run the script from the command line or possibly using a third-party scheduling
program.

Whether invoked from the FBx Script Developer, from the command line, or from the
Field Tools tree, the scripts are executed by the FBxScriptRunner program.

3.1 Launching a Script from Within Field Tools
You can launch a script you created from within the Field Tools tree:

1. Right-click on the device on which you want to run the script, and select Run

Script. (Alternatively, you can single click on the device to highlight it and then
click the Run Script button.)

Note
If your script includes a “CONNECT {$A1}” command, the connection name is
automatically passed to the script to fill in the A1 parameter.

Figure 3-1. Launching a Script within Field Tools

2. Select the script file you want to run.

FBx Script Developer User Manual
D301953X012
November 2024

12 Running Scripts

Figure 3-2. Selecting a Script File

3. Click Open and FBxScriptRunner launches the script.

3.1.1 Generating a Support Bundle for a Device
If you are experiencing problems with a device, a predefined script exists that you
can use to gather diagnostic and system information in a ZIP file called a support
bundle that you can forward to our technical support group for analysis.
1. Right-click on the device for which you want to gather support information and

select Support Bundle. Alternatively, you can single click on the device to
highlight it and click the Support Bundle button.

Figure 3-3. Generating a Support Bundle

2. The script launches to collect diagnostic information, memory dumps, alarm

and event information and more.
3. The collected information is stored in a zip file. By default, the support bundle

zip file is stored in the \Emerson\Logs folder:

 FBx Script Developer User Manual

D301953X012
November 2024

Running Scripts 13

\Users\Public\Public Documents\Emerson\Logs\connection_name_Issue_timestamp

3.2 FBxScriptRunner Command Line Arguments
You might want to use a third-party scheduling program to launch FBxScriptRunner
from the command line to handle certain day-to-day tasks.

The syntax for launching FBxScriptRunner is as follows:

C:\>FBxScriptRunner script_name [arg1 arg2 arg3 … argn]

script_name the name of the script file including the extension (.SCR or .SCZ).

arg1… argn arguments used by commands in the script file, where “n” is the
number of the last argument for this script. Using arguments,
allows you to substitute parameters as needed, so you can make
the scripts more versatile. The same script you use, for example, to
communicate with RTU1, can be re-used with RTU2 and RTU3, by
passing in the RTU name as an argument.

FBxScriptRunner stores the arguments in local string variables so they can be
referenced by commands in your script file. Local string variable names must be
preceded by a dollar sign “$” to identify them as string variables.

Local String Variable Name: Argument:

$A1 arg1

$A2 arg2

$A3 arg3

:

$An argn

Notes
 FBxScriptRunner updates a numeric local variable with a count of the number of

arguments used called ARG_CNT. ARG_CNT does not include the script name as
one of the arguments in the count.

 Local variables, such as these arguments, may be used in script commands by
enclosing them in curly brackets. For example, to use arg1 with the PAUSE
command, you enter PAUSE {$A1}

 If an argument includes spaces, you must enclose it in double quotes “ “.

FBx Script Developer User Manual
D301953X012
November 2024

14 Running Scripts

3.2.1 Example – Collecting Alarms and Events
Let’s say we want to create a script that lets us connect to an RTU or flow computer and
retrieve its alarm history and event history while also sending messages to the screen
reporting what it’s doing.

We’re going to need to use the CONNECT command to connect to the device, the ECHO
command to report what the script is doing, and the ALARM_REPORT and
EVENT_REPORT commands to collect the alarms and events and store them in files.

1. Make sure Field Tools communications are active.
2. Start the FBx Script Developer and enter the script as follows. Note that we are

using the argument $A1 to hold the device connection name for the RTU or flow
computer.

Figure 3-4. Example Script to Collect Alarms and Events

3. Save the script with the name AlarmEventCollect.scr.
4. Open a command prompt and move to the folder where you saved the script.
5. Invoke the FBxScriptRunner with the script name and the connection name for the

device. In this case, we connect to a device connection named “WESTON.” We give
the script name followed by the argument “WESTON” to tell which connection to
activate.

The FBxScriptRunner window opens and reports the progress of the script:

 FBx Script Developer User Manual

D301953X012
November 2024

Running Scripts 15

Figure 3-5. FBxScript Runner Output

When the script completes execution, two PDF files (1 for alarms, 1 for events) are
created in the specified output folder, in this case C:\MyReports:

3.2.1.1 Including a Date/Time Stamp in the Output Filename
If you were to run the exact same script, twice in a row with the same device, in this
case, “WESTON” there will be a problem and an error is generated:

Why does this happen? Because the report you are trying to generate already exists.
You can avoid this, however, by making some small changes to your script. If you
change the lines:

FBx Script Developer User Manual
D301953X012
November 2024

16 Running Scripts

ALARM_REPORT C:\MyReports\{$A1}_Alarms PDF NEWTOOLD ALL

EVENT_REPORT C:\MyReports\{$A1}_Events PDF NEWTOOLD ALL

Include the text: “DT” to include a timestamp in the filename:

ALARM_REPORT C:\MyReports\{$A1}_$D$T_Alarms PDF NEWTOOLD ALL

EVENT_REPORT C:\MyReports\{$A1}_$D$T_Events PDF NEWTOOLD ALL

Now the report filenames will include a timestamp and there will not be any name
conflicts:

 FBx Script Developer User Manual

D301953X012
November 2024

Debugging Scripts 17

Chapter 4. Debugging Scripts

4.1 Error Reporting
If FBx Script Developer encounters a problem when it executes a line of your script, it
highlights that line in red, and displays an error message in the Status column. This
helps you identify common syntactical errors.

Figure 4-1. FBx Scripting – Debugging a Script

1 Run script (or resume after a break)
2 Step to next line of script but do not execute
3 Break (pause) script execution
4 Stop script execution entirely
5 Set breakpoint
6 Remove a single breakpoint
7 Remove all breakpoints
8 Breakpoint active
9 Line containing an error highlighted in red

10 Error message
11 Variables pane – shows current values of local variables

You can resume execution after the line containing the error by clicking on the Run
icon.

FBx Script Developer User Manual
D301953X012
November 2024

18 Debugging Scripts

Although the FBxScriptRunner detects syntactical errors during execution, sometimes
script errors relate more to the logic of the script. To solve those kinds of problems
often requires you to look at more than just the current script line. You might need to
pause execution at a particular point, and then proceed line by line, while examining
the state of different script variables. To do this, you need to use the breakpoint feature
and step mode.

4.2 Working with Breakpoints
A breakpoint is a flag that you place on a line at which you would like execution to
pause. As the script executes, it pauses on the line containing the breakpoint, but does
not execute the command on the line. This allows you to look at the Variables pane to
view the state of script variables immediately before the breakpoint. When the
execution pauses, the script enters step mode. Step mode allows you to execute one
script line at a time, by clicking on the Step icon.

By breaking execution at certain points, and then looking at script variables, it is
possible to better understand how the script works and identify errors in the script’s
logic. As you advance line by line, you may be able to identify the source of a problem
so you can correct it.

4.2.1 Setting a Breakpoint
There are three different ways to set a breakpoint:

 Click anywhere in the line of the script where you want the breakpoint, then click

on the Breakpoint icon, –or–
 Click anywhere in the line of the script where you want the breakpoint, then click

Script > Breakpoint > Set Breakpoint.
 Double-click in the leftmost column of the line where you want the breakpoint.

All of these methods place a stop flag in the leftmost column. This means that line
has a breakpoint.

The next time you execute the script, execution pauses on the line containing the flag,
prior to executing the command on that line.

 FBx Script Developer User Manual

D301953X012
November 2024

Debugging Scripts 19

4.2.2 Stepping through the Script using Step Mode
Once execution pauses on a particular line of the script, you can proceed one line at a
time by clicking on the Step icon or click Script > Run > Step.

You can now look in the Variables pane to see how values of local variables in the script
change.

4.2.3 Clearing a Single Breakpoint
Click in the Line containing the breakpoint, then click the Remove Breakpoint icon
or click Script > Break point > Remove Breakpoint.

Either of these methods remove the flag for that line and clear the breakpoint.

4.2.4 Clearing All Breakpoints

To clear all breakpoints in the script, click the Remove All Breakpoints icon, or click
Script > Break point > Remove all Breakpoints.

4.3 Manually Breaking Execution of the Currently
Executing Script

To break (pause) the currently executing script, click the Break icon or click
Script>Run>Break.

You can then proceed to make edits to the script. To resume the script, from the point

where it stopped, click the Run icon.

4.4 Stopping Execution of the Currently
Executing Script
To stop the currently executing script, click the Stop icon or click Script>Run>Stop.

You can then proceed to make edits to the script or run a new script.

If you then click the Run icon, the script restarts from line 1.

FBx Script Developer User Manual
D301953X012
November 2024

20 Debugging Scripts

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 21

Appendix A. – Script Commands

The following conventions apply to these scripts:

< > Replace with required text argument.

[] Encloses optional arguments.

CMD Command name shown CAPITALIZED AND BOLD.

For the simplest commands, you can select the commands and then enter arguments
directly in the Command/Argument column of FBx Script Developer. For more complex

commands, select the command and then click the command icon to launch the
Command Arguments dialog box, and make your selections.

A.1 Output File Commands
Scripts can write to a local output file on the PC. The file can be used to log the
progress/status of the script, or to write other information to the file.

Note
A script may only have one output file open at any time.

A.1.1 OUTPUTFILE <Function> <Target file>
Writes status or other information to a local file on the PC.

<Function> is one of the following:

 WRITE Open a new file for writing.

 APPEND Append to an existing file.

 CLOSE Close the file.

 DELETE Delete the file. Can delete any file on the PC.

<Target file> specifies the path and filename of the output file. The drive
and folder must already exist.

FBx Script Developer User Manual
D301953X012
November 2024

22 Appendix A – Script Commands

Examples:

The following command creates a new file on the PC called Scriptstatus.log in the
C:\Myscripts folder:

OUTPUTFILE WRITE C:\Myscripts\Scriptstatus.log

The following command opens an existing file called Script27.txt in the folder C:\Myscripts
for writing:

OUTPUTFILE APPEND C:\Myscripts\Script27.txt

The following command closes the file Script25. txt in the folder C:\Myscripts:

OUTPUTFILE CLOSE C:\Myscripts\Script25.txt

A.1.2 WRITE <Text> [<Text> ….]
Writes each text argument to the currently open file. The text arguments are combined
and separated with single spaces.

<Text> Contiguous characters of text written to the output file. If there are
multiple <text> arguments, each argument is written to the output file,
with a space separating each argument from the next argument.

Example:

WRITE Write this text to the file.

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 23

A.1.3 WRITE_WITH_STAMP <Text> [<Text> ….]
Writes the current time stamp to the currently open file, The text arguments are
combined and separated with single spaces.

<text> Contiguous characters of text written to the output file. If there are
multiple <text> arguments, each argument is written to the output file,
with a space separating each argument from the next argument.

Example:

WRITE_WITH_STAMP Write this text to the file.

A.1.4 IMPORT <File path>
Copies the contents of the specified text file and appends it to the end of the currently
open output file.

<File path> specifies the path and filename on the PC of the file to be
appended to the currently open output file. The path and
filename must exist.

Example:

To import the contents of mydatafile.txt into the current output file:

IMPORT C:\>mydatafile.txt

FBx Script Developer User Manual
D301953X012
November 2024

24 Appendix A – Script Commands

A.1.1 DIR <Function> <Folder>
Creates or deletes a folder on the PC.

<Function> is one of the following:

 CREATE Creates a new folder. The name of the newly created
folder is stored in the $DIR local variable>

 DELETE Deletes an existing folder.

<Folder> is the folder name on the PC.

Examples:

This creates a folder called logs in an existing folder called myfiles:

DIR CREATE C:\myfiles\logs

This deletes a folder called history from the C drive:

DIR DELETE C:\history

This creates a folder called “DailyReports”, and once created, lets you use the folder name
(using the $DIR local variable) in another command, in this case, the ALARM_REPORT
command:

DIR CREATE C:\DailyReports

ALARM_REPORT {$DIR}\Alarm CSV

This would be equivalent to entering the command:

ALARM_REPORT C:\DailyReports\Alarm CSV

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 25

A.1.2 ZIP <Folder to Zip> <Zip file name>
Makes a compressed copy of a folder and its contents and stores it in a single file with the
extension *.ZIP.

<Folder to Zip> The name of the folder to be compressed, including any sub-folders.

<Zip file name> The name to assign to the zipped file.

Example:

To store a copy of the folder C:\myfiles\logs in a file called mylogs.zip:

ZIP C:\myfiles\logs mylogs

A.2 Script Control Commands
These commands control operation of the script or external programs.

A.2.1 RUN <File path> [<arg1> <arg2> …]
Runs an external process with or without arguments.

<File path> specifies the path and filename of an executable (*.exe)
program you want to start on the PC.

[<arg1> <arg2> …] one or more optional arguments for the executable
program.

Example:

This command starts the Notepad application.

 RUN c:\windows\notepad.exe

FBx Script Developer User Manual
D301953X012
November 2024

26 Appendix A – Script Commands

A.2.2 GOTO <Label>
The order of script line execution jumps to the <label>.

<Label> Name of a location in the script to jump to. The actual label
location in the script must be preceded by a colon “:”

Example:

This jumps to the location of the script with the name “:Errorhandling”

 GOTO Errorhandling

In the actual script the label line would look like this:

A.2.3 PAUSE <Number of seconds to wait>
Pauses execution of the script for the specified number of seconds.

<Number of seconds to wait> Number of seconds to pause the script.

Example:

This pauses the script for 60 seconds.

PAUSE 60

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 27

A.2.4 ABORT [<Text> <Text> …]
Stops execution of the script, and optionally writes text arguments to PC screen running
the script. The text arguments are combined and separated with single spaces.

<Text> Contiguous characters of text written to the output file. If
there are multiple <text> arguments, each argument is
written to the screen, with a space separating each
argument from the next argument.

Example:

ABORT Script terminating now.

A.2.5 EXIT [<Text> <Text> …]
Stops execution of the script, and optionally writes text arguments to the PC screen
running the script. The text arguments are combined and separated with single spaces.

<Text> Contiguous characters of text written to the output file. If
there are multiple <text> arguments, each argument is
written to the screen, with a space separating each
argument from the next argument.

Example:

EXIT Script completed successfully.

FBx Script Developer User Manual
D301953X012
November 2024

28 Appendix A – Script Commands

A.2.6 PROMPT <Message><Show entry text box><top button
text><bottom button text>
Opens a dialog box for the user with informational text provided by the <Message>
argument.

<Message> Text message to show the user in the dialog box. Must be
enclosed in double quotes.

<show entry text box> Show text entry field in the dialog box (yes/no).

<top button text> Text to display in the top button.

<bottom button text> Text to display in the bottom button.

The following local variables are set based on user responses through the prompting
dialog box:

PROMPT 0 = User clicked the “No” button. (Bottom button)

1 = User clicked the “Yes” button. (Top button).

P_VAL Value entered by the user in numeric format.

$P_VAL Value entered by the user in string format.

Examples:

Asking a “Yes” or “No” question:

PROMPT “Do you want to continue?” no Yes No

Results in the following prompt:

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 29

And stores the user’s Yes/No choice as a 1 (Yes) or 0 (No) in the PROMPT local
variable:

Asking a question requiring a numerical entry:

PROMPT “Enter the run number you want to collect data for:” YES

Results in the following prompt:

And the user’s choice is stored in the P_VAL local variable:

Asking a question requiring a string entry:

PROMPT “Enter your name:” YES

Results in the following prompt:

FBx Script Developer User Manual
D301953X012
November 2024

30 Appendix A – Script Commands

And the user’s choice is stored in the $P_VAL local variable:

A.2.7 ECHO <Text>[<Text> …]
Writes text arguments to the PC screen running the script. The text arguments are
combined and separated with single spaces.

<Text> Contiguous characters of text written to the screen. If there
are multiple <text> arguments, each argument is written to
the screen, with a space separating each argument from the
next argument.

Example:

 ECHO Data collection in progress…

A.3 Local Variable Commands
Scripts support local variables which you can reference inside the script. Script variable
names are referenced by <var> in the following commands. If using a string variable, start
the name with a dollar sign “$”.

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 31

A.3.1 VAR_SET <Destination Variable> <Value or Variable>
Creates a local variable and sets its initial value.

<Destination Variable> Name of the local variable, either a numeric variable or a
string variable.

<Value> Initial value to be assigned to the destination variable. This
could be a numeric value or a string value.

<Variable> Variable containing the initial value to be assigned to the
destination variable. Could be a numeric value or a string
value. String values must be surrounded by double quotation
marks “ “.

Examples:

This creates a destination variable named “count” and sets its initial value to 0.

 VAR_SET count 0

This creates a string destination variable named “StationName” and sets it to the value
“Ocean Drive”.

 VAR_SET $StationName “Ocean Drive”

This creates a destination variable named “count” and sets its initial value to the value of
another variable named “total.”

 VAR_SET count total

A.3.2 VAR_ADD <Destination Variable> <Value or Variable>
Adds a number or the value of a local numeric variable to the value of the destination
local variable and stores the result in the destination variable. The variable(s) must exist,
and must be numeric.

<Destination Variable> Name of the destination numeric local variable.

FBx Script Developer User Manual
D301953X012
November 2024

32 Appendix A – Script Commands

<Value> An integer or floating point number to be assigned to the
destination variable.

<Variable> Variable containing an integer or floating point number to be
assigned to the destination variable.

Examples:

This example adds 7 to the current value of the destination variable named “count.”

VAR_ADD count 7

This example adds the value of the “new” variable to the value of the destination variable
“count.”

 VAR_ADD count new

A.3.3 VAR_SUB <Destination Variable> <Value or Variable>
Subtracts a number or the numeric value of a local variable from the value of the
destination variable and stores the result in the destination variable. The variable(s) must
exist, and must be numeric.

<Destination Variable> Name of the destination numeric local variable.

<Value> An integer or floating point number to be subtracted from the
destination variable.

<Variable> Variable containing an integer or floating point number to be
subtracted from the destination variable.

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 33

Examples:

This example subtracts 5 from the current value of the variable named “count.”

VAR_SUB count 5

This example subtracts the value of the variable “daily” from the value of the variable
“count.”

 VAR_ADD count daily

A.3.4 VAR_MULT <Destination Variable> <Value or Variable>
Multiplies a number or the numeric value of a local variable by the value of the numeric
destination variable and stores the result in the destination variable. The variable(s) must
exist and must be numeric.

<Destination Variable> Name of the destination numeric local variable.

<Value> An integer or floating point number to be multiplied by the
destination variable.

<Variable> Variable containing an integer or floating point number to be
multiplied by the destination variable.

FBx Script Developer User Manual
D301953X012
November 2024

34 Appendix A – Script Commands

Examples:

This example multiplies the current value of the variable named “total” by 5 and stores
the result in “total.”

VAR_MULT total 5

This example subtracts the value of the variable “daily” from the value of the variable
“total” and stores the result in “total.”

 VAR_MULT total daily

A.3.5 VAR_DIV <Destination Variable> <Value or Variable>
Divides the value of the destination numeric local variable by a number or the value of
another numeric local variable, then stores the result in the destination local variable. The
variable(s) must exist and must be numeric. Attempts to divide by zero generate an
“Attempted divide by 0” message in the status column.

<Destination Variable> Name of the destination numeric local variable.

<Value> An integer or floating point number by which the destination
variable’s value is divided.

<Variable> Variable containing an integer or floating point number by
which the destination variable’s value is divided.

Examples:

This example divides the value of the destination variable “total” by 4.

VAR_DIV total 4

This example divides the value of the destination variable “daily” by the value of the
variable “mf.”

 VAR_DIV daily mf

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 35

A.3.6 VAR_DECR <Variable>
Decrements a local variable by 1. The variable must exist and be numeric.

<Variable> Name of the numeric variable.

Example:

This example decrements the value of the variable “total” by 1.

 VAR_DECR total

A.3.7 VAR_INCR <Variable>
Increments a local variable by 1. The variable must exist and be numeric.

<Variable> Name of the numeric variable.

Example:

This example increments the value of the variable “total” by 1.

 VAR_INCR total

FBx Script Developer User Manual
D301953X012
November 2024

36 Appendix A – Script Commands

A.3.8 IF <Left Operand Variable> <Condition> <Right Operand
Variable or Value> <Label to jump when condition is
true>
Checks the condition of a local variable and jumps to the label, if the condition is TRUE.

<Left Operand Variable> Name of the numeric or string variable.

<Condition> Must be a logical operator appropriate for whether “Variable”
is numeric or string.

 Table A-1. Local Variable Conditional Operators

Operator Description Variable Data
Types Supported

EQ EQUAL Numeric, String

NE NOT EQUAL Numeric, String

GE GREATER THAN OR EQUAL Numeric

GT GREATER THAN Numeric

LE LESS THAN OR EQUAL Numeric

LT LESS THAN Numeric

<Right operand Variable or Value> Numerical or string variable or value.

 <Label to jump when condition is true> Name of a location in the script to jump to. The actual
location in the file must be preceded by a colon “:”

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 37

Examples:

If “Total” is greater than “MyCount” then jump to the label named “DailyLog”:

 IF MyCount GT Total DailyLog

If “StationName” equals “Ocean Drive” then jump to the label named “Finish”:

 IF StationName EQ “Ocean Drive” Finish

A.4 Device Connection Command

A.4.1 CONNECT <connection name>
Establishes communication with an FB3000 RTU or an FB1000/FB2000-series flow
computer through Field Tools. If the connection is successful, the software returns the
product type and firmware version in a pair of local variables.

Notes
 Only one device connection can be active at any one time. If, after establishing a

connection, you execute another CONNECT command, the existing connection is shut
down, and the new CONNECT command then executes.

FBx Script Developer User Manual
D301953X012
November 2024

38 Appendix A – Script Commands

 If, instead of entering the connection name directly, you enter {$A1} in the script, it
allows you to reuse the same script with different devices by specifying whatever
device name you want when you invoke the script.

Table A-2. Local Variables Updated If the Connection is Successful
Local Variable Name Description Local Variable Data Type

$PRODUCT_TYPE Device type String

$FRMWR_VERSION Firmware version String

<connection name> The name of the connection, as it exists in Field Tools software.
Field Tools must be running in order to establish communications.

Examples:

Establish communications between the script and the RTU using the connection name
WESTMOOR.

CONNECT WESTMOOR

Use CONNECT in a script called MyCollectionScript using a parameter for the connection
name instead of entering it directly:

 CONNECT {$A1}

When you invoke the script you can pass in the connection name, in this case
“WESTFARMS”:

A.5 Device System Commands
These commands may only be used after a connection has been established through the
CONNECT command.

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 39

A.5.1 WARM_START <Time to wait for device to reboot>
Force the device to warm start.

<Time to wait for device to reboot> The number of minutes to wait for the device to
reboot.

Example:

To force the device to perform a warm start, and then wait 5 minutes for the warm start
to complete.

 WARM_START 5

A.5.2 COLD_START <start type> <timeout>
Force the device to cold start.

<start type> Identifies an action to perform on the RTU/flow computer’s database.

Table A-3. Start type’s Action on the Device database
Start Type Value Description

0 Leave database unchanged (default)

1 Database is re-initialized with factory defaults. This restores User
Data descriptions to factory defaults and clears
alarm/event/history, user protocol maps, total, and averages.
I/O modules also restart.

2 Restore configuration from FLASH. Restore read/write database
parameter values from flash memory. This restores User Data
descriptions to factory defaults and clears alarm/event/history,
user protocol maps, total, and averages. I/O modules also
restart.

<timeout> The number of minutes to wait for the device to reboot.

FBx Script Developer User Manual
D301953X012
November 2024

40 Appendix A – Script Commands

Example:

To force the device to perform a cold start, and then wait 7 minutes for the cold start to
complete:

 COLD_START 7

A.5.3 TIME_SYNCH
Synchronizes the time in the device with the PC’s local time.

Examples:

To synchronize the device’s time with the time on the PC:

TIME_SYNCH

A.6 Device Parameter Commands
These commands allow you to read and write to parameters in the device.

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 41

A.6.1 READ_PARAM <Parameter name> <Variable name>
Reads the value of a parameter on the device and stores it in a local variable for use in the
script.

<Parameter name> The full parameter name. If it contains spaces, it must be enclosed
in double quotes.

<Variable name> The local variable name. If it does not exist, it is created. If the
parameter read contains a string, you must create a string local
variable using the VAR_SET command.

Example:

Read analog input IoConfig_2.CHAN1_1_SELECT and store the value in a local variable
called “Flow.”

READ_PARAM IoConfig_2.CHAN1_1_SELECT Flow

A.6.2 WRITE_PARAM <Parameter name> <Data type> <Value
or Variable>
Writes a value to a parameter in the device.

<Parameter name> The full parameter name. If it contains spaces, it must be enclosed
in double quotes “ “.

<Data type> Device parameter data type. See Table A-4 for a list of valid
parameter data types.

<Value or Variable> Constant value or local variable.

FBx Script Developer User Manual
D301953X012
November 2024

42 Appendix A – Script Commands

Examples:

Write the value 25.37 to the parameter User Data_1.FLOAT_1.

WRITE_PARAM “User Data_1.FLOAT_1” FLOAT 25.37

Write the string “Flow Totals” to the Hist_7.HIST_GROUP_OBJ.DESC parameter which is a
20 character string type:

 WRITE_PARM Hist_7.HIST_GROUP_OBJ.DESC UC20 “Flow Totals”

Table A-4. WRITE_PARAM Data Types
FBx Data Type Description

UINT8 1-byte signed integer

INT8 1-bytes unsigned integer

UINT16 2-bytes signed integer

INT16 2-bytes unsigned integer

UINT32 4-bytes signed integer

INT32 4-bytes unsigned integer

UINT64 8-bytes unsigned integer

INT64 8-bytes signed integer

FLOAT Single-precision floating point number

DOUBLE Double-precision floating point number

UC10 10-byte character string

UC20 20-byte character string

UC30 30-byte character string

UC40 40-byte character string

BYTEARRY4 4 bytes

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 43

FBx Data Type Description

BYTEARRAY6 6 bytes

BYTEARRAY32 32 bytes

TIME 8 bytes representing Julian time

ENUM16 2 bytes enumeration code

BIN8 8 bits

BIN16 16 bits

BIN32 32 bits

PRMREF Parameter reference – 40 bytes maximum

OBJREF Object reference – 20 bytes maximum

A.6.3 RECIPE <Function> <Recipe file>
The RECIPE command can perform two different operations, depending upon how the
mode is set.

<Function> In READ mode, it reads a recipe file and then collects the values of
those parameters from the device and updates the recipe file with
those values.

In WRITE mode, it reads a recipe file of parameters and values on the
PC and then writes those values down to their corresponding
parameters in the device.

<Recipe file> Specifies the path and filename of the recipe file. Recipe files have an
extension of (*.RCP). Each line of the recipe file consists of Parameter
name, followed by a space, followed by the value of the parameter.

Each line in the recipe file follows the format:

Parameter_Name Data_Type Value

For example, suppose you want to specify gas component parameters
for an application, you could create a recipe called
gascomponents.rcp. Each line of the recipe would specify the
parameter, and, in this case, a double-precision floating point value for
the given percentage of that component. The last line of the recipe
automatically applies the components:

Components_1.C1_OVRD,Double,94.6
Components_1.N2_OVRD,Double,0.4

Components_1.CO2_OVRD,Double,0.3

Components_1.C2_OVRD,Double,4.4

FBx Script Developer User Manual
D301953X012
November 2024

44 Appendix A – Script Commands

Components_1.C3_OVRD,Double,0.2

Components_1.H2O_OVRD,Double,0

Components_1.H2S_OVRD,Double,0

Components_1.H2_OVRD,Double,0.01
Components_1.CO_OVRD,Double,0

Components_1.O2_OVRD,Double,0.005

Components_1.IC4_OVRD,Double,0.01

Components_1.NC4_OVRD,Double,0.01

Components_1.IC5_OVRD,Double,0.002
Components_1.NEOC5_OVRD,Double,0

Components_1.C6_OVRD,Double,0.002

Components_1.C7_OVRD,Double,0

Components_1.C8_OVRD,Double,0

Components_1.C9_OVRD,Double,0
Components_1.C10_OVRD,Double,0

Components_1.HE_OVRD,Double,0

Components_1.AR_OVRD,Double,0

Components_1.BENZENE_OVRD,Double,0
Components_1.TOLUENE_OVRD,Double,0
Components_1.APPLY_COMP, Enum16, 1

Examples:

To write recipe values from the file OverrideGasComponents.rcp to parameters in the
device:

 RECIPE WRITE C:\OverrideGasComponents.rcp

 To read values from the device and update the values in the recipe with those values:

 RECIPE READ C:\MyOtherRecipe.rcp

A.7 Device File Commands
These commands are used with files stored on the RTU or flow computer.

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 45

Note
In FBxConnect, you can go to Services > File Transfer to see a tree of the folders and files
on the device.

A.7.1 FILE_DELETE <Device file path> <File Not Found flag>
Deletes a flash file from the device.

<Device file path> Specifies the path and filename of the flash file on the device to
be deleted.

<File Not Found flag> This argument is optional. It indicates whether a file not found is
reported as an error.

0 File not found will be reported as success (default).
1 File not found will be reported as an error.

Example:

To delete an FBxDesigner source file called Myproject.zwt from the device:

 FILE_DELETE Myproject.zwt

A.7.2 FILE_DOWNLOAD <PC file path> <Device file path>
Downloads a file from the PC to the device flash area.

<PC file path> Specifies the path and filename of the file to be downloaded.

<Device file path> Specifies the destination path in the flash area where the file will
be copied.

FBx Script Developer User Manual
D301953X012
November 2024

46 Appendix A – Script Commands

Example:

To download an FBxDesigner source file called Myproject.zwt to the device:

 FILE_DOWNLOAD C:\myfiles\MyProject.zwt

A.7.3 FILE_UPLOAD <Device file path> <PC file path> [<File
Not Found flag>]
Upload a flash file on the device to the PC.

<device path>Specifies the path and filename on the device you want to upload.

<PC file> Specifies destination path and filename for the uploaded file.

<flag> This optional argument indicates whether a file not found will be reported
as an error.

 0 = File not found reported as success

 1=File not found reported as an error (default)

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 47

Example:

To upload an FBxDesigner source file called Myproject.zwt from the device:

 FILE_UPLOAD Myproject.zwt C:\ProjectSource\Myproject.zwt 1

A.8 Device Application Commands

A.8.1 GET_APPS_INFO [<slot>]
Retrieves information about applications running in the FB3000 such as the application
name and version. This information returned is stored in local variables.

<slot> Optional argument indicating the slot number, which must be an integer
from 1 to 8. If specified, only retrieves details for the application in that slot.

If not specified, details on all slots are retrieved.

FBx Script Developer User Manual
D301953X012
November 2024

48 Appendix A – Script Commands

Table A-5. Local Variable Holding Returned Device Application Information
Local Variable Name Description Local Variable Data Type

$APP_x_NAME The name of the application
in slot x. STRING

$APP_x_VERSION The version of the application
in slot x. STRING

$APP_x_SLOT The application slot. DOUBLE
(x is replaced with the appropriate slot number)

Examples:

To retrieve detail on all installed applications:

 GET_APPS_INFO

To retrieve detail on only the application in slot 4:

 GET_APPS_INFO 4

A.8.2 APPLICATION <Function> <Slot>
Starts or stops an IEC 61131 application in a particular slot on the FB3000 device.

<Function> Is one of the following:

 START Starts the application in the specified slot.

 STOP Stops the application in the specified slot.

<Slot> Specifies the application software slot on the FB3000. Can be an
integer from 1 and 8.

Examples:

To start the application in slot 2:

 APPLICATION START 2

To stop the application in slot 1:

 APPLICATION STOP 1

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 49

A.9 Device Firmware Commands
These commands relate to the system firmware running in the device.

A.9.1 UPDATE_FIRMWARE <Firmware file> [<Time to wait for
device to reboot>]
Downloads a firmware zip file to the device.

<Firmware file> The absolute path and filename of the firmware
zip file.

<Time to wait for device to reboot> Specifies how long (in minutes) to wait for the
device to reboot after the firmware update. This
argument is optional. If not specified, it defaults
to 10 minutes.

 Example:

 Upgrade firmware to version 02_15_014_14 and wait 6 minutes for the reboot to occur
before declaring an error.

UPDATE_FIRMWARE C:\firmware\FB3000_SystemPackage_02_15_02_14.zip 6

A.10 Solution Commands
These commands can download or upload a solution file to or from the device.

A.10.1 SOLUTION_UPLOAD <File path>
Uploads a solution file from the device.

<File path> Absolute path and filename on the PC to which the script tool
should copy the solution file.

FBx Script Developer User Manual
D301953X012
November 2024

50 Appendix A – Script Commands

Example:

To upload the solution file (mysoln.zsl) from the device, and store it in the folder c:\work:

SOLUTION_UPLOAD C:\work\mysoln.zsl

A.10.2 SOLUTION_DOWNLOAD <File path>
Downloads a solution file to the connected device.

<File path> Absolute path and filename on the PC where the solution file
to be downloaded resides.

Example:

SOLUTION_DOWNLOAD C:\work\mysoln.zsl

A.10.3 FLASH_DOWNLOAD <File path>
Downloads a solution’s configuration to the device’s flash memory.

<File path> Absolute path and name of the solution’s .ZSL configuration file
to be downloaded into the flash memory area.

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 51

Example:

FLASH_DOWNLOAD C:\work\mysoln.zsl

A.10.4 PARTIAL_DOWNLOAD <File path>
Downloads a partial configuration file to the device.

<File path> Absolute path and name of the partial .PTC configuration file to be
downloaded to the device.

Example:

PARTIAL_DOWNLOAD C:\work\myconfig.ptc

A.10.5 PARTIAL_UPLOAD <Objects & Instances file> <Partial
Configuration File>
Reads an objects and instances CSV file on the PC and uses the entries in it to determine
which objects and instances in the RTU should be included in a partial configuration file
that the script will upload from the device. The ptc file does not contain read-only
parameters.

<Objects & Instances File> Absolute path and name of a file on the PC that
contains a list of objects and instances in the device
to be uploaded into a PTC file. This file requires an

FBx Script Developer User Manual
D301953X012
November 2024

52 Appendix A – Script Commands

extension of OIF. Each line of an OIF file has the
format:

 Object_ [instance number(s)] To specify a range of
instances, separate the top and bottom values of the
range with an underscore “_”. If no instances are
specified, all instances are uploaded.

 Examples:

1. If a line in the OIF file looks like this:

 PID_, 1, 2, 3

Then PID objects 1, 2, and 3 are uploaded.

2. If a line in the OIF file looks like this:

Alarm_, 1000, 1005_1010

Then Alarm instances 1000, 1005, 1006, 1007,
1008, 1009, and 1010 will be uploaded.

3. If a line in the OIF file looks like this:

DP_, 1-1, 2-1 ,3-1

Then DP objects 1-1, 2-1, and 3-1 are uploaded.

4. If a line in the OIF file looks like this:

HART_, 2-1, 2-9_2-12, 4-28

Then HART instances 2-1, 2-9, 2-10, 2-11, 2-12,
and 4-28 are uploaded.

5. If a line in the OIF file looks like this:

User Data_

Then because no instances are specified, all
instances are uploaded.

<Partial Configuration File> Absolute path and name of the partial .PTC
configuration file on the PC that holds the uploaded
objects and instances from the device.

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 53

Example:

PARTIAL_UPLOAD C:\work\mystuff.OIF c:\work\myconfig.ptc

A.10.6 FLASH_SAVE
Saves the device’s configuration to flash. (Version 3.18 or newer)

Example:

FLASH_SAVE

A.11 Device Report Generation Commands
A.11.1 DIAG_REPORT <ClearDump or ReportType> <File Name>

Uploads diagnostic records from the device and stores them in a report file on the PC.

<ClearDump or ReportType> is one of the following:

ClearDump clear memory dumps on the device

DebugLog collect device’s debug log

MemoryDump collect memory dumps in the device if they exist

FBx Script Developer User Manual
D301953X012
November 2024

54 Appendix A – Script Commands

SecurityLog collect device’s security log

<File Name> Absolute path and name of the file which will hold the retrieved
diagnostic records. Do not include the file extension.

Example:

 DIAG_REPORT SecurityLog C:\mydata\logons

A.11.2 ALARM_REPORT <File Name> <Format> <Sorting>
<Collection Period> [<From Time> <End_Time]
Uploads alarm records from the device and stores them in a report file on the PC.

<File Name> Absolute path and name of the file which will hold the retrieved alarm
records. Do not include the file extension.

<Format> Select the format of the report file:

 PDF Portable document format

 CSV Comma separated variable

<Sorting> Specifies the order in which alarm records are stored in the alarm report
file:

 NEWTOOLD Newest alarms appear at the top of the alarm report
file.

 OLDTONEW Oldest alarms appear at the bottom of the alarm
report file.

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 55

<Collection period> Specifies which alarm records should be retrieved:

ALL Retrieves all alarm records in the device.

From Time Collect all alarm records between the from time
and the current device timestamp. Timestamps are
in the format: MM/DD/YYYY HH:mm:ss

Time Range Retrieves all alarm records from the device between
the From Time and end-time timestamps.

End_time Specifies the end of the time range.

Example:

To collect all alarms between midnight and 8AM from May 18th 2024 and store them in a
CSV file named alarmhistory in the folder C:\myalarms with the most recent alarms at the
top of the file, enter:

ALARM_REPORT c:\myalarms\alarmhistory CSV NEWTOOLD 05/18/24 00:00:00 5/18/24
08:00:00

FBx Script Developer User Manual
D301953X012
November 2024

56 Appendix A – Script Commands

A.11.1 EVENT_REPORT <File Name> <Format> <Sorting>
<Collection Period> [<From time> <End_time>] [<Sub-
type>]
Uploads event records from the device and stores them in a report file on the PC.

<File Name> Absolute path and name of the file which will hold the retrieved
event records. Do not include the file extension.

<Format> Select the format of the report file:

 PDF Portable document format

 CSV Comma separated variable

<Sorting> Specifies the order in which event records are stored in the event
report file:

 NEWTOOLD Newest events appear at the top of the event report
file.

 OLDTONEW Oldest events appear at the bottom of the event
report file.

<Collection Period> Specifies which event records should be retrieved:

ALL Retrieves all event records in the device.

From Time Collect all event records between the start time and
the current device timestamp. Timestamps are in
the format: MM/DD/YYYY HH:mm:ss

Time Range Retrieves all event records from the device
between the start_time and end-time timestamps.

End_Time Specifies the end of the time range.

<Sub-type> Optional argument:

LEGAL Only collect event records considered “legal” by an
auditing authority.

NON-LEGAL Only collect event records considered “non-legal” by
an auditing authority.

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 57

Example:

To collect all legally specified events from midnight to 8AM on May 18, 2024 into a file
called eventhistory.csv in the C:\myevents folder:

EVENT_REPORT c:\myevents\eventhistory CSV NEWTOOLD 05/18/24 00:00:00 5/18/24
08:00:00 LEGAL

A.11.1 HISTORY_REPORT <File Name> <Format> <Sorting>
<Collection Period> [<From time> <End_time>] <History
Group(s)> <Interval(s)>
Uploads history records from the device and stores them in a report file on the PC.

<File Name> Absolute path and name of the file which will hold the retrieved
history records. Do not include the file extension.

<Format> Select the format of the report file:

 PDF Portable document format

 CSV Comma separated variable

<Sorting> Specifies the order in which history records are stored in the
report file:

 NEWTOOLD Newest records appear at the top of the history
report file.

FBx Script Developer User Manual
D301953X012
November 2024

58 Appendix A – Script Commands

 OLDTONEW Oldest records appear at the bottom of the history
report file.

<Collection Period> Specifies which history records should be retrieved:

ALL Retrieves all history records in the device.

From Time Collect all history records between the start time
and the current device timestamp. Timestamps are
in the format: MM/DD/YYYY HH:mm:ss

Time Range Retrieves all history records from the device
between the start_time and end-time timestamps.

End_Time Specifies the end of the time range.

<History Group(s)> ALL Collects records for all history groups.

 Specific Single history group number as integer or multiple
history group numbers separated by commas.

<Intervals> Specify Hourly, Daily, Weekly, or Monthly, or specify multiple
interval types separated by commas.

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 59

Example:

To collect hourly and daily data from history groups 1, 2, and 3 and store it in the file
historicalrecords.csv in the pre-existing folder “myhistory” with newest data shown first,
enter:

HISTORY_REPORT c:\myhistory\historicalrecords CSV NEWTOOLD 1,2,3 Hourly, Daily

A.11.1 TRANSHISTORY_REPORT <File Name> <Format>
<Sorting> <Collection Period> [<From time>
<End_time>] <History Group(s)> <Sub-type(s)>
Uploads transaction history records from the device and stores them in a report file on
the PC.

<File Name> Absolute path and name of the file which will hold the retrieved
transaction history records. Do not include the file extension.

FBx Script Developer User Manual
D301953X012
November 2024

60 Appendix A – Script Commands

<Format> Select the format of the report file:

 PDF Portable document format

 CSV Comma separated variable

<Sorting> Specifies the order in which transaction history records are stored
in the report file:

 NEWTOOLD Newest records appear at the top of the transaction
history report file.

 OLDTONEW Oldest records appear at the bottom of the
transaction history report file.

<Collection Period> Specifies which transaction history records should be retrieved:

ALL Retrieves all transaction history records in the
device.

From Time Collect all transaction history records between the
start time and the current device timestamp.
Timestamps are in the format: MM/DD/YYYY
HH:mm:ss

Time Range Retrieves all transaction history records from the
device between the start_time and end-time
timestamps.

End_Time Specifies the end of the time range.

<History Group(s)> ALL Collects transaction records for all history groups.

 Specific Single history group number as integer or multiple
history group numbers separated by commas.

<Sub-Types> Specify the categories of transactions to retrieve. Choices are:
Batch, Hourly, Daily, Weekly, or Monthly, Snapshot or you can
specify multiple categories separated by commas.

FBx Script Developer User Manual
D301953X012

 November 2024

Appendix A – Script Commands 61

Example:

To collect all batch transaction history records, from newest to oldest, and store them in
the pre-existing “myhistory” folder in the file transactionrecords.CSV, enter:

TRANSHISTORY_REPORT c:\myhistory\transactionrecords CSV NEWTOOLD ALL Batch

FBx Script Developer User Manual
D301953X012
November 2024

For customer service and technical support,
visit Emerson.com/Guardian.

North America and Latin America:

Emerson Energy and Transportation
Solutions
6005 Rogerdale Road
Houston, TX 77072 U.S.A.
T +1 281 879 2699 | F +1 281 988 4445
Emerson.com/SCADAforEnergy

© 2024 Bristol Inc. All rights reserved.

This publication is for informational purposes only. While every effort has been
made to ensure accuracy, this publication shall not be read to include any
warranty or guarantee, express or implied, including as regards the products or
services described or their use or applicability. Bristol Inc. (hereinafter “Energy
and Transportation Solutions” or ETS) reserves the right to modify or improve the
designs or specifications of its products at any time without notice. All sales are
governed by ETS terms and conditions which are available upon request. ETS
accepts no responsibility for proper selection, use or maintenance of any product,
which remains solely with the purchaser and/or end-user. Emerson and the
Emerson logo are trademarks and service marks of Emerson Electric Co. All other
marks are the property of their respective owners.

United Kingdom:
Emerson Process Management Limited
Fosse House, 6 Smith Way
Grove Park, Enderby
Leicester LE19 1SX UK
T +44 0 870 240 1978

Europe:
Emerson S.R.L
Regulatory Compliance Shared Services
Department
Company No. J12/88/2006
Emerson 4 Street
Parcul Industrial Tetarom 11
Romania
T +40 374 132 000

Middle East/Africa:
Emerson Energy and Transportation
Solutions
Emerson FZE
P.O. Box 17033
Jebel Ali Free Zone – South 2
Dubai U.A.E.
T +971 4 8118100 | F +971 4 8865465

Asia-Pacific:
Emerson Energy and Transportation
Solutions
1 Pandan Crescent
Singapore 128461
T +65 6777 8211| F +65 6777 0947

Energy and Transportation Solutions

http://www.emerson.com/Guardian
http://www.emerson.com/SCADAforEnergy

	D301953X012-00-Cover&TOC
	D301953X012-01-Chapter1
	Chapter 1. Introduction – What is FBx Script Developer?
	1.1 How Are Scripts Used?
	1.2 Commands
	1.3 Local Variables

	D301953X012-02-Chapter2
	Chapter 2 – Starting FBx Script Developer and Creating a Script
	2.1 Before You Begin
	2.2 Starting the FBx Script Developer
	2.3 Creating a Simple Script
	2.4 Saving the Script
	2.5 Modifying Lines of a Script
	2.6 Making a Copy of the Current Script File with a Different Name
	2.7 Entering Arguments in the Command Arguments dialog box
	2.8 Using the Set Arguments dialog box
	2.9 Creating an all New Script
	2.10 Opening an Existing Script
	2.11 Printing the Script
	2.12 Packaging a Script and its Associated Files

	D301953X012-03-Chapter3
	Chapter 3. Running Scripts
	3.1 Launching a Script from Within Field Tools
	3.1.1 Generating a Support Bundle for a Device

	3.2 FBxScriptRunner Command Line Arguments
	3.2.1 Example – Collecting Alarms and Events
	3.2.1.1 Including a Date/Time Stamp in the Output Filename

	D301953X012-04-Chapter4
	Chapter 4. Debugging Scripts
	4.1 Error Reporting
	4.2 Working with Breakpoints
	4.2.1 Setting a Breakpoint
	4.2.2 Stepping through the Script using Step Mode
	4.2.3 Clearing a Single Breakpoint
	4.2.4 Clearing All Breakpoints

	4.3 Manually Breaking Execution of the Currently Executing Script
	4.4 Stopping Execution of the Currently Executing Script

	D301953X012-05-Appendix
	Appendix A. – Script Commands
	A.1 Output File Commands
	A.1.1 OUTPUTFILE <Function> <Target file>
	A.1.2 WRITE <Text> [<Text> ….]
	A.1.3 WRITE_WITH_STAMP <Text> [<Text> ….]
	A.1.4 IMPORT <File path>
	A.1.1 DIR <Function> <Folder>
	A.1.2 ZIP <Folder to Zip> <Zip file name>

	A.2 Script Control Commands
	A.2.1 RUN <File path> [<arg1> <arg2> …]
	A.2.2 GOTO <Label>
	A.2.3 PAUSE <Number of seconds to wait>
	A.2.4 ABORT [<Text> <Text> …]
	A.2.5 EXIT [<Text> <Text> …]
	A.2.6 PROMPT <Message><Show entry text box><top button text><bottom button text>
	A.2.7 ECHO <Text>[<Text> …]

	A.3 Local Variable Commands
	A.3.1 VAR_SET <Destination Variable> <Value or Variable>
	A.3.2 VAR_ADD <Destination Variable> <Value or Variable>
	A.3.3 VAR_SUB <Destination Variable> <Value or Variable>
	A.3.4 VAR_MULT <Destination Variable> <Value or Variable>
	A.3.5 VAR_DIV <Destination Variable> <Value or Variable>
	A.3.6 VAR_DECR <Variable>
	A.3.7 VAR_INCR <Variable>
	A.3.8 IF <Left Operand Variable> <Condition> <Right Operand Variable or Value> <Label to jump when condition is true>

	A.4 Device Connection Command
	A.4.1 CONNECT <connection name>

	A.5 Device System Commands
	A.5.1 WARM_START <Time to wait for device to reboot>
	A.5.2 COLD_START <start type> <timeout>
	A.5.3 TIME_SYNCH

	A.6 Device Parameter Commands
	A.6.1 READ_PARAM <Parameter name> <Variable name>
	A.6.2 WRITE_PARAM <Parameter name> <Data type> <Value or Variable>
	A.6.3 RECIPE <Function> <Recipe file>

	A.7 Device File Commands
	A.7.1 FILE_DELETE <Device file path> <File Not Found flag>
	A.7.2 FILE_DOWNLOAD <PC file path> <Device file path>
	A.7.3 FILE_UPLOAD <Device file path> <PC file path> [<File Not Found flag>]

	A.8 Device Application Commands
	A.8.1 GET_APPS_INFO [<slot>]
	A.8.2 APPLICATION <Function> <Slot>

	A.9 Device Firmware Commands
	A.9.1 UPDATE_FIRMWARE <Firmware file> [<Time to wait for device to reboot>]

	A.10 Solution Commands
	A.10.1 SOLUTION_UPLOAD <File path>
	A.10.2 SOLUTION_DOWNLOAD <File path>
	A.10.3 FLASH_DOWNLOAD <File path>
	A.10.4 PARTIAL_DOWNLOAD <File path>
	A.10.5 PARTIAL_UPLOAD <Objects & Instances file> <Partial Configuration File>
	A.10.6 FLASH_SAVE

	A.11 Device Report Generation Commands
	A.11.1 DIAG_REPORT <ClearDump or ReportType> <File Name>
	A.11.2 ALARM_REPORT <File Name> <Format> <Sorting> <Collection Period> [<From Time> <End_Time]
	A.11.1 EVENT_REPORT <File Name> <Format> <Sorting> <Collection Period> [<From time> <End_time>] [<Sub-type>]
	A.11.1 HISTORY_REPORT <File Name> <Format> <Sorting> <Collection Period> [<From time> <End_time>] <History Group(s)> <Interval(s)>
	A.11.1 TRANSHISTORY_REPORT <File Name> <Format> <Sorting> <Collection Period> [<From time> <End_time>] <History Group(s)> <Sub-type(s)>

	D301953X012-06-EndPage

