

The manufacturer may use the mark:

Revision 1.1 August 12, 2022 Surveillance Audit Due October 1, 2025

Certificate / Certificat Zertifikat / 合格証

ASC 2104058 C001

exida hereby confirms that the:

Redundant Control System (RCS)

ASCO, L.P.

Florham Park, NJ - USA

Have been assessed per the relevant requirements of:

IEC 61508: 2010 Parts 1-2

and meets requirements providing a level of integrity to:

Systematic Capability: SC 3 (SIL 3 Capable)

Random Capability: Type A, Route 2_H Device

PFH/PFD_{avg} and Architecture Constraints must be verified for each application

Safety Function:

The Redundant Control System will move to the safe state of Normally Open, Normally Closed or Double Acting per the RCS configuration within the specified safety time when deenergized.

Application Restrictions:

The unit must be properly designed into a Safety Instrumented Function per the Safety Manual requirements.

Evaluating Assessor

Certifying Assessor

Redundant Control System

The following documents are a mandatory part of certification:

Assessment Report: ASC 21-04-058 R002 V1R1 (or later)

Safety Manual: SM V9535 R3 DA (or later)

80 N Main St Sellersville, PA 18960

T-061, V5R2

Certificate / Certificat / Zertifikat / 合格証 ASC 2104058 C001

Systematic Capability: SC 3 (SIL 3 Capable)

Random Capability: Type A, Route 2_H Device

PFH/PFD_{avg} and Architecture Constraints must be verified for each application

Systematic Capability:

These product haves met manufacturer design process requirements of Safety Integrity Level (SIL) 3. These are intended to achieve sufficient integrity against systematic errors of design by the manufacturer.

A Safety Instrumented Function (SIF) designed with this product must not be used at a SIL level higher than stated.

Random Capability:

The SIL limit imposed by the Architectural Constraints must be met for each element. This device meets exida criteria for Route 2_H .

Versions:

Architecture	sov	Application
1001HS RCS	Aluminum or SS	NC Single Acting, De-Energize to Trip (DTT) NO Single Acting, DTT
2002D RCS	Aluminum or SS	Double Acting, DTT (2002 only)
2002 or 2003 Basic RCS	Aluminum	NC Single Acting, DTT
2002 or 2003D Premium RCS	Aluminum	NC Single Acting, DTT

IEC 61508 Failure Rates in FIT1

RCS Component (Manually Initiated Diagnostic Tests)		λsu	λ_{DD}	λου
NC or NO, SA, DTT Solenoid Valve	0	377	0	247
DA, DTT Solenoid Valve	0	332	0	289
NC 2002 or 2003 Basic Manifold	0	4	0	3
NC 1oo1HS, 2oo2 or 2oo3 Manifold & Bypass Valve	0	53	0	26
NO 10o1HS, NO or DA 20o2 Manifold & Bypass Valve	0	19	0	60
GO Proximity Switch ²	0	0	0	0
Pressure Switch ²	0	0	0	0

RCS Component (Automated Diagnostic Tests)		λ _{su}	λ _{DD}	λου
NC or NO, SA, DTT Solenoid Valve	373	4	230	17
DA, DTT Solenoid Valve	329	3	267	22
NC 2002 or 2003 Basic Manifold	N/A, no Diagnostics			
NC 1oo1HS, 2oo2 or 2oo3 Manifold & Bypass Valve	52	1	24	2
NO 10o1HS, NO or DA 20o2 Manifold & Bypass Valve	19	0	54	6
GO Proximity Switch ²	0	0	0	0
Pressure Switch ²	0	0	0	0

SIL Verification:

The Safety Integrity Level (SIL) of an entire Safety Instrumented Function (SIF) must be verified via a calculation of PFH/PFD_{avg} considering redundant architectures, proof test interval, proof test effectiveness, any automatic diagnostics, average repair time and the specific failure rates of all products included in the SIF. Each element must be checked to assure compliance with minimum hardware fault tolerance (HFT) requirements.

Page 2 of 2