CSA-D-IS Installation Instructions, MVD[™] **Transmitters**

Preparation

Safety and approval information

This Micro Motion product complies with all applicable European directives when properly installed in accordance with the instructions in this manual. Refer to the EU declaration of conformity for directives that apply to this product. The EU declaration of conformity, with all applicable European directives, and the complete ATEX Installation Drawings and Instructions are available on the internet at www.emerson.com or through your local Micro Motion support center.

Information affixed to equipment that complies with the Pressure Equipment Directive, can be found on the internet at www.emerson.com.

For hazardous installations in Europe, refer to standard EN 60079-14 if national standards do not apply.

Other information

Full product specifications can be found in the product data sheet. Troubleshooting information can be found in the configuration manual. Product data sheets and manuals are available from the Micro Motion web site at www.emerson.com.

Return policy

Follow Micro Motion procedures when returning equipment. These procedures ensure legal compliance with government transportation agencies and help provide a safe working environment for Micro Motion employees. Micro Motion will not accept your returned equipment if you fail to follow Micro Motion procedures.

Return procedures and forms are available on our web support site at www.emerson.com, or by phoning the Micro Motion Customer Service department.

Emerson Flow customer service

Email:

Worldwide: flow.support@emerson.com

Asia-Pacific: APflow.support@emerson.com

Telephone:

North and South America		Europe and Middle East		Asia Pacific	
United States	800-522-6277	U.K.	0870 240 1978	Australia	800 158 727
Canada	+1 303-527-5200	The Netherlands	+31 (0) 704 136 666	New Zealand	099 128 804
Mexico	+41 (0) 41 7686 111	France	0800 917 901	India	800 440 1468
Argentina	+54 11 4837 7000	Germany	0800 182 5347	Pakistan	888 550 2682
Brazil	+55 15 3413 8000	Italy	8008 77334	China	+86 21 2892 9000
		Central & Eastern	+41 (0) 41 7686 111	Japan	+81 3 5769 6803
		Russia/CIS	+7 495 981 9811	South Korea	+82 2 3438 4600
		Egypt	0800 000 0015	Singapore	+65 6 777 8211
		Oman	800 70101	Thailand	001 800 441 6426
		Qatar	431 0044	Malaysia	800 814 008
		Kuwait	663 299 01		
		South Africa	800 991 390		
		Saudi Arabia	800 844 9564		
		UAE	800 0444 0684		

Contents

Chapter 1	Planning the installation	7
•	1.1 About this document	7
	1.2 Installation architecture	7
	1.3 Hazardous area installations	8
Chapter 2	Transmitter output installation	9
	2.1 1700/2700 fieldbus	10
	2.2 1700/2700 IS	11
	2.3 1700/2700 mAO	12
	2.4 1700/2700 Profibus-PA	13
	2.5 2700 CIO	14
	2.6 2750 CIO	15
	2.7 4200 2-wire	16
	2.8 5700 CIO	17
	2.9 5700 Ethernet	18
	2.10 5700 fieldbus	19
	2.11 5700 fieldbus (FISCO)	20
	2.12 5700 IS	21
Chapter 3	Direct host 4-wire installation	23
	3.1 ECP to direct host through a safety barrier	24
	3.2 CP to direct host through a safety barrier	25
Chapter 4	800 ECP	27
Chapter 5	1500/2500 4-wire installation	29
	5.1 Remote 1500/2500 with ECP	30
	5.2 Remote 1500/2500 4-wire CP to CMF, F, H, R, CNG, or T	31
	5.3 Remote 1500/2500 4-wire CP to CMF400 with booster amplifier	32
	5.4 Remote 1500/2500 4-wire CP to D600	33
Chapter 6	1700/2700 4-wire installation	35
•	6.1 Remote 1700/2700 4-wire CP	36
	6.2 Remote 1700/2700 with CP and a CMF400	37
	6.3 Remote 1700/2700 with CP and a D600	38
	6.4 Remote 1700/2700 with ECP	39
Chapter 7	2750 4-wire ECP installation	41
Chapter 8	3500 4-wire installation	43
	8.1 Remote 3500 with CP and CMF400	44
	8.2 Remote 3500 with CP and a D600	45
	8.3. Remote 3500 with CP on CME, F. H. R. CNC, and T.	46

	8.4 Remote 3500 with ECP	47
Chapter 9	3700 4-wire installation	49
•	9.1 Remote 3700 with CP and CMF400	50
	9.2 Remote 3700 with CP and D600	51
	9.3 3700 with CP and CMF, F, H, R, CNF, or T	52
	9.4 3700 with ECP	53
Chapter 10	5700 4-wire installation	55
	10.1 5700 to RCP - sensor with junction box	56
	10.2 Remote 5700 with CP	57
Chapter 11	LFT 4-wire to LF sensor installation	59
	11.1 Remote LFT CIO	60
	11.2 Remote LFT on a DIN rail	61
	11.3 Remote LFT fieldbus	62
	11.4 Remote LFT mAO/FO	63
	11.5 Remote LFT Profibus-PA	64
Chapter 12	1500/2500 9-wire junction box installation	65
	12.1 1500/2500 CP with 9-wire D600 junction box	66
	12.2 1500/2500 CP with 9-wire DT junction box	67
	12.3 1500/2500 to RCP with 9-wire CMF400 junction box and booster amplifier	68
	12.4 1500/2500 to RCP with 9-wire CMF, D, DL, F, H, or T junction box	69
Chapter 13	1700/2700 integral with 9-wire junction box installation	71
	13.1 1700/2700 with integral CP and a CMF400	72
	13.2 1700/2700 with integral CP and a D600	73
	13.3 1700/2700 with integral CP and a DT	74
	13.4 1700/2700 with integral CP and a CMF, F, H, T, D, or DL	75
Chapter 14	1700/2700 to RCP with 9-wire junction box installation	77
	14.1 1700/2700 with RCP and a CMF400	78
	14.2 1700/2700 with RCP and a D600	79
	14.3 1700/2700 with RCP and a DT	80
	14.4 1700/2700 with RCP and a CMF, F, T, D, or DL	81
Chapter 15	3500 to RCP with 9-wire junction box installation	83
	15.1 3500 to RCP with 9-wire CMF400 junction box with booster amplifier	84
	15.2 3500 to RCP with 9-wire D600 junction box	86
	15.3 3500 to RCP with 9-wire DT junction box	87
	15.4 3500 to RCP with 9-wire CMF, D, DL, H, or T junction box	88
Chapter 16	3700 to RCP with 9-wire junction box installation	89
	16.1 3700 to RCP with 9-wire CMF300A junction box	90
	16.2 3700 to RCP with 9-wire CMF400 junction box	91
	16.3 3700 to RCP with 9-wire D600 junction box	92

Appendix A	List of drawings	101
	18.2 Remote mount booster amplifier with junction box - D600	99
	18.1 RCP with remote mount booster amplifier - D600	98
Chapter 18	D600 remote mount booster amplifier	97
Chapter 17	5700 to RCP with 9-wire junction box installation	95
	16.5 3700 to RCP with 9-wire CMF, D, DL, F, H, or T junction box	94
	16.4 3700 to RCP with 9-wire DT junction box	93

Contents **Installation Manual**

August 2019 MMI-20001965

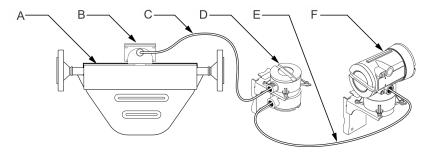
1 Planning the installation

1.1 About this document

Use this manual to ensure that any applicable Micro Motion MVD flowmeter installation complies with Canadian Standards Association (CSA) approval.

MVD applies to all flowmeter installations that include a core processor.

The information in this document assumes that users understand:


- Basic transmitter and sensor installation concepts and procedures
- All corporate and government safety standards and requirements that guard against injuries and death

This manual provides only information associated with installation of MVD transmitters through CSA-D-IS instructions. For complete information on flowmeter installation, see the documentation provided with your sensor and transmitter.

1.2 Installation architecture

Information in this manual applies only to 4-wire and 9-wire CSA-approved installations involving a core processor mounted to a Micro Motion sensor and transmitter.

Figure 1-1: MVD remote core processor with remote transmitter

- A. Sensor
- B. Junction box
- C. 9-wire cable
- D. Core processor
- E. 4-wire cable
- F. Transmitter

Hazardous area installations 1.3

If your cable will be installed in a hazardous area, ensure that it meets the hazardous area requirements.

WARNING

Failure to maintain intrinsic safety in a hazardous area could result in an explosion.

To keep sensor wiring intrinsically safe:

- Keep intrinsically safe (IS) sensor wiring separate from power supply wiring and output wiring.
- Do not install power cable in the same conduit or cable tray as flowmeter cable.
- Use this document with the appropriate approvals documentation. These manuals are shipped with the flowmeter or available on the Emerson web site: www.emerson.com.
- For hazardous area installations in Europe, refer to standard EN 60079-14 if national standards do not apply.

2 Transmitter output installation

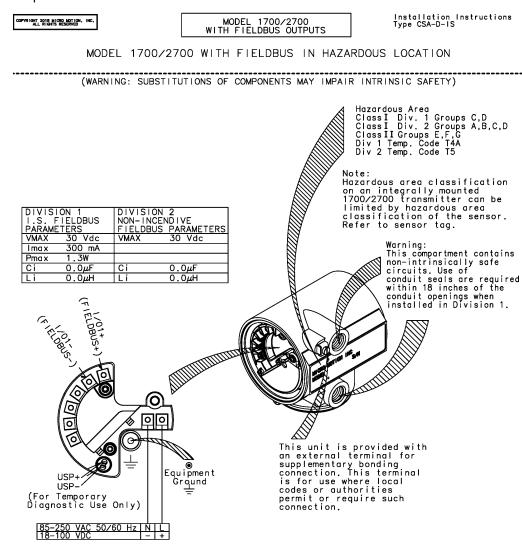

Use CSA diagrams for installing the following meters.

Table 2-1: List of drawings

Transmitter	Drawing
1700/2700 fieldbus	EB-3600476, Revision DA
1700/2700 IS	EB-3600629, Revision DA
1700/2700 mAO	EB-3600479, Revision CA
1700/2700 Profibus-PA	EB-3600473, Revision DA
2700 CIO	EB-3600667, Revision BA
2750 CIO	EB-20011794, Revision A
4200 2-wire	EB-20057521, Revision AA
5700 CIO	EB-20028175, Revision AA
5700 Ethernet	EB-20030708, Revision AA
5700 fieldbus (FISCO)	EB-20030804, Revision AA
5700 fieldbus	EB-20030711, Revision AA
5700 IS	EB-20045787, Revision AA

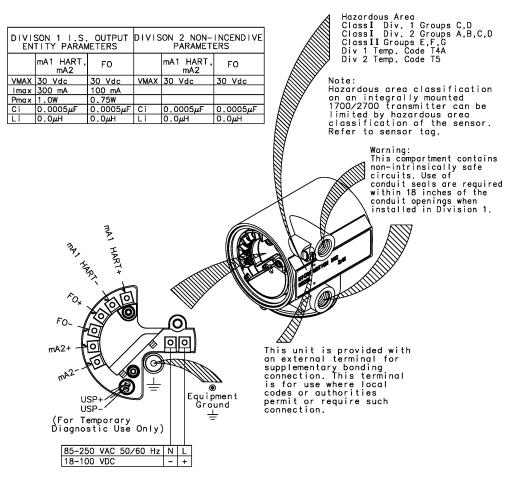
2.1 1700/2700 fieldbus

This drawing describes an outputs installation for a 1700 or 2700 transmitter with fieldbus outputs.

Electronics: 1700/2700 FIELDBUS

EB-3600476 Rev. DA SHT 1 OF 1

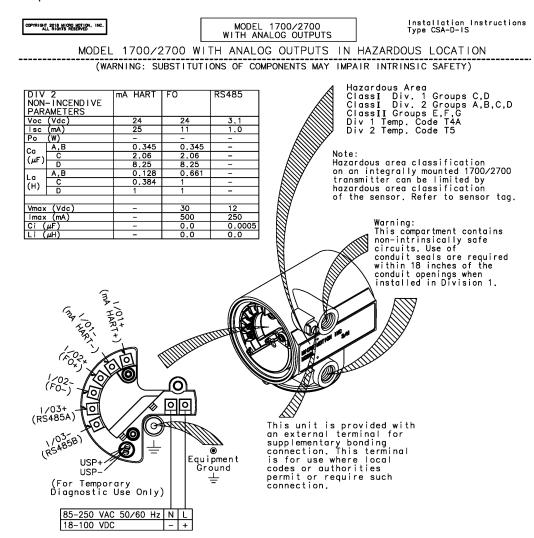
2.2 1700/2700 IS


This drawing describes an outputs installation for a 1700 or 2700 transmitter with intrinsically safe outputs.

MODEL 1700/2700 WITH I.S. OUTPUTS Installation Instructions Type CSA-D-IS

MODEL 1700/2700 WITH I.S. OUTPUTS IN HAZARDOUS LOCATION

(WARNING: SUBSTITUTIONS OF COMPONENTS MAY IMPAIR INTRINSIC SAFETY)

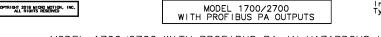


Electronics: 1700/2700 I.S. OUTPUT

EB-3600629 Rev. DA SHT 1 OF 1

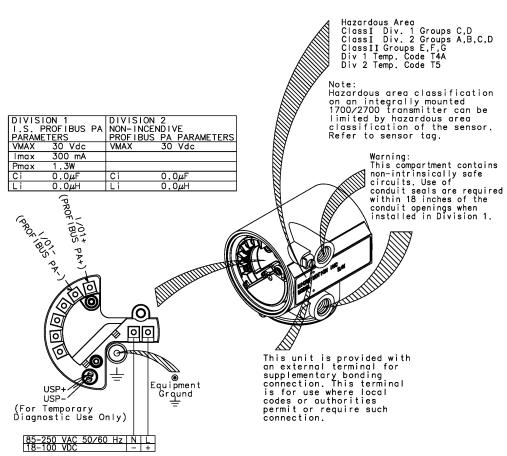
2.3 1700/2700 mAO

This drawing describes an outputs installation for a 1700 or 2700 transmitter with mA Outputs.



Electronics: 1700/2700 ANALOG

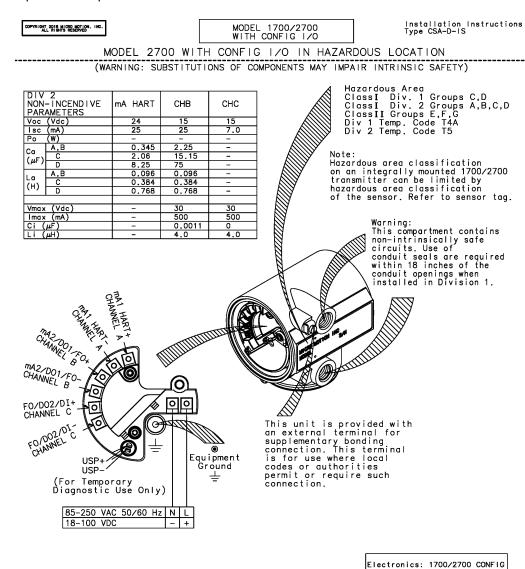
EB-3600479 Rev. CA SHT 1 OF 1


2.4 1700/2700 Profibus-PA

This drawing describes an outputs installation for a 1700 or 2700 transmitter with Profibus-PA outputs.

MODEL 1700/2700 WITH PROFIBUS PA IN HAZARDOUS LOCATION

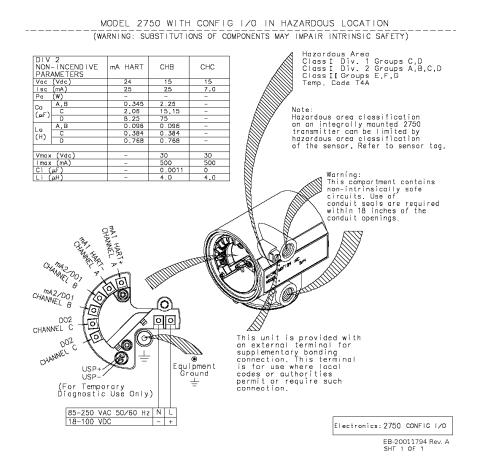
(WARNING: SUBSTITUTIONS OF COMPONENTS MAY IMPAIR INTRINSIC SAFETY)



Electronics: 1700/2700 PROFIBUS PA

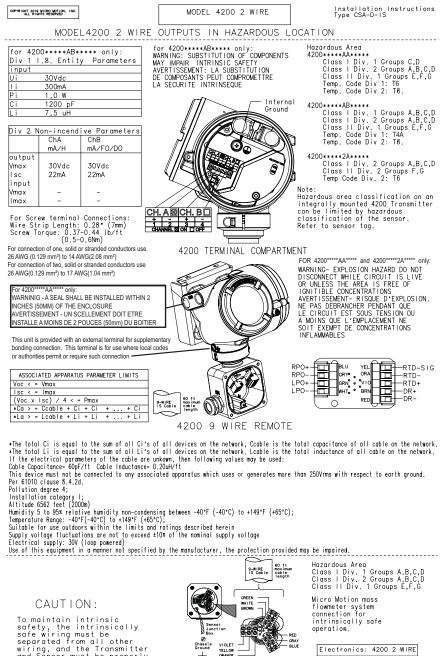
EB-3600473 Rev. DA SHT 1 OF 1

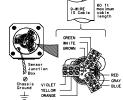
2.5 2700 CIO


This drawing describes an outputs installation for a 2700 transmitter with configurable inputs and outputs.

EB-3600667 Rev. BA SHT 1 OF 1

2.6 2750 CIO

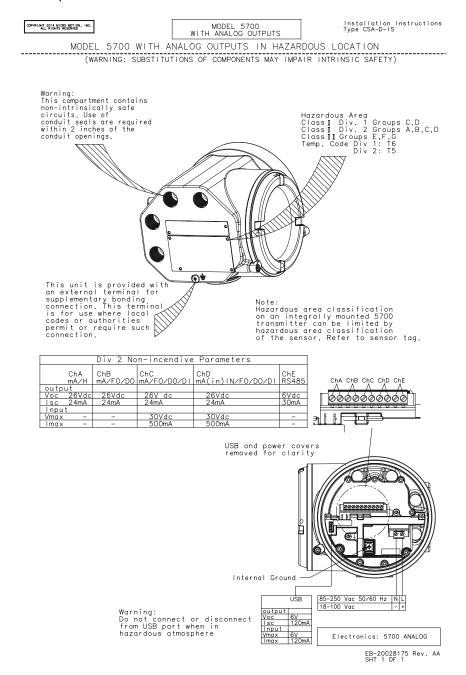

This drawing describes an outputs installation for a 2750 transmitter with configurable inputs and outputs.


August 2019 MMI-20001965

2.7 4200 2-wire

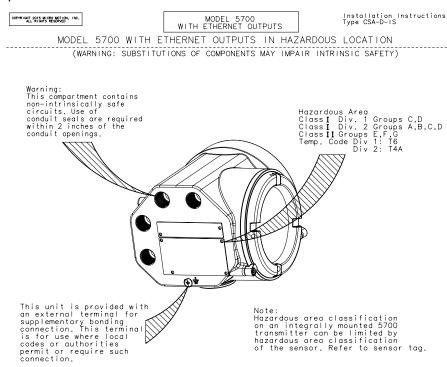
This drawing describes an outputs installation for a 4200 2-wire transmitter.

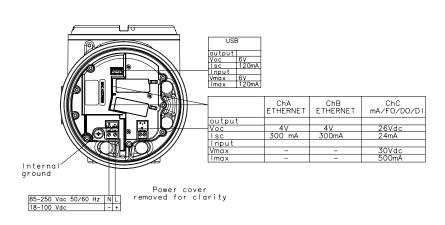
To maintain intrinsic safety, the intrinsically safe wiring must be separated from all other wiring, and the Transmitter and Sensor must be properly arounded. arounded.



SENSOR MOUNTED JUNCTION BOX
Supplied as intrinsically safe

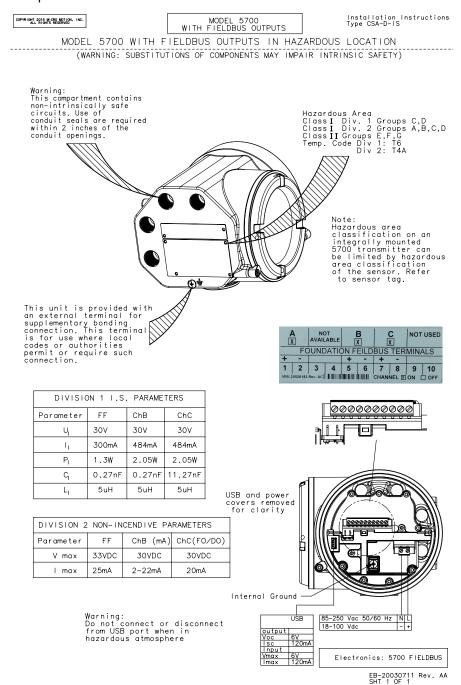
EB-20057521 Rev. AA SHT 1 OF 1


2.8 5700 CIO


This drawing describes an outputs installation for a 5700 transmitter with configurable inputs and outputs.

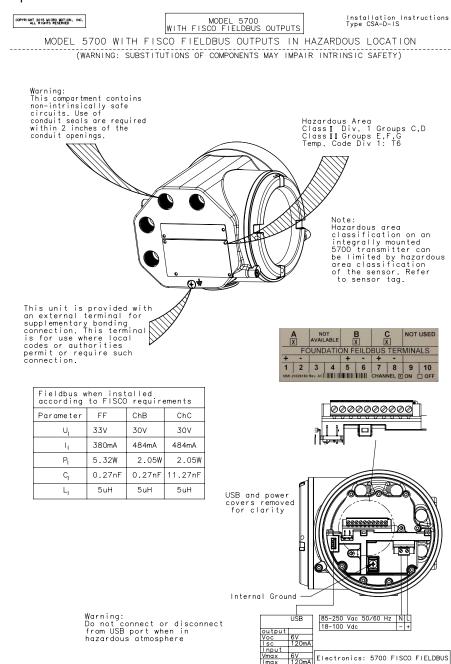
2.9 5700 Ethernet

This drawing describes an outputs installation for a 5700 transmitter with Ethernet outputs.


Warning: Do not connect or disconnect from USB port when in hazardous atmosphere

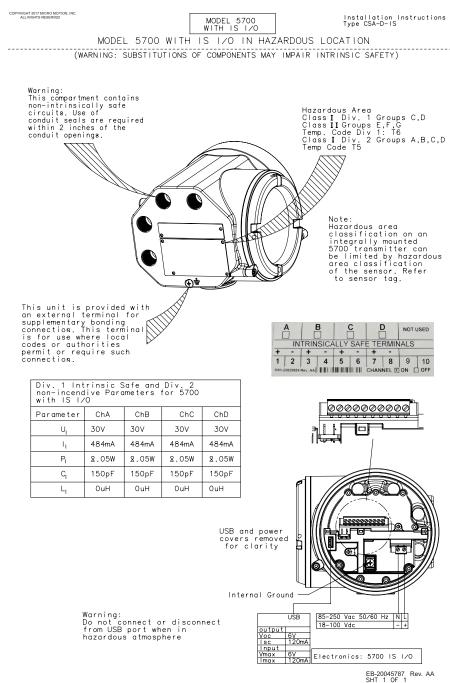
Electronics: 5700 ETHERNET

EB-20030708 Rev. AA SHT 1 OF 1


2.10 5700 fieldbus

This drawing describes an outputs installation for a 5700 transmitter with fieldbus outputs.

2.11 5700 fieldbus (FISCO)


This drawing describes an outputs installation for a 5700 transmitter with fieldbus (FISCO) outputs.

EB-20030804 Rev. AA

2.12 5700 IS

This drawing describes an outputs installation for a 5700 transmitter with intrinsically safe outputs.

August 2019

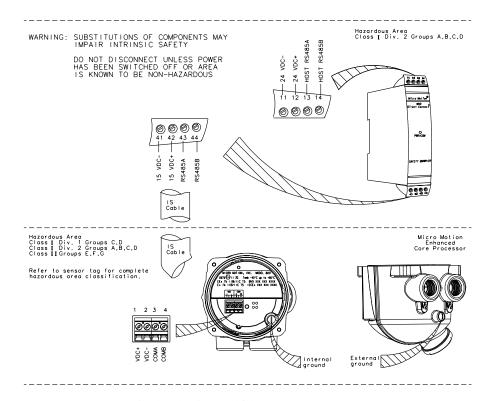

3 Direct host 4-wire installation

Table 3-1: List of drawings

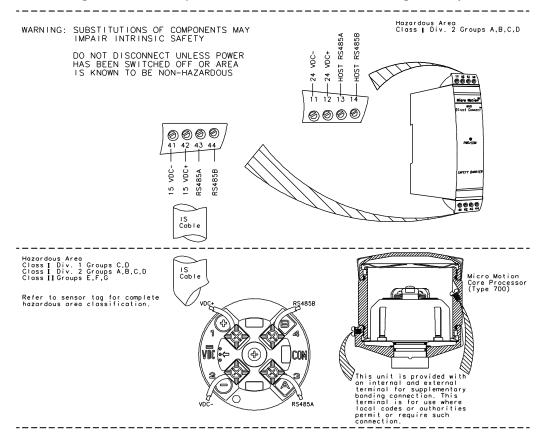
Installation	Drawing
ECP to direct host through a safety barrier	EB-20003013, Revision A
CP to direct host through a safety barrier	EB-3600799, Revision CA

3.1 ECP to direct host through a safety barrier

This drawing describes an enhanced core processor to a 4-wire direct host through a safety barrier.

Maximum Cable Capacitance = 60pF/ft
Maximum Cable Inductance = 0.20µH/ft

Maximum cable length from core processor to safety barrier is 500 feet.
For cable runs greater than 500 feet, please contact Micro Motion.


This device must not be connected to any associated apparatus which uses or generates more than 250Vrms with respect to earth ground.

Micro Motion mass flowmeter system connection for Intrinsically safe operation

EB-20003013 Rev. A SHT 1 OF 1

3.2 CP to direct host through a safety barrier

This drawing describes a core processor to a 4-wire direct host through a safety barrier.

Maximum Cable Capacitance = 60pF/ftMaximum Cable Inductance = $0.20\mu H/ft$

Maximum cable length from core processor to safety barrier is 500 feet. For cable runs greater than 500 feet, please contact Micro Motion.

This device must not be connected to any associated apparatus which uses or generates more than 250Vrms with respect to earth ground.

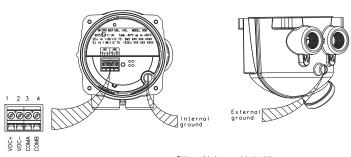
Micro Motion mass flowmeter system connection for Intrinsically safe operation

Electronics: SAFETY BARRIER

EB-3600799 Rev. C SHT 1 OF 1

August 2019

4 800 ECP


This drawing describes an 800 enhanced core processor installation.

800 ENHANCED CORE PROCESSOR IN HAZARDOUS LOCATION

Hazardous Area Class I Div. 1 Groups C.D Class I Div. 2 Groups A.B.C.I

I.S. AND NON-IN ENHANCED CORE P ENTITY PRMTRS /	CENDIVE 800 ROCESSOR(INPUT) 4-WIRE TERMINAL
VMAX	17.22 Vdc
Imax	488 mA
Pmax	2.1W
Ci	2200pF
Li	30μH

ENHANCED CORE PROCESSOR

This unit is provided with an internal and external termina for supplementary bonding connection. This terminal is for use where local codes or authorities permit or require such connection.

INSTALLATION NOTES:

*The total Ci is equal to the sum of all Ci's of all devices on the network. Ccable is the total capacitance of all cable on the network.

*The total Li is equal to the sum of all Li's of all devices on the network. Lcable is the total inductance of all cable on the network.

If the electrical parameters of the cable are unknown, then the following values may be used:

Cable Capacitance = 60pF/ft
Cable Inductance = 0.20µH/ft

Electronics: ENHANCED CO

This device must not be connected to any associated apparatus which uses or generates more than 250Vrms with respect to earth ground.

EB-20003427 Rev. A SHT 1 OF 1

800 ECPAugust 2019

Installation Manual

MMI-20001965

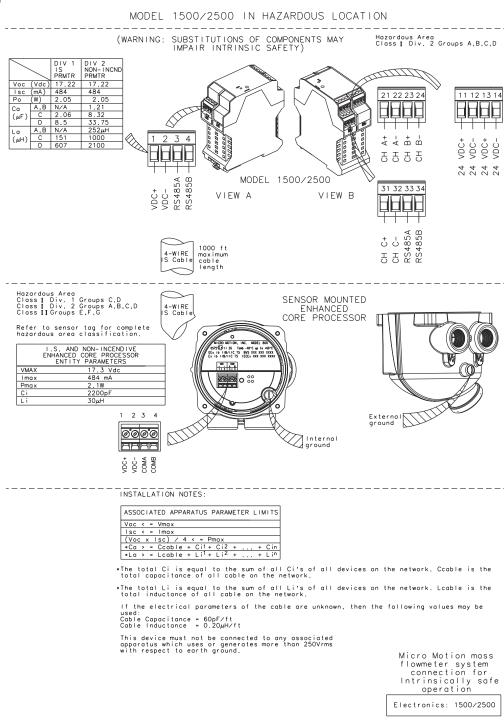
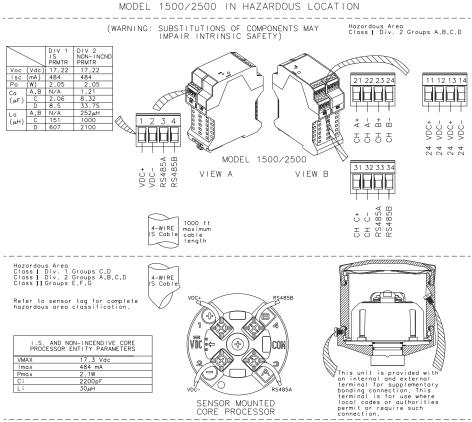

5 1500/2500 4-wire installation

Table 5-1: List of drawings

Installation	Drawing
Remote 1500/2500 with ECP	EB-20003009, Revision A
Remote 1500/2500 4-wire CP to CMF400 with booster amplifier	EB-20001219, Revision A
Remote 1500/2500 4-wire CP to D600	EB-20001218, Revision A
Remote 1500/2500 4-wire CP to CMF, F, H, R, CNG, or T	EB-20001220, Revision A


5.1 Remote 1500/2500 with ECP

This drawing describes a remote 1500 or 2500 4-wire installation with an enhanced core processor mounted on a sensor.

5.2 Remote 1500/2500 4-wire CP to CMF, F, H, R, CNG, or T

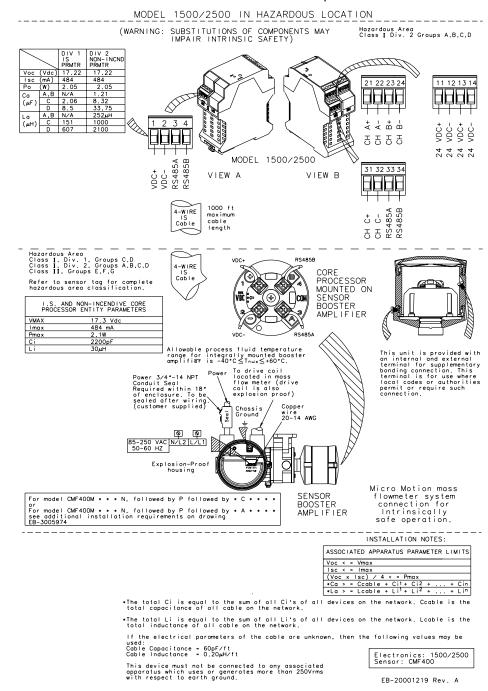
This drawing describes a remote 1500 or 2500 4-wire installation with a core processor mounted on a CMF, F-Series, H-Series, R-Series, CNG, or T-Series sensor.

INSTALLATION NOTES:

ASSOCIATED APPARATUS PARAMETER LIMITS
Voc < = Vmax
Isc < = Imax
(Voc x Isc) / 4 < = Pmax
*Ca > = Ccable + Ci1 + Ci2 + + Cin
*La > = Lcable + Li ¹ + Li ² + + Li ⁿ

- *The total Ci is equal to the sum of all Ci's of all devices on the network. Ccable is the total capacitance of all cable on the network.
- *The total Li is equal to the sum of all Li's of all devices on the network. Lcable is the total inductance of all cable on the network.
- If the electrical parameters of the cable are unknown, then the following values may be used: Cable Capacitance = 60pF/ft Cable Inductance = $0.20\mu H/ft$

This device must not be connected to any associated apparatus which uses or generates more than 250Vrms with respect to earth ground.

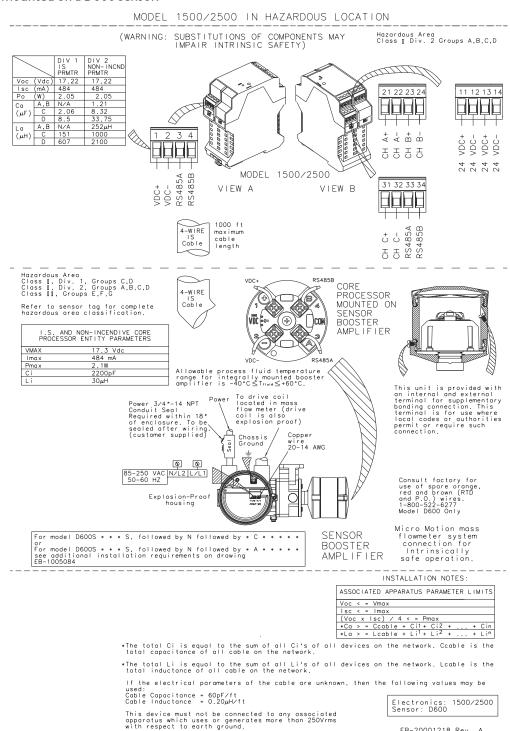

Micro Motion mass flowmeter system connection for Intrinsically safe operation

Electronics: 1500/2500

EB-20001220 Rev. A

5.3 Remote 1500/2500 4-wire CP to CMF400 with booster amplifier

This drawing describes a remote 1500 or 2500 4-wire installation with a core processor mounted on a CMF400 sensor, in addition to a booster amplifier.



MMI-20001965

FB-20001218 Rev A

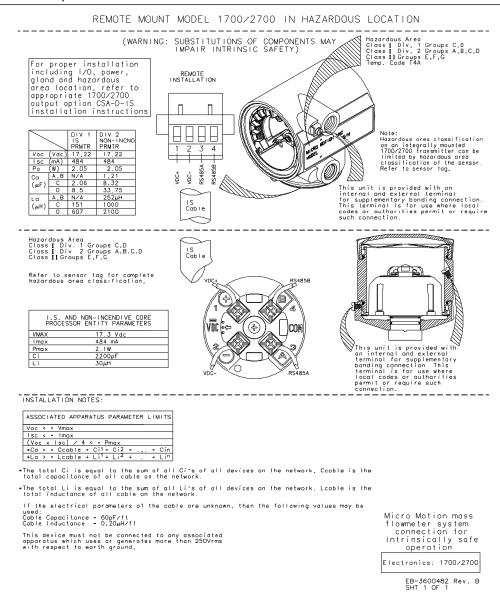
Remote 1500/2500 4-wire CP to D600 5.4

This drawing describes a remote 1500 or 2500 4-wire installation with a core processor mounted on a D600 sensor.

August 2019

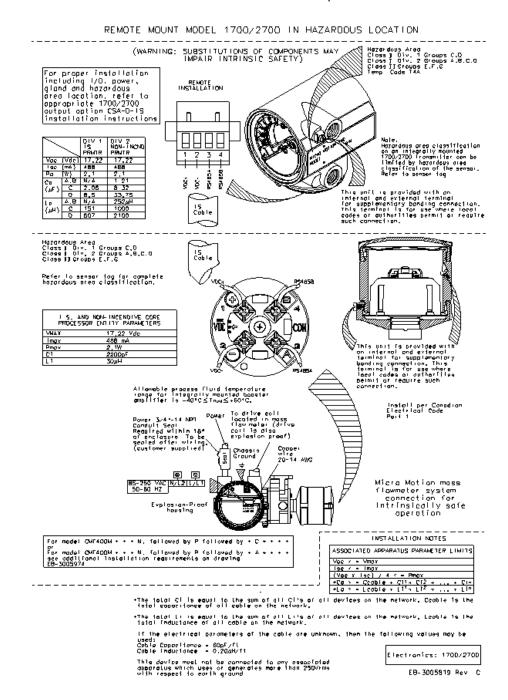
6 1700/2700 4-wire installation

Table 6-1: List of drawings


Installation	Drawing
Remote 1700/2700 4-wire CP	EB-3600482, Revision B
Remote 1700/2700 with CP and a CMF400	EB-3005819, Revision C
Remote 1700/2700 with CP and a D600	EB-1005983, Revision B
Remote 1700/2700 with ECP	EB-20003010, Revision A

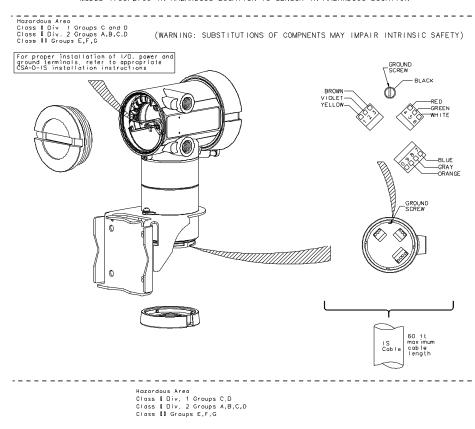
6.1 Remote 1700/2700 4-wire CP

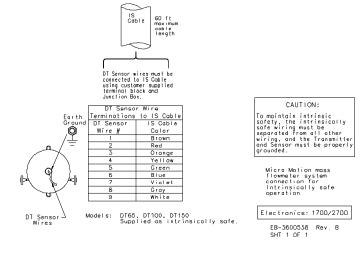
This drawing describes a 1700 or 2700 4-wire remote transmitter installed with a core processor mounted on a sensor.


Important

This installation does not apply if you have either a D600 or a CMF400 sensor with a booster amplifier.

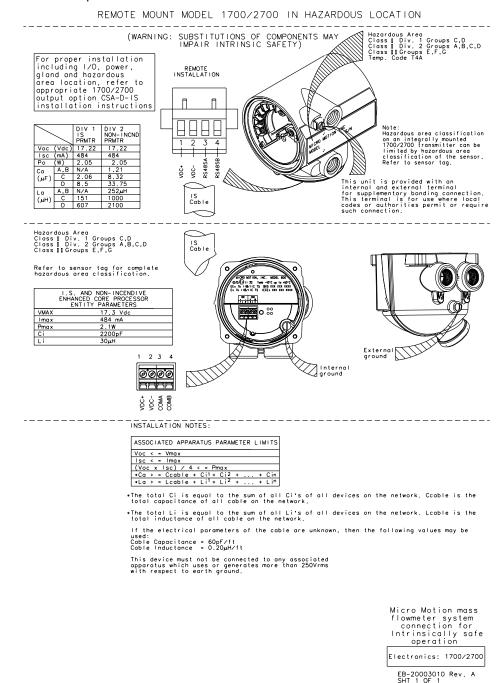
6.2 Remote 1700/2700 with CP and a CMF400


This drawing describes a remote 1700 or 2700 4-wire installation with a core processor mounted on a CMF400 sensor, in addition to a booster amplifier.

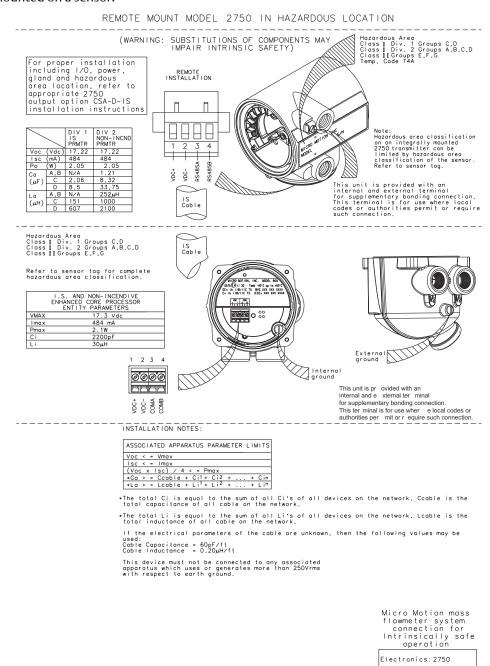


6.3 Remote 1700/2700 with CP and a D600

This drawing describes a remote 1700 or 2700 4-wire installation with a core processor mounted on a D600 sensor.


MODEL 1700/2700 IN HAZARDOUS LOCATION TO SENSOR IN HAZARDOUS LOCATION

6.4 Remote 1700/2700 with ECP


This drawing describes a remote 1700 or 2700 4-wire remote transmitter installed with an enhanced core processor mounted on a sensor.

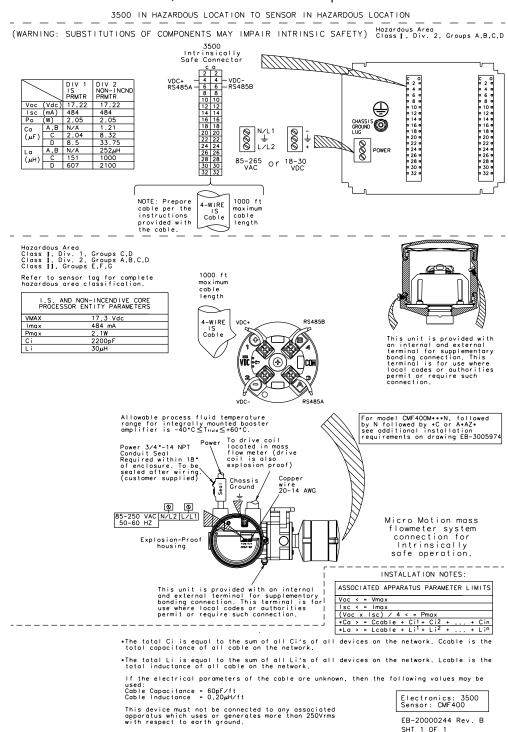
EB-20011795 Rev. A SHT 1 OF 1

7 2750 4-wire ECP installation

This drawing describes a remote 2750 4-wire installation with an enhanced core processor mounted on a sensor.

August 2019

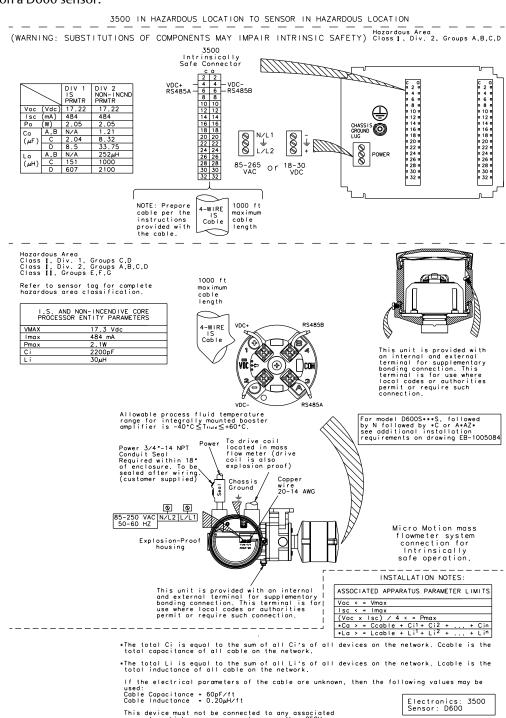
8 3500 4-wire installation


Table 8-1: List of drawings

Installation	Drawing
Remote 3500 with CP and CMF400	EB-20000244, Revision B
Remote 3500 with CP and a D600	EB-20000247, Revision B
Remote 3500 with CP on CMF, F, H, R, CNG, and T	EB-20000250, Revision B
Remote 3500 with ECP	EB-20003011, Revision A

August 2019 MMI-20001965

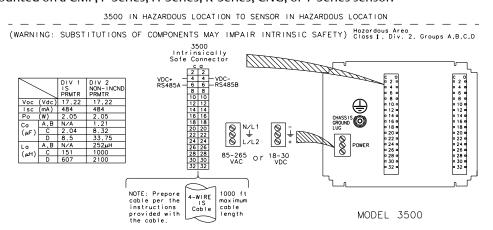
8.1 Remote 3500 with CP and CMF400


This drawing describes a remote 3500 transmitter 4-wire installation with a core processor mounted on a CMF400 sensor, in addition to a booster amplifier.

MMI-20001965 August 2019

Remote 3500 with CP and a D600 8.2

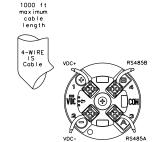
This drawing describes a remote 3500 4-wire installation with a core processor mounted on a D600 sensor.


This device must not be connected to any associated apparatus which uses or generates more than 250Vrms with respect to earth ground.

EB-20000247 Rev. B SHT 1 OF 1

August 2019 MMI-20001965

8.3 Remote 3500 with CP on CMF, F, H, R, CNG, and T


This drawing describes a remote 3500 transmitter 4-wire installation with a core processor mounted on a CMF, F-Series, H-Series, R-Series, CNG, or T-Series sensor.

Refer to sensor tag for complete hazardous area classification.

	.S. AND NON-INCENDIVE CORE ROCESSOR ENTITY PARAMETERS
VMAX	17,3 Vdc
Imax	484 mA
Pmax	2.1W
c	2200pF
Li	30µH

his unit is provided with n internal and external erminal for supplementary onding connection. This erminal is for use where ocal codes or authorities ermit or require such onnection.

SENSOR MONTED CORE PROCESSOR

INSTALLATION NOTES:

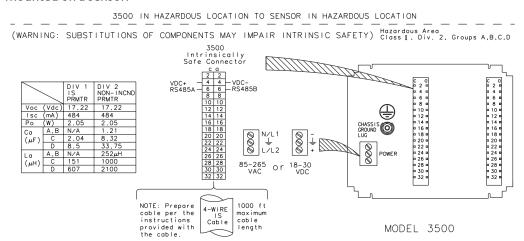
ASSOCIATED APPARATUS PARAMETER LIMITS
Voc < = Vmax
Isc < = Imax
(Voc x Isc) / 4 < = Pmax
*Ca > = Ccable + Ci1 + Ci2 + + Cin
*La > = Lcable + Li ¹ + Li ² + + Li ⁿ

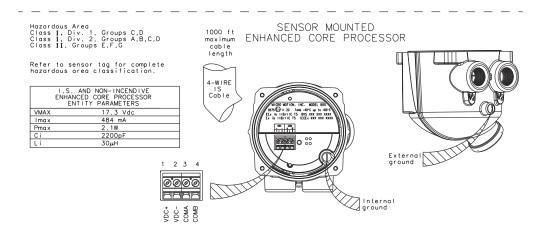
*The total Ci is equal to the sum of all Ci's o all devices on the network. Ccable is the tota capacitance of all cable on the network.

*The total Li is equal to the sum of all Li's of all devices on the network. Lcable is the total inductance of all cable on the network.

If the electrical parameters of the cable are unknown, then the following values may be used:
Cable Capacitance = 60.F/fft
Cable Inductance = 0.20μH/ft

This device must not be connected to any associated apparatus which uses or generates more than 250Vrms with respect to earth ground.


Micro Motion mass flowmeter system connection for Intrinsically safe operation.


Electronics: 3500

EB-20000250 Rev. B SHT 1 OF 1 MMI-20001965 August 2019

8.4 Remote 3500 with ECP

This drawing describes a remote 3500 4-wire installation with an enhanced core processor mounted on a sensor.

INSTALLATION NOTES:

ASSOCIATED APPARATUS PARAMETER LIMITS
Voc < = Vmax
Isc < = Imax
(Voc x Isc) / 4 < = Pmax
*Ca > = Ccable + Ci1 + Ci2 + + Cin
*La > = Lcable + Li ¹ + Li ² + + Li ⁿ

- *The total Ci is equal to the sum of all Ci's of all devices on the network. Ccable is the total capacitance of all cable on the network.
- *The total Li is equal to the sum of all Li's of all devices on the network. Lcable is the total inductance of all cable on the network.
- If the electrical parameters of the cable are unknown, then the following values may be used: Cable Capacitance = 60pF/ft
 Cable Inductance = 0.20µH/ft

This device must not be connected to any associated apparatus which uses or generates more than 250Vrms with respect to earth ground.

Micro Motion mass flowmeter system connection for Intrinsically safe operation.

Electronics: 3500

EB-20003011 Rev. A SHT 1 OF 1

MMI-20001965

August 2019

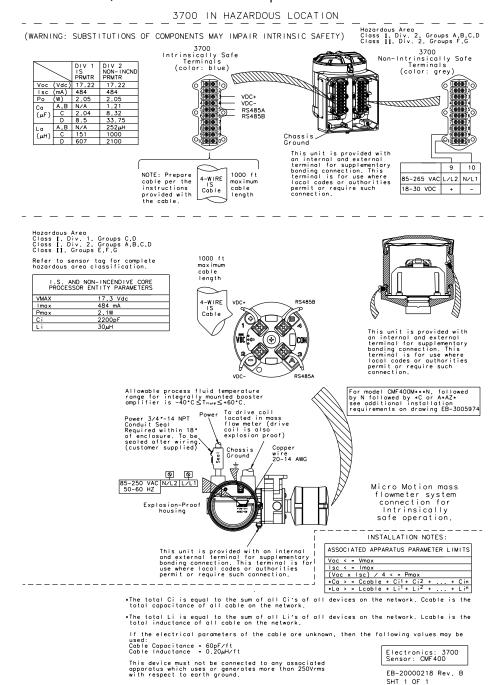
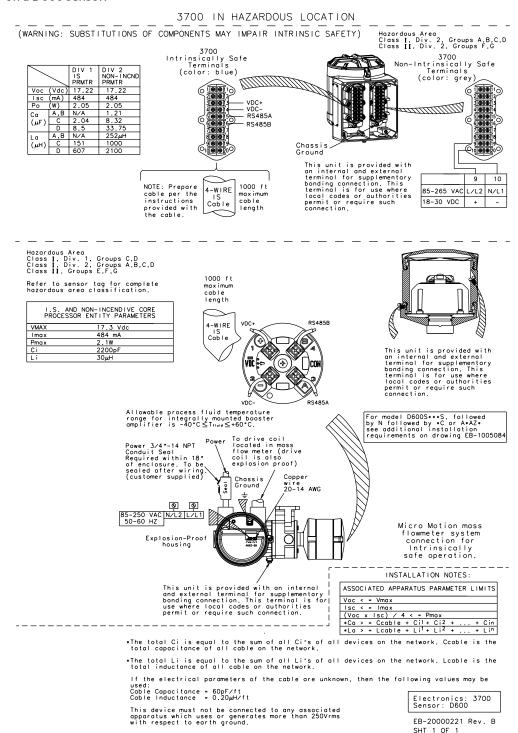

9 3700 4-wire installation

Table 9-1: List of drawings

Installation	Drawing
Remote 3700 with CP and CMF400	EB-20000218, Revision B
Remote 3700 with CP and D600	EB-20000221, Revision B
3700 with CP and CMF, F, H, R, CNF, or T	EB-20000224, Revision B
3700 with ECP	EB-20003012, Revision A

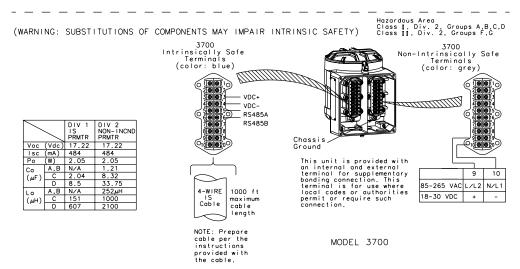
9.1 Remote 3700 with CP and CMF400


This drawing describes a remote 3700 4-wire installation with a core processor mounted on a CMF400 sensor, in addition to a booster amplifier.

MMI-20001965 August 2019

9.2 Remote 3700 with CP and D600

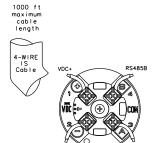
This drawing describes a remote 3700 4-wire installation with a core processor mounted on a D600 sensor.


MMI-20001965

August 2019

9.3 3700 with CP and CMF, F, H, R, CNF, or T

This drawing describes a 3700 4-wire installation with a core processor mounted on a CMF, F-Series, H-Series, R-Series, CNF, or T-Series sensor.


3700 IN HAZARDOUS LOCATION

Hazardous Area Class I, Div. 1, Groups C,D Class I, Div. 2, Groups A,B,C,D Class II, Groups E,F,G

Refer to sensor tag for complete hazardous area classification.

	.S. AND NON-INCENDIVE CORE ROCESSOR ENTITY PARAMETERS
VMAX	17.3 Vdc
Imax	484 mA
Pmax	2.1W
Ci	2200pF
Πi	30µH

This unit is provided with an internal and external terminal for supplementary bonding connection. This terminal is for use where local codes or authorities permit or require such connection.

SENSOR MOUNTED CORE PROCESSOR

INSTALLATION NOTES:

ASSOCIATED APPARATUS PARAMETER LIMITS
Voc < = Vmax
Isc < = Imax
(Voc x Isc) / 4 < = Pmax
*Ca > = Ccable + Ci1 + Ci2 + + Cin
*La > = Lcable + Li ¹ + Li ² + + Li ⁿ

*The total Ci is equal to the sum of all Ci's of all devices on the network. Ccable is the total capacitance of all cable on the network.

•The total Li is equal to the sum of all Li's of all devices on the network. Lcable is the total inductance of all cable on the network.

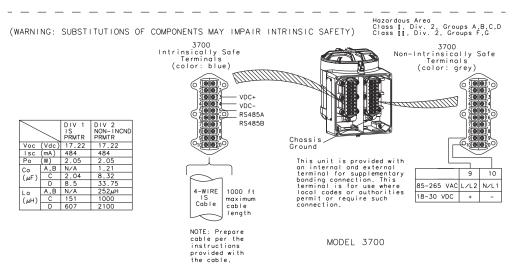
If the electrical parameters of the cable are unknown, then the following values may be used:

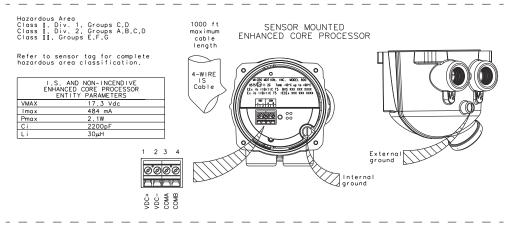
Cable Capacitance = 60.FC/ft

Cable Inductance = 0.20µH/ft

This device must not be connected to any associated apparatus which uses or generates more than 250Vrms with respect to earth ground.

Micro Motion mass flowmeter system connection for Intrinsically safe operation.


Electronics: 3700


EB-20000224 Rev. B SHT 1 OF 1 MMI-20001965 August 2019

9.4 3700 with ECP

This diagram describes a 3700 4-wire installation with an enhanced core processor mounted on a sensor.

3700 IN HAZARDOUS LOCATION

INSTALLATION NOTES:

ASSOCIATED APPARATUS PARAMETER LIMITS
Voc < = Vmax
Isc < = Imax
(Voc x Isc) / 4 < = Pmax
*Ca > = Ccable + Ci1 + Ci2 + + Cin
*La > = Lcable + Li ¹ + Li ² + + Li ⁿ

- *The total Ci is equal to the sum of all Ci's of all devices on the network. Ccable is the total capacitance of all cable on the network.
- *The total Li is equal to the sum of all Li's of all devices on the network. Lcable is the total inductance of all cable on the network.
- If the electrical parameters of the cable are unknown, then the following values may be used:
 Cable Capacitance = 60.PF/ft
 Cable Inductance = 0.20µH/ft

This device must not be connected to any associated apparatus which uses or generates more than 250Vrms with respect to earth ground.

Micro Motion mass flowmeter system connection for Intrinsically safe operation.

Electronics: 3700

EB-20003012 Rev. A SHT 1 OF 1

August 2019

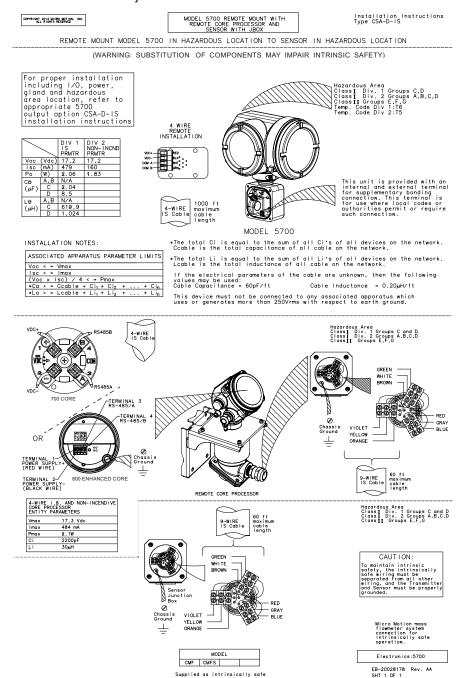
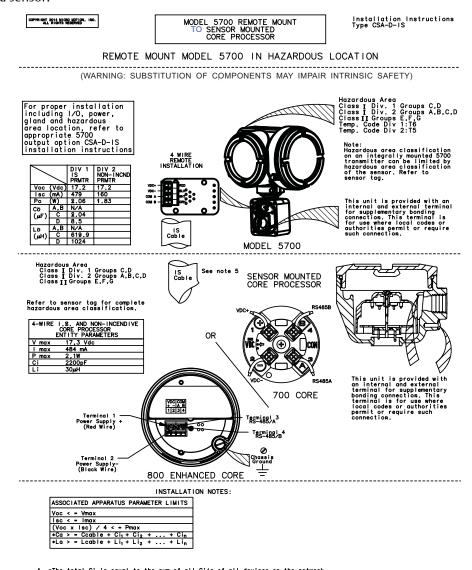

10 5700 4-wire installation

Table 10-1: List of drawings

Installation	Drawing
5700 to RCP - sensor with junction box	EB-20028178, Revision AA
Remote 5700 with CP	EB-20028177, Revision AA


10.1 5700 to RCP - sensor with junction box

This drawing describes a remote 5700 4-wire installation with a remote core processor mounted on a sensor with a junction box.

10.2 Remote 5700 with CP

This drawing describes a remote 5700 4-wire installation with a core processor mounted on a sensor.

- *The total Ci is equal to the sum of all Ci's of all devices on the network. Ccable is the total capacitance of all cable on the network.
- 2. *The total Li is equal to the sum of all Li's of all devices on the network. Lcable is the total inductance of all cable on the network.
- 5. If the electrical parameters of the cable are unknown, then the following values may be used:
 Cable Capacitance = 60 pF/ft
 Cable Inductance = 0.20 µH/ft
- 4. This device must not be connected to any associated apparatus which uses or generates more than 250Vrms with respect to earth ground.
- 5. Maximum cable length determined by entity parameters and maximum cable inductance.

Micro Motion mass flowmeter system connection for Intrinsically safe operation

Electronics: 5700

EB-20028177 Rev. AA

August 2019

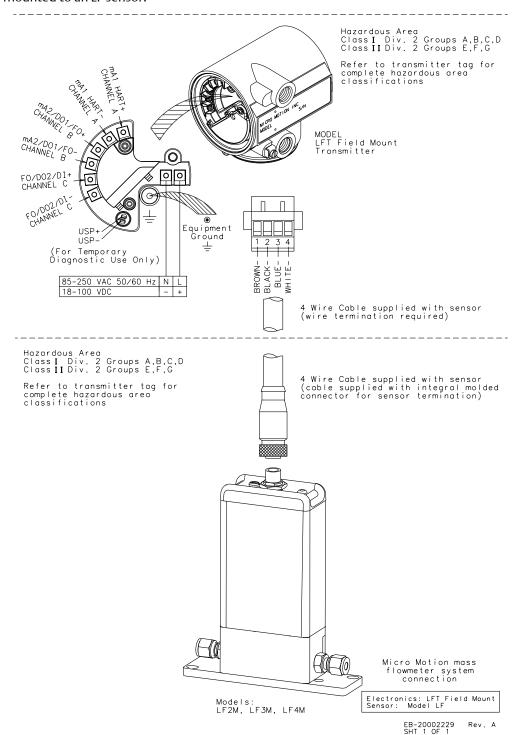
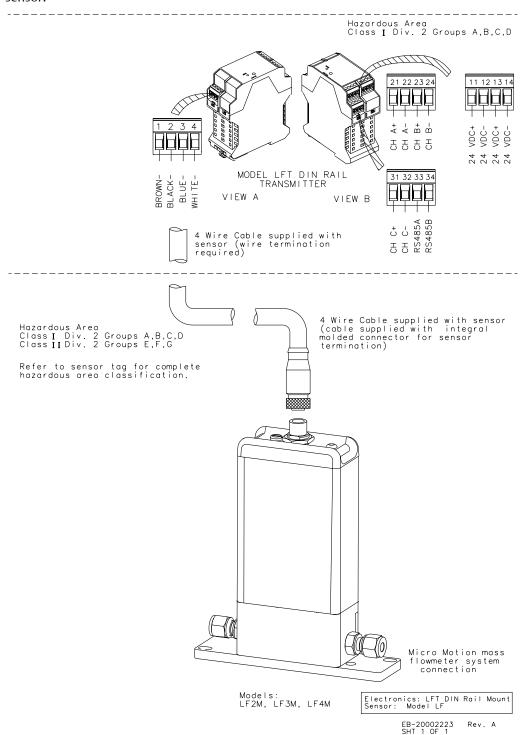
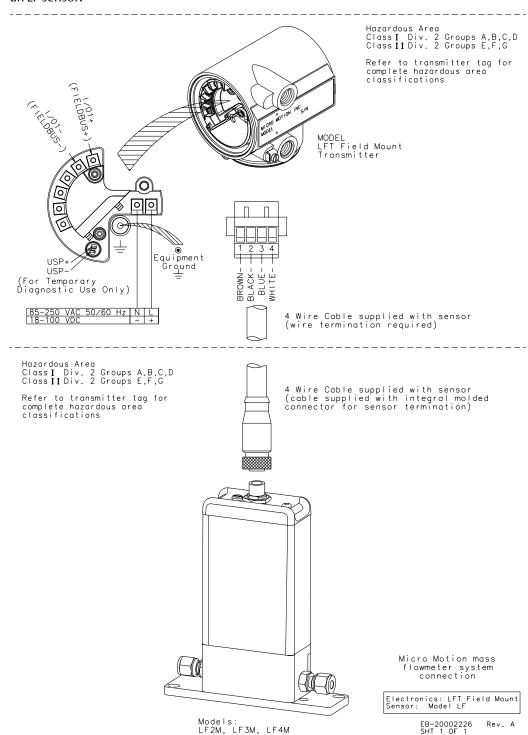

11 LFT 4-wire to LF sensor installation

Table 11-1: List of drawings

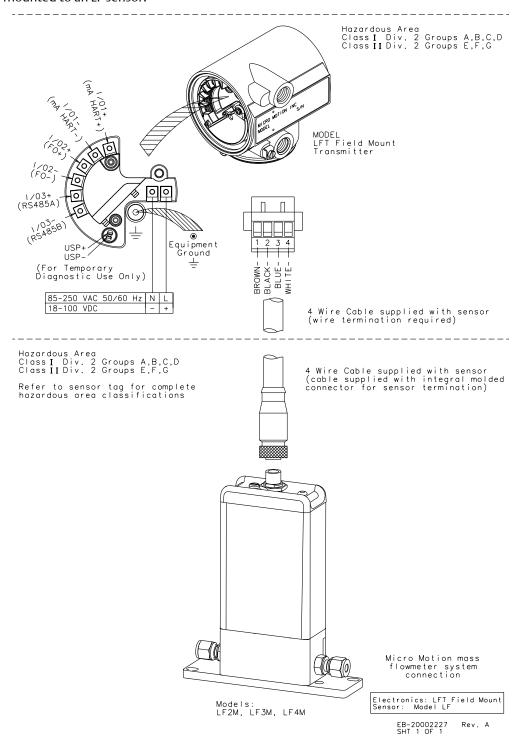
Installation	Drawing
Remote LFT CIO	EB-20002229, Revision A
Remote LFT on a DIN rail	EB-20002223, Revision A
Remote LFT fieldbus	EB-20002226, Revision A
Remote LFT mAO/FO	EB-20002227, Revision A
Remote LFT Profibus-PA	EB-20002225, Revision A


11.1 Remote LFT CIO

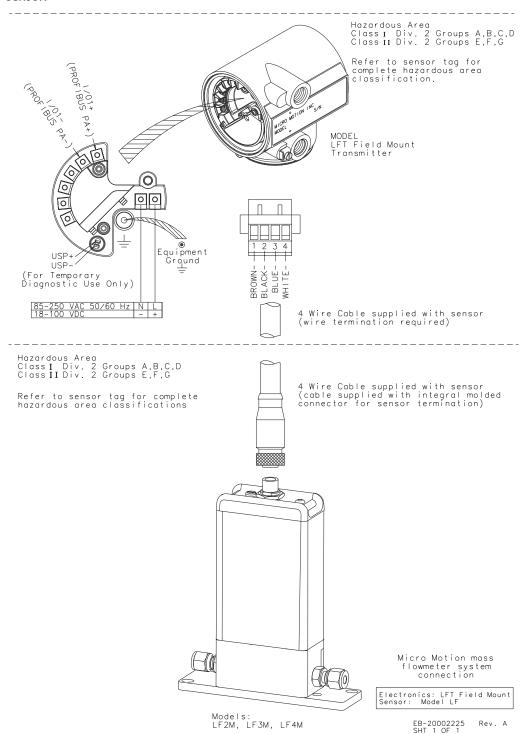
This drawing describes a remote LFT 4-wire configuration input/output (CIO) transmitter mounted to an LF sensor.


11.2 Remote LFT on a DIN rail

This drawing describes a remote LFT 4-wire transmitter on a DIN rail mounted to an LF sensor.


11.3 Remote LFT fieldbus

This drawing describes a remote LFT 4-wire FOUNDATION[™] Fieldbus transmitter mounted to an LF sensor.


11.4 Remote LFT mAO/FO

This drawing describes a remote LFT 4-wire mA Output/Frequency Output transmitter mounted to an LF sensor.

11.5 Remote LFT Profibus-PA

This drawing describes a remote LFT 4-wire Profibus-PA transmitter mounted to an LF sensor.

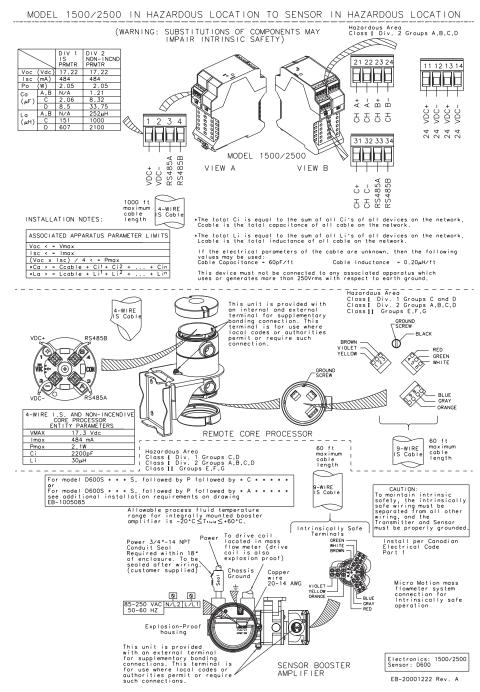
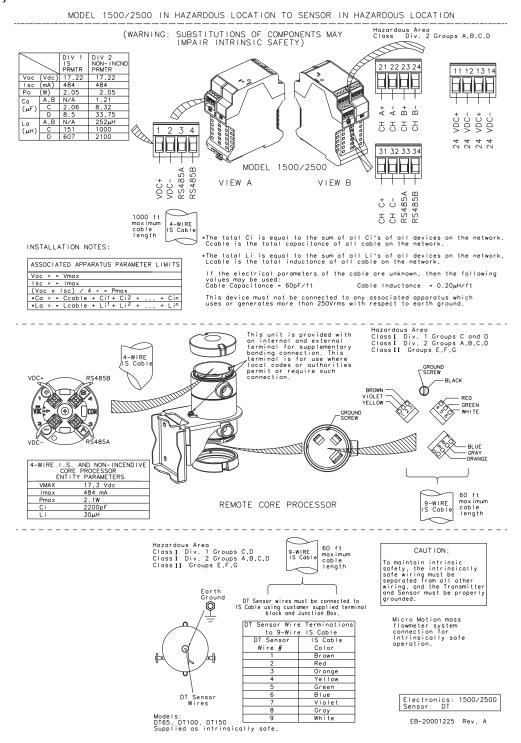
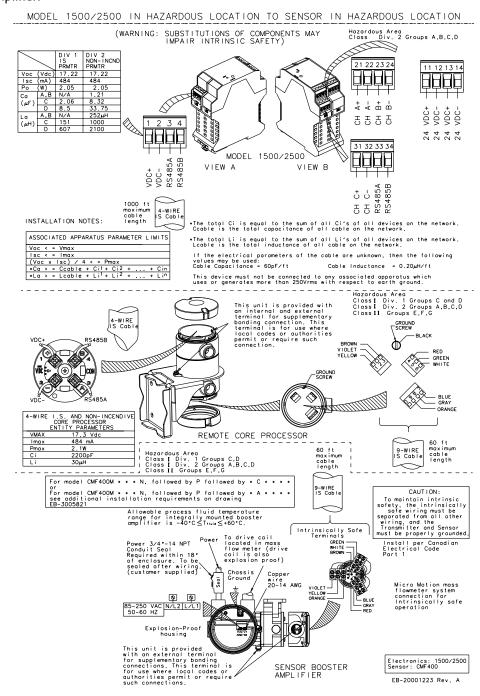

12 1500/2500 9-wire junction box installation

Table 12-1: List of drawings

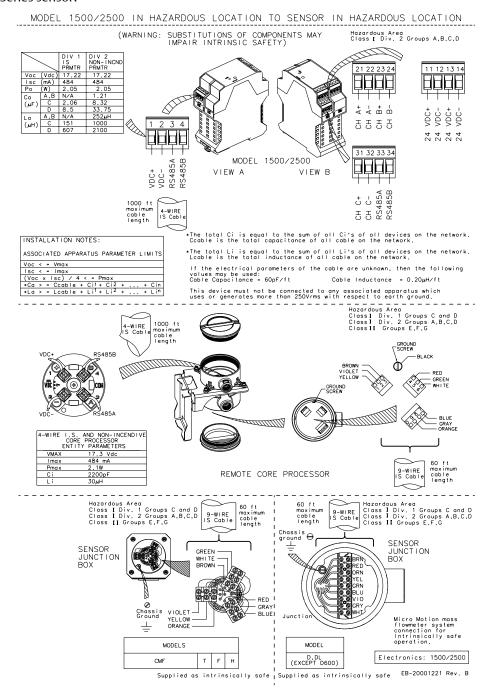
Installation	Drawing
1500/2500 CP with 9-wire D600 junction box.	EB-20001222, Revision A
1500/2500 CP with 9-wire DT junction box	EB-20001225, Revision A
1500/2500 to RCP with 9-wire CMF400 junction box and booster amplifier	EB-20001223, Revision A
1500/2500 to RCP with 9-wire CMF, D, DL, F, H, or T junction box	EB-20001221 Revision BA


12.1 1500/2500 CP with 9-wire D600 junction box.

This drawing describes a 1500 or 2500 transmitter with a core processor that has a 9-wire junction box mounted on a D600 sensor.


12.2 1500/2500 CP with 9-wire DT junction box

This drawing describes a 1500 or 2500 transmitter with a core processor that has a 9-wire junction box mounted on a DT sensor.


12.3 1500/2500 to RCP with 9-wire CMF400 junction box and booster amplifier

This drawing describes a 1500 or 2500 transmitter connected to a remote core processor with a 9-wire junction box mounted on a CMF400 sensor, in addition to a booster amplifier.

12.4 1500/2500 to RCP with 9-wire CMF, D, DL, F, H, or T junction box

This drawing describes a 1500 or 2500 transmitter connected to a remote core processor with a 9-wire junction box mounted on a CMF, D (except D600), DL, F-Series, H-Series, or T-Series sensor.

August 2019

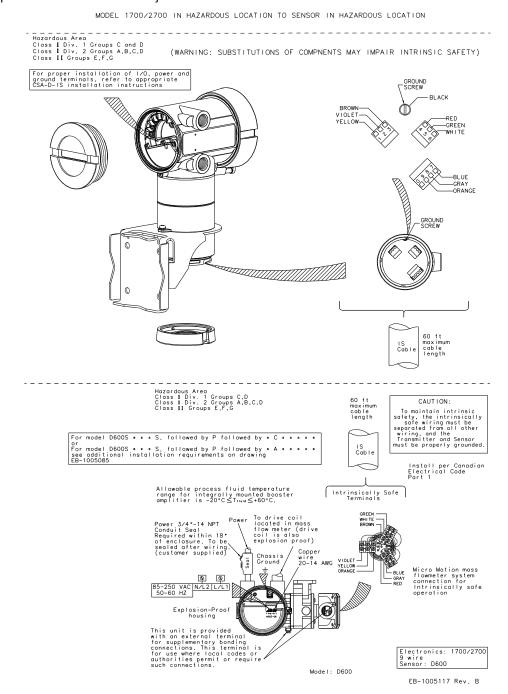
13 1700/2700 integral with 9-wire junction box installation

Table 13-1: List of drawings

Installation	Drawing
1700/2700 with integral CP and a CMF400	EB-30006199, Revision A
1700/2700 with integral CP and a D600	EB-10005117, Revision A
1700/2700 with integral CP and a DT	EB-36000538, Revision A
1700/2700 with integral CP and a CMF, F, H, T, D, or DL	EB-20001058 Revision C

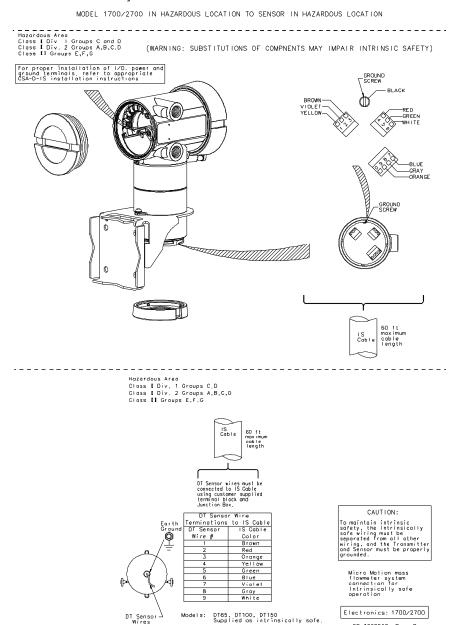
1700/2700 with integral CP and a CMF400 13.1

This drawing describes a 1700 or 2700 transmitter with an integrally-mounted core processor that has a 9-wire junction box mounted on a CMF400 sensor, in addition to a booster amplifier.


MODEL 1700/2700 IN HAZARDOUS LOCATION TO SENSOR IN HAZARDOUS LOCATION Hazardous Area
Class I Div. 1 Groups C and D
Class I Div. 2 Groups A,B,C,D
Class II Groups E,F,G (WARNING: SUBSTITUTIONS OF COMPNENTS MAY IMPAIR INTRINSIC SAFETY) For proper installation of I/O, power and ground terminals, refer to appropriate CSA-D-IS installation instructions 60 ft maximum cable length CAUTION: To maintain intrinsic safety, the intrinsically safe wiring must be separated from all other wiring, and the Transmitter and Sensor must be properly grounded. For model CMF400M \star \star \star N, followed by P followed by \star C \star \star \star IS Cable or For model CMF400M • • • N, followed by P followed by • A • • • • see additional installation requirements on drawing EB-3005821 Install per Canadian Electrical Code Part 1 Allowable process fluid temperature range for integrally mounted booster amplifier is -40°C \leq Trivid \leq +60°C. Intrinsically Safe Terminals Electronics: 1700/2700 9 wire Sensor: CMF400

EB-3006199 Rev. C

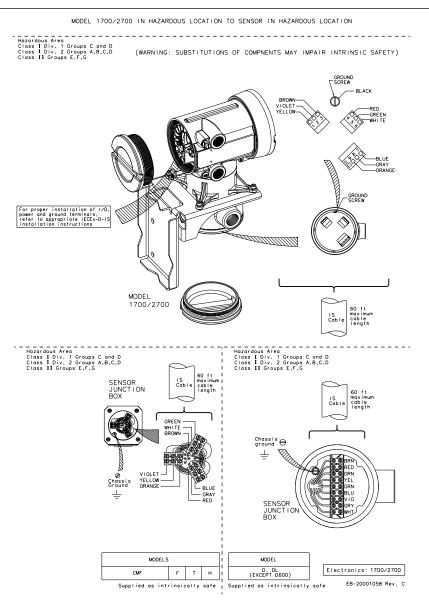
Model: CMF400


13.2 1700/2700 with integral CP and a D600

This drawing describes a 1700 or 2700 transmitter with an integrally-mounted core processor that has a 9-wire junction box mounted on a D600 sensor.

13.3 1700/2700 with integral CP and a DT

This drawing describes a 1700 or 2700 transmitter with an integrally-mounted core processor that has a 9-wire junction box mounted on a DT sensor.


EB-3600538 Rev. B SHT 1 0F 1

13.4 1700/2700 with integral CP and a CMF, F, H, T, D, or DL

This drawing describes a 1700 or 2700 transmitter with an integrally-mounted core processor connected to a 9-wire junction box mounted on a CMF, F-Series, H-Series, T-Series, D-Series, or DL sensor.

Note

This installation does not apply to CMF400 sensors with a booster amplifier nor to D600 sensors.

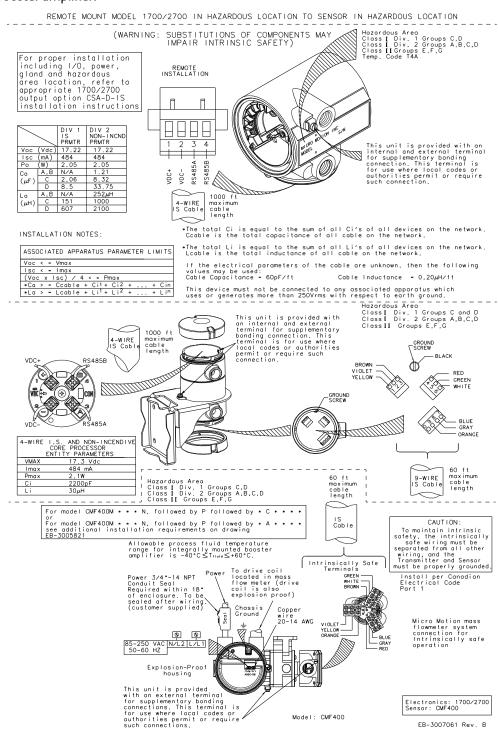
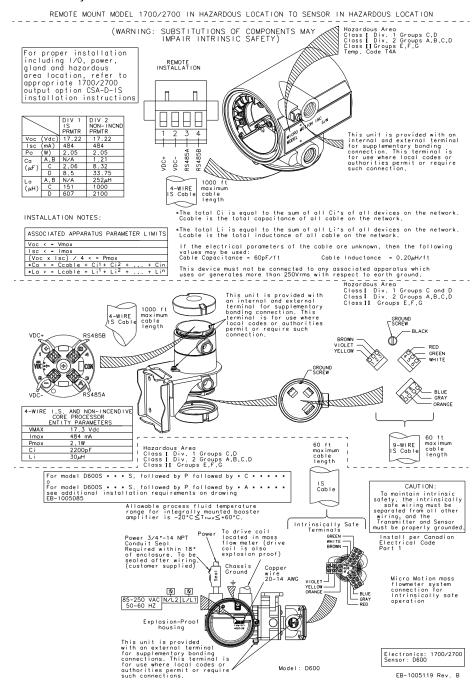

14 1700/2700 to RCP with 9-wire junction box installation

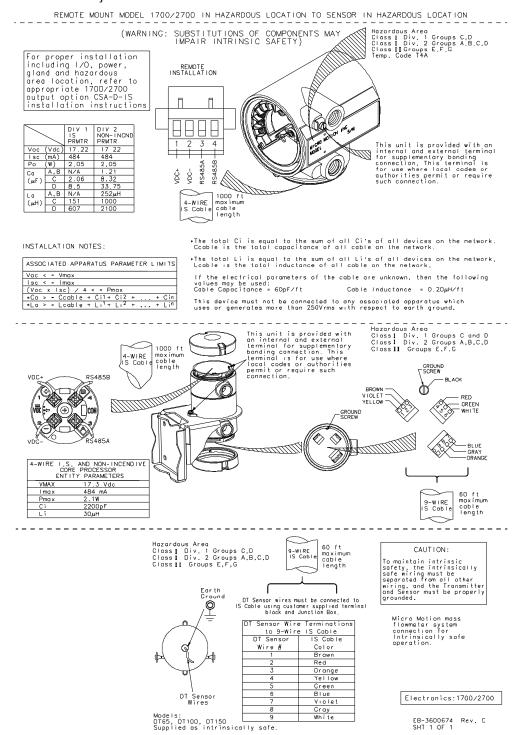
Table 14-1: List of drawings

Installation	Drawing
1700/2700 with RCP and a CMF400	EB-3007061, Revision B
1700/2700 with RCP and a D600	EB-10005119, Revision B
1700/2700 with RCP and a DT	EB-3600674, Revision C
1700/2700 with RCP and a CMF, F, T, D, or DL	EB-20001060 Revision BA


14.1 1700/2700 with RCP and a CMF400

This drawing describes a 1700 or 2700 transmitter connected to a remote mount core processor that has a 9-wire junction box mounted on a CMF400 sensor, in addition to a booster amplifier.

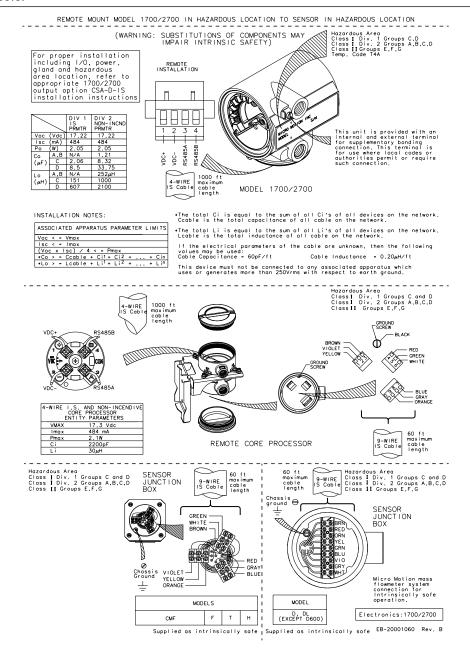
14.2 1700/2700 with RCP and a D600


This drawing describes a 1700 or 2700 transmitter connected to a remote core processor that has a 9-wire junction box mounted on a D600 sensor.

August 2019

14.3 1700/2700 with RCP and a DT

This drawing describes a 1700 or 2700 transmitter connected to a remote core processor that has a 9-wire junction box mounted on a DT sensor.



14.4 1700/2700 with RCP and a CMF, F, T, D, or DL

This drawing describes a 1700 or 2700 transmitter connected to a remote core processor that has a 9-wire junction box mounted on a CMF, F-Series, T-Series, D-Series, or DL sensor.

Note

This installation does not apply to CMF400 sensors with a booster amplifier nor to D600 sensors.

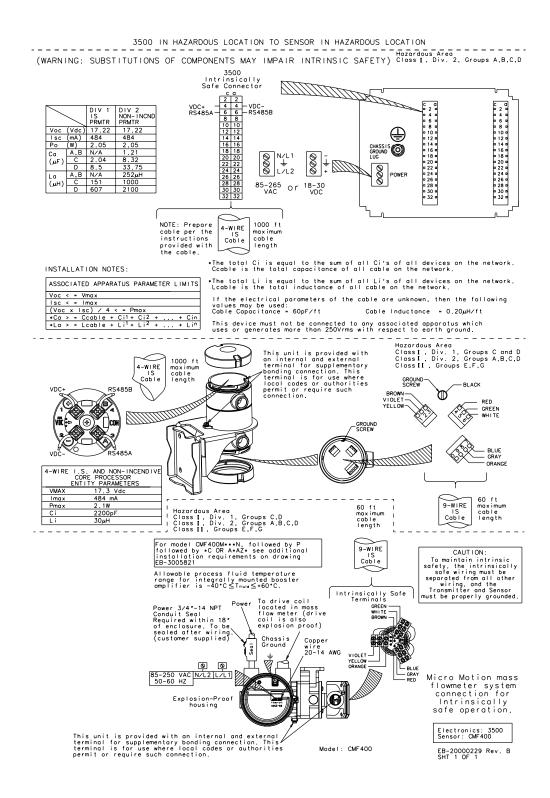
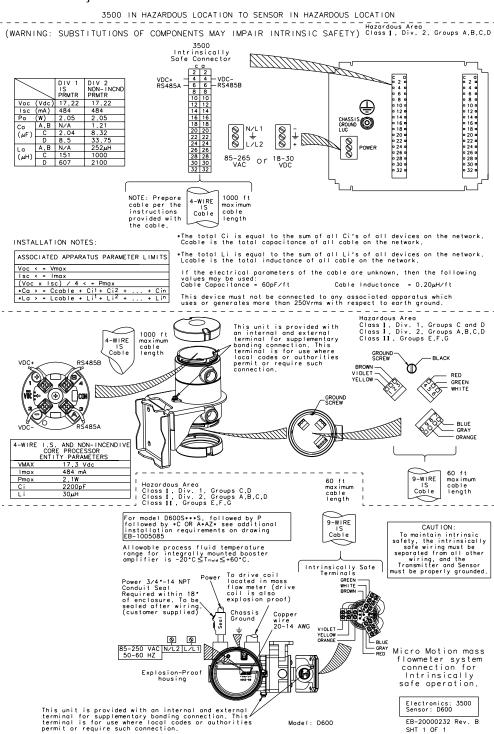
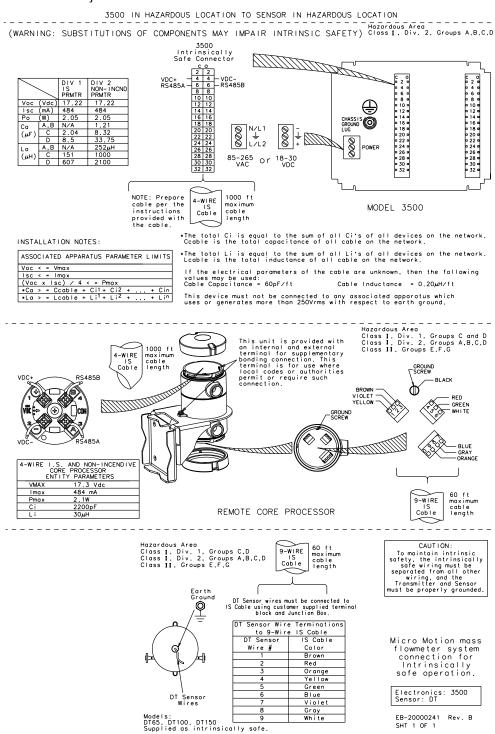

15 3500 to RCP with 9-wire junction box installation

Table 15-1: List of drawings

Installation	Drawing
3500 to RCP with 9-wire CMF400 junction box with booster amplifier	EB-20000229, Revision BA
3500 to RCP with 9-wire D600 junction box	EB-20000232, Revision B
3500 to RCP with 9-wire DT junction box	EB-20000241, Revision B
3500 to RCP with 9-wire CMF, D, DL, H, or T junction box	EB-20001051, Revision CA

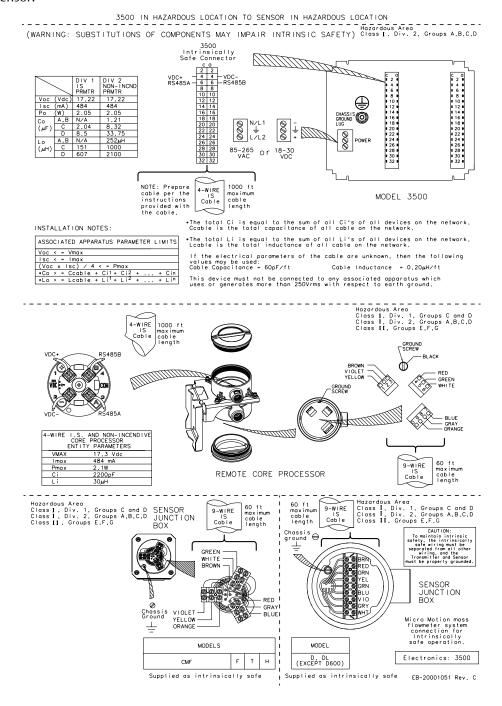

15.1 3500 to RCP with 9-wire CMF400 junction box with booster amplifier

This drawing describes a 3500 transmitter connected to a remote core processor that has a 9-wire junction box mounted on a CMF400 sensor, in addition to a boost amplifier.


15.2 3500 to RCP with 9-wire D600 junction box

This drawing describes a 3500 transmitter connected to a remote mount core processor that has a 9-wire junction box mounted on a D600 sensor.

15.3 3500 to RCP with 9-wire DT junction box


This diagram describes a 3500 transmitter connected to a remote mount core processor that has a 9-wire junction box mounted on a DT sensor.

August 2019 MMI-20001965

15.4 3500 to RCP with 9-wire CMF, D, DL, H, or T junction box

This drawing shows a 3500 transmitter connected to a remote core processor that has a 9-wire junction box mounted on a CMF, D-Series (except D600), DL, H-Series, or T-Series sensor.

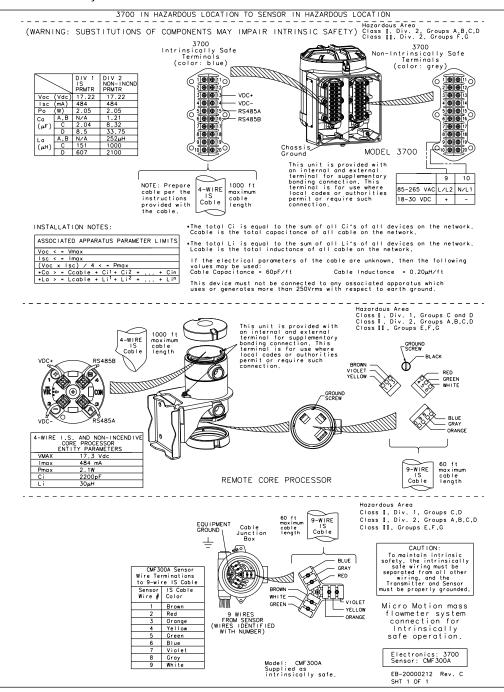
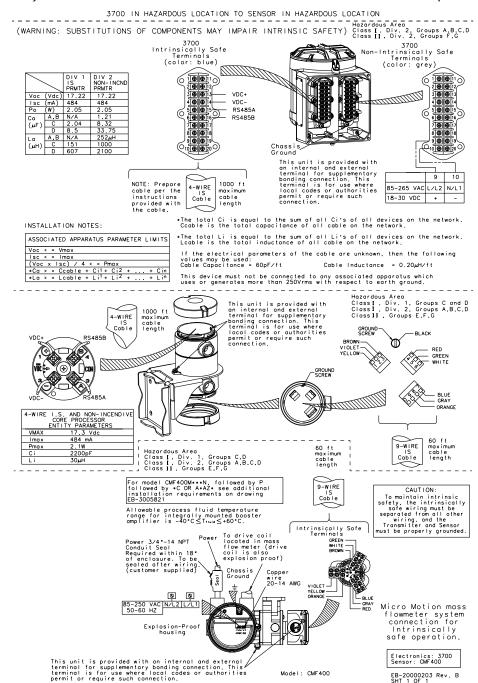
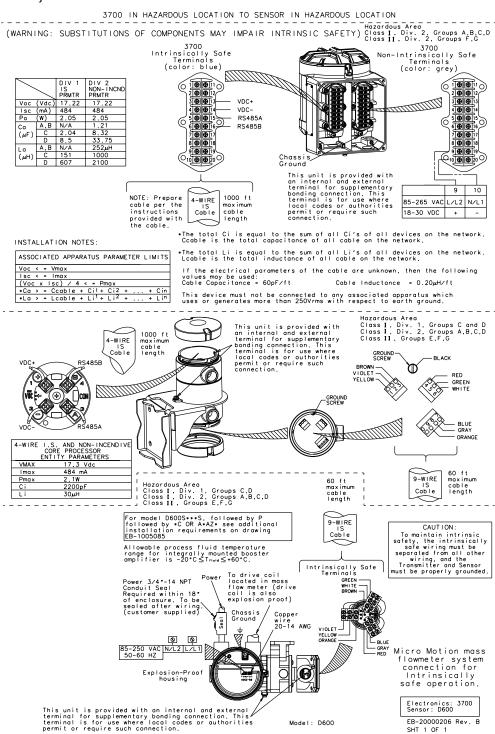

16 3700 to RCP with 9-wire junction box installation

Table 16-1: List of drawings

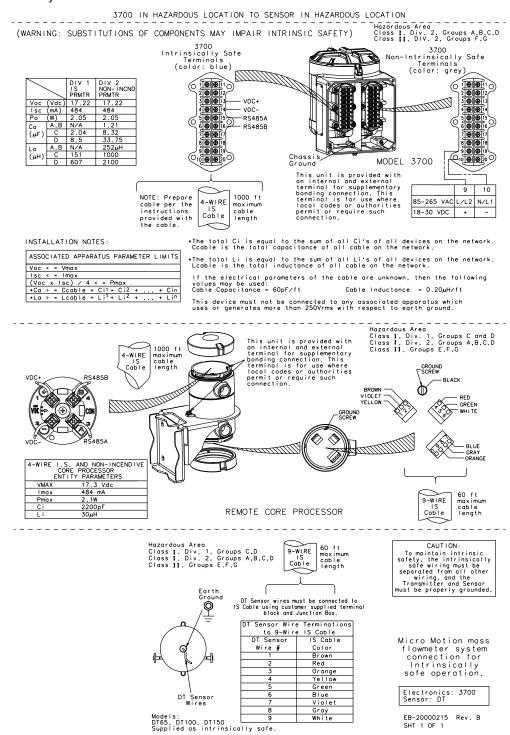
Installation	Drawing
3700 to RCP with 9-wire CMF300A junction box	EB-20000212, Revision C
3700 to RCP with 9-wire CMF400 junction box	EB-20000203, Revision B
3700 to RCP with 9-wire D600 junction box	EB-20000206, Revision B
3700 to RCP with 9-wire DT junction box	EB-20000215, Revision B
3700 to RCP with 9-wire CMF, D, DL, F, H, or T junction box	EB-20001053, Revision CA


16.1 3700 to RCP with 9-wire CMF300A junction box

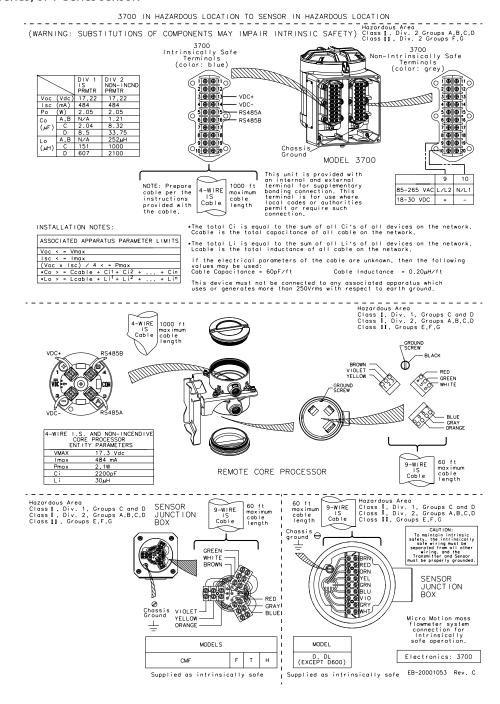
This drawing describes a 3700 transmitter connected to a remote mount core processor that has a 9-wire junction box mounted on a CMF300A sensor.


16.2 3700 to RCP with 9-wire CMF400 junction box

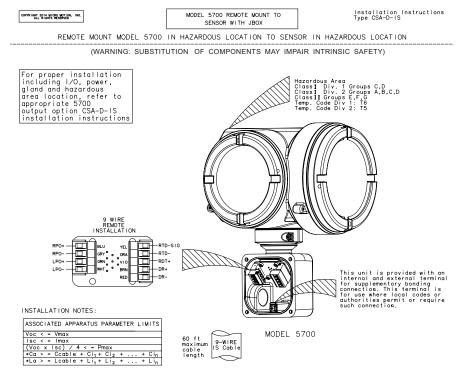
This drawing describes a 3700 transmitter connected to a remote core processor that has a 9-wire junction box mounted on a CMF400 sensor, in addition to a booster amplifier.


16.3 3700 to RCP with 9-wire D600 junction box

This drawing describes a 3700 transmitter connected to a remote core processor that has a 9-wire junction box mounted on a D600 sensor.


16.4 3700 to RCP with 9-wire DT junction box

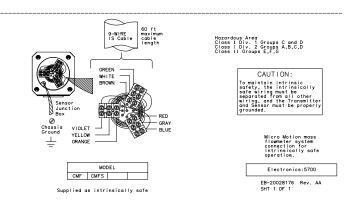
This drawing describes a 3700 transmitter connected to a remote core processor that has a 9-wire junction box mounted on a DT sensor.


16.5 3700 to RCP with 9-wire CMF, D, DL, F, H, or T junction box

This drawing describes a 3700 transmitter connected to a remote mount core processor that has a 9-wire junction box mounted on a CMF, D-Series (except D600), DL, F-Series, H-Series, or T-Series sensor.

17 5700 to RCP with 9-wire junction box installation

This drawing describes a 5700 transmitter connected to a remote core processor that has a 9-wire junction box mounted on a sensor.



*The total Ci is equal to the sum of all Ci's of all devices on the network. Ccable is the total capacitance of all cable on the network.

*The total Li is equal to the sum of all Li's of all devices on the network. Lcable is the total inductance of all cable on the network.

If the electrical parameters of the cable are unknown, then the following values may be used: Cable Capacitance = 60pF/ft Cable Inductance = 0.20 μ H/ft

This device must not be connected to any associated apparatus which uses or generates more than $250 \mbox{Vrms}$ with respect to earth ground.

August 2019

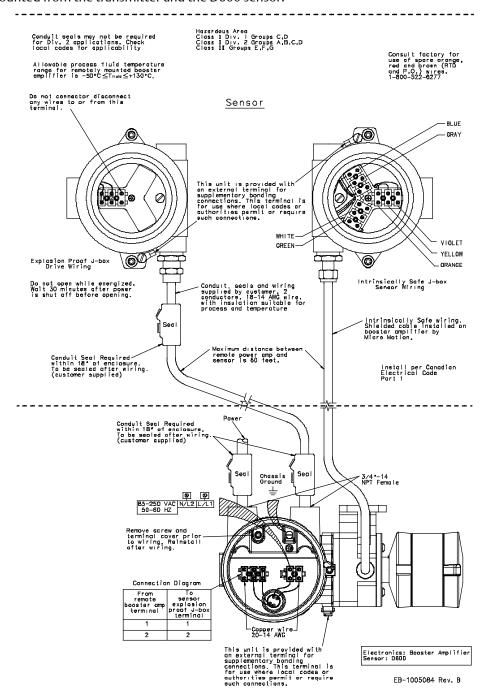
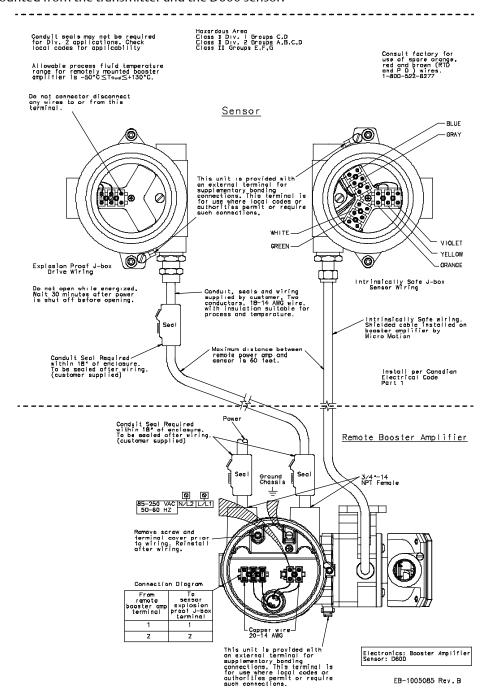

18 D600 remote mount booster amplifier

Table 18-1: List of drawings

Installation	Drawing
RCP with remote mount booster amplifier - D600	EB-1005084, Revision B
Remote mount booster amplifier with junction box - D600	EB-1005085, Revision B


18.1 RCP with remote mount booster amplifier - D600

This drawing describes a remote booster amplifier with a core processor that is remotely mounted from the transmitter and the D600 sensor.

18.2 Remote mount booster amplifier with junction box - D600

This drawing describes a remote booster amplifier with a junction box that is remotely mounted from the transmitter and the D600 sensor.

August 2019

A List of drawings

Table A-1: List of Drawings

Drawing name	Location
EB-10005117, Revision B	1700/2700 with integral CP and a D600
EB-1005084, Revision B	RCP with remote mount booster amplifier - D600
EB-1005085, Revision B	Remote mount booster amplifier with junction box - D600
EB-1005119, Revision B	1700/2700 with RCP and a D600
EB-20000206, Revision B	3700 to RCP with 9-wire D600 junction box
EB-20000215, Revision B	3700 to RCP with 9-wire DT junction box
EB-20000224, Revision B	3700 with CP and CMF, F, H, R, CNF, or T
EB-20000229, Revision BA	3500 to RCP with 9-wire CMF400 junction box with booster amplifier
EB-20000232, Revision B	3500 to RCP with 9-wire D600 junction box
EB-20000241, Revision B	3500 to RCP with 9-wire DT junction box
EB-20000244, Revision B	Remote 3500 with CP and CMF400
EB-20000247, Revision B	Remote 3500 with CP and a D600
EB-20000250, Revision B	Remote 3500 with CP on CMF, F, H, R, CNG, and T
EB-20001051, Revision C	3500 to RCP with 9-wire CMF, D, DL, H, or T junction box
EB-20001053, Revision C	3700 to RCP with 9-wire CMF, D, DL, F, H, or T junction box
EB-20001058, Revision, C	1700/2700 with integral CP and a CMF, F, H, T, D, or DL
EB-20001060, Revision, BA	1700/2700 with RCP and a CMF, F, T, D, or DL
EB-20001218, Revision A	Remote 1500/2500 4-wire CP to D600
EB-20001219, Revision A	Remote 1500/2500 4-wire CP to CMF400 with booster amplifier
EB-20001220, Revision A	Remote 1500/2500 4-wire CP to CMF, F, H, R, CNG, or T
EB-20001221 Revision B	1500/2500 to RCP with 9-wire CMF, D, DL, F, H, or T junction box
EB-20001222, Revision A	1500/2500 CP with 9-wire D600 junction box.
EB-20001223, Revision A	1500/2500 to RCP with 9-wire CMF400 junction box and booster amplifier
EB-20001225, Revision A	1500/2500 CP with 9-wire DT junction box
EB-2000203, Revision B	3700 to RCP with 9-wire CMF400 junction box
EB-2000218, Revision B	Remote 3700 with CP and CMF400
EB-2000221, Revision B	Remote 3700 with CP and D600
EB-20002223, Revision A	Remote LFT on a DIN rail
EB-20002225, Revision A	Remote LFT Profibus-PA
EB-20002226, Revision A	Remote LFT fieldbus

Table A-1: List of Drawings (continued)

Drawing name	Location
EB-20002227, Revision A	Remote LFT mAO/FO
EB-20002229, Revision A	Remote LFT CIO
EB-20003009, Revision A	Remote 1500/2500 with ECP
EB-20003010, Revision A	Remote 1700/2700 with ECP
EB-20003011, Revision A	Remote 3500 with ECP
EB-20003012, Revision A	3700 with ECP
EB-20003013, Revision A	ECP to direct host through a safety barrier
EB-20003427, Revision A	800 ECP
EB-20011794, Revision A	2750 CIO
EB-20011795, Revision A	2750 4-wire ECP installation
EB-20028175, Revision AA	5700 CIO
EB-20028176, Revision AA	5700 to RCP with 9-wire junction box installation
EB-20028177, Revision AA	Remote 5700 with CP
EB-20028178, Revision AA	5700 to RCP - sensor with junction box
EB-20030708, Revision AA	5700 Ethernet
EB-20030711, Revision AA	5700 fieldbus
EB-20030804, Revision AA	5700 fieldbus (FISCO)
EB-20057521_AA	4200 2-wire
EB-3005819, Revision C	Remote 1700/2700 with CP and a CMF400
EB-3006199, Revision C	1700/2700 with integral CP and a CMF400
EB-3007061, Revision B	1700/2700 with RCP and a CMF400
EB-3600473, Revision DA	1700/2700 Profibus-PA
EB-3600476, Revision DA	1700/2700 fieldbus
EB-3600479, Revision CA	1700/2700 mAO
EB-3600482, Revision BA	Remote 1700/2700 4-wire CP
EB-3600538, Revision B	1700/2700 with integral CP and a DT
EB-3600629, Revision D	1700/2700 IS
EB-3600667, Revision B	2700 CIO
EB-3600674, Revision C	1700/2700 with RCP and a DT
EB-3600799, Revision CA	CP to direct host through a safety barrier

MMI-20001965 August 2019

MI-20001965 Rev. EC 2019

Micro Motion Inc. USA

Worldwide Headquarters 7070 Winchester Circle Boulder, Colorado USA 80301 T+1 303-527-5200 T+1 800-522-6277 F+1 303-530-8459 www.emerson.com

Micro Motion Asia

Emerson Automation Solutions 1 Pandan Crescent Singapore 128461 Republic of Singapore T+65 6363-7766 F+65 6770-8003

Micro Motion Europe

Emerson Automation Solutions
Neonstraat 1
6718 WX Ede
The Netherlands
T +31 (0) 318 495 555
T +31 (0) 70 413 6666
F +31 (0) 318 495 556
www.emerson.com/nl-nl

Micro Motion United Kingdom

Emerson Automation Solutions Emerson Process Management Limited Horsfield Way Bredbury Industrial Estate Stockport SK6 2SU U.K. T +44 0870 240 1978 F +44 0800 966 181

©2019 Micro Motion, Inc. All rights reserved.

The Emerson logo is a trademark and service mark of Emerson Electric Co. Micro Motion, ELITE, ProLink, MVD and MVD Direct Connect marks are marks of one of the Emerson Automation Solutions family of companies. All other marks are property of their respective owners.

