einfach schneller – Handling mit System

Systeme I Achsen I Module

Stand: 2019-05-23

1 Inhalt

1	In	halt	. 2
2	Ei	nleitung	3
3	Be	egriff Erklärung	. 3
4	Bl	ockschaltbild	4
5	Fι	Inktionsweise	4
6	Ve	erwendete Komponenten	5
	6.1	Safeline Sicherheits-SPS mit	5
	6.2	Servocontroller C1xx0-xx-XC-1S	5
	6.3	Lineares Wegmesssystem (bei Linearachsen)	6
	6.4	Encoder (bei SE20)	6
	6.5	Encoder (bei RA-40 und SE30)	6
7	Ko	onfiguration und Aufbau	7
	7.1	Berechnung bei Linearachsen	. 7
	7.2	Berechnung bei Rotationsachsen	9
	7.3	Einstellungen SL-VARIO Designer 1	11
8	Hi	nweise zur Verdrahtung 1	12
	8.1	Spannungsversorgung der Sicherheits-SPS	12
	8.2	Not-Halt-Kreis 1	12
	8.3	Schutztür-Kreis 1	12
	8.4	Sichere Abschaltung (STO) 1	13
	8.5	Wegmesssystem	15
9	Be	edienung1	16
	9.1	Auswahl der Betriebsart	16
	9.2	Umschalten zwischen den Betriebsarten 1	16
	9.3	Reset der Sicherheits-SPS	17
	9.4	Anzeige des Betriebszustands	18
1	0 Be	elegung der Feldbus – Ein/Ausgabe 1	18
	10.1	Eingangsbytes	18
	10.2	Ausgangsbytes 1	19
1	1 Sc	oftware SL-VARIO Designer	20
	11.1	Systemvoraussetzungen2	20
	11.2	Einstellen der Schnittstelle	20
	11.3	Programm/Einstellungen übertagen 2	21
	11.4	Einstellen der Feldbusadresse2	21
1:	2 Ζι	I Beachten 2	21
1	3 Er	reichbarer Performance Level	22
1	4 No	otizen	23
1	5 Si	Jpport	24

2 Einleitung

Hinweis: Ob das geforderte PL der Applikation mit dieser Baugruppe erreicht wird gilt es vom Maschinenbauer vorab zu Prüfen.

Bitte beachten Sie, dass für jede Applikation die Geschwindigkeiten individuell vom Kunden unter Berücksichtigung der Reaktionszeiten berechnet werden müssen.

Unter Umständen kann die Verwendung eines Totmannschalters oder gar einer Zweihandauslösung nötig werden.

Bei dem bereitgestellten Beispielprogramm handelt es sich nicht um ein fertiges, auf jede Anwendung passendes Programm. Die Programmierung, Sicherheitsbetrachtung und Abnahme der Maschine ist vom Kunden durchzuführen. Die Afag Hardt GmbH übernimmt keine Haftung dafür, dass mit den hier verwendeten Komponenten das angestrebte PL erreicht wird.

Diese Anwendungsbeschreibung zeigt, wie ein eps EDP Linearmotorhandling mit sicher reduzierter Geschwindigkeit betrieben werden kann.

Hierzu benötigt man für jede zu kontrollierende Achse einen Servocontroller mit einem STO Eingang, ein externes Wegmesssystem und eine Sicherheitsbaugruppe.

In der Beispielsapplikation werden zwei Geschwindigkeiten für Einrichtbetriebe definiert. Die reduzierte Geschwindigkeit 1 ist dazu gedacht um direkt an dem Handling arbeiten zu können und die reduzierte Geschwindigkeit 2 ist für das beobachten bei offener Schutztür.

Die Werte für die sicher reduzierten Geschwindigkeiten wurden hier für die Y- und Z-Achse gleich definiert.

Die reduzierte Geschwindigkeit 2 darf nur mit einem zusätzlichen Totmannschalter gefahren werden.

Ist die Schutztür geschlossen kann das Handling mit maximaler Geschwindigkeit fahren.

Sicher reduzierte Ge	schwindigkeit 1	1m/min	0.017 m/s
Sicher reduzierte Ge	schwindigkeit 2	2m/min	0.03 m/s

Diese Geschwindigkeiten wurden von uns für diese Testapplikation, anhand von Erfahrungswerten festgelegt.

3 Begriff Erklärung

SLS	safe limited speed	Sicher reduzierte Geschwindigkeit
STO	safe torque off	Sichere Drehmomentabschaltung

4 Blockschaltbild

5 Funktionsweise

Um eine sicher reduzierte Geschwindigkeit für den Einrichtbetrieb zu gewährleisten, werden zusätzlich eine Sicherheitsbaugruppe und ein zusätzliches externes Messsystem eingesetzt. Diese Sicherheitsbaugruppe überwacht, mit Hilfe des zusätzlichen Messsystems, die Geschwindigkeit des Handlings. Wird die vorher definierte maximale Einrichtgeschwindigkeit überschritten, schaltet die Sicherheitselektronik die Freigabe des Reglers durch sichere Kontakte ab und am Regler wird der STO ausgelöst. Die Sicherheitsbaugruppe überwacht alle Signalkanäle des Messsystems und vergleicht diese auf Plausibilität mit zwei Prozessoren.

Zusätzlich zu der Überwachung durch die Sicherheitsbaugruppe vergleicht der Regler die Werte des internen und externen Messsystems. Tritt hierbei eine Positionsdifferenz z.B. durch Kabelbruch auf, schaltet der Regler den Lastkreis über sichere Kontakte ab.

Die Sicherheitsbaugruppe bietet zusätzlich eine Stillstandsüberwachung an. Diese kann z.B. für die Freigabe der Schutztürverriegelung verwendet werden.

6 Verwendete Komponenten

6.1 Safeline Sicherheits-SPS mit

- Zentralmodul DNSL-ZMV 40ZM01
- Feldbusmodul z.B.:
 - EthercatDNSL-ECV 40EC03ProfibusDNSL-DPV 40DP04ProfinetDNSL-PNV 40PN03CANopenDNSL-COV 40C003
- Antriebsüberwachungsmodul DNSL-DSV 2 40DS01 (für 2 Achsen) Hinweis:

Es können bis zu 13 Antriebsüberwachungsmodule (für 26 Achsen) angereiht werden

Zentralmodul

Achsüberwachungsmodul

Feldbusmodul

6.2 Servocontroller C1xx0-xx-XC-1S

6.3 Lineares Wegmesssystem (bei Linearachsen)

- Magnetsensor MSK500 mit Filter ftaps4 (TTL 5V)
- Magnetband MB500

Alternativ

- Magnetsensor MSA501 (TTL 5V)
- Magnetband MBA501
- Magnetsensor MSK1000 mit Filter ftaps4 (TTL 5V)
- Magnetband MB100

6.4 Encoder (bei SE20)

• IE3 L mit 128 Imp (TTL 5V)

6.5 Encoder (bei RA-40 und SE30)

• IE3 L mit 512 Imp (TTL 5V)

7 Konfiguration und Aufbau

Bevor eine Konfiguration festgelegt wird, müssen zuerst die Geschwindigkeiten bekannt sein.

Reduzierte Geschwindigkeit 1 (fGesch1)	1m/min	0.017 m/s
Reduzierte Geschwindigkeit 2 (f _{Gesch2})	2m/min	0.03 m/s

Um die Geschwindigkeit einzustellen, muss man als nächstes die maximale Frequenz berechnen, die während der Fahrt durch das Wegmesssystem entsteht.

7.1 Berechnung bei Linearachsen

7.1.1 Sensor 0,01mm Auflösung

Hierbei benötigen wir zuerst die Auflösung des Magnetsensors (hier 0,01mm bei 4fach Auswertung)

s = 0,00001m*4 = 0,00004m

Dadurch entsteht die Periodenlänge (s) von 0,00004m.

Zum Berechnen der Frequenz kann unten stehende Formel verwendet werden.

 $f_{Gesch} = \frac{v_{max}}{s} \qquad \qquad f_{Gesch1} = \frac{0.017 \frac{m}{s}}{0.00004m} = 425Hz \qquad \qquad f_{Gesch2} = \frac{0.03 \frac{m}{s}}{0.00004m} = 750Hz$

Da wir mit diesen Geschwindigkeiten fahren wollen, müssen wir ca. 10 Prozent mehr als Toleranz für diese Geschwindigkeit bzw. Frequenzen eintragen.

$$f_{Gesch} = \frac{v_{max}}{s} + 10\% \qquad f_{Gesch} = \frac{0.017 \frac{m}{s}}{0.00004m} + 10\% = 467.5Hz \quad f_{Gesch} = \frac{0.03 \frac{m}{s}}{0.00004m} + 10\% = 825Hz$$

Da die Achsen sich auch im "Stillstand" minimal bewegen, muss auch hier eine Toleranz berücksichtigt werden. Diese wurde im Beispiel auf 10 Inkremente eingestellt. Bei Umgebungen die große Vibrationen auf das Handling übertragen, muss dieser Wert erhöht werden, damit ein Stillstand korrekt signalisiert werden kann.

7.1.2 Sensor 0,001mm Auflösung

Hierbei benötigen wir zuerst die Auflösung des Magnetsensors (hier 0,001mm bei 4fach Auswertung)

s = 0,000001m*4 = 0,000004m

Dadurch entsteht die Periodenlänge (s) von 0,000004m.

Zum Berechnen der Frequenz kann unten stehende Formel verwendet werden.

 $f_{Gesch} = \frac{v_{max}}{s} \qquad \qquad f_{Gesch} = \frac{0.017 \, m/s}{0.000004 m} = 4250 Hz \qquad \qquad f_{Gesch2} = \frac{0.03 \, m/s}{0.000004 m} = 7500 Hz$

Da wir mit diesen Geschwindigkeiten fahren wollen, müssen wir ca. 10 Prozent mehr als Toleranz für diese Geschwindigkeit bzw. Frequenzen eintragen.

$$f_{Gesch} = \frac{v_{max}}{s} + 10\%$$

$$f_{Gesch} = \frac{0.017 \frac{m}{s}}{0.000004m} + 10\% = 4675 Hz$$

$$f_{Gesch2} = \frac{0.03 \frac{m}{s}}{0.000004m} + 10\% = 8250 Hz$$

Da die Achsen sich auch im "Stillstand" minimal bewegen, muss auch hier eine Toleranz berücksichtigt werden. Diese wurde im Beispiel auf 10 Inkremente eingestellt. Bei Umgebungen die große Vibrationen auf das Handling übertragen, muss dieser Wert erhöht werden, damit ein Stillstand korrekt signalisiert werden kann.

7.2 Berechnung bei Rotationsachsen

Hierbei benötigen wir zuerst die Anzahl der Inkremente des Messsystems und das Untersetzungsverhältnis des Getriebes der Einheit.

7.2.1 SE20 mit 50:1 Getriebe

Zum Berechnen der Frequenz kann unten stehende Formel verwendet werden.

 $f_{Gesch} = \frac{Ink * i * v_{max}}{360^{\circ}}$ $f_{Gesch} = \frac{128 * 50 * 17^{\circ} / s}{360^{\circ}} = 302, 2Hz \qquad f_{Gesch} = \frac{128 * 50 * 30^{\circ} / s}{360^{\circ}} = 533, 3Hz$

Da wir mit diesen Geschwindigkeiten fahren wollen, müssen wir ca. 10 Prozent mehr als Toleranz für diese Geschwindigkeit bzw. Frequenzen eintragen.

$$f_{Gesch} = \frac{Ink * i * v_{max}}{360^{\circ}} + 10\%$$

$$f_{Gesch1} = \frac{128 * 50 * 17^{\circ} / s}{360^{\circ}} + 10\% \approx 335 \, Hz \qquad f_{Gesch2} = \frac{128 * 50 * 30^{\circ} / s}{360^{\circ}} + 10\% \approx 590 \, Hz$$

Da die Achsen sich auch im "Stillstand" minimal bewegen, muss auch hier eine Toleranz berücksichtigt werden. Diese sollte auf 34Hz (ca.10% von Reduzierte Geschwindigkeit 1 (f_{Gesch1})) eingestellt werden. Bei Umgebungen die große Vibrationen auf das Handling übertragen, muss dieser Wert erhöht werden, damit ein Stillstand korrekt signalisiert werden kann.

7.2.1 SE20 mit 30:1 Getriebe

Zum Berechnen der Frequenz kann unten stehende Formel verwendet werden.

$$f_{Gesch} = \frac{Ink * i * v_{max}}{360^{\circ}}$$
$$f_{Gesch1} = \frac{128 * 30 * 17^{\circ} / s}{360^{\circ}} = 181,3Hz \quad f_{Gesch2} = \frac{128 * 30 * 30^{\circ} / s}{360^{\circ}} = 320 Hz$$

Da wir mit diesen Geschwindigkeiten fahren wollen, müssen wir ca. 10 Prozent mehr als Toleranz für diese Geschwindigkeit bzw. Frequenzen eintragen.

$$f_{Gesch} = \frac{Ink * i * v_{max}}{360^{\circ}} + 10\%$$

$$f_{Gesch} = \frac{128 * 30 * 17^{\circ} / s}{360^{\circ}} + 10\% \approx 200 \, Hz \qquad f_{Gesch} = \frac{128 * 30 * 30^{\circ} / s}{360^{\circ}} + 10\% \approx 350 \, Hz$$

Da die Achsen sich auch im "Stillstand" minimal bewegen, muss auch hier eine Toleranz berücksichtigt werden. Diese sollte auf 20Hz (ca.10% von Reduzierte Geschwindigkeit 1 (f_{Gesch1})) eingestellt werden. Bei Umgebungen die große Vibrationen auf das Handling übertragen, muss dieser Wert erhöht werden, damit ein Stillstand korrekt signalisiert werden kann.

7.2.2 RA-40 und SE30 mit 50:1 Getriebe

Zum Berechnen der Frequenz kann unten stehende Formel verwendet werden.

$$f_{Gesch} = \frac{Ink * i * v_{max}}{360^{\circ}}$$
$$f_{Gesch} = \frac{512 * 50 * 17^{\circ} / s}{360^{\circ}} = 1208,88 Hz \qquad f_{Gesch} = \frac{512 * 50 * 30^{\circ} / s}{360^{\circ}} = 2133,33 Hz$$

Da wir mit diesen Geschwindigkeiten fahren wollen, müssen wir ca. 10 Prozent mehr als Toleranz für diese Geschwindigkeit bzw. Frequenzen eintragen.

$$f_{Gesch1} = \frac{Ink * i * v_{max}}{360^{\circ}} + 10\%$$

$$f_{Gesch1} = \frac{512 * 50 * 17^{\circ} / s}{360^{\circ}} + 10\% \approx 1330 \, Hz \quad f_{Gesch2} = \frac{512 * 50 * 30^{\circ} / s}{360^{\circ}} + 10\% \approx 2350 \, Hz$$

Da die Achsen sich auch im "Stillstand" minimal bewegen, muss auch hier eine Toleranz berücksichtigt werden. Diese sollte auf 130 Hz (ca.10% von Reduzierte Geschwindigkeit 1 (f_{Gesch1})) eingestellt werden. Bei Umgebungen die große Vibrationen auf das Handling übertragen, muss dieser Wert erhöht werden, damit ein Stillstand korrekt signalisiert werden kann.

7.2.3 RA-40 und SE30 mit 30:1 Getriebe

Zum Berechnen der Frequenz kann unten stehende Formel verwendet werden.

$$f_{Gesch} = \frac{Ink * i * v_{max}}{360^{\circ}}$$
$$f_{Geschl} = \frac{512 * 30 * 17^{\circ} / s}{360^{\circ}} = 725,33 Hz \qquad f_{Geschl} = \frac{512 * 30 * 30^{\circ} / s}{360^{\circ}} = 1280 Hz$$

Da wir mit diesen Geschwindigkeiten fahren wollen, müssen wir ca. 10 Prozent mehr als Toleranz für diese Geschwindigkeit bzw. Frequenzen eintragen.

$$f_{Gesch} = \frac{Ink * i * v_{max}}{360^{\circ}} + 10\%$$

$$f_{Gesch} = \frac{512 * 30 * 17^{\circ} / s}{360^{\circ}} + 10\% \approx 800 \, Hz \qquad f_{Gesch} = \frac{512 * 30 * 30^{\circ} / s}{360^{\circ}} + 10\% \approx 1410 \, Hz$$

Da die Achsen sich auch im "Stillstand" minimal bewegen, muss auch hier eine Toleranz berücksichtigt werden. Diese sollte auf 80 Hz (ca.10% von Reduzierte Geschwindigkeit 1 (f_{Gesch1})) eingestellt werden. Bei Umgebungen die große Vibrationen auf das Handling übertragen, muss dieser Wert erhöht werden, damit ein Stillstand korrekt signalisiert werden kann.

7.3 Einstellungen SL-VARIO Designer

Die Einstellungen werden über die Software SL-VARIO Designer gemacht.

Hinweis: Nach der Übertragung werden die Frequenzen automatisch geändert. Dies kommt durch die Frequenz des eingebauten Quarzes.

8 Hinweise zur Verdrahtung

Die verschiedenen Karten sind mit speziellen Steckverbindern direkt miteinander verbunden. Über diese werden die Spannungsversorgung der einzelnen Module und die Kommunikation zum Zentralmodul realisiert.

8.1 Spannungsversorgung der Sicherheits-SPS

8.2 Not-Halt-Kreis

Zentralmodul

IO3	Not-Halt Taktausgang 1	 IN7	Eingang 1 für Not Halt
IO4	Not-Halt Taktausgang 2	 IN8	Eingang 2 für Not Halt

Werden die Kontakte nicht benötigt können Sie auch direkt gebrückt werden.

8.3 Schutztür-Kreis

Zentralmodul

IO1	Schutztür Taktausgang 1	م مراجع	IN5	Eingang 1 für Schutztür
102	Schutztür Taktausgang 2		IN6	Eingang 2 für Schutztür

Werden die Kontakte nicht benötigt können Sie auch direkt gebrückt werden.

Takt für Schutztüren ZMV 0 L 101/102 ZMV 0 Türkreis INS. Türkreis K1 IIII I. Tiakt1 Türe INS. Türkreis K2 IX50009 IX50009	+□ M15 Schutzt.
2MV 0	
INSTANDARY 0 INT.NotHalt K1 INT.NotHalt K1 INT.NotHalt K2 INSTANDARY INSTANDARY INSTANDARY INSTANDARY INSTANDARY INSTANDARY INSTANDARY INSTANDARY INSTANDARY INSTANDARY	M1 Halt

8.4 Sichere Abschaltung (STO)

Um bei reduzierter Geschwindigkeit die Sicherheit zu gewähren ist es wichtig, dass die Abschaltung des Antriebs sicher erfolgt (STO). Deshalb ist es wichtig hier einen Doppelkontakt zu benutzen, wie in der Anschlussskizze dargestellt.

Die Anschlussskizzen zeigen 2 Varianten, wie der STO Kreis zu verdrahten ist.

8.4.1 STO auslösen bei Achsen (Variante 1)

Um bei alle Achsen gleichzeitig den STO auszulösen, sobald eine Sicherheitsverletzung auftritt, muss folgendes Anschlussschema verwendet werden.

C1100

LinMot

C1100

Zentra	almodul		Servo	regle	r					
Q13	24V									
Q14	X33.8		X33.8	Q14	1					
Q23	24V									
Q24	X33.4		X33.4	Q24	1					
			X33.7	GN	D		-		-	
			X33.3	GN	D		0.	L		
		1 12 5 16 5 16 5 16 5 16 5 16 5 16 17 25 4 10 17 25 4 10 110 110 110 110	12 14 A11.22 12 15 A11.22 A11.22 A A11.22 A11.22 A11.22	01 021 231 024 2747 02 2747 00 2747 02 2747 00	C	GND	1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		and the second s	1 I I I I I I I I I I I I I I I I I I I

24V

8.4.2 STO auslösen einzelne Achse (Variante 2)

Um bei einzelnen Achsen den STO auszulösen, sobald eine Sicherheitsverletzung der jeweiligen Achse auftritt, kann folgendes Anschlussschema verwendet werden.

Drehzahlmodul			Servoregler 1		Servoregler 2	
Q4	X33.8(1)		X33.8	Q4		
Q5	X33.4(1)		X33.4	Q5		
Q6	X33.8(2)				X33.8	Q6
Q7	X33.4(2)				X33.4	Q7
			X33.7	GND		
			X33.3	GND		

8.5 Wegmesssystem

Für das Wegmesssystem wird empfohlen, die Standard-Kabel-Adapter zu verwenden. Diese splitten die Signalleitungen des Wegmesssystems auf, sodass sowohl am Servocontroller, als auch an der Sicherheits-SPS die Signale anliegen.

Der Kabel-Adapter hat 3 Anschlüsse (Sub-D Stecker 15pol / Sub-D Buchse 15pol / RJ45 Stecker). Er wird direkt an den Servocontroller mit dem Sub-D Stecker, an X13 des Servocontrollers angeschlossen. An der Sub-D Buchse wird der Magnetsensor eingesteckt. Der RJ45 Stecker wird an DS1 oder DS2 der jeweiligen Drehzahlkarte angeschlossen.

Anschlussschema

9 Bedienung

9.1 Auswahl der Betriebsart

Bei unserem Beispiel werden 3 Betriebsarten verwendet: Reduzierte Geschwindigkeit 1, Reduzierte Geschwindigkeit 2 und Automatikbetrieb (keine Überwachung der Geschwindigkeit). Um die jeweiligen Betriebsarten zu wählen, stehen die Eingänge IN1, IN2 und IN3 am Zentralmodul zur Verfügung. Die Eingänge werden durch den Anschluss von 24 V aktiviert. Wie welche Betriebsart gewählt wird sehen Sie nachfolgend in der Tabelle.

Eingänge			Betriebsart
IN1	IN2	IN3	
	х		SLS 1
		х	SLS 2
Х			Automatikbetrieb
(x is	t jew	eils 2	4V anliegend)

9.2 Umschalten zwischen den Betriebsarten

Um einen sicheren Betriebszustand zu erreichen, muss bei geöffneter Schutztür SLS gewählt sein. Ansonsten wird automatisch der STO am Servocontroller ausgelöst und die Achse ist damit stromlos.

Bei Bedarf kann über die Zeitglieder die Umschaltung von Automatik auf SLS verzögert werden.

Es muss beachtet werden, dass die SLS erst nach Ablauf der Zeiten ZW3/ZW1 aktiv ist. Daraus können sich mögliche Probleme ergeben:

Zeiten zu lang: sicherer Betrieb kann nicht gewährleistet werden

Zeiten zu kurz: Achsen können nicht schnell genug auf die sichere Geschwindigkeit abgebremst werden \rightarrow Verletzung der SLS \rightarrow STO \rightarrow Achsen sind stromlos

Die Zeit ZW2 sollte immer ca. 10% höher als ZW1/3/4 eingestellt sein.

9.2.1 Wichtige Hinweise

- 1. Im Automatikbetrieb muss der Not-Halt-Kreis und der Schutztür-Kreis geschlossen sein
- 2. Im SLS-Betrieb muss der Not-Halt-Kreis geschlossen sein
- 3. Bei Verwendung eines Zustimmungsschalters muss dieser, auch schon beim Umschalten in den SLS Betrieb, betätigt sein. Ist dieser nicht betätigt führt dies automatisch zu einem STO.
- 4. Das Abbremsen kann über einen entsprechenden Fahrbefehl über die SPS realisiert werden. Zum Beispiel kann ein absoluter Fahrbefehl mit gleicher Zielposition und reduzierter Geschwindigkeit, Beschleunigung und Verzögerung gesendet werden.

Alternativ kann die /Abort – Funktion (Control-Word) verwendet werden. Diese Funktion wird dann auf einen digitalen Eingang des Servocontrollers gelegt. Diese Funktion bremst die Achse komplett ab, anschließend bleibt die Regelung aber aktiv. Der /Quickstop sollte nicht verwendet werden, da dieser automatisch zu einem STO führt.

Hinweis: die digitalen Eingänge am Regler sind keine Sicheren Eingänge!

9.3 Reset der Sicherheits-SPS

Wenn ein Fehler aufgetreten ist, z.B. durch Überschreitung der Geschwindigkeit, benötigt die Sicherheits-SPS einen Reset.

Dieser kann entweder über den Eingang IN4 am Zentralmodul oder über den Feldbus (FBI1.1) ausgeführt werden.

Wenn Sie keinen Reset durchführen wollen, sondern die Sicherheits-SPS diesen automatisch durchführen soll, können Sie den Eingang IN4 fest auf 24V legen. Allerdings werden bei einem automatischen Reset keine Fehler ausgegeben.

		0 0
Reset	IN4 Zentralmodul	
		ZMV 0 IN Reset
Reset	Feldbuseingang FBI1.1	
		FBV 1 In FBI1.1 1\$0703
		FBI1.1.Reset
		······································

9.4 Anzeige des Betriebszustands

Digitale Ausgänge

Zentralmodul		TARA MARAN	Achsüb	erwachungsmodul	12221
Q1	Stopp für Umschalten	2000 2000	Q1	Stillstand Achse 1	2222
	Automatik - SLS (Abort)	11 12 13 14 A1 A2 O1 O2 15 16 17 18 101 102 103 104 DI A1 A2 A4 A			11 12 13 14 15 16 17 18
Q2	Stillstand	ELEKTRONIK D72548 WOLFSCHLUGEN C: 101-4: 24V/4mA O: 101-4: 0.1A	Q4/5	Achse 1 OK	ELEKTRONIK D7349 WOLFSCHLUGEN I1-8:
Q3	Fehler	USB PORT 15 6 7 8 1012 3 4	Q2	Stillstand Achse 2	01-7: I1 2 3 4 1A/23.5A 0 0 0 I5 6 7 8
		4K3 4 5 6 1021(32SPEED 2-HAND EN 574: IIIC 19 10 11 12 03 4 5 6	Q6/7	Achse 2 OK	SPEED 1 @2 1 @ 2 2-HAND EN 574: IIC P 01 2 3
		TR< 50mS 11314 15 16 K1_K2 SL\ARID AC15 3A/230V/Σ4A DNSL - ZMV DC13 4A/24V/Σ4A	Achtun	ig!	
		ID-No: 402M01 01-6: 1Α Σ3Α 19 110 111 112 03 04 05 06 113 114 115 116 1383 142383 24	Wenn S	Sie die Variante " STO	DNSL-DSV ID-No: 40DS01 P3W 01 02 03 04 05 06 07
			auslöse	en einzelne Achse "	
		1	verwen	den, muss der Eingang Ihrer	
			SPS ge	gen induktive Lasten	
			gesiche	ert sein.	

10 Belegung der Feldbus – Ein/Ausgabe

10.1 Eingangsbytes

FBI1.1	Reset
FBI1.2	Frei
FBI1.3	Frei
FBI1.4	Frei
FBI1.5	Frei
FBI1.6	Frei
FBI1.7	Frei
FBI1.8	Frei

Alle anderen Eingangsbytes sind nicht belegt.

10.2 Ausgangsbytes

FBO1.1	Fehler Achse 1	FBO2.1	Fehler Achse 9
FBO1.2	Fehler Achse 2	FBO2.2	Fehler Achse 10
FBO1.3	Fehler Achse 3	FBO2.3	Fehler Achse 11
FBO1.4	Fehler Achse 4	FBO2.4	Fehler Achse 12
FBO1.5	Fehler Achse 5	FBO2.5	Fehler Achse 13
FBO1.6	Fehler Achse 6	FBO2.6	Fehler Achse 14
FBO1.7	Fehler Achse 7	FBO2.7	Fehler Achse 15
FBO1.8	Fehler Achse 8	FBO2.8	Fehler Achse 16
FBO3.1	Fehler Achse 17	FBO4.1	Stillstand Achse 1
FBO3.2	Fehler Achse 18	FBO4.2	Stillstand Achse 2
FBO3.3	Fehler Achse 19	FBO4.3	Stillstand Achse 3
FBO3.4	Fehler Achse 20	FBO4.4	Stillstand Achse 4
FBO3.5	Fehler Achse 21	FBO4.5	Stillstand Achse 5
FBO3.6	Fehler Achse 22	FBO4.6	Stillstand Achse 6
FBO3.7	Fehler Achse 23	FBO4.7	Stillstand Achse 7
FBO3.8	Fehler Achse 24	FBO4.8	Stillstand Achse 8
FBO5.1	Stillstand Achse 9	FBO6.1	Stillstand Achse 17
FBO5.2	Stillstand Achse 10	FBO6.2	Stillstand Achse 18
FBO5.3	Stillstand Achse 11	FBO6.3	Stillstand Achse 19
FBO5.4	Stillstand Achse 12	FBO6.4	Stillstand Achse 20
FBO5.5	Stillstand Achse 13	FBO6.5	Stillstand Achse 21
FBO5.6	Stillstand Achse 14	FBO6.6	Stillstand Achse 22
FBO5.7	Stillstand Achse 15	FBO6.7	Stillstand Achse 23
FBO5.8	Stillstand Achse 16	FBO6.8	Stillstand Achse 24
FBO7.1	Frei	FBO8.1	Fehler
FBO7.2	Frei	FBO8.2	Stillstand aller Achsen
FBO7.3	Frei	FBO8.3	Eingangszustand Muting
FBO7.4	Frei	FBO8.4	Eingangszustand reduzierte Geschwindigkeit 1
FBO7.5	Frei	FBO8.5	Eingangszustand reduzierte Geschwindigkeit 2
FBO7.6	Frei	FBO8.6	Frei
FBO7.7	Frei	FBO8.7	Frei
FBO7.8	Frei	FBO8.8	System OK

11.2 Einstellen der Schnittstelle

11 Software SL-VARIO Designer

Die Sicherheits-SPS wird mit der Software SL-VARIO Designer - V0344, die kostenlos mitgeliefert wird, programmiert.

Diese Beschreibung soll nur zur groben Orientierung dienen. Eine detaillierte Beschreibung finden Sie auf der vom Hersteller mitgelieferten CD und auf dem Flash-Laufwerk im Zentralmodul.

Hinweis:

Um eine Onlinediagnose des Programms durchführen zu können muss die auf dem PC gespeicherte Version identisch zu dem auf der Sicherheits-SPS sein.

11.1 Systemvoraussetzungen

- Betriebssystem: Windows XP, Windows Vista, Windows 7, Windows 8 (erst nach Rücksprache mit DINA)
- Arbeitsspeicher: min. 512MB
- JAVA Runtime Environment (JRE): min. Version 6 Update 16
- USB-Port
- Verbindungskabel: Um eine Verbindung zum Zentralmodul aufzubauen, wird ein herkömmliches USB-Kabel (A Stecker auf B Mini-Stecker) benötigt. Dieses wird an der mini USB-Buchse mit der Aufschrift "USB PORT" angeschlossen.

20

х

11.3 Programm/Einstellungen übertagen

SLVario * - Prj34_8479_5-Achsen_20150120.slw3													
Datei Parameter Projekt Ansicht	Übertragung Hilfe												
🗅 🗁 🖬 📥 🕜	📟 Applikation übertragen 🐂												
Gerätekonfiguration Logik Rac	Schnittstelle Diagnose												
+ - 🖏 🍋 On	ine-Diagnose ZMV 0 FBV 1 DSV 2 DSV 3 D												
Seite 1 Seite 2 Seite 3 Seit	e 4												
TO1/TO2 Türkreis ZMV 0 III- III.Ttakt Türe III.Ttakt Türe	ZMV 0 SK3 MIS.Turkreis K1 TNS.Turkreis K2 Miscopi Restrict Annual Schutzt, Miscopi Restrict Annual Schutzt,												

Hinweis:

Die Übertragung kann bis zu 5 Minuten dauern.

COM1 Selected COM-Port											
COM-Port TEST Refresh COM-Port List											
Applikationsdaten											
Autostart											
Verifikation											
Name Maschine											
Max Autor											
210115											
Firmware Vergleichstest											
System-into-1	ystem-into-2										
		Verzeichnis									
Muster.slw3		Dateiname									
Mittwoch, 21. Januar 2015 10:08:15 Zeitstempel											
OK Abbruch											

plikation übertragen

11.4 Einstellen der Feldbusadresse

Muster.slw3												
Datei Parameter Projekt Ansicht Übertragung Hilfe												
	SLVario Parameter											
Gerätekonfiguration Logik Rack Diagnose	Einstellungen DNCO DNCO-SCANNER NOCKEN											
SLVario-ZMV	Slot Parameter Eingänge Ausgänge 1 Ausgänge 2 FB-LZ-Diag											
L SLVario-FBV	01 FBV Name Image: 1 Byte pro Slot 02 DSV Stationsadresse 2125 Baudrate 0 2											
SLVario-DSV SLVario-DSV O P o P o P rei O P rei O P rei O P rei O P rei	03 DSV											
■ 10 frei ■ SLVario-DRV ■ 11 frei ■ 12 frei ■ 13 frei	05 Bei FB-Störung ZM FB-Eingangsbits nicht löschen 06 Automatische Ermittlung											
SLVario-INV												

12 Zu Beachten

Je nach Modus, verwendetem Motor und Beschaltung kann es zu unterschiedlichen Reaktionszeiten. Die Sicherheitsbaugruppe benötigt bei "1-Fach Messung" und aktiver Schnellabschaltung direkt im Drehzahlüberwachungsmodul (Halbleiterausgang Q3) ca. 11ms vom erkennen der überhöhten Geschwindigkeit bis zur fallenden Flanke am Ausgang. Wird der Relaiskontakt am Zentralmodul verwendet erhört sich diese Zeit entsprechend.

Die Zeit bis zum Abfallen des STO Relais am Regler selbst gilt es in der Kundenseitigen Sicherheitsbetrachtung ebenfalls zu beachten, diese beträgt je nach externer Beschaltung zwischen 3 ms und 20 ms.

13 Erreichbarer Performance Level

Durch die redundante Ausführung und Überwachung aller sicherheitsrelevanten Komponenten sowie der Drehzahlüberwachung auf der Sicherheits-SPS, kann eine Ein-Fehler-Sicherheit sichergestellt werden.

Dadurch kann der erforderliche Performance Level "d", realisiert werden.

Die Verdrahtung muss wie im nachfolgenden Anschlussschema dargestellt realisiert werden.

14 Notizen

			_							_	 		
			-	 						-	 	 	
-			-	 						-	 	 	
-													

15 Support

Afag Hardt GmbH

Gewerbestraße 11 D-78739 Hardt Telefon +49 (0)7422/56003-20 E-Mail <u>support.hardt@afag.com</u> Internet <u>http://www.afag.com</u>

Afag Hardt GmbH Gewerbestraße 11 D-78739 Hardt Telefon +49 (0)7422/56003-0 Telefax +49 (0)7422/56003-29 E-Mail info.hardt@afag.com Internet http://www.afag.com