

LARGE REFINERY IMPROVES SAFETY IN ONLINE SPALLING PROCESS OF COKER FURNACES USING ROSEMOUNT DUAL VORTEX METERS

Customer

There were 12 vortex meters that were installed on each of the 4 feed lines for each of the 3 furnaces. These meters have proven successful in this application for over 15 years and were still in good working condition, but the refinery was implementing a new Safety Instrumented System (SIS) on the coker heaters and needed additional meters for redundancy.

Application

Delayed cokers are used in refineries to thermally crack other unit residues to upgraded product streams. As a byproduct, a solid concentrated carbon material, coke, is produced. The heavy residues are heated at high temperatures (875 to 940°F/470 to 505°C) in the furnaces. The heat is used to crack these heavy resids into smaller gas and liquid products. The goal is to crack residue in coke drums and not in the furnace, so high velocities of fluid flows are utilized to minimize the residence time in the furnace. However, coke formation can still occur on the furnace tube walls. Periodic decoking of the furnace tubes is required to remove the coke deposits to maintain furnace capacity and efficiency. There are only a few decoking methods that can be used to clean furnace tubes in the coker.

Online Spalling is one of those decoking methods and is advantageous because the furnace tubes can be cleaned during operation and eliminates the need to shutdown the process to clean the tubes. During Online Spalling, steam and temperature is used to remove coke deposits from the inside of furnace tubes while thermally contracting and expanding the coils.

A large refinery in the US utilized a licensed Online Spalling process for their delayed coker heaters. The licensor recommendation was to perform the Online Spalling operation every two months. The refinery had three fired heaters in the coker with 4 feed lines each that the Spalling operation was performed on.

Results

- Implemented Safety
 Instrumented System efficiently
 and cost effectively by adding
 flow measurement redundancy
 with a single vortex meter body
- Replaced existing meters without having to modify piping
- Followed licensor specification for utilization of vortex meters to meet wide turndown requirements

Rosemount's 8800 Dual Vortex Flow Meters enable redundancy for safety systems in a single meter body

LARGE REFINERY IMPROVES SAFETY IN ONLINE SPALLING PROCESS OF COKER FURNACES USING ROSEMOUNT DUAL VORTEX METERS

Challenge

Measuring the steam flow in the Spalling process was challenging due to the wide turndown requirements. The turndown requirements were minimum steam flows of 600-1,000 pounds per hour and maximum flows of 8,000-15,000 pounds per hour. The minimum flow rate was recommended to keep a positive steam flow when not Spalling to prevent back flow into the steam system. The maximum flow rate was recommended by the licensor to break up the coke that built up on the feed lines. The licensor design specification and recommendation was to use vortex meters for the Spalling application due to the wide turndown requirements.

Solution

All 12 existing vortex meters were replaced with Emerson's Rosemount™ 8800 Dual Sensor Vortex Meters. Rosemount 8800 Dual Sensor Vortex Meters were selected because they were easy to install in the existing piping and they were equipped to handle wide turndown applications. The Dual Vortex meter is constructed of 2 complete vortex meters with a single shedder bar for both sensors. This compact design enables redundancy while reducing the lay-length of the flow meter body. The meters are calibrated to provide an accurate single flow meter with two independent flow measurements enabling 1002 voting needs and are also capable of up to SIL 3 Certification. Rosemount 8800 Series Vortex Flow Meters are also extremely reliable with a gasket-free, non-clog meter body that eliminates potential leak points, resulting in maximum process availability and fewer unscheduled shutdowns. The unique design of Emerson's Rosemount 8800 Vortex Flow Meters features sensors that are isolated from the process enabling safe online replacement without having to shut down or isolate the process. With the turndown capabilities and compact design of the Rosemount 8800 Vortex Flow Meters, the refinery was able to easily replace the existing vortex and improve safety without modifying piping and saving on installation time and costs.

The Emerson logo is a trademark and service mark of Emerson Electric Co. Brand logotype are registered trademarks of one of the Emerson family of companies. All other marks are the property of their respective owners. © 2024 Emerson Electric Co. All rights reserved.

For more information, visit Emerson.com/refining Emerson.com/vortex

00830-0100-4747 Rev AC

Rosemount Vortex Flow Meters have wide turndown capabilities of 30:1 and are SIL 3 compliant for critical and challenging applications.

