Rosemount[™] 770XA-14K PTB-zugelassener Gaschromatograph 770XA-14K

System- und Referenzhandbuch Februar 2021

Gilt für die PTB-zugelassene Ausführung des Gaschromatographen 770XA-14K

ROSEMOUNT

Hinweis

ROSEMOUNT ("DER VERKÄUFER") ÜBERNIMMT KEINE HAFTUNG FÜR TECHNISCHE ODER REDAKTIONELLE FEHLER ODER AUSLASSUNGEN IN DIESEM HANDBUCH. DER VERKÄUFER ÜBERNIMMT KEINERLEI AUSDRÜCKLICHE ODER STILLSCHWEIGEND EINGESCHLOSSENE GEWÄHRLEISTUNG, DARIN EINGESCHLOSSEN DIE STILLSCHWEIGEND EINGESCHLOSSENE GEWÄHRLEISTUNG FÜR HANDELSÜBLICHE QUALITÄT UND EIGNUNG FÜR EINEN BESTIMMTEN ZWECK UNTER BEZUG AUF DIESES HANDBUCH, UND HAFTET IN KEINEM FALL FÜR FOLGESCHÄDEN, DARIN EINGESCHLOSSEN, JEDOCH NICHT BESCHRÄNKT AUF, PRODUKTIONSAUSFALL, ENTGANGENER GEWINN ETC.

DIE IN DIESEM HANDBUCH VERWENDETEN PRODUKTNAMEN DIENEN NUR DER IDENTIFIKATION VON HERSTELLERN ODER LIEFERANTEN UND SIND MÖGLICHERWEISE EINGETRAGENE UND RECHTLICHE GESCHÜTZTE WARENZEICHEN DIESER UNTERNEHMEN.

DIE INHALTE DIESER PUBLIKATION DIENEN NUR DER INFORMATION, UND OBWOHL ALLE ANSTRENGUNGEN UNTERNOMMEN WURDEN, IHRE RICHTIGKEIT SICHERZUSTELLEN, KÖNNEN SIE IN BEZUG AUF DIE IN DIESEM HANDBUCH BESCHRIEBENEN PRODUKTE ODER DIENSTLEISTUNGEN ODER DEREN NUTZUNG ODER ANWENDBARKEIT NICHT ALS AUSDRÜCKLICHE ODER STILLSCHWEIGEND EINGESCHLOSSENE GEWÄHRLEISTUNGEN ODER GARANTIEN AUSGELEGT WERDEN. WIR BEHALTEN UNS DAS RECHT VOR, DIE DESIGNS ODER SPEZIFIKATIONEN DIESER PRODUKTE JEDERZEIT ZU ÄNDERN ODER ZU VERBESSERN.

DER VERKÄUFER ÜBERNIMMT KEINE VERANTWORTUNG FÜR DIE AUSWAHL, VERWENDUNG ODER INSTANDHALTUNG EINES PRODUKTS. DIE VERANTWORTUNG FÜR DIE AUSWAHL, VERWENDUNG UND INSTANDHALTUNG EINES PRODUKTS VOM VERKÄUFER LIEGT ALLEIN BEIM KÄUFER UND ENDVERBRAUCHER.

Garantie

- EINGESCHRÄNKTE GARANTIE: Vorbehaltlich der Beschränkungen in Abschnitt 2 dieser Bestimmungen und 1. sofern hier nicht ausdrücklich anders festgelegt, garantiert Rosemount Analytical, Inc. ("Verkäufer") bis zum Ablauf der entsprechenden Gewährleistungsfrist, dass die Firmware die vom Verkäufer integrierten Programmierbefehle ausführt, und dass die vom Verkäufer hergestellten Waren oder angebotenen Dienstleistungen bei üblicher Verwendung und Pflege frei von Material- oder Herstellungsmängeln sind. Für Waren gilt eine Gewährleistungsfrist von zwölf (12) Monaten ab dem Zeitpunkt der Erstinstallation oder achtzehn (18) Monaten ab dem Zeitpunkt des Versands durch den Verkäufer, je nachdem, welche Frist als erste abläuft. Für Verbrauchsmaterialien und Dienstleistungen gilt eine Gewährleistungsfrist von 90 Tagen ab dem Zeitpunkt des Versands oder der vollständigen Erbringung der Dienstleistungen. Für Produkte, die vom Verkäufer von Dritten gekauft werden, um Sie dem Käufer weiterzuverkaufen ("Resale-Produkte"), gelten nur die Gewährleistungsfristen des Originalherstellers. Der Käufer erkennt an, dass der Verkäufer keine Haftung für "Resale-Produkte" übernimmt, sondern sich nur in wirtschaftlich angemessener Weise bemüht, die Beschaffung und den Versand der "Resale-Produkte" zu arrangieren. Entdeckt der Käufer einen Gewährleistungsmangel und setzt den Verkäufer hiervon schriftlich innerhalb der angegebenen Gewährleistungsfrist in Kenntnis, dann wird der Verkäufer, nach seiner Wahl, entweder unverzüglich die vom Verkäufer in der Firmware oder den Dienstleistungen gefundenen Mängel beseitigen oder den vom Verkäufer als mangelhaft befundenen Teil der Waren oder Firmware FOB Herstellung instand setzen oder ersetzen oder den Kaufpreis des mängelbehafteten Teils der Waren/Dienstleistungen rückerstatten. Jeder Ersatz/Austausch und jede Instandsetzung, der/die auf eine unzureichende Instandhaltung, normalen Verschleiß und Gebrauch, ungeeignete Stromquellen, ungeeignete Umgebungsbedingungen, einen Unfall/Störfall, unsachgemäßen Gebrauch, eine nicht ordnungsgemäße Installation, Änderung, Instandsetzung, Lagerung oder Handhabung/Bedienung oder jede andere nicht vom Verkäufer zu vertretende Ursache zurückzuführen ist, ist nicht von dieser beschränkten Gewährleistung abgedeckt und erfolgt auf Kosten des Käufers. Der Verkäufer ist nicht verpflichtet, dem Käufer oder Dritten entstandene Kosten oder Gebühren zu zahlen, es sei denn, dass dies im Voraus schriftlich durch einen bevollmächtigten Vertreter des Verkäufers vereinbart wurde. Sämtliche Kosten für Demontage, Neuinstallation und Fracht sowie Zeit-und Kostenaufwand für das Personal des Verkäufers für die An-/Abreise zum Einsatzort und die Fehlerdiagnose entsprechend dieser Gewährleistungsklausel übernimmt der Käufer, es sei denn, der Verkäufer stimmt der Kostenübernahme schriftlich zu. Für während der Gewährleistungsfrist instand gesetzte Waren und ersetzte Teile gilt die verbleibende ursprüngliche Gewährleistungsfrist oder eine Frist von neunzig (90) Tagen, je nachdem, welcher Zeitraum länger ist. Diese beschränkte Gewährleistung ist die einzige Gewährleistung des Verkäufers und kann nur schriftlich mit Unterschrift eines bevollmächtigten Vertreters des Verkäufers ergänzt werden. Sofern in der Vereinbarung nicht ausdrücklich anderweitig festgelegt, GIBT ES MIT BEZUG AUF DIE WAREN ODER DIENSTLEISTUNGEN KEINERLEI AUSDRÜCKLICHE ODER STILLSCHWEIGEND EINGESCHLOSSENE ZUSICHERUNGEN ODER GEWÄHRLEISTUNGEN FÜR DIE HANDELSÜBLICHE QUALITÄT, EIGNUNG FÜR EINEN BESTIMMTEN ZWECK ODER SONSTIGES. Es gilt hiermit als vereinbart, dass eine Korrosion oder Erosion von Materialien nicht von unserer Gewährleistung abgedeckt ist.
- 2. RECHTSMITTEL- UND HAFTUNGSBESCHRÄNKUNG: DER VERKÄUFER IST NICHT HAFTBAR FÜR SCHÄDEN, DIE DURCH VERZÖGERUNG VON LEISTUNGEN VERURSACHT WERDEN. DIE ALLEINIGEN UND AUSSCHLIESSLICHEN RECHTSMITTEL IM FALLE EINER VERLETZUNG DER GEWÄHRLEISTUNG ENTSPRECHEND DIESER BESTIMMUNGEN BESCHRÄNKEN SICH GEMÄSS DER KLAUSEL DER BESCHRÄNKTEN GEWÄHRLEISTUNG IN ABSCHNITT 1 AUF EINE INSTANDSETZUNG ODER AUSBESSERUNG, EINEN ERSATZ/AUSTAUSCH ODER DIE RÜCKERSTATTUNG DES KAUFPREISES. IN KEINEM FALL, UNABHÄNGIG VON DER FORM DES KLAGEANSPRUCHS ODER DER URSACHE DER HANDLUNG (OB AUFGRUND EINES VERTRAGS, DER VERLETZUNG EINES RECHTS, EINER FAHRLÄSSIGKEIT, EINER VERSCHULDENSUNABHÄNGIGEN HAFTUNG, ANDERER UNERLAUBTER HANDLUNGEN ODER AUS ANDEREN GRÜNDEN), ÜBERSTEIGT DIE HAFTUNG DES VERKÄUFERS GEGENÜBER DEM KÄUFER UND/ODER SEINEN KUNDEN IN DER SUMME DEN VOM KÄUFER GEZAHLTEN KAUFPREIS FÜR DIE ENTSPRECHENDEN VOM VERKÄUFER HERGESTELLTEN WAREN ODER ERBRACHTEN DIENSTLEISTUNGEN, AUS DENEN EIN KLAGEANSPRUCH ODER -GRUND RESULTIERT. DER KÄUFER ERKLÄRT SICH DAMIT EINVERSTANDEN, DASS SICH DIE HAFTUNG DES VERKÄUFERS GEGENÜBER DEM KÄUFER UND/ODER SEINEN KUNDEN IN KEINEM FALL AUF NEBEN- ODER FOLGESCHÄDEN ODER SCHADENERSATZ MIT STRAFWIRKUNG ERSTRECKT. DER BEGRIFF "FOLGESCHÄDEN" UMFASST, IST JEDOCH NICHT BESCHRÄNKT AUF, ENTGANGENE ZU ERWARTENDE GEWINNE, NUTZUNGSAUSFÄLLE, EINNAHMEAUSFÄLLE UND KAPITALKOSTEN.

Inhalt

1.1	Beschreibung des Handbuchs	
1.2	Systembeschreibung	
	1.2.1 Analysator-Baugruppe	
	1.2.2 Elektronik-Baugruppe	
	1.2.3 Probenaufbereitung/-umschaltung	
1.3	Funktionsbeschreibung	
1.4	Beschreibung der Software	
	1.4.1 Eingebettete GC-Firmware	
	1.4.2 MON2020	
1.5	Funktionstheorie	
	1.5.1 Wärmeleitfähigkeitsdetektor	
	1.5.2 Datenerfassung	
	1.5.3 Peak-Erfassung	
1.6	Grundlegende Analyseberechnungen	
	1.6.1 Konzentrationsanalyse – Response-Faktor	
	1.6.2 Konzentrationsberechnung – Molprozentsatz (ohne Normalisierung)	
	1.6.3 Konzentrationsberechnung in Molprozent (mit Normalisierung)	
1.7	Glossar	
веs 2.1	Gerätebeschreibung	
веs 2.1	Gerätebeschreibung	1
2.1	Gerätebeschreibung 2.1.1 Frontplatte	1
веs 2.1	Gerätebeschreibung	
2.1	Gerätebeschreibung 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler	
2.1 2.2	Gerätebeschreibung und technische Daten	
2.1 2.2	Gerätebeschreibung 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler Gerätespezifikationen 2.2.1 Betriebsmittel 2.2.1	
2.1 2.2	Gerätebeschreibung 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler Gerätespezifikationen 2.2.1 Betriebsmittel 2.2.2 Elektronische Hardware 2.2.2	
2.1 2.2	Gerätebeschreibung 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler Gerätespezifikationen	
2.1 2.2	Gerätebeschreibung 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler Gerätespezifikationen	
2.1 2.2	Gerätebeschreibung 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler Gerätespezifikationen	
2.1 2.2	Gerätebeschreibung 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler Gerätespezifikationen	
2.1 2.2	Gerätebeschreibung 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler Gerätespezifikationen	
2.1 2.2 Inst	Gerätebeschreibung 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler Gerätespezifikationen	
2.1 2.2 Inst 3.1	Gerätebeschreibung und technische Daten 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler Gerätespezifikationen	
2.1 2.2 Inst 3.1	Gerätebeschreibung 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler Gerätespezifikationen	
2.1 2.2 Inst 3.1 3.2	Gerätebeschreibung 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler Gerätespezifikationen	
2.1 2.2 Inst 3.1 3.2	Gerätebeschreibung 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler Gerätespezifikationen	
2.1 2.2 Inst 3.1 3.2	Gerätebeschreibung und technische Daten 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler Gerätespezifikationen	
2.1 2.2 Inst 3.1 3.2	Gerätebeschreibung und technische Daten 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler Gerätespezifikationen	
2.1 2.2 Inst 3.1 3.2	Gerätebeschreibung und technische Daten 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler Gerätespezifikationen	
2.1 2.2 Inst 3.1 3.2 3.3	Gerätebeschreibung 2.1.1 Frontplatte 2.1.2 Oberes Gehäuse 2.1.3 Unteres Gehäuse 2.1.4 Mechanischer Druckregler Gerätespezifikationen	

2

	3.3.3 3 3 4	Elektrische Erdung und Signalerdung	27 29
3 /	Vorhe	raitung	
J. 4	2 / 1	Standortwahl	2C
	212	Auspacken der Einheit	
	3.4.2	Frforderliche Werkzeuge und Komponenten	
	3.4.4	Unterstützende Hilfsmittel und Komponenten	
3.5	Install	ation	30
	3.5.1	DC-Spannungsversorgung	
	3.5.2	Optionale Spannungsversorgung (AC/DC-Wandler)	
	3.5.3	Anschließen der Probenentnahme- und anderen Gasleitungen	
	3.5.4	Maximale effektive Entfernung nach Kommunikationsprotokoll	
	3.5.5	Abschlusswiderstände für serielle RS-485-Ports	
	3.5.6	Installation und Verbindung zu einer analogen Modemkarte	
	3.5.7	Verbinden des GC über das analoge Modem	
	3.5.8	Direktes Verbinden von GC und PC mithilfe des Ethernet-Ports des GC	
	3.5.9	Fehlersuche und -beseitigung bei DHCP- Verbindungsproblemen	41
	3.5.10	Direktes Verbinden von GC und PC mithilfe des seriellen Ports des GC	42
	3.5.11	Direktes Verbinden von PC und GC mithilfe des kabelgebundenen Ethernet-Anschlusses des GC	44
	3.5.12	Zuweisen einer statischen IP-Adresse zum GC	46
	3.5.13	Verkabelung der diskreten digitalen E/A	48
	3.5.14	Verkabelung der Analogeingänge	54
	3.5.15	Verkabelung der Analogausgänge	61
3.6	Leckpr	üfung und Spülung zur Erstkalibrierung	66
	3.6.1	Dichtigkeitsprüfung des GC	66
	3.6.2	Spülen der Trägergasleitungen	66
	3.6.3	Spülen der Kalibriergasleitungen	67
3.7	Systen	nstart	68
Bet	rieb u	nd Wartung	68
4.1	Warnu	ing und Vorsichtsmaßnahmen	68
4.2	Fehler	suche und Reparaturkonzept	69
4.3	Routin	ewartung	69
	4.3.1	Wartungsprüfliste	69
	4.3.2	Routinemäßige Wartungsabläufe	70
	4.3.3	Vorsichtsmaßnahmen für die Handhabung von Leiterplatten-Baugruppen	71
	4.3.4	Allgemeine Störungsanalyse und -beseitigung	71
	4.3.5	Dichtigkeitsprüfung des GC	84
	4.3.6	Ventile	84
	4.3.7	Detektor-Wartung	86
	4.3.8	Messen des Trägergas-Durchflusses	88
	4.3.9	Elektrische Bauteile	88
	4.3.10	Werkseinstellungen für Steckbrücken und Schalter	91
	4.3.11	Kommunikation	92
	4.3.12	Analogeingänge und -ausgänge	99
	4.3.13	Digitale Binäreingänge und -ausgänge	99
	4.3.14	Empfohlene Ersatzteile	100
	4.3.15	Aktualisieren der eingebetteten Software	100
Anh	ang A	: Bedieninterface (LOI - Local Operator Interface)	101

		-
A.1	Interface-Komponenten zur Anzeige und Eingabe von Daten	.101
	A.1.1 Leuchtdioden-Anzeigen (LED)	. 101

А

	A.1.2 LCD-Anzeige	102
	A.1.3 Tastenfeld	102
A.2	Verwendung des Bedieninterface	
	A.2.1 Inbetriebnahme	
	A.2.2 Navigationsmenus	
	A.2.4 Bearbeitung von numerischen Feldern	
	A.2.5 Bearbeitung von nicht-numerischen Feldern	106
A.3	Bildschirmnavigations- und Interaktions-Tutorial	110
A.4	Die Bedieninterface-Bildschirme	117
	A.4.1 Das Menü Chromatogram (Chromatogramm)	120
	A.4.2 Das Menu Hardware	
	A 4 4 Das Menü Logs/Reports (Protokolle/Berichte)	
	A.4.5 Das Menü Control (Steuerung)	
	A.4.6 Das Menü Manage (Verwalten)	144
A.5	Bedieninterface-Sicherheitsschalter setzen	147
A.6	Verplombung des 770XA Gaschromatographen	149
A.7	Fehlersuche und -beseitigung bei einem leeren Bedieninterface-Bildschirm	150
		. – .
Anr	nang B: Konformität des 770XA mit WELMEC	151
B.1	770XA	151
B.2	Basiskonfiguration	151
B.3	Erweiterungen	151
B.4	Konformität mit den Anforderungen des Typs P	152
B.5	Konformität mit den Anforderungen des Typs L	154
B.6	Konformität mit den Anforderungen des Typs T	156
Anŀ	nang C: 770XA GC-Berechnungen	157
C.1	Gaschromatograph-Berechnungen	157
	C.1.1 ISO 6976-Berechnungen	157
	C.1.2 Idealgas-Brennwerte	157
	C.1.3 Molbasis:	
	C.1.4 Ivid55EUd515	158 158
	C.1.6 Ideale relative Gasdichte	
	C.1.7 Relative Realgas-Dichte	159
	C.1.8 Kompressibilität	159
	C.1.9 Trockene Realgas-Brennwerte	159
	C.1.10 Gesättigte Realgas-Brennwerte	160
	C.1.11 Wobbe-Index	
	C.1.12 Gewichtsprozent-Berechnung	160
Anh	nang D: Software-Architektur	161
D.1	Software-Architektur – Übersicht	161
D.2	CPU	161
D.3	Bedieninterface (LOI)	162

В

С

D

	D.3.1 Statusanzeige	
	CDLL Disting I CD Software Interface	
D.4	D.4.1 Externer Proxy Daemon	
	D.4.2 Chromatogramm-Server	
	D.4.3 FTP-Server	165
D.5	Interne Bestandteile der CPU-Platine	165
	D.5.1 Database Manager (Datenbank-Manager)	
	D.5.2 Database Manager – Gespeicherte Datentypen	
D.6	Hardware-Elektronik – Ubersicht	
	D.6.2 Inter-Board-Kommunikation – Hardware-Busse	
	D.6.3 XA-Platinen	
D.7	Externe Schnittstellen	
	D.7.1 Modbus-Schnittstelle – Übersicht	174
D.8	Vordefinierte Modbus Map-Dateien	
	D.8.1 Definition von Begriffen	175
	D.8.2 SIM2251 Modbus-Mapping	177
	D.8.3 User Modbus-Mapping – Vorlage	230
	D.8.4 Beschreibbare Modbus-Register	
D.9	Verwendete TCP-Ports	
	D.9.1 TCP Port 10.000 – Externer Proxy Daemon	
	D.9.3 TCP-Port 11.000 – Chromatogramm-Server	
	D.9.4 TCP-Port 21, 20 – FTP-Befehl/Daten, TCP-Ports 12.100 12.600 - Passives FTP	240
D.10	Backdoors	241
	D.10.1 Firmware-Aktualisierung	241
	D.10.2 Secure Shell (SSH)	
D 44	D. 10.3 Zurücksetzen des Administrator-kennworts	
D.11	Bedieninterface	242
Anh	ang E: Trägergas – Installation und Wartung	246
E.1	Trägergas	246
E.2	Installation und Leitungsspülung	247
E.3	Austauschen des Trägergaszylinders	248
E.4	Kalibriergas	248
Δnh	ang F: Emnfohlene Ersatzteile	249
 г 4		
⊦.1	Emptoniene Ersatzteile für 770XA-14K-Analysatoren	249
Anh	ang G: Empfehlungen für Versand und Langzeitlagerung	251
Anh	ang H: Technische Zeichnungen	252
H.1	Auflistung der technischen Zeichnungen	252

Ε

F

G

Н

1 Einführung

Dieser Abschnitt erläutert den Inhalt und Verwendungszweck des 770XA System- und Referenzhandbuchs, enthält eine Beschreibung der PTB-zugelassenen Ausführung des 770XA-14K Gaschromatographen, eine Erläuterung der Theorie der Gaschromatographie und ein Glossar der Terminologie des Gaschromatographen.

Verwenden Sie diesen Abschnitt, um sich einen grundlegenden Überblick über das Modell 770XA zu verschaffen.

1.1 Beschreibung des Handbuchs

Das 770XA-14K System- und Referenzhandbuch gilt für die PTB-zugelassene Ausführung des Rosemount 770XA Gaschromatographen (Teile-Nr.: 2-3-9000-761) und umfasst Verfahren bezüglich Installation, Betrieb, Wartung sowie Störungsanalyse und -beseitigung.

1.2 Systembeschreibung

Der 770XA-14K ist ein Hochgeschwindigkeits-Gaschromatograph (GC), der basierend auf typischen Zusammensetzungen von Erdgas und den typischen Konzentrationen ausgewählter Kohlenwasserstoff-Komponenten für die Erfüllung spezieller Anforderungen im Feldeinsatz konstruiert wurde. In der Standardkonfiguration kann der Gaschromatograph 770XA-14K bis zu fünf Gasströme handhaben: Drei Probengasströme, einen Kalibriergasstrom und einen Gasstrom für die Verifizierung.

Das System 770XA-14K besteht aus drei Hauptbaugruppen: der Analysatorbaugruppe, der Elektronikbaugruppe und der Probenaufbereitung/-umschaltung.

Elektronik und Hardware sind in einem explosionsgeschützten Gehäuse untergebracht, das den Zulassungsrichtlinien von mehreren Zertifizierungsstellen für die Verwendung in Ex-Bereichen entspricht. Spezifische Einzelheiten bezüglich der Behördenzulassungen finden Sie auf dem Zertifizierungstypenschild des GCs.

1.2.1 Analysator-Baugruppe

Die Analysator-Baugruppe beinhaltet die Säulen, Wärmeleitfähigkeitsdetektoren (TCDs), einen Vorverstärker, die Vorverstärker-Spannungsversorgung, Umschaltventile für die Gasströme, Analysenventile und Magnetventile.

Weitere Informationen finden Sie in Abschnitt 2.1.2.

1.2.2 Elektronik-Baugruppe

Die Elektronik beinhaltet die Bauteile und Anschlüsse, die für die Signalverarbeitung, Gerätesteuerung, Datenspeicherung, PC-Schnittstelle und Telekommunikation erforderlich sind. Sie erlaubt dem Bediener, die Software MON2020 (eine Softwareanwendung) für die Steuerung des GCs zu nutzen. Siehe *Abschnitt 2.2.2* für weitere Einzelheiten.

Die Verbindung zwischen GC und PC ermöglicht höchste Leistungsfähigkeit, Benutzerfreundlichkeit und Flexibilität. Mithilfe der Software MON2020 können Sie Anwendungen bearbeiten, Operationen überwachen, Ströme kalibrieren und sich Chromatogramme und Berichte anzeigen lassen. Diese können Sie dann als Dateien auf der Festplatte Ihres PCs speichern oder an einen am PC angeschlossenen Drucker senden.

WARNUNG!

Verwenden Sie keinen PC im Ex-Bereich. Über serielle Ports und Modbus stehen Kommunikationsverbindungen zur Verfügung, um das Gerät in einem Ex-freien Bereich an einem PC oder an andere Computer anschließen zu können. Die Nichtbeachtung dieses Warnhinweises kann zu schweren oder tödlichen Verletzungen oder zu Sachschäden führen.

1.2.3 Probenaufbereitung/-umschaltung

Die Probenaufbereitung/-umschaltung (SCS) befindet sich zwischen dem zugeführten Prozessstrom und dem Probeneinlass des GCs. In der Standardkonfiguration ist die Probenaufbereitung unterhalb des GCs montiert und umfasst ein Stromumschaltsystem und Filter. Das Stromumschaltsystem umfasst Doppelblock- und Ablassventile für die Auswahl von Prozessgasstrom, Validierungs- und Kalibriergas.

1.3 Funktionsbeschreibung

Eine Probe des zu analysierenden Gases wird anhand einer Probesonde, die in der Prozessleitung installiert ist, aus dem Prozessgasstrom entnommen. Die Probe wird über eine Probenleitung zum Probenaufbereitungssystem (SCS) geführt, wo sie gefiltert oder anderweitig aufbereitet wird. Nach der Aufbereitung wird die Probe dem Analysator zugeführt, in dem die Gaskomponenten getrennt und erfasst werden.

Die chromatographische Trennung des Probengases in seine Komponenten wird folgendermaßen erreicht:

- 1. Ein bestimmtes Volumen an Probengas wird in eine der Trennsäulen dosiert. Die Säule beinhaltet eine stationäre Phase (Packung), die entweder aus einem aktiven festen Träger oder einem inerten festen Träger besteht, der mit einer flüssigen aktiven Phase überzogen ist.
- 2. Die Gasprobe wird durch eine mobile Phase (Trägergas) durch die Säule geleitet.
- 3. In der Säule erfolgt eine selektive Verzögerung der Probenkomponenten, was dazu führt, dass jede Komponente in einer unterschiedlichen Geschwindigkeit durch die Säule wandert. Dieser Vorgang trennt die Probe in ihre einzelnen Gaskomponenten auf.
- 4. Ein Detektor am Ausgang der Trennsäule registriert die Elution von Komponenten der Säule und erzeugt ein elektrisches Signal entsprechend der Konzentration einer jeden Komponente.

Die Ausgabedaten der Elektronik-Baugruppe werden normalerweise auf einem entfernt gelegenen PC angezeigt. Die Verbindung zwischen dem GC und dem PC kann über eine direkte serielle Leitung, ein optionales Ethernetkabel oder eine Modbus-kompatible Kommunikationsschnittstelle hergestellt werden.

In MON2020 können mehrere Chromatogramme mit verschiedenen Farbschemas angezeigt werden, die es dem Bediener ermöglichen, aktuelle und historische Daten miteinander zu vergleichen.

In den meisten Fällen ist die Verwendung von MON2020 zur Konfiguration und Fehlerbehebung des GC unbedingt erforderlich. Die Verbindung mit dem PC kann aus der Ferne über Ethernet, Telefon-, Radio- oder Satellitenkommunikation erfolgen. Einmal installiert und konfiguriert kann der GC über einen langen Zeitraum eigenständig arbeiten.

1.4 Beschreibung der Software

Der GC verwendet drei verschiedene Softwaretypen. Dies ermöglicht eine hohe Flexibilität beim Definieren der Berechnungssequenz, des gedruckten Berichtsinhalts, des Formats, des Datentyps und der Datenmenge für die Betrachtung sowie für die Steuerung und/oder Übertragung auf einen anderen Computer oder eine Steuergeräte-Baugruppe. Die drei Typen sind:

- Eingebettete GC-Firmware
- Software zur Anwendungskonfiguration
- Wartungs- und Betriebssoftware (MON2020)

Das BOS (Basis-Betriebssystem) und die Software zur Anwendungskonfiguration sind bei der Lieferung des 770XA bereits installiert. Die Anwendungskonfiguration ist auf den Prozess des Kunden zugeschnitten und die Software wird auf einem USB-Stick geliefert. Es ist darauf hinzuweisen, dass Hardware und Software zusammen getestet werden, bevor das Gerät das Werk verlässt. MON2020 kommuniziert mit dem GC und kann zur Initiierung der Systemeinrichtung vor Ort (d. h. Betriebsparameter, Anwendungskonfiguration und Wartung) verwendet werden.

1.4.1 Eingebettete GC-Firmware

Die eingebettete Firmware des GC überwacht die Funktionsweise des Gaschromatographen 770XA mithilfe seiner internen, mikroprozessorbasierten Steuereinheit. Die direkte Hardware-Anbindung erfolgt über diese Steuersoftware. Die Firmware beinhaltet ein Multi-Tasking-Programm, das separate Aufgaben während des Systembetriebs steuert, Hardwaretests durchführt, Benutzeranwendungen herunterlädt sowie die Inbetriebnahme und Kommunikation regelt. Ist der Gaschromatograph 770XA einmal konfiguriert, kann er als eigenständiges Gerät betrieben werden.

1.4.2 MON2020

MON2020 ermöglicht die Kontrolle des 770XA durch den Bediener, die Überwachung der Analyseergebnisse sowie die Prüfung und Bearbeitung verschiedene Parameter, die den Betrieb des 770XA beeinflussen. Die Software steuert auch die Anzeige und den Druck der Chromatogramme und Berichte sowie den automatischen Start und Stopp von Analyse- und Kalibrierläufen.

Nach der Installation der Ausrüstung/Software und bei stabilisiertem Betrieb können automatische Vorgänge über das Ethernet-Netzwerk initiiert werden.

MON2020 ist ein Windows-basiertes Programm, das den Bediener bei Wartung, Betrieb, Fehlersuche und -beseitigung des Gaschromatographen unterstützt. Diese Software ist ein unverzichtbares Zubehör für die PTB-zugelassene Ausführung des GCs 770XA-14K, weil die vorgeschriebene 10-wöchige Speicherung der Analyseergebnisse nur mit Hilfe von MON2020 eingesehen werden kann. Individuelle Funktionen des GC können mithilfe von MON2020 initiiert oder gesteuert werden. Hierzu gehören u. A.:

- Ventil-Aktivierungen
- Timing-Einstellungen
- Strömungssequenzen
- Kalibrierungen
- Analysen
- Betrieb anhalten
- Zuordnung von Strom/Detektor/Heizung
- Zuordnung von Strom/Komponententabellen
- Zuordnung von Strom/Berechnungen
- Diagnosefunktionen
- Alarm- und Ereignisverarbeitung
- Änderungen der Ereignisabfolge
- Anpassung der Komponententabelle
- Anpassung der Berechnungen
- Alarmparameter
- Analoge Skalenanpassungen
- Variable Zuweisungen des Bedieninterface (optional)
- Variable Zuweisungen von Foundation Feldbus (optional)

Es können Berichte und Protokolle erstellt werden, die von der derzeit verwendeten Anwendung des GC abhängig sind. Hierzu zählen u. A.:

- Konfigurations-Report
- Parameterliste
- Analyse-Chromatogramme
- Chromatogramm-Vergleich
- Alarmprotokoll (unbestätigte und aktive Alarme)
- Ereignisprotokoll
- Verschiedene Analyseberichte

Anmerkung

Eine vollständige Auflistung der mittels MON2020 verfügbaren Funktionen, Berichte und Protokolle für den GC finden Sie im Benutzerhandbuch für die Software (Teile-Nr.: 2-3-9000-745).

1.5 Funktionstheorie

Die folgenden Abschnitte behandeln die Funktionstheorie für den GC, die technischen Grundlagen und die verwendeten Konzepte.

Anmerkung

Eine Definition der verwendeten Fachbegriffe finden Sie im Abschnitt 1.7

1.5.1 Wärmeleitfähigkeitsdetektor

Einer der verfügbaren Detektoren am 770XA ist ein Wärmeleitfähigkeitsdetektor (TCD). Dieser besteht aus einer abgeglichenen Brückenschaltung mit wärmeempfindlichen Thermistoren in jedem Brückenabschnitt. Jeder Thermistor befindet sich in einer separaten Kammer des Detektorblocks.

Ein Thermistor ist als Bezugselement bestimmt und der andere als Messelement. Eine schematische Darstellung des Wärmeleitfähigkeitsdetektors finden Sie in *Abbildung 1-2*.

Abbildung 1-2: Analysator mit TCD-Brücke

In der Ruhephase (vor der Dosierung einer Probe) sind beide Brückenabschnitte reinem Trägergas ausgesetzt. In dieser Phase ist die Brücke abgeglichen und das Brückensignal ist elektrisch Null.

Die Analyse beginnt, wenn ein bestimmtes Probenvolumen durch das Probenventil in die Säule dosiert wurde. Der ständige Durchfluss von Trägergas leitet die Probe durch die Säule. Durch die aufeinanderfolgende Elution von Komponenten von der Säule verändert sich die Temperatur des Messelements.

Die Temperaturänderung führt zu einem Balancemangel der Brücke und erzeugt ein elektrisches Signal entsprechend der Komponentenkonzentration.

Das Differentialsignal, das zwischen den beiden Thermistoren erzeugt wird, wird vom Vorverstärker verstärkt. *Abbildung 1-3* zeigt die Änderung des elektrischen Ausgangs des Detektors während der Elution einer Komponente.

A. Ausgeglichene Detektorbrücke

B. Beginn der Elution einer Komponente von der Säule

C. Maximale Konzentration der eluierenden Komponente ("Peak")

Der Vorverstärker dient der Stromversorgung die Detektorbrücke und verstärkt das Differenzsignal, das zwischen den beiden Detektor-Thermistoren erzeugt wird.

Das Signal ist proportional zur Konzentration einer in der Gasprobe gefundenen Komponente. Der Vorverstärker verfügt über vier eigenständige Kanäle und eine Kompensationsfunktion für den Basisliniendrift.

Die Vorverstärkersignale werden an die Elektronikbaugruppe gesendet und zur Berechnung oder zur Anzeige auf einem PC-Monitor mit der MON2020-Software verwendet.

1.5.2 Datenerfassung

Jede Sekunde werden genau 50 abstandsgleiche Datenproben (d. h. eine Datenprobe alle 20 Millisekunden) zur Analyse durch die Reglerbaugruppe erfasst.

Ein Teil des Datenerfassungsprozesses ist die Mittelwertbildung von Gruppen eingehender Datenproben, bevor das Ergebnis zur Verarbeitung gespeichert wird. Da sich nicht überschneidende Gruppen von *N* Proben gemittelt und gespeichert werden, reduziert sich die effektive Eingangsdatenrate auf 50/*N* Proben pro Sekunde. Beispiel: Bei *N* = 5 werden pro Sekunde insgesamt 50/5 oder 10 (gemittelte) Datenproben gespeichert.

Der Wert für die Variable *N* wird durch die Auswahl eines Peakbreiten-Parameters (*PW*) bestimmt. Das Verhältnis ist

N = PW

wobei *PW* in Sekunden angegeben wird. Gültige Werte von *N* sind 1 bis 63; dieser Bereich entspricht *PW*-Werten von 2 bis 63 Sekunden.

Die Variable *N* wird auch Integrationsfaktor genannt. Dieser Begriff wird verwendet, weil *N* bestimmt, wie viele Punkte zu einem Einzelwert gemittelt oder integriert werden. Die Integration von Eingangsdaten vor dem Speichern hat zwei Funktionen:

- Das statistische Rauschen des Eingangssignals wird um die Quadratwurzel von *N* reduziert. Bei *N* = 4 würde eine Rauschreduzierung von 2 erreicht.
- Der Integrationsfaktor regelt die Bandbreite des Signals des Chromatographen. Es ist erforderlich, die Bandbreite des Eingangssignals auf das Signal der Analysealgorithmen der Reglerbaugruppe anzupassen. Dadurch wird verhindert, dass kleine, kurzzeitige Störungen von der Software als echte Peaks erfasst werden. Daher ist es wichtig, eine Peakbreite zu wählen, die dem schmalsten Peak einer zu berücksichtigenden Gruppe entspricht.

1.5.3 Peak-Erfassung

Für die Auswertung der Konzentration im Normalbereich oder auf Peak-Höhe erfolgt eine automatische Bestimmung eines Peak-Starts, Peak-Höhepunkts und Peak-Endes. Die automatische Festlegung eines Peak-Beginns erfolgt, wenn "Integrate Inhibit" (Integration unterdrücken) ausgeschaltet ist. Die Analyse beginnt in einem Bereich mit einem ruhigen und stabilen Signal, sodass Signalstärke und -Aktivität als Basislinienwerte angesehen werden können.

Anmerkung

Die Software des Steuergerätes nimmt an, dass es einen Bereich mit ruhigem und stabilem Signal gibt.

Nach Einleitung einer Peak-Suche durch Ausschalten von "Integrate Inhibit" (Integration unterdrücken) führt das GC-Steuergerät eine Punkt-für-Punkt-Analyse der Signalkurve aus. Dies erfolgt mittels eines digitalen Kurvenerfassungsfilters, der eine Kombination aus Tiefpassfilter und Differentiator ist. Das Signal dieses Detektors wird kontinuierlich mit einer Systemkonstante verglichen, die vom Benutzer eingegeben wird und die Bezeichnung *"Slope Sensitivity" (Steigungsempfindlichkeit)* trägt. Es wird von einem Standardwert 8 ausgegangen, sofern keine Eingabe getätigt wird. Geringere Werte machen die Erfassung des Peak-Beginns empfindlicher, und höhere Werte führen zu einer weniger empfindlichen Erfassung. Höhere Werte (20 bis 100) wären für verrauschte Signale angemessen, d. h. für eine hohe Verstärkung.

Der Beginn wird dort festgelegt, wo das Detektorsignal die Basislinienkonstante überschreitet. Das Ende wird dementsprechend dort festgelegt, wo das Detektorsignal unter der Basislinienkonstante liegt.

Sequenzen an verschmolzenen Peaks werden ebenfalls automatisch verwaltet. Dies geschieht, indem jeder Endpunkt daraufhin getestet wird, ob der direkt darauf folgende Bereich die Kriterien einer Basislinie erfüllt. Ein Basislinienbereich muss einen Detektorwert aufweisen, der über eine gewisse Anzahl an aufeinanderfolgenden Punkten hinweg geringer ist als die Magnitude der Basislinienkonstante. Wird ein Basislinienbereich gefunden, beendet dies eine Peak-Sequenz.

Eine Nulllinie für die Peakhöhen- und Peakflächenbestimmung wird erstellt, indem eine Linie vom Anfangspunkt der Peak-Sequenz zum Endpunkt der Peak-Sequenz gezogen wird. Die Werte dieser beiden Punkte können ermittelt werden, indem jeweils der Mittelwert der vier integrierten Punkte direkt vor dem Anfangspunkt bzw. kurz nach den Endpunkten gebildet wird.

Die Nulllinie ist in der Regel nicht horizontal und kompensiert daher jegliche lineare Drift im System im Zeitraum zwischen dem Beginn und dem Ende der Peak-Sequenz.

Bei einem einzelnen Peak ist die Peakfläche der Bereich des Komponenten-Peaks zwischen der Kurve und der Nulllinie. Die Peak-Höhe ist der Abstand von der Nulllinie zum höchsten Punkt der Komponentenkurve. Der Wert und die Stelle, an der sich der Höhepunkt befindet, werden durch quadratische Interpolation durch die drei höchsten Punkte am Peak der diskret bewerteten, im Steuergerät gespeicherten Kurve bestimmt.

Für verschmolzene Peak-Sequenzen wird diese Interpolationstechnik sowohl für Peaks als auch für

Valleys (Tiefpunkte) verwendet. Im letzteren Falle werden Linien von den interpolierten Valley-Punkten zur Nulllinie gezogen, um die verschmolzenen Peakflächen in einzelne Peaks zu unterteilen.

Die Verwendung der quadratischen Interpolation verbessert die Genauigkeit sowohl der Flächen-, als auch der Höhenberechnung und schließt Effekte durch Veränderungen im Integrationsfaktor bei diesen Berechnungen aus.

Zur Kalibrierung kann das Steuergerät den Mittelwert aus verschiedenen Analysen des Kalibrierstroms bilden.

1.6 Grundlegende Analyseberechnungen

Im Steuergerät sind zwei grundlegende Analyse-Algorithmen vorhanden:

- Flächenanalyse Berechnet die Fläche unter dem Komponenten-Peak
- Peakhöhen-Analyse Misst die Höhe von Komponenten-Peaks

Anmerkung

Weitere Informationen bezüglich anderer durchgeführter Berechnungen siehe Bedienungsanleitung der MON2020-Software.

1.6.1 Konzentrationsanalyse – Response-Faktor

Zur Berechnung der Konzentration ist für jede Komponente in einer Analyse ein bestimmter Response-Faktor erforderlich. Response-Faktoren können manuell von einem Bediener eingegeben oder automatisch vom System durch Kalibrierverfahren (mit einem Kalibriergasgemisch mit bekannten Konzentrationswerten) festgelegt werden.

Berechnung des Response-Faktors unter Verwendung des externen Standardwertes:

$$ARF_n = \frac{Area_n}{Cal_n}$$
 oder $HRF_n \frac{Ht_n}{Cal_n}$

wobei

ARFn	Flächen-Response-Faktor für Komponente "n" pro Molprozent.
Area _n	Fläche, die mit Komponente "n" in Kalibriergas assoziiert ist.
Cal _n	Menge der Komponente "n" in Molprozent im Kalibriergas.
Ht _n	Peakhöhe, die mit Komponente "n" in Molprozent im Kalibriergas assoziiert ist
HRFn	Peakhöhen-Response-Faktor für Komponente "n"

Berechnete Response-Faktoren werden zur Verwendung in Konzentrationsberechnungen in der Reglerbaugruppe gespeichert und in den Konfigurations- und Kalibrierberichten ausgedruckt.

Der durchschnittliche Response-Faktor wird wie folgt berechnet:

$$RFAVG_n = \frac{\sum_{i=1}^k RF_i}{k}$$

wobei

RFAVG _n	Durchschnittlicher Flächen- oder Höhen-Response-Faktor für Komponente "n"
RF _i	Durchschnittlicher Flächen- oder Höhen-Response-Faktor für Komponente "n" aus dem Kalibrierlauf.
k	Anzahl der verwendeten Kalibrierläufe zur Berechnung der Response- Faktoren.

Die prozentuale Abweichung neuer durchschnittlicher *RF* von alten durchschnittlichen *RF* wird folgendermaßen berechnet:

$$deviation = \left[\frac{RF_{new} - RF_{old}}{RF_{old}} \times 100\right]$$

wobei der absolute Wert der prozentualen Abweichung vorher vom Bediener eingegeben worden ist.

1.6.2 Konzentrationsberechnung – Molprozentsatz (ohne Normalisierung)

Sobald Responsefaktoren von der Reglerbaugruppe bestimmt oder vom Bediener eingegeben worden sind, werden die Komponentenkonzentrationen für jede Analyse anhand der folgenden Gleichungen ermittelt:

$$CONC_n = \frac{Area_n}{ARF_n}$$
 oder $CONC_n = \frac{Ht_n}{HRF_n}$

wobei

ARF _n	Flächen-Responsefaktor für Komponente "n" pro Molprozent
Arean	Fläche, die mit Komponente "n" in einer unbekannten Probe assoziiert ist.
CONC _n	Konzentration der Komponente "n" in Molprozent
Ht _n	Peakhöhe, die mit Komponente "n" in Molprozent in einer unbekannten Probe assoziiert ist.
HRFn	Peakhöhen-Response-Faktor für Komponente "n"

Komponentenkonzentrationen können über die Analogeingänge 1 bis 4 eingelesen oder fest eingegeben werden. Bei Verwendung eines festen Wertes ist die Kalibrierung dieser Komponente das für alle Analysen verwendete Molprozent.

1.6.3 Konzentrationsberechnung in Molprozent (mit Normalisierung)

Normalisierte Konzentrationsberechnung:

$$CONCN_{n} = \frac{CONC_{n}}{\sum_{i=1}^{k} CONC_{i}} \times 100$$

wobei

CONCN _n	Normalisierte Konzentration der Komponente "n" in Prozent der Gesamtgaskonzentration:
CONC _i	Nicht-normalisierte Konzentration der Komponente "n" in Molprozent für jede "k"- Komponente.
CONC _n	Nicht-normalisierte Konzentration der Komponente "n" in Molprozent.
k	Anzahl der in die Normalisierung einzubeziehenden Komponenten.

Anmerkung

Bei angeforderter Durchschnittsberechnung wird ebenfalls die durchschnittliche Konzentration jeder Komponente berechnet.

1.7 Glossar

Autom. Nullpunkteinstellung	Der TCD-Nullpunkt wird bei Beginn einer neuen Analyse automatisch abgeglichen.
	Die Baseline der Chromatogramm-Spur kann mithilfe der Funktion SW Auto Zero Timed Event im Chromatogram Viewer (CGM Viewer) in MON2020 neu eingestellt werden. Dies ist in MON2020 implementiert und beeinflusst nur die Anzeige. Dieses zeitgesteuerte Ereignis kann nach einem Ereignis Gain Timed Event verwendet werden.
Baseline	Signal, wenn nur Trägergas über die Detektoren strömt. In einem Chromatogramm sollte die Baseline nur sichtbar sein, wenn eine Analyse ohne Injektion einer Probe durchgeführt wird.
Trägergas	Das während einer Analyse zum Transport der Probe durch das System verwendete Gas. In der C6+-Analyse wird als Trägergas ein technisches Gas verwendet, das zu 99,995 Prozent rein ist.
Chromatogramm	Eine permanente Aufzeichnung des Detektorausgangssignals. Ein Chromatogramm kann in der Software MON2020 angezeigt werden. Ein typisches Chromatogramm zeigt alle Komponentenspitzenwerte und Verstärkungsänderungen. Es kann während der Generierung in Farbe auf einem PC-Monitor betrachtet werden. Zeitlich festgelegte Ereignisse werden von der Reglerbaugruppe aufgezeichnet und auf dem Chromatogramm mit Strichen markiert.
Komponente	Eines von mehreren verschiedenen Gasen, das in einem Probengemisch enthalten sein kann. Erdgas zum Beispiel enthält in der Regel die folgenden Komponenten: Stickstoff, Kohlendioxid, Methan, Ethan, Propan, Isobutan, n-Butan, Isopentan, n-Pentan sowie C6+ (Summe aus n-Hexan und höheren Kohlenwasserstoffen).
CTS	Sendebereitschaft
DCD	Trägererkennung
DSR	Betriebsbereitschaft
DTR	Endgerät-Betriebsbereitschaft
FID	Flammenionisationsdetektor
FPD	Flammenphotometrischer Detektor
Response-Faktor	Korrekturfaktor für jede Komponente, bestimmt durch folgende Kalibrierung:
	$\mathbf{RF} = \frac{Rawarea}{Calibration \ concentration}$
Retentionszeit	Zeitspanne in Sekunden zwischen dem Beginn der Analyse und der Detektorerfassung der maximalen Konzentration jeder Komponente
RI	Ankommende Anfrage
RLSD	Empfangsbereitschaft. Eine digitale Simulation einer Trägererkennung
RTS	Sendeanforderung
RxD, RD oder Sin	Datenempfang oder Signaleingang
TCD	Wärmeleitfähigkeitsdetektor. Ein Detektor, der die Wärmeleitfähigkeit verschiedener Gaskomponenten dazu verwendet, über der Vorverstärkerbrücke ein unsymmetrisches Signal zu erzeugen. Je höher die Temperatur, desto niedriger ist der Widerstand der Detektoren
TxD, TD oder Sout	Sendedaten oder Signalausgang

2 Beschreibung und technische Daten

Verwenden Sie die folgenden Abschnitte als Referenz für die Gerätebeschreibung und die technischen Daten des Modells 770XA.

2.1 Gerätebeschreibung

Der Gaschromatograph 770XA besteht aus einem kupferfreien Ex-geschützten Aluminium-Gehäuse mit einer Frontplatte. Das Gehäuse ist in zwei Kammern unterteilt, in denen sich die wichtigsten Komponenten des GC befinden. Diese Einheit ist für explosionsgefährdete Bereiche konzipiert.

2.1.1 Frontplatte

Die Frontplatte befindet sich vorne im unteren Bereich des Gehäuses und besteht aus einer abnehmbaren Platte mit Ex-Schutz, die ein Bedieninterface (Local Operator Interface, LOI) schützt.

Das Bedieninterface

Das Bedieninterface (LOI) ermöglicht die lokale Kontrolle über die Funktionen des GCs. Es verfügt über ein Farbdisplay mit hoher Auflösung, das durch Betätigung der Sensortasten aktiviert wird und so ermöglicht, den 770XA auch ohne Laptop oder PC zu bedienen.

Abbildung 2-2: Das Bedieninterface

Funktionsmerkmale des Bedieninterfaces:

- Farb-LCD mit VGA-Auflösung (640 x 480 Pixel).
- ASCII-Text- und Grafikmodi.
- Einstellbare, automatische Hintergrundbeleuchtung.
- 8 Touchscreen-Tasten mit Infrarotauslösung (erfordern keinen Magnetstift zur Bedienung).
- Vollständige Status-, Steuerungs- und Diagnoseanzeige des GC, einschließlich kompletter Chromatogramm-Anzeige.

Weitere Informationen bezüglich der Bedienung des LOI finden Sie in Anhang A.

2.1.2 Oberes Gehäuse

Die obere Kammer der PTB-zugelassenen Ausführung des 770XA-14K enthält die folgenden Komponenten:

- Insgesamt vier XA-Ventile, drei davon mit 10 Anschlüssen, eines mit 6 Anschlüssen.
- Die mikrogepackten Säulen.
- Zwei Wärmeleitfähigkeitsdetektoren (TCD).
- Zwei Heizelemente: eine zylinderförmige Heizung und eine Säulenheizung.
- Einen Temperaturschalter für jedes Heizelement. Der Schalter schaltet das zugehörige Heizelement ab, wenn es 160 °C (257 °F) erreicht.

2.1.3 Unteres Gehäuse

Die untere Kammer der PTB-zugelassenen Ausführung des 770XA-14K enthält die folgenden Komponenten:

- Rückwandplatine. Die Rückwandplatine ist die zentrale Leiterplatte (PCB) des Gaschromatographen. Sie dient hauptsächlich als Anschlusspunkt für die spezialisierten Einsteck-Leiterplatten des GC. An der Rückwandplatine befinden sich auch die Anschlüsse für die Analogeingänge und -ausgänge, die seriellen Schnittstellen sowie die Ethernet-Ports.
- Platinengehäuse. Im Platinengehäuse befinden sich die spezialisierten Leiterplatten, die in die Rückwandplatine eingesteckt werden. Dies sind im Einzelnen:
 - o Vorverstärkerplatine
 - o CPU-Platine
 - o E/A-Grundplatine
 - o Heizungs-/Magnetschalterplatine

WARNUNG!

Das Gehäuse mit Ex-Schutz sollte in explosionsgefährdeten Umgebungen nicht geöffnet werden. Ist der Zugang zum Gehäuseinneren erforderlich, treffen Sie geeignete Vorkehrungen, um sicherzustellen, dass keine explosionsgefährdeten Umgebungen vorliegen. Bei Nichtbeachtung dieses Hinweises kann es zu schweren oder tödlichen Personenschäden bzw. zu Sachschäden kommen.

• Optionales AC/DC-Netzteil

WARNUNG!

Lesen Sie vor der Verwendung das Typenschild des Netzteils. Überprüfen Sie das Netzteil, um zu ermitteln, ob es für den Anschluss an Gleich- oder Wechselspannung geeignet ist. Wird eine Gleichspannungsversorgungseinheit 110/220 VAC ausgesetzt, hat dies schwere Beschädigungen des Geräts zur Folge. Bei Nichtbeachtung dieses Hinweises kann es zu schweren oder tödlichen Personenschäden bzw. zu Sachschäden kommen.

2.1.4 Mechanischer Druckregler

Der mechanische Druckregler und das Manometer dienen dazu, den Druck des durch die GC-Säulen strömenden Trägergases zu steuern und zu überwachen.

Druckregler und Manometer befinden sich unterhalb des GCs.

2.2 Gerätespezifikationen

In der folgenden Tabelle sind die Basis-Spezifikationen aufgeführt.

Тур	Technische Daten
Geräteab-	· Gehäuse Basiseinheit
messungen	B – 387 mm (15,2")
	H – 1054 mm (41,5")
	T – 488 mm (19,2")
	Wandmontage
	B – 463 mm (18,2")
	H – 1054 mm (41,5")
	T – 488 mm (19,2")
	Rohrmontage
	B – 463 mm (18,2")
	H – 1054 mm (41,5")
	T – 635 mm (25,0")
	• Bodenmontage
	B – 463 mm (18,2")
	H −1470 mm (58,0")
	T – 488 mm (19,2")
	Anmerkung
	Lassen Sie zusätzlich 360 mm (14") Freiraum für das Entfernen der Haube.
Gewicht des	• Wandmontage – 59 kg (110 lbs)
Geräts	Rohrmontage – 61 kg (135 lbs)
	 Bodenmontage – 82 kg (180 lbs)

2.2.1 Betriebsmittel

Verwenden Sie die nachstehende Tabelle, um die Betriebsmittelanforderungen zu bestimmen.

Тур	Technische Daten
Rohrleitung	• Edelstahl 316
	Edelstahl 316 und Kapton [®] in Kontakt mit Probe
	Sulfinert [®] -Stahl (optional)
Montage	• Bodenmontage
	Rohrmontage:
	- 60,3 mm (2")
	- 89,0 mm (3")
	- 114,3 mm (4")
	Direkte Wandmontage
Spannungs- versorgung	 Standardmäßig 24 VDC (Betriebsspannungsbereich: 21-30 VDC), max. 150 Watt
	· 100-120/240 VAC, 50-60 Hz (optional)
	Anmerkung
	Der Spannungsbereich schließt Schwankungen der Netzspannung mit ein.
Instrumen-	Nicht erforderlich;
tenluft	optional für die Ventilansteuerung, Mindestdruck von 90 psig
Umgebung	• Ex-Bereich zertifiziert: -20 ° C bis 60° C (-4 ° F bis 140 ° F)
	0 bis 95 % relative Luftfeuchtigkeit, nicht-kondensierend
	Innen-/Außenbereich
	Verschmutzung – Grad 2 (Die Einheit kann manchen nicht leitfähigen
7.1	Um- weitschadstoffen standhalten, z. B. Luftfeuchtigkeit).
Zulassungen	$\begin{array}{c} C \\ 0518 \end{array} \qquad \qquad \\ \hline E \\ 1 \\ 2G \end{array} \qquad \qquad \\ C \\ C \\ U \\ U$
	FÜR DIE VERWENDUNG IN EX-BEREICHEN:
	• Für Kanada: Class I, Zone 1, EX d IIC T6, Gehäuseart 4 Class I, Division 1, Group B, C und D.
	• Für USA: Class I, Zone 1, EX d IIC T6, Gehäuseart 4 Class I, Division 1, Group B, C und D.

2.2.2 Elektronische Hardware

Verwenden Sie die folgende Tabelle, um die elektronischen Hardware-Spezifikationen zu ermitteln:

Тур	Spezifikation
Klassifizierung	Division 1; kein Spülen erforderlich
Kommunikations- ports	3 konfigurierbare Modbus-Ports mit Unterstützung für RS- 232/422/485-Protokolle; 2 optionale Ports in Erweiterungssteckplätzen; RS-232-Port (9- polig).
Optionales Modem	56K-Modem
Analoge Eingänge	2 Anschlüsse an der Rückwandplatine, isoliert
Standard- Analogausgänge	6 Anschlüsse an der Rückwandplatine, isoliert
Optionale Analogausgänge	8 Anschlüsse auf optionalen Erweiterungsplatinen, isoliert
Digitale Binäreingänge	5 Anschlüsse an der Rückwandplatine, isoliert
Digitale Ausgänge	5 Relaiskontakte (Form C) auf Phoenix-Anschlüssen an der Rückwandplatine. Relais-Schaltleistung 24 VDC nominal bei 1 A
Überspannungs- schutz	Überspannung Kategorie II

2.2.3 Analytischer Kontaktofen

Die folgende Tabelle führt die technischen Daten der Ofen-Baugruppe auf.

Тур	Technische Daten		
Ventile	XA-Ventile mit 6 bzw. 10 Ports;		
	kolbengesteuerte Membranventile mit pneumatischem Antrieb		
Säulen	Mikrogepackte Säulen (Details siehe Gasflussplan in Anhang H)		
Magnetventil- steuerung	· 24 VDC		
	• Max. 120 psi		
Temperatur- regelung	· 24 VDC		
	· 2 Heizungen		
	· 2 optionale Heizungen		
	• Max. Betriebstemperatur des Ofens: 150 °C (302 °F)		

2.2.4 Software

Die nachstehende Tabelle listet die technischen Daten für die Software des GC auf.

Түр	Technische Daten
Software	Windows [®] -basierte MON2020.
Firmware	Eingebettete Firmware. Kann über MON2020 aktualisiert werden.
Routinen	4 Tabellen zeitgesteuerter Ereignisse, 4 Komponentendaten-Tabellen, die jedem Messgasstrom zugeordnet werden können.
Peak- Integration	 Feste Zeit oder automatische Kurve und Peak-Identifikation. Aktualisierung der Retentionszeit bei Kalibrierung oder während der Analyse.

2.2.5 Korrosionsschutz

Тур	Spezifikation
Gehäusewerkstoff	Das kupferfreie Aluminium-Gehäuse mit pulverbeschichteter Oberfläche in Industriequalität ist für den Einsatz in Umgebungen mit hoher Luftfeuchtigkeit und salzhaltiger Luft geeignet.
Mediumberührte Werkstoffe	Edelstahl – Ist eine der Komponenten für einen Einsatz vorgesehen, für den sich Edelstahl nicht eignet, wie z.B. Rotameter-Glasrohre, werden korrosionsbeständige Werkstoffe eingesetzt.
Elektronik	Sämtliche Elektronikplatinen verfügen über eine klare Schutzbeschichtung für Leiterplatten in Tropenausführung.

2.2.6 Speichermöglichkeiten für die Datenarchivierung

Tup	Maximale Anzahl an Datensätzen	Anmorkungon
Analyseergebnisse	31.744	88 Tage bei einer Zykluszeit
		von 4 Minuten
Endgültige Kalibrierergebnisse	370	Endgültige Kalibrier- ergebnisse von einem Jahr
Kalibrierergebnisse	100	
Endgültige Validierungsergebnisse	370	Endgültige Validierungs- ergebnisse von einem Jahr
Validierungsergebnisse	100	
Analyse-Chromatogramme	1703	Ungefähr 4,5 Tage bei einer angenommenen Zykluszeit von 4 Minuten
Endgültige Kalibierungs- Chromatogramme	370	Endgültige Kalibierungs- Chromatogramme* von einem Jahr
Endgültige Validierungs- Chromatogramme	370	Endgültige Validierungs- Chromatogramme* von einem Jahr
Geschützte Chromatogramme	100	Vom Anwender wählbar
Stündliche Durchschnittswerte (bis zu 250** Variablen)	2400	100 Tage
Tägliche Durchschnittswerte (bis zu 250** Variablen)	365	1 Jahr
Wöchentliche Durchschnittswerte (bis zu 250** Variablen)	58	1 Jahr
Monatliche Durchschnittswerte (bis zu 250** Variablen)	12	1 Jahr
Variable Durchschnittswerte (bis zu 250** Variablen)	2360	
Jeder Lauf (bis zu 250** Variablen)	2360	
Alarmprotokolle	1000	
Ereignisprotokolle	1000	

* Der GC ist in der Lage, endgültige Kalibrierungs- oder Validierungs-Chromatogramme von bis zu einem Jahr zu speichern. Voraussetzung: Nur ein einzelner Kalibrierungs- oder Validierungslauf pro Tag und eine Zykluszeit von weniger als 15 Minuten. Beträgt die Zykluszeit mehr als 15 Minuten, werden die ältesten endgültigen Kalibrierungs- oder Validierungs-Chromatogramme gelöscht, um Speicherplatz für aktuellere Daten zu schaffen.

** Sie können insgesamt bis zu 250 Durchschnittswerte aller Typen speichern, einschließlich stündlicher, täglicher, monatlicher und variabler Durchschnittswerte sowie Durchschnittswerte bei jedem Lauf.

Installation und Einstellung

In diesem Abschnitt finden Sie Informationen zur Installation und Inbetriebnahme des Gaschromatographen 770XA.

Zur Installation des PTB-zugelassenen 770XA-14K sind folgende Schritte erforderlich:

- 1. Beachtung der Sicherheitsvorkehrungen und Warnhinweise;
- 2. Beachtung der Anforderungen für die PTB-Zulassung;
- 3. Planung des Einbauorts und der Montageanordnung;
- 4. Beschaffung von Zubehör und Werkzeugen;
- 5. Montage der Einheit;

3

- 6. Installation der Verkabelung des GC;
- 7. Installation der Proben- und Trägergasleitungen des GC;
- 8. Spülen der Trägergasleitungen;
- 9. Spülen der Kalibrierleitungen;
- 10. Durchführung von Leckageprüfungen;
- 11. Inbetriebnahme des GC-Systems.

3.1 Gefahrenhinweise und Warnungen

WARNUNG!

Installieren und betreiben Sie alle Geräte entsprechend der Auslegung und allen anwendbaren Sicherheitsanforderungen. Der Verkäufer haftet nicht für Anwendungen, in denen der GC oder andere angeschlossene Geräte in fahrlässiger Weise und/oder nicht entsprechend den geltenden Sicherheitsanforderungen installiert wurden bzw. betrieben werden.

WARNUNG!

Wird das Gerät nicht wie vom Hersteller empfohlen betrieben, kann dies die Sicherheit beeinträchtigen.

WARNUNG!

Das Gerät darf nur von Fachpersonal und entsprechend den nationalen, lokalen und betrieblichen Vorschriften für die Elektroinstallation ans Stromnetz angeschlossen werden.

WARNUNG!

Es wird ein geeigneter, ZUGELASSENER Netzschalter und eine Sicherung oder ein Schutzschalter bereitgestellt, um die Trennung von der Stromversorgung zu ermöglichen.

WARNUNG!

Das Gerät sollte nur in einem gut belüfteten Bereich betrieben werden.

WARNUNG!

Sämtliche Gasanschlüsse müssen bei der Installation ordnungsgemäß auf Leckagen geprüft werden.

WARNUNG!

Die meisten Innenteile können nicht durch den Benutzer ausgetauscht werden. Einige Teile können nur durch geschultes Fachpersonal ausgetauscht werden.

WARNUNG!

Beachten und befolgen Sie alle Sicherheitshinweise auf dem GC. Die Nichteinhaltung der Sicherheitsvorkehrungen kann schwere Personenschäden oder sogar tödliche Verletzungen sowie Schäden am Gerät verursachen.

WARNUNG!

Wenn Sie den GC in einem geschlossenen Raum installieren, sorgen Sie dafür, dass der GC mithilfe eines Rohrs mit mindestens 1/4 Zoll Durchmesser zur Atmosphäre entlüftet wird. Dies verhindert das Ansammeln von H₂ und Testgas.

WARNUNG!

Austrittsöffnungen können gefährliche Mengen an giftigen Dämpfen freisetzen. Verwenden Sie daher geeignete Schutz- und Abzugseinrichtungen.

Vorsicht!

Werfen Sie Elektro- und Elektronikaltgeräte nicht in den Hausmüll! Bitte handeln Sie umweltbewusst und lassen Sie dieses Produkt nach seiner Verwendung durch eine geeignete Entsorgungseinrichtung recyceln. Erkundigen Sie sich diesbezüglich bei der zuständigen Behörde oder bei Ihrem Fachhändler.

Die folgenden speziellen Voraussetzungen für die sichere Verwendung müssen erfüllt werden:

Anmerkung

Nach der Installation muss die Ausrüstung einem elektrischen Widerstandsfähigkeitstest unterzogen werden (1000 + 2 Un) V, Effektivwert angewendet für mindestens 10 Sekunden bis zu maximal 60 Sekunden.

Anmerkung

Sobald die Gasregler und Durchflussschalter angebracht sind, müssen sie gemäß der Zulassung betrieben werden:

Ex d IIC Gb T5/T6/T4 im Umgebungstemperaturbereich von Ta = -20 °C bis +60 °C.

Anmerkung

Bei Verwendung von rechtwinkligen Kabeladaptern müssen diese entsprechend zertifiziert und mit dem Gehäuse durch entsprechend zertifizierte abgeschirmte Kabeleinführungen verbunden sein.

3.1.1 Montagehinweise

Beachten Sie die folgenden Hinweise, bevor Sie den GC montieren:

1. Verankern Sie den GC fest, bevor Sie elektrische Anschlüsse vornehmen.

In diesem Abschnitt finden Sie mehrere Montageoptionen für die Einheit. Der GC ist schwer und die Wahrscheinlichkeit von Verletzungen des Personals oder Beschädigungen des Geräts ist hoch.

- 2. Stellen Sie sicher, dass alle Anschlüsse am Gehäuse den jeweiligen lokalen Standards entsprechen.
- 3. Verwenden Sie zugelassene Kabelverschraubungen.
 - Verschließen Sie alle nicht verwendeten Einführungen mit zugelassenen Blind- bzw. Verschlussstopfen.
 - Diese Einführungen verfügen über folgende Gewinde: M32 x 1,5.
- 4. Entfernen Sie sämtliches Verpackungsmaterial, bevor Sie die Einheit in Betrieb nehmen.
- 5. Schalten Sie die Spannung bei geöffneter Einheit nicht ein. Ausnahme: Die Umgebung ist als nicht explosionsgefährdeter Bereich zertifiziert.
- 6. Drucker und die meisten Laptops dürfen nicht in Ex-Bereichen verwendet werden.

3.2 770XA GC-Montagearten

Der 770XA kann mittels einer der folgenden Montagearten installiert werden:

- Wandmontage
- Rohrmontage
- Bodenmontage

Bei der Positionierung der Einheit in der endgültigen Position vorsichtig vorgehen, um eine Beschädigung der externen Komponenten oder deren Befestigung zu verhindern.

WARNUNG!

Aufgrund der Größe, des Gewichts und der Form des GC benötigen Sie mindestens zwei Personen, um die Einheit sicher zu montieren. Stellen Sie sicher, dass Sie das Installationsverfahren verstanden und die angemessenen Werkzeuge zur Hand haben, bevor Sie mit der Montage der Einheit beginnen.

3.2.1 Wandmontage

Die einfachste Montageanordnung ist die Wandmontage. Wurde bei der Bestellung "Wandmontage" angegeben, wird die Einheit mit einem Montagesatz für die Wandmontage geliefert. Auf den Montagebügeln sind vier Stellen zur Befestigung verfügbar.

Am einfachsten lässt sich die Einheit montieren, wenn ein Paar Schrauben mit 10 mm (7/16 Zoll) Durchmesser und Unterlegscheiben im Vorfeld an der Wand montiert werden. An diese kann die Einheit dann gehängt werden, bevor das letzte Paar Schrauben montiert wird.

Das erste Paar Schrauben sollte ungefähr 1055 mm (41,625 Zoll) vom Boden entfernt mit einem horizontalen Abstand von 346 mm (13,625 Zoll) voneinander angebracht werden. Jede Schraube sollte 16 mm (5/8 Zoll) herausragen. Ein zweites Paar Bohrlöcher ist erforderlich, das sich jeweils 90,5 mm (3,56 Zoll) über dem ersten Loch befinden muss.

Vorsicht!

Um unvorhergesehene Unfälle zu vermeiden, sollte die Einheit so lange gestützt werden, bis alle Schrauben festgezogen sind.

- 1. Richten Sie die Einheit so aus, dass die Nuten in den Montagebügeln über den Schrauben an der Wand platziert werden können. Bringen Sie anschließend die Unterlegscheiben an den Schrauben an.
- 2. Montieren Sie ein zweites Paar Schrauben mit Unterlegscheiben. Ziehen Sie anschließend alle Schrauben fest.

3.2.2 Rohrmontage

Die Anordnung zur Rohrmontage verwendet eine zusätzliche Platte sowie Abstandsringe, um den notwendigen Freiraum für die Muttern sicherzustellen. Sämtliche Teile sind im Lieferumfang enthalten, sofern "Rohrmontage" bei der Bestellung angegeben wurde.

Abbildung 3-2: Rohrmontage

- Installieren Sie die große Platte mithilfe der U-Schraube fest auf dem Rohr, ungefähr 1120 mm (44 Zoll) über dem Boden.
- 2. Installieren Sie die langen Schrauben und die Abstandsringe.
- 3. Bringen Sie Muttern und Unterlegscheiben an den unteren Schrauben an.
- 4. Installieren Sie die kleine Platte gerade fest genug, um sie in ihrer Position zu fixieren. Verwenden Sie hierzu die U-Schraube der kleinen Platte ungefähr 175 mm (6,875 Zoll) unter der U-Schraube der großen Platte.
- 5. Halten Sie den passenden Abstandsring mit Hilfe der lose montierten Schrauben fest.
- 6. Richten Sie die Einheit so aus, dass die Nuten in den Montagebügeln über den unteren Schrauben auf der Platte platziert werden können. Bringen Sie anschließend Unterlegscheiben und Muttern an.
- 7. Bringen Sie die Muttern und Unterlegscheiben an den oberen Schrauben an. Ziehen Sie anschließend alle Schrauben fest.

WARNUNG!

Um unvorhergesehene Unfälle zu vermeiden, sollte die Einheit so lange gestützt werden, bis alle Schrauben festgezogen sind.

8. Stellen Sie die untere Halterung so ein, dass die Schrauben an der Platte ausgerichtet sind. Ziehen Sie die Schrauben fest.

3.2.3 Bodenmontage

Wurde bei der Bestellung "Bodenmontage" angegeben, ist diese Anordnung des GC vormontiert. Diese Anordnung enthält einen zusätzlichen Stützfuß, der für die Verankerung im Fußboden oder an einer Fußplatte vorgesehen ist. Die Sockelschienen verfügen über Bohrungen im Abstand von 346 mm (13,625 Zoll), von Seite zu Seite gesehen und sind von der Vorder- zur Rückseite 425,5 mm (16,75 Zoll) voneinander entfernt. Die Bohrungen haben einen Durchmesser von 12,7 mm (1/2 Zoll), welche die Verwendung von Schrauben von bis zu 10 mm (7/16 Zoll) erlauben.

Abbildung 3-3: Bodenmontage

3.3 Verkabelung des Gaschromatographen

3.3.1 Anschluss der Stromversorgung

Befolgen Sie diese Sicherheitsvorkehrungen, wenn Sie den Gaschromatographen mit der Stromversorgung verbinden:

- Die gesamte Verkabelung sowie die Einbauorte f
 ür Schutzschalter oder Trennschalter m
 üssen den Bestimmungen des Canadian Electrical Code (CEC) oder des National Electrical Code (NEC) sowie allen lokal geltenden oder anderen Rechtsvorschriften entsprechen. Alle Unternehmensstandards und -verfahren sind ebenfalls einzuhalten.
- Nutzung von einphasigem, dreiadrigem Wechselstrom mit 120 oder 240 VAC, 50–60 Hertz.

Anmerkung

Ist die Nutzung von einphasigem, dreiadrigem Wechselstrom nicht möglich, müssen Sie einen Trenntransformator erwerben. Siehe Zeichnung CE19492 in *Anhang H*.

- Einbau in Ex-freien Bereichen.
- Verwenden Sie einen Schutzschalter mit 15 A für den GC sowie für alle optional installierten Geräte, damit diese geschützt sind.

Vorsicht!

15 A ist der maximale Strom für Kabelquerschnitte von 2,1 mm² (AWG 14).

- Stellen Sie sicher, dass die 24-VDC-Spannungsversorgung der Niederspannungsrichtlinie SELV (Separated Extra-Low Voltage) zur elektrischen Trennung von anderen Stromkreisen entspricht.
- · Verwenden Sie Litzendraht aus Kupfer entsprechend folgender Empfehlungen:
 - a. Verwenden Sie für Stromversorgungskabel mit bis zu 76 Meter (250 Fuß) Länge Litzendraht mit einem Querschnitt 18 (metrisch) bzw. AWG 14 (American Wire Gauge).
 - b. Verwenden Sie für Stromversorgungskabel mit 76 bis 152 Meter (250 bis 500 Fuß) Länge Litzendraht mit einem Querschnitt 25 (metrisch) bzw. AWG 12.
 - c. Verwenden Sie für Stromversorgungskabel mit 152 bis 305 Meter (500 bis 1000 Fuß) Länge Litzendraht mit einem Querschnitt 30 (metrisch) bzw. AWG 10.
- M32-Kabeleinführungen gemäß der "International Organization for Standardization" (ISO)
 965.

3.3.2 Signalverdrahtung

Folgen Sie diesen allgemeinen Sicherheitsvorkehrungen für die Feldverdrahtung von digitalen und analogen E/A-Leitungen:

- Das Metallrohr oder Kabel (gemäß den örtlichen Bestimmungen) für die Prozesssignal-Verdrahtung muss an den Auflagepunkten geerdet sein. Das Erden des Rohres an mehreren Punkten hilft, eine Induktion von Magnetschleifen zwischen Rohr und Kabelabschirmung zu vermeiden.
- Für die gesamte Prozesssignal-Verdrahtung sollte jeweils eine einzige durchgehende Leitung

von den Feldgeräten zum GC führen. Sind aufgrund der Entfernungen oder Kabelführung mehrere Drahtzüge erforderlich, müssen die einzelnen Leitungen mit geeigneten Anschlussklemmenleisten verbunden werden.

- Verwenden Sie geeignete Gleitmittel f
 ür den Drahtzug im Metallrohr, um Belastungen der Dr
 ähte zu vermeiden.
- Verwenden Sie separate Rohre für Wechselstrom und Gleichstrom.
- Verlegen Sie die digitalen oder analogen E/A-Leitungen nicht im gleichen Rohr wie die Wechselstromleitungen.
- Verwenden Sie ausschließlich abgeschirmte Kabel f
 ür die digitalen E/A-Leitungsverbindungen.
 - Erden Sie die Abschirmung nur an einem Ende.
 - Die Ableitungsdrähte dürfen höchstens zwei AWG-Querschnittsgrößen kleiner sein als die Leitungen des Kabels.
- Werden induktive Lasten (Relaisspulen) durch digitale Ausgangsleitungen getrieben, müssen die induktiven Transienten mit Diodenklemmen direkt an der Spule befestigt sein.
- Bei jedem mit dem GC verdrahteten Zusatzgerät muss das Bezugspotenzial von der Erde/dem Masseanschluss isoliert sein.

WARNUNG!

Im explosionssicheren Gehäuse des GC dürfen in der Nähe der Leitungseingänge für den Wechselstrom keine Kabelschlaufen für Wartungszwecke liegen. Dies gilt für alle mit dem GC verbundenen digitalen und analogen E/A-Leitungen. Wenn vorstehende Sicherheitsvorkehrungen nicht eingehalten werden, können die Daten- und Steuersignale zum und vom GC negativ beeinträchtigt werden.

3.3.3 Elektrische Erdung und Signalerdung

Folgen Sie diesen allgemeinen Sicherheitsvorkehrungen für das Erden der elektrischen Leitungen und Signalleitungen:

- Bei den abgeschirmten Kabeln für Signalleitungen dürfen die Ableitungsdrähte höchstens zwei AWG-Querschnittsgrößen kleiner sein als die Leitungen des Kabels. Die Abschirmung wird nur an einem Ende geerdet.
- Das Metallrohr f
 ür die Prozesssignal-Verkabelung muss an den Auflagepunkten geerdet sein (das intermittierende Erden des Rohres hilft, eine Induktion magnetischer Loops zwischen dem Rohr und der Kabelabschirmung zu vermeiden).
- Eine Einpunkterdung muss mit einem kupferummantelten, 3 Meter langen und 19 mm starken Stahlstab verbunden sein, der in voller Länge und so nah wie möglich am Steuergerät senkrecht in der Erde versenkt ist.

Anmerkung

Der Erdungsstab wird nicht mitgeliefert.

- Der Widerstand zwischen dem kupferummantelten Erdungsstab aus Stahl und dem Erdungsanschluss darf 25 Ohm nicht überschreiten.
- Bei ATEX-zugelassenen Einheiten muss die externe Erdungsklemme mittels einer 6 mm² (AWG 9) Erdungsleitung mit dem Schutzleitersystem des Kunden verbunden werden. Nachdem der Anschluss erfolgt ist, säurefreies Fett auf die Oberfläche der externen Erdungsklemme auftragen, um diese vor Korrosion zu schützen.
Die Erdungsleitungen zwischen dem GC und dem kupferummantelten Erdungsstab aus Stahl müssen so ausgelegt sein, dass sie den örtlichen Vorschriften entsprechen.

3.3.4 Anforderungen an das Probenentnahmesystem

Beachten Sie die folgenden Richtlinien bei der Installation von GC-Probenentnahmesystemen:

Länge der Leitung	Sofern möglich, sollten Sie lange Probenentnahmeleitungen vermeiden. Im Falle einer langen Probenentnahmeleitung kann die Durchflussgeschwindigkeit erhöht werden, indem der abstromseitige Druck verringert und ein Bypass-Durchfluss über einen Speed-Loop genutzt wird.
	Vorsicht!
	Für eine Umschaltung zwischen Strömen ist ein Probendruck von 1,4 bar (20 psig) erforderlich.
Rohrwerkstoff der Probenentnahme-	 Verwenden Sie Silco-Rohre f ür H₂S Proben; verwenden Sie f ür alle anderen Anwendungen Edelstahlrohre.
leitung	• Stellen Sie sicher, dass die Rohrleitungen sauber und fettfrei sind.
Trockner / Entfeuchter und	Verwenden Sie kleine Baugrößen, um Verzögerungszeiten zu minimieren und Rückdiffusion zu vermeiden.
Filter	 Installieren Sie mindestens einen Filter zur Entfernung von Feststoffpartikeln. Für die meisten Anwendungen sind stromaufwärts vom GC Feinfilter erforderlich. Der GC besitzt einen 2-Mikron-Filter. Verwenden Sie keramische oder poröse metallische Eilter
	Verwenden Sie keine Filter aus Kork oder Filz.
	Anmerkung Installieren Sie die Sonde, den Regler zuerst. Fahren Sie dann mit dem Koaleszenzfilter fort und anschließend mit dem Membranfilter. Weitere Informationen zur empfohlenen Erdgasinstallation finden Sie in Anhang E.
Druck- und Durch- flussregler	 Verwenden Sie mediumberührte Werkstoffe aus Edelstahl. Diese sollten für Probendruck und -temperatur ausgelegt sein.
Rohrgewinde und Verbandmaterial	Verwenden Sie Teflon™-Band. Verwenden Sie keine Rohrdichtmittel bzw. keinen Dichtungskitt.
Ventilvorrichtun- gen	 Installieren Sie f ür die Instandhaltung und die Abschaltung ein Absperrventil stromabw ärts von der Probenentnahmestelle.
	 Das Absperrventil sollte ein Nadelventil oder ein Absperrhahn aus geeignetem Material mit Dichtung und für den Druck der Prozessleitungen zugelassen sein.

3.4 Vorbereitung

Der Gaschromatograph wurde vor Verlassen des Werkes in Betrieb genommen und überprüft. Die Programmparameter wurden installiert und in dem mit dem Gaschromatographen mitgelieferten *GC Config Report (GC-Konfigurationsbericht)* dokumentiert.

3.4.1 Standortwahl

Stellen Sie sicher, dass die Aussetzung gegenüber Hochfrequenzstörungen (HF) minimal ist.

3.4.2 Auspacken der Einheit

So packen Sie die Ausrüstung aus:

- 770XA
- USB-Stick (Teile-Nr.: 2-3-0710-400) mit Software und Betriebsanleitungen.

Anmerkung

Die Teile-Nr. von MON2020 befindet sich auf der Rückseite des USB-Sticks.

Installation und Inbetriebnahme sollten erst dann erfolgen, wenn alle erforderlichen Materialien ohne sichtbare Mängel vorliegen.

Wenn es den Anschein hat, dass Teile oder Baugruppen während des Transports beschädigt wurden, dann erheben Sie Ihren Anspruch auf Schadensersatz zunächst beim Transportunternehmen. Schreiben Sie dann einen vollständigen Bericht über die Art und den Umfang des Schadens. Schicken Sie diesen Bericht unverzüglich an Emerson Process Management. Geben Sie in diesem Bericht auch die Modellnummer des GC an. Sie erhalten dann umgehend Anweisungen zum weiteren Vorgehen. Sollten Sie weitere Fragen zum Reklamationsverfahren haben, dann setzen Sie sich mit Emerson Process Management in Verbindung, um Unterstützung zu erhalten.

3.4.3 Erforderliche Werkzeuge und Komponenten

Zur Installation des Modells 770XA sind folgende Werkzeuge und Komponenten erforderlich:

- Trägergase (Helium und Stickstoff):
 - 99,995% Reinheit,
 - mit weniger als 5 ppm Wasser
 - und weniger als 0,5 ppm Kohlenwasserstoffen.
- Je ein zweistufiger Druckminderer für den Trägergaszylinder:
 - L-Seite regelbar bis zu 10,3 bar (150 psig) Überdruck
- Kalibriergas, wie im PTB-Zulassungsdokument spezifiziert
 - Zweistufiger Druckminderer für den Kalibriergaszylinder:
 - L-Seite regelbar bis zu 2,0 bar (30 psig) Überdruck
- Probensonde-Druckregler (Vorrichtung zur Einspeisung der Probe oder Kalibriergas für chromatographische Analysen)
- Koaleszenzfilter
- Membranfilter
- 1/8 Zoll Rohrmaterial aus Edelstahl für die:
 - Verbindung des Kalibriergases mit dem GC
 - Verbindung des Trägergases mit dem GC
 - Verbindung des Messgases mit dem GC
- Begleitheizungen nach Bedarf für den Transport der Probe und die Kalibrierleitungen

- Verschiedene Rohrverschraubungen, Rohrbieger und Rohrschneider
- 18 bei metrischem Drahtquerschnitt (14 AWG) oder im Durchschnitt größere elektrische Verkabelung und Leitungen für 120 oder 240 Volt Wechselstrom, einphasig, 50 bis 60 Hertz, von einem Schutzschalter und einer Stromabschaltvorrichtung. Richtlinien hierzu finden Sie unter *Abschnitt 3.3*.
- Digitaler Spannungs-/Widerstandsmesser mit Leitungen mit Prüfspitze.
- Durchflussmessgerät
- Gabelschlüssel der Größen 1/4 Zoll, 5/16 Zoll, 7/16 Zoll, 1/2 Zoll, 9/16 Zoll und 5/8 Zoll.
- Drehmomentschlüssel

3.4.4 Unterstützende Hilfsmittel und Komponenten

WARNUNG!

Verwenden Sie keinen PC im Ex-Bereich. Über einen seriellen Anschluss und Modbus stehen Kommunikationsverbindungen zur Verfügung, um das Gerät in einem sicheren Umfeld an einem PC sowie an andere Computer anzuschließen. Die Nichtbeachtung dieses Warnhinweises kann zu schweren oder tödlichen Verletzungen oder zu Sachschäden führen.

Unterstützende Hilfsmittel und Komponenten umfassen:

- Verwenden Sie einen Windows-basierten PC sowie eine Direkt- oder
 Fernkommunikationsverbindung, um die Verbindung mit dem GC herzustellen. Spezifische
 PC-Anforderungen finden Sie im MON2020 Benutzerhandbuch.
- Der GC wird werkseitig mit einem Ethernet-Port (mit RJ-45-Steckverbinder) auf der Rückwandplatine ausgeliefert. Siehe Abschnitt 3.5.8 bzgl. weiterer Informationen.

3.5 Installation

Anmerkung

Die Ersatzbatterien der CPU-Platinen werden vor dem Versand ausgeschaltet, um Batterieleistung zu sparen. Stellen Sie vor dem Einbau in den GC sicher, dass Sie die Batterie der CPU-Platine auf die Stellung ON (EIN) schalten.

3.5.1 DC-Spannungsversorgung

WARNUNG!

Stellen Sie sicher, dass die 24-VDC-Spannungsversorgung ausgeschaltet ist, bevor Sie mit der Verkabelung beginnen. Stellen Sie außerdem sicher, dass die 24-VDC-Spannungsversorgung der Niederspannungsrichtlinie SELV (Separated Extra-Low Voltage) entspricht, d. h. dass die Spannungsversorgung von anderen Stromkreisen elektrisch getrennt ist. Die Nichtbeachtung dieses Warnhinweises kann zu schweren oder tödlichen Verletzungen oder zu Sachschäden führen.

Vorsicht!

Überprüfen Sie vor dem Anschließen, ob das Stromversorgungsgerät für DC- Spannungsversorgung geeignet ist. Andernfalls kann das Gerät beschädigt werden.

So schließen Sie eine 24-VDC-Spannungsquelle am GC an:

1. Lokalisieren Sie die den zusammensteckbaren Anschlussklemmenblock im Elektronikgehäuse.

Abbildung 3-4: 24-VDC-Spannungsanschluss auf der Rückwandplatine

 Führen Sie die zwei Leitungen durch einen der zwei möglichen Eingänge im unteren Gehäuse. Verbinden Sie die Leitungen mit dem Abschlussstecker, der im Lieferumfang des Geräts enthalten ist.

Abbildung 3-5: Die Verkabelungseingänge befinden sich auf der Unterseite des unteren Gehäuses.

Weitere Informationen zur Verkabelung mit Gleichstromversorgung können Sie der folgenden Tabelle entnehmen:

Attribut	Adernfarbe
+ (positiv)	Rot
– (negativ)	Schwarz

Anmerkung

Klemmen Sie nicht das werkseitig montierte Erdungskabel ab.

- Die Rückwandplatine, die mit der 24-VDC-Spannungsversorgung verbunden ist, bietet mittels Sperrdioden einen Schutz vor vertauschten Leitungen.
 Werden rote (+) und schwarze (-) Leitungen versehentlich vertauscht, führt dies nicht zu Schäden. Das System wird jedoch nicht mit Strom versorgt.
- 4. Verbinden Sie die DC-Spannungsversorgung mit dem Trennschalter, der ordnungsgemäß abgesichert sein sollte. Die empfohlene Sicherungsgröße beträgt 8 Ampere.

3.5.2 Optionale Spannungsversorgung (AC/DC-Wandler)

WARNUNG!

Überprüfen Sie vor dem Anschließen, ob die Einheit für eine optionale Wechselstromversorgung geeignet ist. Die Nichtbeachtung dieses Warnhinweises kann zu schweren oder tödlichen Verletzungen oder zu Sachschäden führen.

So schließen Sie eine 120/240-VAC-Spannungsversorgung an den GC an:

1. Lokalisieren Sie den steckbaren Anschlussklemmenblock TB5 im Elektronikgehäuse, der sich auf der Spannungsversorgung neben dem Platinengehäuse befindet.

Abbildung 3-6: AC/DC-Anschlussklemmenblock

WARNUNG!

Verkabeln Sie die Kabel der Wechselstromversorgung erst, nachdem Sie sichergestellt haben, dass die Wechselstromquelle ausgeschaltet ist. Die Nichtbeachtung dieses Warnhinweises kann zu schweren oder tödlichen Verletzungen oder zu Sachschäden führen.

Vorsicht!

Schalten Sie die Spannungsversorgung des GC erst ein, nachdem Sie alle Verbindungsleitungen und externen Signalverbindungen überprüft und eine ordnungsgemäße Erdung vorgenommen haben. Die Nichtbeachtung dieser Maßnahme kann zur Beschädigung des Geräts führen.

Die Adernfarben der Wechselstromleitungen sind typischerweise wie folgt:

Bezeichnung	Adernfarbe
Außenleiter (L)	Braun oder Schwarz
Neutralleiter (N)	Blau oder Weiß
Schutzleiter (PE)	Grün/Gelb oder Grün

- 2. Führen Sie die Kabel der Spannungsversorgung durch die linke Leitungseinführung an der Unterseite des Gehäuses.
- 3. An abgelegenen Standorten kann im Bedarfsfall das Erdungskabel des GC mit einem externen Erdungsstab aus Kupfer verkabelt werden. Weitere Informationen zur elektrischen Erdung und Signalerdung finden Sie im Abschnitt *Abschnitt 3.3.3*.

3.5.3 Anschließen der Probenentnahme- und anderen Gasleitungen

So schließen Sie die Probenentnahme- und Gasleitungen an den GC an:

- Entfernen Sie den Verschluss von der Auslassöffnung der Probenentnahmevorrichtung. Dies ist ein mit "SV1" (Sample Vent) gekennzeichnetes Rohr mit einem Durchmesser von 2 mm (1/16 Zoll), das sich auf der Frontplatte befindet.
 - Sie können die Probenentnahmeleitungen auch an eine externe (Umgebungsdruck) Entlüftung anschließen. Endet die Auslassleitung in einem Bereich, der dem Wind ausgesetzt ist, schützen Sie den Auslass mit einer Metallabschirmung.
 - Verwenden Sie f
 ür Auslassleitungen mit einer L
 änge von mehr als 3 Metern (10 Fu
 ß) Rohre mit einem Durchmesser von 6 mm (1/4 Zoll) oder 10 mm (3/8 Zoll).

In dieser Phase der Installation bleibt die Auslassleitung des Messgases (gekennzeichnet mit "MV1", *Measure Vent*) des GC verschlossen, bis die Dichtigkeitsprüfungen des GC abgeschlossen sind. Für den Normalbetrieb des GC dürfen die MV-Auslassöffnungen jedoch nicht verschlossen sein.

Anmerkung

Werfen Sie keinesfalls die Stopfen für die Auslassöffnungen weg. Diese sind bei den Dichtigkeitsprüfungen des GC und der Verbindungen seiner Probenentnahme- und Gasleitungen nützlich.

2. Schließen Sie das Trägergas an den GC an. Der Trägergaseinlass, ein T-Anschlussstück mit einem Durchmesser von 3 mm (1/8 Zoll), ist mit "Carrier In" gekennzeichnet.

WARNUNG!

Drehen Sie das Probengas erst dann auf, wenn Sie die Trägergasleitungen vollständig auf Leckagen überprüft haben. Die Nichtbeachtung dieses Warnhinweises kann zu schweren oder tödlichen Verletzungen oder zu Sachschäden führen.

- · Verwenden Sie Edelstahlrohre zur Verrohrung des Trägergases.
- Verwenden Sie einen zweistufigen Druckminderer, der an der Niederdruckseite bis ca. 10,5 bar (150 psig) regelbar ist.
- Siehe Abschnitt Anhang E, um eine Beschreibung des Verteilers für Trägergas mit zwei Flaschen (Teile-Nr.: 2-3-5000-050) mit den folgenden Merkmalen zu erhalten: Das Trägergas wird dem System aus zwei Flaschen zugeführt. Wenn eine Flasche fast leer ist (d. h. bei einem Rest von 100 psig), übernimmt die zweite Flasche die Primärversorgung. Jede Flasche kann zum Befüllen abgenommen werden, ohne dass der GC-Betrieb unterbrochen werden muss.
- Schließen Sie das Kalibriergas an den GC an.
 Stellen Sie bei der Installation der Kalibriergasleitung sicher, dass die Rohranschlüsse ordnungsgemäß durchgeführt werden.
 - Verwenden Sie f
 ür die Kalibriergasleitung ein Rohr aus Edelstahl mit einem Durchmesser von 3 mm (1/8 Zoll), es sei denn, die Anwendung erfordert behandelte Rohre.
 - Verwenden Sie einen zweistufigen Druckminderer, der an der Niederdruckseite bis ca. 2,1 bar (30 psig) regelbar ist.

WARNUNG!

Ein Gasstromdruck von mindestens 30 psi und eine Probenflussrate von mindestens 20 ml/min müssen aufrecht gehalten werden.

4. Einstellen der Durchflussmenge für Kalibrier- und Probengas an einem 770XA Gaschromatographen

Die Durchflussmenge durch den Gaschromatographen ist variabel und sollte entsprechend der Vorgaben für die Probendosierung gewählt werden. Das Kalibriergas wird dann genauso eingestellt.

Die Durchflussmenge wird mit dem Nadelventil, welches unter dem GC Ofen angebracht ist (siehe Fig. 1), eingestellt und am Durchflussmesser (siehe Fig. 2) abgelesen. Es sollte mit dem eingestellten Durchfluss sichergestellt sein, dass die Probengasmenge von der Probenentnahme bis zum GC-Detektor 3mal während des GC Messzyklus getauscht bzw. gespült wird. Daher ist der installierte Gasweg jeder GC-Installation für die Menge des Durchflusses entscheidend. Er muss individuell ermittelt werden und ist nicht durch Emerson vorgegeben.

Ist die benötigte Durchflussmenge höher als der Messbereich des installierten Durchflussmessers (10-100 ml/min), dann muss vor dem Nadelventil ein Fast-Loop-Bypass mit einem zusätzlichen Nadelventil mit Durchflussmesser zur Probenaufbereitung eingebaut werden.

Figur 1: Einbauort Nadelventil

Figur 2: Einbauort Durchflussmesser Probenauslass

Die Kalibriergasflaschen befinden sich typischerweise näher am Gerät als der Probenentnahmepunkt. Daher wird der Durchfluss über die Druckeinstellung der Flaschendruckminderer oder der automatischen Ausgangsdruck an der Druckregel-Umschaltstation so eingestellt, dass der gleiche Durchfluss wie bei der Einstellung für die Probe erreicht wird. Ist der Ausgangsdruck des Kalibriergases nicht richtig einstellbar, dann sollte ein Nadelventil zur korrekten Einstellung installiert werden.

Anmerkung

Es sollte auf die Druckeinstellung des Kalibriergases geachtet werden! Wenn der Druckunterschied zwischen dem Probenvordruck und dem Kalibriergasvordruck zu groß ist, dann kann es zu Messfehlern kommen. Die beste Einstellung ist, wenn beide Drücke identisch sind.

3.5.4

Maximale effektive Entfernung nach Kommunikationsprotokoll

Die Tabelle unten zeigt die maximale Entfernung, bis zu der das jeweilige Protokoll eine effektive Datenübertragung gewährleistet. Wird diese Entfernung überschritten, ist die Verwendung eines Repeaters oder eines anderen Extenders erforderlich, um die Effizienz des Protokolls sicherzustellen.

Kommunikationsprotokoll	Maximale Entfernung
RS-232	15,24 m (50 ft.)
RS-422/RS-485	1219,2 m (4000 ft.)
Ethernet (CAT5)	91,44 m (300 ft.)

3.5.5 Abschlusswiderstände für serielle RS-485-Ports

Bringen Sie einen 120-Ohm-Abschlusswiderstand über den Anschlüssen des seriellen Ports des GC auf der RS-485 Verbindung an, um die ordnungsgemäße Kommunikation aller Hostsysteme sicherzustellen. Bei Multidrop-Verbindungen montieren Sie den Abschlusswiderstand nur an der Verbindung zum letzten Controller.

3.5.6 Installation und Verbindung zu einer analogen Modemkarte

Der 770XA verfügt über zwei Steckplätze für die Installation eines analogen Modems: E/A- Steckplatz A und E/A-Steckplatz B.

Anmerkung

Die Software MON2020 erkennt nur Microsoft Windows-kompatible Modems mit korrekt installierten Treibern.

Anmerkung

Analoge Modems funktionieren nur mit dem öffentlichen Telefonnetz (PSTN). Analoge Modems funktionieren nicht mit VoIP-Netzwerken.

Die folgenden vier LEDs am Modem liefern Informationen zur Störungsanalyse und - beseitigung:

- RI (Ring Indicator) Die LED blinkt, sobald ein Rufsignal am Modem ankommt. Die LED blinkt nur einmal pro Verbindung, da das Modem automatisch beim ersten Rufsignal antwortet.
- CD (Carrier Detect) Diese LED leuchtet während der Verbindung mit MON2020 grün.
- RX (Receive) Diese LED blinkt, während der GC Daten von MON2020 empfängt.
- TX (Transmit) Diese LED blinkt, während der GC Daten an MON2020 sendet.

Installieren eines analogen Modems

So installieren Sie ein analoges Modem:

- 1. Starten Sie die Software MON2020 und verbinden Sie sich mit dem GC.
- 2. Wählen Sie die Option E/A-Karten... im Menü Tools aus. Das Fenster *E/A-Karten* wird angezeigt.
- 3. Ändern Sie den Kartentyp für den entsprechenden E/A-Steckplatz zu Kommunikationsmodul Modem.
- 4. Klicken Sie auf Speichern. MON2020 zeigt die folgende Meldung an:
 - Der GC muss neu gestartet werden, damit die ROC- Kartenänderungen wirksam werden.
- 5. Klicken Sie auf OK, um die Meldung auszublenden.
- 6. Klicken Sie auf OK, um das Fenster *E/A-Karten* zu schließen.
- 7. Trennen Sie die Verbindung zum GC.
- 8. Schalten Sie den GC aus.
- 9. Stecken Sie die Analogmodemkarte in den entsprechenden E/A-Steckplatz des GC-Platinengehäuses. Stellen Sie sicher, dass der E/A-Steckplatz dem Steckplatz unter *Schritt 3* entspricht.

- 10. Ziehen Sie die Schrauben der Karte an, um das Modem in dem Steckplatz zu fixieren.
- 11. Stecken Sie ein Telefonkabel in die RJ11-Buchse der Modemkarte.
- 12. Starten Sie den GC.
- 13. Kehren Sie zu MON2020 zurück und verbinden Sie sich mittels der Ethernet- Verbindung mit dem GC.
- 14. Wählen Sie Kommunikation ... aus dem Menü Anwendung aus. Das Fenster Kommunikation wird angezeigt. Der entsprechende E/A-Steckplatz sollte in der ersten Spalte (*Bezeichnung*) gelistet sein.
- 15. Legen Sie eine Baudrate von 57600 für die Analogmodemkarte fest.
- 16. Notieren Sie sich die Modbus-ID des E/A-Steckplatzes.
- 17. Klicken Sie auf Speichern.
- 18. Klicken Sie auf OK, um das Fenster Kommunikation zu schließen.
- 19. Trennen Sie die Verbindung zum GC.

3.5.7 Verbinden des GC über das analoge Modem

So verbinden Sie den GC über sein analoges Modem:

- 1. Starten Sie die Software MON2020 und wählen Sie aus dem Menü File (Datei) die Option GC Directory... (GC-Verzeichnis) aus. Das Fenster *GC Directory* (GC-Verzeichnis) wird angezeigt.
- 2. Wählen Sie im Menü File im Fenster *GC Directory* die Option Add (Hinzufügen) aus. Am Ende der Verzeichnistabelle wird eine neue Zeile hinzugefügt.
- 3. Ersetzen Sie "GC Name" mit einer entsprechenden Bezeichnung des GC, mit dem Sie eine Verbindung herstellen möchten.

Anmerkung

Sie können weitere Informationen zum GC im Feld Short Desc (Kurzbeschreibung) eingeben.

- 4. Wählen Sie das Kontrollkästchen Modem aus.
- 5. Klicken Sie auf die Schaltfläche Modem Das Fenster *Modem Connection Properties for DialUp* (Modemverbindungseigenschaften für Wählverbindung) wird angezeigt.
- 6. Stellen Sie sicher, dass die Kommunikationsadresse der Modbus-ID im Fenster *Communication* (Kommunikation) entspricht.
- 7. Wählen Sie das entsprechende Modem aus der Dropdown-Liste Modem aus. Das Dialogfeld *Edit Telephone Number* (Telefonnummer bearbeiten) wird angezeigt.
- 8. Geben Sie die Telefonnummer des Modems ein und klicken Sie auf OK. Das Fenster *Modem Properties* (Modem-Eigenschaften) wird angezeigt.
- 9. Klicken Sie auf OK, um das Fenster Modem Properties (Modem-Eigenschaften) zu schließen.
- 10. Klicken Sie im Fenster GC Directory (GC-Verzeichnis) auf die Schaltfläche Save (Speichern).
- 11. Klicken Sie auf OK, um das Fenster GC Directory zu schließen.
- 12. Wählen Sie die Option Connect... (Verbinden) im Menü Chromatograph aus. Das Fenster *Connect to GC* (Mit GC verbinden) erscheint.
- 13. Klicken Sie beim entsprechenden GC auf die Schaltfläche Modem. Das Dialogfeld *Login* (Anmelden) wird angezeigt.
- 14. Geben Sie den entsprechenden Benutzernamen sowie das Kennwort ein und klicken Sie auf OK. MON2020 stellt eine Verbindung zum GC über eine Modemverbindung her.

3.5.8 Direktes Verbinden von GC und PC mithilfe des Ethernet-Ports des GC

Mithilfe des DHCP-Servers des GC und seinem Ethernet-Port auf der Rückwandplatine an J22 (RJ45-Steckverbinder) können Sie sich direkt mit dem GC verbinden. Dies ist eine nützliche Funktion für Gaschromatographen, die nicht mit einem LAN-Netzwerk verbunden sind. Hierzu sind ein PC, normalerweise ein Notebook, sowie ein CAT5-Ethernet-Kabel erforderlich.

Anmerkung

Wenn der PC über eine Ethernet-Netzwerkkarte (NIC) verfügt, die Auto-Medium Dependent Interface Crossover (Auto-MDIx) unterstützt, ist ein ungekreuztes Kabel oder Patchkabel (CAT5 oder höher) ausreichend.

Wenn der PC über eine Ethernet-Netzwerkkarte (NIC) verfügt, die Auto-Medium Dependent Interface Crossover (Auto-MDIx) nicht unterstützt, ist ein gekreuztes Kabel (CAT5 oder höher) erforderlich.

Anmerkung

Der GC kann mit dem lokalen Netzwerk an Ethernet 2 verbunden werden (bzw. verbunden bleiben), während DHCP an TB11 auf der Rückwandplatine verwendet wird.

Abbildung 3-7: Ethernet-Ports auf der Rückwandplatine

- 1. Schließen Sie ein Ende des Ethernet-Kabels an den Ethernet-Port des PCs und das andere Ende an die RJ45-Buchse an J22 auf der Rückwandplatine des GC an.
- Lokalisieren Sie die Schalterleiste SW1, die sich direkt unter dem Ethernet-Port auf der Rückwandplatine befindet. Bringen Sie den mit "1" gekennzeichneten Schalter in die Stellung ON (EIN). Dies startet den DHCP-Server des GC. Der Server benötigt normalerweise ungefähr 20 Sekunden zum Initialisieren und Starten.

Abbildung 3-8: SW1-Schalter auf der Rückwandplatine

Anmerkung

Stellen Sie sicher, dass sich der SW1-Schalter in der Position OFF (AUS) befindet, bevor Sie den GC mit dem lokalen Netzwerk verbinden. Andernfalls stört der GC die Funktionsweise des lokalen Netzwerks.

- 3. Warten Sie 20 Sekunden und führen Sie anschließend die folgenden Schritte aus, um sicherzustellen, dass der Server dem PC eine IP-Adresse zugewiesen hat.
 - a. Gehen Sie auf Ihrem PC zu Start \rightarrow Systemsteuerung \rightarrow Netzwerkverbindungen.
 - b. Im Fenster Netzwerkverbindungen sind alle auf dem PC installierten Wähl- und LAN-Verbindungen sowie Hochgeschwindigkeits-Internetanschlüsse aufgelistet. Suchen Sie in der Liste "LAN-Verbindungen/Hochgeschwindigkeits-Internetanschlüsse" das Symbol für die PC-zu-GC-Verbindung und überprüfen Sie den Status, der unter "Lokale Netzwerkverbindung" angezeigt wird. Als Status sollte Verbunden angezeigt werden. Der PC kann jetzt eine Verbindung mit dem GC herstellen. Siehe: Verwenden von MON2020 zum Verbinden mit dem GC.
- 4. Wird der Status als "Getrennt" angezeigt, ist der PC möglicherweise so eingerichtet, dass er keine IP-Adressen annimmt. Gehen Sie in diesem Fall wie folgt vor:

- a. Klicken Sie mit der rechten Maustaste auf das Symbol und wählen Sie Eigenschaften aus. Das Fenster *Eigenschaften der lokalen Netzwerkverbindung* wird angezeigt.
- b. Gehen Sie zum Ende des Listenfeldes *Verbindung* und wählen Sie Internetprotokoll (TCP/IP) aus.
- c. Klicken Sie auf Eigenschaften. Das Fenster *Eigenschaften von Internetprotokoll (TCP/IP)* wird angezeigt.
- 5. Um den PC so zu konfigurieren, dass er IP-Adressen vom GC annimmt, aktivieren Sie die Kontrollkästchen IP-Adresse automatisch abrufen und DNS-Serveradresse automatisch abrufen.
- 6. Klicken Sie auf OK, um die Änderungen zu speichern und das Fenster *Eigenschaften von Internetprotokoll (TCP/IP)* zu schließen.
- 7. Klicken Sie auf OK, um das Fenster *Eigenschaften der lokalen Netzwerkverbindung* zu schließen.
- 8. Kehren Sie zum Fenster *Netzwerkverbindungen* zurück. Prüfen Sie, ob der Status des entsprechenden Symbols Verbunden ist. Zeigt das Symbol immer noch "Getrennt" an, siehe *Abschnitt 3.5.9*.

Anmerkung

Wenn Sie die Spannungsversorgung des GC aus- und einschalten, verlieren Sie die Verbindung. Um mehr über das "Reparieren" der Verbindung zu erfahren, gehen Sie nach der vollständigen Initialisierung des GC zu *Abschnitt 3.5.9*.

Verwenden von MON2020 zum Verbinden mit dem GC

So stellen Sie eine Verbindung mit dem GC her:

- 1. Starten Sie MON2020. Nach dem Start erscheint das Fenster *Connect to GC* (Mit GC verbinden).
- Suchen Sie Direct-DHCP (DHCP direkt) in der Spalte GC Name (GC-Name). Dieser Eintrag des GC-Verzeichnises wird bei der Installation von MON2020 automatisch erstellt. Das Verzeichnis kann zwar umbenannt werden, jedoch sollte die IP-Adresse, auf die verwiesen wird – 192.168.135.100 – nicht geändert werden.
- 3. Klicken Sie auf die dazugehörige Schaltfläche Ethernet. Sie werden von MON2020 dazu aufgefordert, einen Benutzernamen sowie ein Kennwort einzugeben. Nach der Eingabe werden Sie mit dem GC verbunden.

Der standardmäßige Benutzername ist Emerson mit einem leeren Kennwortfeld.

3.5.9 Fehlersuche und -beseitigung bei DHCP-Verbindungsproblemen

Die folgenden Tipps helfen Ihnen bei der Fehlersuche und -beseitigung, wenn Verbindungsprobleme mit dem Server auftreten:

- 1. Stellen Sie sicher, dass der GC läuft.
- 2. Überprüfen Sie, ob der Schalter "SW1" auf ON (EIN) steht.
- 3. Prüfen Sie die folgenden Verbindungen:
 - a. Stellen Sie bei Verwendung eines ungekreuzten Ethernet-Kabels sicher, dass der PC über eine Ethernet-Netzwerkkarte mit Auto-MDIX verfügt.
 - b. Wenn die Ethernet-Netzwerkkarte Ihres PCs kein Auto-MDIX unterstützt, stellen Sie

sicher, dass Sie ein gekreuztes Ethernet-Kabel verwenden.

- c. Prüfen Sie, ob die Verbindungsleuchten der CPU-Platine leuchten. Die drei Leuchten befinden sich auf der vorderen Unterkante der Karte. Wenn die Verbindungsleuchten aus sind, überprüfen Sie bitte die Verbindungen.
- 4. So stellen Sie sicher, dass Ihr Netzwerkadapter aktiviert ist:
 - a. Gehen Sie zu Start \rightarrow Systemsteuerung \rightarrow Netzwerkverbindungen.
 - b. Überprüfen Sie den Status des Symbols *Lokale Netzwerkverbindung*. Wird der Status mit Deaktiviert angezeigt, klicken Sie mit der rechten Maustaste auf das Symbol und wählen Sie Aktivieren aus dem Auswahlmenü aus.
- 5. So können Sie versuchen, die Netzwerkverbindung zu reparieren:
 - a. Gehen Sie zu Start \rightarrow Systemsteuerung \rightarrow Netzwerkverbindungen.
 - b. Klicken Sie mit der rechten Maustaste auf das Symbol *Lokale Netzwerkverbindung* und wählen Sie Reparieren aus dem Auswahlmenü aus.

3.5.10 Direktes Verbinden von GC und PC mithilfe des seriellen Ports des GC

Der serielle Port des GC an J23 auf der Rückwandplatine ermöglicht es, eine direkte Verbindung zwischen einem PC mit einer RS-232-Schnittstelle und dem GC herzustellen. Sie benötigen einen PC mit Windows XP Service Pack 3, Windows Vista oder Windows 7 (normalerweise ein Notebook) sowie ein serielles Durchgangskabel.

Abbildung 3-9: Serieller Port J23 auf der Rückwandplatine (A)

So richten Sie auf dem PC eine Direktverbindung ein:

- 1. So installieren Sie den Modemtreiber Daniel Direct Connect auf dem PC:
 - a. Gehen Sie zu Start → Systemsteuerung und doppelklicken Sie auf das Symbol Telefone und Modemoptionen. Das Dialogfeld *Telefone und Modemoptionen* wird angezeigt.
 - b. Wählen Sie die Registerkarte *Modem* aus und klicken Sie auf Hinzufügen.... Der Assistent für das Hinzufügen von Geräten wird angezeigt.
 - c. Aktivieren Sie das Kontrollkästchen Modem auswählen (Keine automatische Erkennung) und klicken Sie auf Weiter.

- d. Klicken Sie auf Datenträger. Das Dialogfeld Von Datenträger installieren wird angezeigt.
- e. Klicken Sie auf Durchsuchen. Das Dialogfeld Durchsuchen wird angezeigt.
- f. Gehen Sie zum MON2020-Installationsverzeichnis (normalerweise C:\Programme\Emerson Process Management\MON2020) und w\u00e4hlen Sie die Datei Daniel Direct Connection.inf aus.
- g. Klicken Sie auf Öffnen. Sie gelangen wieder zum Dialogfeld Von Datenträger installieren.
- h. Klicken Sie auf OK. Der Assistent für das Hinzufügen von Geräten wird wieder aufgerufen.
- i. Klicken Sie auf Weiter.
- j. Wählen Sie einen verfügbaren seriellen Port aus und klicken Sie auf Weiter. Das Dialogfeld *Hardware-Installation* wird angezeigt.
- k. Klicken Sie auf Installation fortsetzen. Nachdem der Treiber für das Modem installiert wurde, gelangen Sie wieder zum Menüpunkt Assistent für das Hinzufügen von Geräten.
- I. Klicken Sie auf Fertigstellen. Sie gelangen wieder zum Dialogfeld *Telefone und Modems*. Das Modem Daniel Direct Connect sollte in der Spalte "Modem" aufgelistet sein.
- 2. Starten Sie MON2020 und gehen Sie wie folgt vor, um eine GC-Verbindung für das Modem Daniel Direct Connection herzustellen:
 - a. Wählen Sie die Option GC Directory... (GC-Verzeichnis) aus dem Menü File (Datei) aus. Das Fenster GC Directory (GC-Verzeichnis) wird angezeigt.
 - b. Wählen Sie im Menü File (Datei) im Fenster GC Directory (GC-Verzeichnis) die Option Add (Hinzufügen) aus. Eine neue Zeile mit New GC (Neuer GC) wird am Ende der Tabelle hinzugefügt.
 - c. Wählen Sie eine Beschreibung für die Option New GC aus und geben Sie einen neuen Namen für die GC-Verbindung ein.

Anmerkung

Sie können optionale, aber nützliche Informationen über die Verbindung in der Spalte "Short Desc" (Kurzbeschreibung) eingeben.

- d. Wählen Sie das Kontrollkästchen Direct (Direkt) des neuen GC aus.
- e. Klicken Sie auf die Schaltfläche Direct (Direkt), die sich unten im Fenster GC Directory (GC-Verzeichnis) befindet. Das Fenster Direct Connection Properties (Direktverbindungseigenschaften) wird angezeigt.
- f. Wählen Sie Daniel Direct Connection (COMn) aus dem Dropdown-Fenster Port aus.

Anmerkung

Der Buchstabe n steht für die COM-Nummer.

- g. Wählen Sie 57600 aus dem Dropdown-Fenster Baud Rate (Baudrate) aus.
- h. Klicken Sie auf OK, um die Einstellungen zu speichern. Sie gelangen erneut zum Fenster GC Directory.
- i. Klicken Sie auf OK, um die neue GC-Verbindung zu speichern und das Fenster *GC Directory* zu schließen.
- 3. Schließen Sie ein Ende des Direktverbindungskabels an den seriellen Port bei J23 des GC an, der sich auf der Rückwandplatine befindet.
- 4. Schließen Sie das andere Ende des Direktverbindungskabels an den entsprechenden seriellen

Port am PC an.

- 5. Wählen Sie die Option Connect (Verbinden) im Menü Chromatograph aus. Das Fenster *Connect to GC* (Mit GC verbinden) erscheint.
- 6. Klicken Sie auf Direct (Direkt), um den PC mittels der seriellen Kabelverbindung zu verbinden.

3.5.11 Direktes Verbinden von PC und GC mithilfe des kabelgebundenen Ethernet-Anschlusses des GC

Der 770XA verfügt über einen kabelgebundenen Ethernet-Anschluss an TB11 auf der Rückwandplatine, über den der GC mit einer statischen IP-Adresse verbunden werden kann. Ein PC, normalerweise ein Notebook, und ein 2-adrig verdrilltes CAT5-Ethernet-Kabel, bei dem ein Stecker abgeschnitten wird, um die Adern frei zu legen, ist alles was Sie benötigen.

Anmerkung

Der GC kann mit dem lokalen Netzwerk verbunden werden (bzw. verbunden bleiben), während DHCP an TB11 auf der Rückwandplatine verwendet wird.

Abbildung 3-11: Kabelgebundener Ethernet-Anschlussklemmenblock auf der Rückwandplatine

Verwenden Sie die folgenden Schaltpläne als Anleitung, um den GC über die Phoenix-Klemmleiste an TB11 zu verdrahten. *Abbildung 3-12* zeigt den herkömmlichen Anschluss; *Abbildung 3-13* zeigt, wie ein CAT5e-Kabel angeschlossen wird, wenn Sie den RJ-45-Stecker abschneiden.

Abbildung 3-12: Feldverkabelung an TB11

Abbildung 3-13: CAT5e-Verkabelung an TB11

Tabelle 3-1: CAT5-Verkabelung – Farbcodes

Pin-Nr.	Adernfarbe
Pin 1	Orange/Weiß
Pin 2	Orange
Pin 3	Grün/Weiß
Pin 4	Grün

Nachdem Sie das Kabel an den Ethernet-Klemmen angeschlossen haben, stecken Sie das andere Ende in einen PC oder eine RJ-45-Wanddose. Siehe *Abschnitt 3.5.12*, um mit der Konfiguration des GC fortzufahren.

3.5.12 Zuweisen einer statischen IP-Adresse zum GC

So weisen Sie dem GC eine statische IP-Adresse zu:

- 1. Starten Sie die Software MON2020 und melden Sie sich unter Verwendung einer direkten Ethernet-Verbindung am GC an. Weitere Informationen finden Sie unter *Abschnitt 3.5.8*.
- 2. Wählen Sie aus dem Menü Applications (Anwendungen) die Option Ethernet-Ports... aus. Das Fenster *Ethernet Ports* wird angezeigt.
- 3. Abhängig vom Ethernet-Port, dem Sie eine statische IP-Adresse zuweisen möchten, führen Sie die folgenden Schritte aus:
 - a. Der Ethernet-Port an <u>TB11</u>: Geben Sie die entsprechenden Werte in die Felder Ethernet2 IP Address, Ethernet2 Subnet und Ethernet 1 Gateway (bei Firmware-Version v2.1.x und aktueller) ein.
 - b. Der RJ-45-Ethernet-Port an <u>J22</u>: Geben Sie die entsprechenden Werte in die Felder Ethernet1 IP Address, Ethernet1 Subnet und Ethernet 2 Gateway (bei Firmware-Version v2.1.x und aktueller) ein.

Anmerkung

Für die genauen IP-, Subnetz- und Gateway-Adressen wenden Sie sich bitte an einen Mitarbeiter der IT-Abteilung.

Anmerkung

Falls das Netzwerk keine Gateway-IP-Adresse hat, setzen Sie die IP-Adresse des Gateways auf "0.0.0.0"

- 4. Klicken Sie auf OK.
- 5. Melden Sie sich vom GC ab.
- 6. Greifen Sie auf die Rückwandplatine zu, die sich in der unteren Gehäusekammer des GC befindet.

Abbildung 3-14: Anordnung der Ports auf der Rückwandplatine

- 7. Wenn Sie eine statische IP-Adresse für den Ethernet-Port an J22 einstellen und Sie sich auch mit dem firmeneigenen LAN-Netzwerk verbinden möchten, führen Sie die folgenden Schritte aus:
 - a. Suchen Sie die mit 1 und 2 gekennzeichneten DIP-Schalter, die sich beim Überbrückungsschalter SW1 auf der Rückwandplatine befinden. Der Schalter "SW1" befindet sich direkt unter dem Ethernet-Port an J22.
 - b. Bringen Sie den DIP-Schalter 1 in die linke Schaltstellung. Dadurch wird der DHCP-Server deaktiviert.
- 8. So stellen Sie eine eine Verbindung mit dem GC her:
 - a. Starten Sie die Software MON2020 und wählen Sie aus dem Menü File (Datei) die Option GC Directory... (GC-Verzeichnis) aus. Das Fenster *GC Directory* (GC- Verzeichnis) wird angezeigt.
 - b. Wählen Sie im Menü File (Datei) im Fenster *GC Directory* die Option Add (Hinzufügen) aus. Ein neues GC-Profil wird unter New GC (Neuer GC) am Ende der Tabelle hinzugefügt.

Anmerkung

Sie können das GC-Profil auch umbenennen sowie eine kurze Beschreibung hinzufügen.

- c. Wählen Sie das neue Profil aus und klicken Sie auf Ethernet ... Geben Sie die statische IP-Adresse des GC in das Feld IP address (IP-Adresse) ein.
- d. Klicken Sie auf OK. Das Fenster Ethernet Connection Properties for New GC (Ethernet-

Verbindungseigenschaften für den neuen GC) wird geschlossen.

- 9. Klicken Sie im Fenster GC Directory (GC-Verzeichnis) auf Save (Speichern).
- 10. Klicken Sie auf OK, um das Fenster GC Directory zu schließen.
- Wählen Sie im Menü Chromatograph die Option Connect... (Verbinden) aus oder klicken Sie auf das Symbol
 Das Fenster *Connect to GC* (Mit GC verbinden) erscheint.
- 12. Das neu erstellte GC-Profil sollte in der Tabelle erscheinen. Suchen Sie das Profil in der Tabelle und klicken Sie auf die dem Profil zugeordnete Schaltfläche Ethernet. Das Fenster *Login* (Anmeldung) wird angezeigt.

Wichtig

Wenn Sie MON2020 direkt mit der statischen IP-Adresse des Ethernet-Port 1 oder 2 des GC verbinden, müssen Sie sicherstellen, dass der PC und GC über IP-Adressen verfügen, die sich im selben Netzwerk befinden. Der Benutzer muss die IP-Adresse des PC in den Netzwerkeinstellungen ändern, bevor er versucht, einen Verbindungsaufbau zu starten.

13. Geben Sie einen User Name (Benutzernamen) und eine User Pin (Benutzer-PIN) ein und klicken Sie anschließend auf die Schaltfläche OK.

3.5.13 Verkabelung der diskreten digitalen E/A

Die Rückwandplatine des GC verfügt über Anschlüsse für digitale Ausgänge und Eingänge.

Diskrete Digitaleingänge

So schließen Sie diskrete, digitale Signaleingangsleitungen am GC an:

1. Greifen Sie auf die Rückwandplatine zu.

Die diskreten Eingänge befinden sich auf TB7.

Anmerkung

Die diskreten, digitalen Eingangsklemmen auf der Rückwandplatine verfügen über eine interne Spannungsversorgung. Geräte, die an diesen digitalen Eingang angeschlossen werden, werden mit der eigenen, getrennten 24-V-Spannungsversorgung des GC betrieben.

Anmerkung

Die diskreten, digitalen Eingangsklemmen sind optoelektronisch von der übrigen Elektronik des GC getrennt.

2. Verlegen Sie die digitalen E/A-Leitungen entsprechend, insbesondere bei einem explosionssicheren Gehäuse.

Es gibt Verbindungen für fünf digitale Eingangsleitungen und fünf digitale Ausgangsleitungen (siehe folgende Tabelle):

Tabelle 3-2: Diskrete Digitaleingänge

TB7	Funktion
Pin 1	F_DIG_IN1
Pin 2	DIG_GND
Pin 3	F_DIG_IN2
Pin 4	DIG_GND
Pin 5	F_DIG_IN3
Pin 6	DIG_GND
Pin 7	F_DIG_IN4
Pin 8	DIG_GND
Pin 9	F_DIG_IN5
Pin 10	DIG_GND

Optionale digitale Binäreingänge

Wird die ROC800 DI-Karte in einen der optionalen Kartensteckplätze des Platinengehäuses eingesteckt, sind vier weitere digitale Binäreingänge verfügbar. Die digitalen Binäreingänge überwachen den Status von Relais, Open-Collector- oder Open-Drain- Festkörperschaltern sowie von anderen Geräten mit zwei Zuständen. Weitere Informationen hierzu finden Sie im Abschnitt "ROC800-Series Discrete Input Module" auf der Webseite der Serie ROC 800 von Emerson Process Management.

Typische Feldverkabelung eines DI-Moduls der Serie ROC800

Abbildung 3-17: Typische Verkabelung

Abbildung 3-16: Optionale Kartensteckplätze

Anschlussklemme	Bezeichnung	Definition
1	1	KNL 1 positiv
2	2	KNL 2 positiv
3	3	KNL 3 positiv
4	4	KNL 4 positiv
5	5	KNL 5 positiv
6	6	KNL 6 positiv
7	7	KNL 7 positiv
8	8	KNL 8 positiv
9	СОМ	Gemeinsam
10	СОМ	Gemeinsam

So verkabeln Sie das DI-Modul der Serie ROC800 mit einem Feldgerät:

1. Legen Sie das Kabelende bis zu einer maximalen Länge von 6,3 mm (¼ Zoll) frei.

Anmerkung

Für alle E/A-Signalverkabelungen wird die Verwendung von paarweise verdrillten Kabeln empfohlen. Für die Anschlussklemmenblöcke des Moduls sind AWG-Leiterquerschnitte zwischen 12 und 22 geeignet. Lassen Sie so wenig blanke Kabelenden wie möglich offen, um Kurzschlüsse zu verhindern. Achten Sie dabei auf eine zum Anschließen ausreichende Kabellänge, um Zug zu vermeiden.

- 2. Schließen Sie das freiliegende Ende an die Klemme unter der Anschlussschraube an.
- 3. Ziehen Sie die Schraube fest.

Digitale Binärausgänge

Die Binärausgänge befinden sich auf TB3, einem 15-Pin-Phoenix-Anschluss, und haben auf der Rückwand fünf Relais der Bauform C. Alle Kontaktausgänge haben eine Nennleistung von 1 A bei 30 VDC.

Tabelle 3-3 zeigt die Funktion des digitalen Binärausgangs für jeden Pin am Anschluss TB3.

ТВЗ	Funktion
Pin 1	DIG_OUT NC1
Pin 2	DIG_OUT ARM1
Pin 3	DIG_OUT NO1
Pin 4	DIG_OUT NC2
Pin 5	DIG_OUT ARM2
Pin 6	DIG_OUT NO2
Pin 7	DIG_OUT NC3
Pin 8	DIG_OUT ARM3
Pin 9	DIG_OUT NO3
Pin 10	DIG_OUT NC4
Pin 11	DIG_OUT ARM4
Pin 12	DIG_OUT NO4
Pin 13	DIG_OUT NC5
Pin 14	DIG_OUT ARM5
Pin 15	DIG_OUT NO5

Tabelle 3-3:	Digitale	Binärausgänge
--------------	----------	---------------

Anmerkung

Relais der Bauform C sind Relais mit Wechselkontakt (SPDT Single-Pole Double-Throw), die über drei Schaltstellungen verfügen: normal geschlossen (NC); eine Mittelstellung, auch die *Make-Before-Break* Stellung (Schließen erfolgt vor dem Öffnen, ARM) genannt; und normal geöffnet (NO).

Typische Feldkabelung eines DO-Moduls der Serie ROC800

Anschlussklemme	Bezeichnung	Definition
1	1+	Positiver, diskreter Ausgang
2	СОМ	Diskreter Ausgang Rückleitung
3	2+	Positiver, diskreter Ausgang
4	СОМ	Diskreter Ausgang Rückleitung
5	3+	Positiver, diskreter Ausgang
6	СОМ	Diskreter Ausgang Rückleitung
7	4+	Positiver, diskreter Ausgang
8	СОМ	Diskreter Ausgang Rückleitung
9	5+	Positiver, diskreter Ausgang
10	СОМ	Diskreter Ausgang Rückleitung

So verkabeln Sie das DO-Modul der Serie ROC800 mit einem Feldgerät:

1. Legen Sie das Kabelende bis zu einer maximalen Länge von 6,3 mm (¼ Zoll) frei.

Anmerkung

Für alle E/A-Signalverkabelungen wird die Verwendung von paarweise verdrillten Kabeln empfohlen. Für die Anschlussklemmenblöcke des Moduls sind AWG-Leiterquerschnitte zwischen 12 und 22 geeignet. Lassen Sie so wenig blanke Kabelenden wie möglich offen, um Kurzschlüsse zu verhindern. Achten Sie dabei auf eine zum Anschließen ausreichende Kabellänge, um Zug zu vermeiden.

- 2. Schließen Sie das freiliegende Ende an die Klemme unter der Anschlussschraube an.
- 3. Ziehen Sie die Schraube fest.

3.5.14 Verkabelung der Analogeingänge

Alle Gaschromatographen des Modells 770XA haben mindestens zwei Analogeingänge. Mit einer ROC800 Al-16-Karte, die in einem der optionalen Kartenslots im Kartengehäuse installiert werden kann, stehen vier weitere Analogeingänge zur Verfügung.

Analogeingänge auf der Rückwandplatine

Es gibt auf der Rückwandplatine bei TB10 zwei Analogeingangsanschlüsse.

Tabelle 3-4: Analogeingänge

ТВ10	Funktion
Pin 1	+AI_1
Pin 2	-AI_1
Pin 3	+AI_2
Pin 4	-AI_2

Analogeingangsschalter

Abbildung 3-21 zeigt die Werkseinstellungen für die Analogeingangsschalter, die sich auf der E/A-Grundplatine befinden. Diese Analogeingänge sind so eingestellt, dass sie mit einer 4-20 mA Stromquelle betrieben werden können.

Abbildung 3-21: Werkseinstellungen für Analogeingangsschalter

Anmerkung

Um einen Analogeingang mit einer 0-10 VDC Spannungsquelle zu betreiben, setzen Sie den entsprechenden Schalter entgegengesetzt der Stellung, die in *Abbildung 3-21*.

Auswählen der Eingangsart für einen Analogeingang

Ein Analogeingang kann entweder auf Spannung (0–10 V) oder Strom (4–20 mA) eingestellt werden, indem die entsprechenden Schalter auf der E/A-Grundplatine in die jeweilige Stellung gebracht werden.

- 1. Schalten Sie den GC aus.
- 2. Entfernen Sie die E/A-Grundplatine, die sich im Platinengehäuse in der unteren Gehäusekammer des GC befindet.
- 3. Um den Analogeingang #1 auf Strom zu setzen, müssen Sie die Schalter an SW1 auf der E/A-Grundplatine nach unten und vom Kartenauswerfer weg drücken. Um den Analogeingang auf Spannung zu setzen, müssen Sie die Schalter nach oben drücken, d. h. in Richtung des Kartenauswerfers.
- 4. Um den Analogeingang #2 auf Strom zu setzen, müssen Sie die Schalter an SW2 auf der E/A-Grundplatine nach unten und vom Kartenauswerfer weg drücken. Um den Analogeingang auf Spannung zu setzen, müssen Sie die Schalter nach oben drücken, d. h. in Richtung des Kartenauswerfers.
- 5. Tauschen Sie die E/A-Grundplatine im Platinengehäuse aus.
- 6. Starten Sie den GC.
- 7. Starten Sie die Software MON2020 und verbinden Sie sich mit dem GC.
- 8. Wählen Sie Analog Inputs (Analogeingänge) aus dem Menü Hardware (Hardware) aus. Das Fenster *Analog Input* (Analogeingang) wird angezeigt.
- 9. Um den Analogeingang auf Strom zu setzen, wählen Sie mA aus der Dropdown-Liste *mA/Volts* (mA/Volt) für den entsprechenden Analogeingang aus. Um den Analogeingang auf Spannung zu setzen, müssen Sie die Option Volts (Volt) aus der Dropdown-Liste *mA/Volts* (mA/Volt) für den entsprechenden Analogeingang auswählen.
- 10. Klicken Sie auf Save (Speichern), um Ihre Änderungen zu speichern, ohne das Fenster zu schließen; oder klicken Sie auf OK, um Ihre Änderungen zu speichern und das Fenster zu schließen.

Typische Verkabelung für netzbetriebene Messgeber

Die folgende Zeichnung zeigt den gebräuchlichsten Schaltplan für die Spannungszufuhr zu zwei 4–20 mA-Messgebern, wie z. B. von Drucksensor-Messgebern.

Abbildung 3-22: Typische Verkabelung für netzbetriebene Messgeber

Optionale Analogeingänge

Wird die ROC800 AI-16-Karte in einen der optionalen Kartensteckplätze des Platinengehäuses eingesteckt, sind vier weitere Analogeingänge verfügbar. Die AI-Kanäle sind skalierbar, werden aber normalerweise entweder zur Messung eines 4–20 mA Analogsignals oder 1–5 VDC Signals verwendet. Falls erforderlich kann der untere Analogsignalwerts des AI-Moduls auf den Nullpunkt kalibriert werden. Weitere Informationen finden Sie unter "Analog Input Modules (ROC800-Series)" auf www.emersonprocess.com/RemoteAutomationSolutions.

Abbildung 3-23: Optionale Kartensteckplätze für E/A-Karten

Typische Feldverkabelung eines AI-16-Moduls der Serie ROC800

Vorsicht!

Werden die erforderlichen antistatischen Maßnahmen (ESD), wie z. B. das Tragen eines Erdungsarmbands, nicht eingehalten, kann das den Prozessor zurücksetzen oder elektronische Bauteile beschädigen, was zu Unterbrechungen des Betriebs führen kann. Masseschleifen können auftreten, wenn mehrere Module durch Signalmasse-Wege miteinander verbunden sind.

So verkabeln Sie das AI-16-Modul der Serie ROC800:

1. Legen Sie das Kabelende bis zu einer maximalen Länge von 6,3 mm (¼ Zoll) frei.

Anmerkung

Für alle E/A-Signalverkabelungen wird die Verwendung von paarweise verdrillten Kabeln empfohlen. Für die Anschlussklemmenblöcke des Moduls sind AWG-Leiterquerschnitte zwischen 12 und 22 geeignet. Lassen Sie so wenig blanke Kabelenden wie möglich offen, um Kurzschlüsse zu verhindern. Achten Sie dabei auf eine zum Anschließen ausreichende Kabellänge, um Zug zu vermeiden.

- 2. Schließen Sie das freiliegende Ende an die Klemme unter der Anschlussschraube an.
- 3. Ziehen Sie die Schraube fest.

Auf der Anschlussklemmenseite des Moduls befinden sich vier DIP-Schalter. Diese können innerhalb oder außerhalb des Schaltkreises für jeden Analogeingang zum Setzen eines 250 Ω Widerstands verwendet werden.

Diese DIP-Schalter ermöglichen Ihnen, den Analogeingang so zu konfigurieren, dass er

entweder Spannung oder Strom liest.

Um den Analogeingang für das Lesen eines 4–20 mA Stromeingangs zu konfigurieren, setzen Sie den DIP-Schalter auf die mit "I" gekennzeichnete Position. Um den Analogeingang für das Lesen eines 1–5 V Spannungseingangs zu konfigurieren, setzen Sie den DIP-Schalter auf die mit "V" gekennzeichnete Position.

Kalibrieren eines Al-16-Moduls der Serie ROC800

So kalibrieren Sie ein Al-16-Modul der Serie ROC800 in MON2020:

1. Wählen Sie die Option Analog Input... (Analogeingang) aus dem Menü Hardware aus. Das Fenster "Analog Input" (Analogeingang) wird angezeigt.

LINH	Zero Scale	Full Scale	Switch	Fixed Value	Am	Current Value	Zero Ada	FULAd	Status	
Analog Input 1	0	100	Var_Standard		000	0	1	20.04		
Analog Input 2	0	100	Var_Standard		0.00	3	4	20.04		

- 2. Wählen Sie einen Analog Input (Analogeingang) aus.
- 3. Klicken Sie auf AutoCal...(F4) (Autom. Kalibrierung). Der Analog Input Calibration Assistant (Kalibrierassistent für Analogeingang) erscheint.

4. Setzen Sie den Zero Scale Value (Skalennullwert) mittels einer Präzisionsstromquelle an den Anschlussklemmen des Analogeingangs und legen Sie 4 mA an. Der GC liest und behandelt diesen Wert als Wert für den Nullpunktabgleich. Klicken Sie auf Next (Weiter), um mit der Kalibrierung fortzufahren.

Analog Input Calibration Assist	ant 📃 🔀
Analog Input 2 Calibration	
Step 2 of 4	
Set the Analog Inputt Click Next to continue	to Zero Scale Value. 1
	< <u>Back N</u> ext > Cancel

5. Setzen Sie den Full Scale Value (Skalenendwert) mittels einer Präzisionsstromquelle an den Anschlussklemmen des Analogeingangs und legen Sie 20 mA an. Der GC liest und behandelt diesen Wert als Anpassungswert für den Skalenendwert. Klicken Sie auf Next (Weiter), um mit der Kalibrierung fortzufahren.

6. Klicken Sie auf Finish (Beenden), um das Dialogfeld "Analog Input Calibration Assistant" zu schließen.

Analog Input Calibration Ass	istant		×
Analog Input 2 Calibration			
Step 4 of 4			
Analog Input C close this assis	alibration is con stant.	nplete. Click Fini	ish to
	< <u>B</u> ack	<u>F</u> inish	Cancel

- 7. MON2020 führt Sie auf den Bildschirm Analog Inputs (Analogeingänge) zurück. Überprüfen Sie die Analogeingangswerte, die für Zero Adjustment (Nullpunktabgleich) und Full Scale Adjustment (Anpassung des Skalenendwerts) eingegeben wurden.
- 8. Klicken Sie auf OK, um das Hauptkalibrierungsfenster zu schließen und um die dazugehörigen Eingänge freizugeben. Kehren Sie zu *Schritt 1* zurück, um die Signaleingänge für einen anderen Analogeingang zu kalibrieren.

3.5.15 Verkabelung der Analogausgänge

Alle Gaschromatographen des Modells 770XA haben mindestens sechs Analogausgänge. Mit einer ROC800 AO-Karte, die in einem der optionalen Kartenslots im Kartengehäuse installiert werden kann, stehen vier weitere Analogausgänge zur Verfügung.

Analogausgänge auf der Rückwand

Es gibt auf der Rückwand bei TB4 sechs Analogausgangsanschlüsse.

Tabelle 3-5: Analogausgänge

ТВ4	Funktion
Pin 1	+ Loop 1
Pin 2	Loop_RTN1
Pin 3	+ Loop 2
Pin 4	Loop_RTN2
Pin 5	+ Loop 3
Pin 6	Loop_RTN3
Pin 7	+ Loop 4
Pin 8	Loop_RTN4
Pin 9	+ Loop 5
Pin 10	Loop_RTN5
Pin 11	+ Loop 6
Pin 12	Loop_RTN6

Werkseinstellungen für Analogausgangsschalter

Diese Abbildung zeigt, wie Sie bis zu sechs Geräte an die Analogausgänge anschließen, die sich auf der Rückseite der Rückwandplatine befinden. Sie zeigt auch die Verdrahtung von bis zu zwei Analogeingängen.

Abbildung 3-26: Verdrahtung der sechs Analogausgänge

Abbildung 3-27: Werkseinstellungen für Analogausgangsschalter

Verdrahtungs- und Schaltereinstellungen bei kundenspezifischen Analogausgängen

Die Anpassung jedes Analogausgangs ist möglich, während die Isolierung zwischen den Kanälen aufrechterhalten wird.

Informieren Sie sich anhand der folgenden Diagramme, bevor Sie die Verdrahtung eines kundenspezifischen Geräts vornehmen:

1. Diese Zeichnung zeigt die Verdrahtung, die für die Spannungsversorgung jedes Analogausgangs erforderlich ist, während die Isolierung zwischen den Kanälen aufrechterhalten wird.

2. Diese Zeichnung zeigt die Einstellungen der Analogausgangsschalter auf der E/A-Grundplatine an, die für die Spannungsversorgung jedes Analogausgangs erforderlich sind, während die Isolierung zwischen den Kanälen aufrechterhalten wird.

Abbildung 3-29: Einstellungen für Analogausgangsschalter

Optionale Analogausgänge

Wird die ROC800 AO-Karte in einen der optionalen Kartensteckplätze des Platinengehäuses eingesteckt, sind vier weitere Analogausgänge verfügbar. Jeder Kanal stellt ein 4–20 mA Stromsignal zur Steuerung analoger Messkreisgeräte bereit. Weitere Informationen finden Sie unter "ROC800-Series Analog Output Module" auf <u>www.emersonprocess.com/RemoteAutomationSolutions</u>.

Typische Feldverkabelung eines AO-Moduls der Serie ROC800

Anschlussklemme	Bezeichnung	Definition
1	1+	Positiver Analogausgang
2	СОМ	Analogausgang Rückleitung
3	2+	Positiver Analogausgang
4	СОМ	Analogausgang Rückleitung
5	3+	Positiver Analogausgang
6	СОМ	Analogausgang Rückleitung
7	4+	Positiver Analogausgang
8	СОМ	Analogausgang Rückleitung
9	-	Nicht verwendet
10	-	Nicht verwendet

So verkabeln Sie das AO-Modul der Serie ROC800 mit einem Feldgerät:

1. Legen Sie das Kabelende bis zu einer maximalen Länge von 6,3 mm (¼ Zoll) frei.

Anmerkung

Für alle E/A-Signalverkabelungen wird die Verwendung von paarweise verdrillten Kabeln empfohlen. Für die Anschlussklemmenblöcke des Moduls sind AWG-Leiterquerschnitte zwischen 12 und 22 geeignet. Lassen Sie so wenig blanke Kabelenden wie möglich offen, um Kurzschlüsse zu verhindern. Achten Sie dabei auf eine zum Anschließen ausreichende Kabellänge, um Zug zu vermeiden.

- 2. Schließen Sie das freiliegende Ende an die Klemme unter der Anschlussschraube an.
- 3. Ziehen Sie die Schraube fest.

3.6 Leckprüfung und Spülung zur Erstkalibrierung

WARNUNG!

Überprüfen Sie vor dem Einschalten des Geräts, ob alle elektrischen Anschlüsse korrekt und sicher sind.

3.6.1 Dichtigkeitsprüfung des GC

So nehmen Sie eine Dichtigkeitsprüfung des GC vor:

- 1. Schließen Sie alle Auslassleitungen.
- Stellen Sie sicher, dass das Manometer des Trägergaszylinders ca. 8 bar (115 psig) anzeigt und/oder der Druck des Stellungsreglers zwischen ca. 7,7 und 8,27 bar (110 und 120 psig) liegt.
- 3. Überprüfen Sie alle Verbindungen am Manometer der Durchflussanzeige und am Manometer des Trägergaszylinders mit einem Leckdetektor. Beseitigen Sie erkannte Leckagen.
- 4. Drehen Sie das Absperrventil des Trägergaszylinders zum Schließen im Uhrzeigersinn. Beobachten Sie den Trägergasdruck zehn Minuten lang und prüfen Sie, ob Sie einen Druckabfall feststellen können. Der Druckabfall sollte höchstens 14 bar (200 psig) auf dem Flaschendruck-Manometer betragen. Ist der Druckabfall des Trägergases höher, suchen Sie nach einem Leck zwischen Trägergasflasche und dem Analysator.
- 5. Verwenden Sie das Bedieninterface oder die MON2020 Software, um die Ventile ein- oder auszuschalten, und beobachten Sie den Druck mit den Ventilen in anderen Positionen als in Schritt 4. Werden die Ventile umgeschaltet, ist eine leichte Druckänderung aufgrund des Trägergasverlustes normal. Öffnen Sie das Zylinderventil einen Augenblick, um den Druck ggf. wiederherzustellen.
- 6. Bleibt der Druck nicht relativ konstant, prüfen Sie sämtliche Ventilanschlüsse auf ihren festen Sitz hin.
- 7. Wiederholen Sie Schritt 5. Sollten die Leckagen weiterhin bestehen, pr
 üfen Sie die Ventilanschl
 üsse mit einem handels
 üblichen Gasleckdetektor. Verwenden Sie auf den Ventilen oder Komponenten im Ofen keinen fl
 üssigen Leckdetektor wie Snoop[®].

3.6.2 Spülen der Trägergasleitungen

Für die Durchführung eines Spülvorgangs der Träger- und Kalibriergasleitungen sind eine Spannungsversorgung und ein mit dem GC verbundener PC erforderlich.

Anmerkung

Die Rohrleitungen sollten innen sauber und trocken sein. Während der Installation sollten die Rohrleitungen freigeblasen werden, um sie von interner Feuchtigkeit, Staub und anderen Verunreinigungen zu befreien.

So spülen Sie die Trägergasleitungen:

- 1. Stellen Sie sicher, dass die Stopfen von den Auslassleitungen entfernt wurden und die Auslassleitungen geöffnet sind.
- 2. Überprüfen Sie, ob das Ventil der Trägergasflasche geöffnet ist.
- 3. Stellen Sie die GC-Seite des Trägergases auf ca. 8,27 bar (120 psig) ein.

- 4. Schalten Sie GC und PC ein.
- 5. Starten Sie die Software MON2020 und verbinden Sie sich mit dem GC.

Anmerkung

Weitere Informationen zum Verbinden mit einem GC finden Sie in der Betriebsanleitung *Gaschromatographen-Software MON2020*.

6. Wählen Sie unter Hardware → Heaters (Heizungen) aus. Das Fenster Heaters (Heizungen) wird angezeigt. Die Temperaturwerte der Heizung sollten anzeigen, dass die Einheit sich in der Aufwärmphase befindet.

- Warten Sie, bis sich die Temperatur des GC-Systems stabilisiert hat und die Trägergasleitungen vollständig mit Trägergas gespült wurden. Dieser Vorgang dauert ungefähr eine Stunde.
- 8. Wählen Sie Control \rightarrow Auto Sequence (Steuerung > Auto-Sequenzierung).

Weitere Informationen finden Sie in der Betriebsanleitung MON2020 – Software für Gaschromatographen.

Anmerkung

Es wird eine Spüldauer von vier bis acht Stunden (oder ein Spülvorgang über Nacht) empfohlen. Während dieses Vorgangs sollten keine Änderungen an den Einstellungen, die in *Schritt 1* bis *Schritt* 7 beschrieben werden, vorgenommen werden.

3.6.3 Spülen der Kalibriergasleitungen

So spülen Sie die Kalibriergasleitungen:

- 1. Stellen Sie sicher, dass die Trägergasleitungen vollständig gespült wurden und die Stopfen von der Probenauslassleitung entfernt wurden.
- 2. Schließen Sie das Ventil der Kalibriergasflasche.
- Öffnen Sie das Absperrventil der entsprechenden Kalibiergaszuführung vollständig. Weitere Informationen zur Stromauswahl finden Sie in der Betriebsanleitung MON2020 – Software für Gaschromatographen.
- 4. Öffnen Sie das Ventil der Kalibriergasflasche.

- 5. Erhöhen Sie den Ausgangsdruck mithilfe des Flaschendruckminderers der Kalibriergasflasche auf ca. 2,75 bar (40 psig), plus/minus fünf Prozent.
- 6. Schließen Sie das Ventil der Kalibriergasflasche.
- 7. Entspannen Sie den Kalibriergas Flaschendruckminderer, Schritt 3
- 8. Wiederholen Sie *Schritt 4* bis *Schritt 7* fünfmal.
- 9. Öffnen Sie das Ventil der Kalibriergasflasche.

3.7 Systemstart

So starten Sie das System:

- 1. Führen Sie für den Systemstart eine Analyse des Kalibriergases durch.
 - a. Stellen Sie sicher, dass der Kalibriergasstrom auf "AUTO" (automatisch) steht, sofern die Anlage mit einer Schalttafel oder einem Bedieninterface (LOI) ausgestattet ist.
 Wenn nichts anderes in der Produktdokumentation angegeben ist, stellen Sie sicher, dass der Druck der Probenentnahme- und Gasleitungen auf ca. 0,2 bis ca. 2 bar (3 bis 30 psig) geregelt ist. 1 bar (15 psig) wird empfohlen.
 - b. Führen Sie eine Analyse des Kalibriergasstroms mithilfe von MON2020 durch. Nachdem der ordnungsgemäße Betrieb des GC überprüft wurde, halten Sie die Analyse an, indem Sie Control (Steuerung) → Halt (Anhalten) auswählen. Weitere Informationen finden Sie in der Betriebsanleitung MON2020– Software für Gaschromatographen.
- 2. Wählen Sie Control (Steuerung) → Auto Sequence (Auto-Sequenz) aus, um die automatisierte sequenzielle Analyse der Probengasströme zu starten. Weitere Informationen finden Sie in der Betriebsanleitung Gaschromatographen-Software MON2020.

4 Betrieb und Wartung

4.1 Warnung und Vorsichtsmaßnahmen

WARNUNG!

Beachten Sie alle vorbeugenden Hinweise, die auf dem 770XA angegeben sind. Die Nichtbeachtung dieser Warnhinweise kann zu schweren oder tödlichen Verletzungen oder Sachschäden führen.

Vorsicht!

Schalten Sie den GC aus, bevor Sie eine Karte aus dem Platinengehäuse entfernen. Die Nichtbeachtung dieses Hinweises kann zu Schäden an der Karte führen.

4.2 Fehlersuche und Reparaturkonzept

Die wirksamste Methode zum Warten und Reparieren des 770XA ist ein Komponentenaustausch-Konzept, mit dem Sie das System so schnell wie möglich wieder in Betrieb nehmen können. Fehlerquellen wie bedruckte/bestückte Baugruppen, Ventile usw. werden während der Testverfahren zur Fehlersuche identifiziert und werden auf praktische Weise auf der niedrigsten Ebene durch Einheiten mit bekannter Funktionsfähigkeit ersetzt. Die defekten Komponenten werden dann entweder vor Ort repariert oder für Reparatur oder Austausch an den Hersteller oder ein beauftragtes Unternehmen zurückgegeben.

4.3 Routinewartung

Der 770XA arbeitet langfristig ohne großen Wartungsaufwand. Lediglich die Trägergaszylinder müssen regelmäßig gewartet werden. Die Aufzeichnung bestimmter Konfigurationsparameter alle zwei Monate ist sehr hilfreich, um den ordnungsgemäßen Betrieb Ihres Gaschromatographen 770XA sicherzustellen. Die Wartungsprüfliste sollte alle zwei Monate ausgefüllt, mit Datum versehen und aufbewahrt werden, damit Wartungstechniker gegebenenfalls auf sie zugreifen können. Die Bereitstellung von Verlaufsdaten Ihres Gaschromatographen 770XA ermöglicht es dem Wartungstechniker, den Austausch der Gaszylinder rechtzeitig und zu einem günstigen Zeitpunkt zu planen und erlaubt zudem eine schnelle Fehlersuche und Reparatur im Bedarfsfall.

Es sollten auch ein Chromatogramm, ein Konfigurations- sowie ein Rohdatenbericht erstellt und zusammen mit der Prüfliste aufbewahrt werden, um einen datierten Bericht des Modells 770XA zu liefern. Das Chromatogramm und die Berichte können auch mit dem Chromatogramm und den Berichten, die während der Fehlersuche/-beseitigung erstellt werden, verglichen werden.

4.3.1 Wartungsprüfliste

Drucken Sie sich die Muster-Wartungsprüfliste auf der folgenden Seite für Ihre Unterlagen aus. Sollte ein Problem auftauchen, arbeiten Sie zunächst die Wartungsprüfliste ab und halten Sie die Ergebnisse und Ihre Auftragsnummer bereit, wenn Sie Ihren Beauftragten für technische Unterstützung bei Emerson Process Management kontaktieren. Ihre Auftragsnummer finden Sie auf dem Typenschild, das sich auf der rechten Seitenwand des GC befindet. Die Chromatogramme und Berichte, die archiviert wurden, als Ihr GC das Werk verlassen hat, sind unter dieser Nummer gespeichert.

Anmerkung

Verwenden Sie die Software MON2020 zum Aufrufen der GC-Parameterliste, um die voreingestellten Messwerte für die Parameter auf der Prüfliste zu finden.

MAINTENANCE CHECKLIST		
Date Performed:	Sales Order Number:	
System Parameters	As Found	As Left
Carrier Gas Cylinder		
Cylinder Pressure Reading (High)	psig	psig
Cylinder Pressure Outlet Reading	psig	psig
Cylinder Pressure Panel Regulator	psig	psig
Sample System		
Sample Line Pressure(s)	(1) psig	psig
	(2) psig	psig
	(3)psig	psig
	(4) psig	psig
	(5) psig	psig
Sample Flows	(1)cc/min	cc/min
Sample Vent 1 (SV1)	(2)cc/min	cc/min
Sample Vent 2 (SV2)	(3) <u>cc/min</u>	cc/min
	(4) <u>cc/min</u>	cc/min
	(5) <u>cc/min</u>	cc/min
Calibration Gas		
High Pressure Reading	psig	psig
Outlet Pressure Reading	psig	psig
Flow	cc/min	cc/min

4.3.2 Routinemäßige Wartungsabläufe

- Um zukünftig eine Grundlage für einen Vergleich zu haben, füllen Sie die Wartungsprüfliste mindestens zweimal pro Monat aus. Geben Sie Auftragsnummer, Datum und Uhrzeit in das Formular ein.
- Speichern Sie mittels MON2020 ein Chromatogramm des GC im Betrieb auf dem PC. Drucken Sie Konfigurations-, Kalibrier- und Rohdatenberichte aus und speichern Sie sie mit MON2020.
- Überprüfen Sie die Papierzufuhr bei Verwendung des Druckers, um sicherzustellen, dass genügend Papier vorhanden ist. Überprüfen Sie die Trägergas- und Kalibriergasversorgung.

Serviceprogramme

Measurement Services bietet Wartungsprogramme an, die auf bestimmte Anforderungen zugeschnitten sind. Wenn Sie sich für Wartungs- und Instandhaltungsverträge interessieren, setzen Sie sich bitte mit Measurement Services unter der Adresse oder Rufnummer in Verbindung, die Sie dem Kundenreparaturbericht auf der Rückseite dieser Anleitung entnehmen können.

4.3.3 Vorsichtsmaßnahmen für die Handhabung von Leiterplatten-Baugruppen

Leiterplatten-Baugruppen enthalten CMOS-integrierte Schaltungen, die bei unsachgemäßer Handhabung der Baugruppen beschädigt werden können. Die folgenden Sicherheitsvorkehrungen müssen beim Arbeiten an den Baugruppen beachtet werden:

- Installieren bzw. entfernen Sie die Leiterplatten-Baugruppen nicht, wenn die Einheiten an den Strom angeschlossen sind.
- Lassen Sie elektrische Komponenten und Baugruppen in ihren Schutzhüllen oder Ummantelungen, bis diese zur Verwendung bereit sind.
- Verwenden Sie die Schutzhülle als Handschuh, wenn Sie Leiterplatten-Baugruppen installieren oder entfernen.
- Bleiben Sie im Kontakt mit einer geerdeten Oberfläche, um elektrostatische Entladungen zu verhindern, während Sie Leiterplatten-Baugruppen installieren oder entfernen.

Anmerkung

Ersatz-CPU-Platinen werden mit dem Batterieschalter (S7) in der Position OFF (AUS) versandt, um die Batterie zu schonen. Bevor Sie die Ersatz-CPU-Platine im GC installieren, müssen Sie den Schalter S7 in die Position ON (EIN) stellen.

4.3.4 Allgemeine Störungsanalyse und -beseitigung

Dieser Abschnitt enthält Informationen zur Störungsanalyse und -beseitigung für das Modell 770XA. Diese Informationen sind entsprechend geordnet und entweder nach den wichtigsten Subsystemen oder Funktionskomponenten aufgeführt. Im Abschnitt *Hardware-Alarme* finden Sie häufige Ursachen für Hardware-Alarme.

Anmerkung

Beseitigen Sie ALLE Alarme, bevor Sie eine Neukalibrierung durchführen.

Hardware-Alarme

Verwenden Sie die folgende Tabelle, um verschiedene Alarme sowie mögliche Ursachen und Lösungen für das Problem zu identifizieren.

Alarmname	Mögliche Ursachen/Lösung
Maintanance Mode (Wartungsmodus)	Der GC wurde für Wartungsarbeiten von einem Techniker in den Wartungsmodus versetzt.
	Wählen Sie das Kontrollkästchen Maintanance Mode (Wartungsmodus) im Dialogfeld <i>System</i> ab, um diesen Modus zu deaktivieren.
Power Failure (Spannungsver- sorgungsfehler)	 Der GC wurde, seit Alarme zuletzt gelöscht wurden, aufgrund von Spannungsversorgungsfehlern neu gestartet. Der GC startet automatisch im Warmstartmodus. Während des Warmstartmodus führt der GC folgende Aktionen aus: Wartet, bis sich die Heizungen stabilisiert haben. Spült die Probenleitung. Betätigt die Ventile für die Dauer von zwei Zyklen. Nachdem diese Aktionen abgeschlossen sind, wechselt der GC in den Auto-Sequenz-Modus.
User Calculation Failure (Benutzerbedingte Berechnungsfehler)	Ein oder mehrere Fehler wurden während der Analyse benutzerdefinierter Berechnungen erkannt. Dies passiert normalerweise, wenn eine benutzerdefinierte Berechnung versucht, auf eine Systemvariable zuzugreifen, die nicht existiert. <u>Empfohlene Maßnahme</u> : Korrigieren Sie die Berechnung, die sich auf die nicht definierte Systemvariable bezieht.
FF Board Comm Failure (FF-Platine Kommunikationsfehler)	 Die Foundation-Feldbus-Platine wurde nicht erkannt. Empfohlene Maßnahmen: Schalten Sie den GC vollständig ab. Überprüfen Sie, ob das Foundation-Feldbus-Modul ordnungsgemäß verkabelt ist und sich im richtigen Slot der Rückwandplatine befindet. Überprüfen Sie, ob die Platine ordnungsgemäß mit dem Foundation-Feldbus-Modul verkabelt ist. Überprüfen Sie, ob das Foundation-Feldbus-Modul mit Spannung versorgt wird. Schalten Sie den GC wieder ein. Wenn der Alarm erneut erscheint, tauschen Sie die Foundation-Feldbus-Platine aus.

Alarmname	Mögliche Ursachen/Lösung	
Low Battery Voltage (Niedrige Batteriespannung)	 Auf der CPU-Platine wurde eine niedrige Batteriespannung erkannt. Tauschen Sie die CPU-Platine sofort aus, um den Verlust von GC-Konfigurationsdaten zu verhindern. Empfohlene Maßnahmen: Speichern Sie die GC-Konfiguration auf einem PC. Speichern Sie die Chromatogramme und/oder Ergebnisse auf einem PC. Schalten Sie den GC aus. 	
	4. Tauschen Sie die CPU-Platine aus.	
Preamp Board 1 Comm Failure (Vorverstärkerplatine 1 Kommunikationsfehler)	 Die Vorverstärkerplatine wurde nicht erkannt. Empfohlene Maßnahmen: Schalten Sie den GC vollständig ab. Überprüfen Sie, ob sich die Platine im richtigen Slot (SLOT 1) der Rückwandplatine befindet. Schalten Sie den GC wieder ein. Wenn diese Meldung erneut erscheint, tauschen Sie die Vorverstärkerplatine aus. 	
Preamp Board 2 Comm	Die Vorverstärkerplatine wurde nicht erkannt. Empfohlene	
Failure (Vorverstärkerplatine 2 Kommunikationsfehler)	 Maßnahmen: Schalten Sie den GC vollständig ab. Überprüfen Sie, ob sich die Platine im richtigen Slot (SLOT 3) der Rückwandplatine befindet. Schalten Sie den GC wieder ein. Wenn diese Meldung erneut erscheint, tauschen Sie die Vorverstärkerplatine aus. 	
Heater Solenoid Board 1 Comm Failure (Heizungs- /Magnetventilplatine 1 Kommunikationsfehler)	 Heizungs-/Magnetventilplatine wurde nicht erkannt. Empfohlene Maßnahmen: 1. Schalten Sie den GC vollständig ab. 2. Überprüfen Sie, ob sich die Platine im richtigen Slot (SLOT 2) der Rückwandplatine befindet. 3. Schalten Sie den GC wieder ein. 4. Wenn diese Meldung erneut erscheint, tauschen Sie die Heizungs-/Magnetventilplatine aus. 	
Heater Solenoid Board 2 Comm Failure (Heizungs- /Magnetventilplatine 2 Kommunikationsfehler)	 Heizungs-/Magnetventilplatine wurde nicht erkannt. Empfohlene Maßnahmen: 1. Schalten Sie den GC vollständig ab. 2. Überprüfen Sie, ob sich die Platine im richtigen Slot (SLOT 4) der Rückwandplatine befindet. 3. Schalten Sie den GC wieder ein. 4. Wenn diese Meldung erneut erscheint, tauschen Sie die Heizungs-/Magnetventilplatine aus. 	

Alarmname	Mögliche Ursachen/Lösung	
Base I/O Board Comm Failure (E/A-Grundplatine Kommunikationsfehler)	 E/A-Grundplatine (E/A-Multifunktionsplatine) wurde nicht erkannt. Empfohlene Maßnahmen: 1. Schalten Sie den GC vollständig ab. 2. Überprüfen Sie, ob sich die Platine im richtigen Slot (SLOT 5) 	
	der Rückwandplatine befindet.	
	3. Schalten Sie den GC wieder ein.	
	 Wenn diese Meldung erneut erscheint, tauschen Sie die E/A- Grundplatine aus. 	
Stream Skipped (Strom übersprungen)	Ein Strom oder mehrere Ströme in der Stromsequenz konnten nicht analysiert werden, da die Option Usage (Verwendung) als Unused (Nicht verwendet) festgelegt wurde.	
	Emptohlene Maßnahmen:	
	aus:	
	Entfernen Sie nicht verwendete Ströme aus der Stromsequenz. Ändern Sie die Option "Usage" (Verwendung) der Ströme im Dialogfeld Streams (Ströme) auf einen anderen Wert als Unused (Nicht verwendet).	
GC Idle (GC Leerlauf)	Der GC wurde in den Leerlaufmodus versetzt und führt keine Analysen aus.	
Warm Start Failed (Warmstart fehlgeschlagen)	 Der GC konnte die gewünschten Betriebsbedingungen nach dem Einschalten nicht erreichen. Die Regelung der Zonentemperatur(en) der Heizung ist fehlgeschlagen. Empfohlene Maßnahmen: Überprüfen Sie die Heizungseinstellungen mittels MON2020 oder Bedieninterface (LOI). Überprüfen Sie, ob der Zylinderdruck des Trägergases 10 psi (oder höher) über dem Sollwert des mechanischen Reglers liegt. Überprüfen Sie, ob der Trägerzylinder einen Durchfluss zum GC hat. Stellen Sie sicher, dass sich auf dem Übertragungsweg der Trägergasprobe keine Leckagen befinden. Stellen Sie sicher, dass die Widerstandsthermometer (RTD) nicht geöffnet sind. 	
	 Tauschen Sie Widerstandsthermometer, Heizung(en) und/ oder Regler im Bedarfsfall aus. 	

Alarmname	Mögliche Ursachen/Lösung
Heater 1 Out Of Range Heater 2 Out Of Range Heater 3 Out Of Range Heater 4 Out Of Range Heater 5 Out Of Range Heater 6 Out Of Range Heater 7 Out Of Range Heater 8 Out Of Range (Heizung 1, 2, 3, 4, 5, 6, 7 oder 8 außerhalb der Grenzwerte)	 Der GC konnte die Zonentemperatur der Heizung für die angezeigte Heizung nicht innerhalb der voreingestellten Grenzwerte regeln. Empfohlene Maßnahmen: Überprüfen Sie die Temperaturen innerhalb des GC, indem Sie MON2020 oder das Bedieninterface (LOI) verwenden. Beachten Sie, dass der GC möglicherweise beim Start oder bei der Änderung des Sollwerts diesen Alarm erzeugt. Überprüfen Sie die Verkabelung. Suchen Sie nach abgeklemmten Leitungen oder losen Anschlüssen auf der Abschlussplatine (bei Heizungen und Widerstandsthermometern). Tauschen Sie die defekte Heizung und/oder das Widerstandsthermometer im Bedarfsfall aus.
Detector 1 Scaling Factor	Der GC hat eine Skalierfaktorabweichung bei Detektor 1 erkannt.
Failure (Detektor 1	Empfohlene Maßnahme: Tauschen Sie die Vorverstärkerplatine
Skalierfaktorfehler)	aus, die sich in SLOT 1 der Rückwandplatine befindet.
Detector 2 Scaling Factor	Der GC hat eine Skalierfaktorabweichung bei Detektor 2 erkannt.
Failure (Detektor 2	Empfohlene Maßnahme: Tauschen Sie die Vorverstärkerplatine
Skalierfaktorfehler)	aus, die sich in SLOT 2 der Rückwandplatine befindet.
Detector 3 Scaling Factor	Der GC hat eine Skalierfaktorabweichung bei Detektor 3 erkannt.
Failure (Detektor 3	<u>Empfohlene Maßnahme</u> : Tauschen Sie die Vorverstärkerplatine
Skalierfaktorfehler)	aus, die sich in SLOT 3 der Rückwandplatine befindet.
Detector 4 Scaling Factor	Der GC hat eine Skalierfaktorabweichung bei Detektor 4 erkannt.
Failure (Detektor 4	Empfohlene Maßnahme: Tauschen Sie die Vorverstärkerplatine
Skalierfaktorfehler)	aus, die sich in SLOT 4 der Rückwandplatine befindet.

Alarmname	Mögliche Ursachen/Lösung
Alarmname No sample flow 1 (Kein Probendurchfluss 1, betrifft den optionalen Probendurchflussschalter)	 Mögliche Ursachen/Lösung Es herrscht kein Probendurchfluss im GC. Empfohlene. Maßnahmen: Überprüfen Sie das Gasproben-Rotameter im Probenaufbereitungssystem auf Durchfluss und führen Sie eine der folgenden Maßnahmen durch: Ist keine Durchflussmessung von Gasen oder kein Rotameter vorhanden, unternehmen Sie Folgendes: 1. Überprüfen Sie, ob Gasdurchfluss an der Probenentnahmestelle herrscht. 2. Überprüfen Sie, ob die Probenventile im Probenaufbereitungssystem geöffnet sind. 3. Überprüfen Sie, ob die Auslassöffnungen der Bypass- leitungen frei von Fremdkörpern sind. 4. Bestätigen Sie, dass die Probenleitung von der Probenentnahmestelle bis zum Probenaufbereitungssystem des GC verbunden und frei von Fremdkörpern ist. 5. Schließen Sie das Ventil am Probenanschluss, machen Sie die Leitung drucklos und überprüfen Sie die Filter am Sensor und/oder dem Probenaufbereitungssystem. Wenn diese mit Flüssigkeiten oder mit Fremdkörpern verunreinigt sind, tauschen Sie die Filtereinsätze aus. Sind automatische Stromauswahlventile vorhanden, überprüfen Sie, ob diese ordnungsgemäß funktionieren. Ist ein leichter Gasdurchfluss im Probenaufbereitungssystem beim Rotameter vorhanden, spülen Sie entweder alle Filter durch oder tauschen Sie sie aus. Wenn Sie Durchfluss im Rotameter beobachten, tauschen Sie den Probendurchfluss aus, da dieser möglicherweise
No sample flow 2 (Kein Probendurchfluss 2)	Sehen Sie hierzu im Abschnitt "No sample flow 1" (kein Probendurchfluss 1) nach.
Low Carrier Pressure 1 (Niedriger Trägergasdruck 1) Low Carrier Pressure 2	Der Druckbereich des Trägergaseingangs bei Detektor 1 liegt unter dem voreingestellten Grenzwert. <u>Empfohlene Maßnahme</u> : Überprüfen Sie, ob der Zylinderdruck des Trägergases 10 psi (oder höher) über dem Sollwert des mechanischen Reglers liegt. Wenn der Druck des Trägergaseingangs niedrig ist, überprüfen Sie den Zylinderdruck des Trägergases. Tauschen Sie den Trägergaszylinder im Bedarfsfall aus. Der Druckbereich des Trägergaseingangs bei Detektor 2 liegt
(Niedriger Trägergasdruck 2)	unter dem voreingestellten Grenzwert. <u>Empfohlene Maßnahme</u> : Überprüfen Sie, ob der Zylinderdruck des Trägergases 10 psi (oder höher) über dem Sollwert des mechanischen Reglers liegt. Wenn der Druck des Trägergaseingangs niedrig ist, überprüfen Sie den Zylinderdruck des Trägergases. Tauschen Sie den Trägergaszylinder im Bedarfsfall aus.

Alarmname	Mögliche Ursachen/Lösung
Analog Input 1 High Signal Analog Input 2 High Signal Analog Input 3 High Signal Analog Input 4 High Signal Analog Input 5 High Signal Analog Input 6 High Signal Analog Input 7 High Signal Analog Input 8 High Signal Analog Input 9 High Signal Analog Input 10 High Signal (Analogeingang 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 High-Signal)	Der gemessene Wert für den angezeigten Analogeingang ist höher als der benutzerdefinierte Messbereichsendwert.
Analog Input 1 Low Signal Analog Input 2 Low Signal Analog Input 3 Low Signal Analog Input 4 Low Signal Analog Input 5 Low Signal Analog Input 6 Low Signal Analog Input 7 Low Signal Analog Input 8 Low Signal Analog Input 9 Low Signal Analog Input 10 Low Signal (Analogeingang 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 Low-Signal)	Der gemessene Wert für den angezeigten Analogeingang ist niedriger als der benutzerdefinierte Messbereichsendwert.
Analog Output 1 High Signal Analog Output 2 High Signal Analog Output 3 High Signal Analog Output 3 High Signal Analog Output 5 High Signal Analog Output 5 High Signal Analog Output 6 High Signal Analog Output 7 High Signal Analog Output 8 High Signal Analog Output 9 High Signal Analog Output 10 High Signal Analog Output 10 High Signal Analog Output 12 High Signal Analog Output 13 High Signal Analog Output 13 High Signal Analog Output 14 High Signal (Analogausgang 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 oder 14 High-Signal)	Der gemessene Wert für den angezeigten Analogausgang ist höher als der benutzerdefinierte Messbereichsendwert.

Alarmname	Mögliche Ursachen/Lösung
Analog Output 1 Low Signal Analog Output 2 Low Signal Analog Output 3 Low Signal Analog Output 3 Low Signal Analog Output 4 Low Signal Analog Output 5 Low Signal Analog Output 6 Low Signal Analog Output 7 Low Signal Analog Output 8 Low Signal Analog Output 9 Low Signal Analog Output 10 Low Signal Analog Output 11 Low Signal Analog Output 12 Low Signal Analog Output 13 Low Signal Analog Output 14 Low Signal	Der gemessene Wert für den angezeigten Analogausgang ist niedriger als der benutzerdefinierte Nullpunktwert.
Stream 1 Validation Failure Stream 2 Validation Failure Stream 3 Validation Failure Stream 4 Validation Failure Stream 5 Validation Failure Stream 6 Validation Failure Stream 7 Validation Failure Stream 8 Validation Failure Stream 9 Validation Failure Stream 10 Validation Failure Stream 12 Validation Failure Stream 12 Validation Failure Stream 13 Validation Failure Stream 14 Validation Failure Stream 15 Validation Failure Stream 16 Validation Failure Stream 17 Validation Failure Stream 17 Validation Failure Stream 18 Validation Failure Stream 19 Validation Failure Stream 20 Validation Failure Stream 20 Validation Failure	 Die letzte Validierungssequenz für den angezeigten Strom ist fehlgeschlagen. Empfohlene Maßnahmen: Überprüfen Sie, ob die Absperrventile des Validierungsgaszylinders geöffnet sind. Überprüfen Sie, ob die Validierungsgasregler richtig eingestellt sind. Wenn der Validierungsgasregler unter dem Sollwert liegt, tauschen Sie die Gasflasche gegen eine volle aus. Wenn Sie für die Validierung und Kalibrierung das gleiche Gas verwenden, stellen Sie sicher, dass die Zusammensetzung des Gaszylinders, die sich auf der Zylinderkennzeichnung oder auf dem Analysenzertifikat des Herstellers befindet, der Zusammensetzung in der Komponentendatentabelle von MON2020 entspricht. Führen Sie die Validierungssequenz erneut durch. Kontaktieren Sie Ihren Vertreter von Emerson Process Management, wenn das Problem weiterhin besteht.

Alarmname	Mögliche Ursachen/Lösung
Stream 1 RF Deviation Stream 2 RF Deviation Stream 3 RF Deviation Stream 4 RF Deviation Stream 5 RF Deviation Stream 6 RF Deviation Stream 8 RF Deviation	 Mögliche Orsächen/Lösung Die letzte Kalibrierungssequenz ist fehlgeschlagen. <u>Empfohlene Maßnahmen</u>: Überprüfen Sie, ob die Absperrventile des Kalibriergas- zylinders geöffnet sind. Überprüfen Sie, ob die Kalibriergasregler richtig einges- tellt sind und der Zylinder nicht unter dem Sollwert liegt. Liegt der Zylinder unter dem Sollwert, tauschen Sie ihn gegen einen vollen Zylinder aus.
Stream 9 RF Deviation Stream 10 RF Deviation Stream 11 RF Deviation Stream 12 RF Deviation Stream 13 RF Deviation Stream 14 RF Deviation Stream 15 RF Deviation Stream 16 RF Deviation Stream 17 RF Deviation Stream 19 RF Deviation Stream 20 RF Deviation Stream 20 RF Deviation (Strom 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 oder 20 RF- Abweichung)	 Stellen Sie sicher, dass die Zusammensetzung des Kalibriergas, die sich auf der Zylinderkennzeichnung oder auf dem Analysenzertifikat des Herstellers befindet, der Zusammensetzung für Kalibriergaszylinder in der Komponentendatentabelle von MON2020 entspricht. Weichen die Werte voneinander ab, bearbeiten Sie die Komponentendatentabelle, um den richtigen Wert widerzuspiegeln. Führen Sie die Kalibrierung erneut durch. Kontaktieren Sie Ihren Vertreter von Emerson Process Management, wenn das Problem weiterhin besteht.
Energy Value Invalid (Energiewert ungültig)	 Der Calorific Value (Brennwert), der während des GC-Warmstarts berechnet wurde, stimmt mit dem Wert des Kalibriergas-Zertifikats nicht überein. Die letzte Kalibrierungssequenz ist fehlgeschlagen. 1. Überprüfen Sie, ob die Absperrventile des Kalibrierungsgaszylinders geöffnet sind. 2. Überprüfen Sie, ob der Kalibriergasdruck richtig eingestellt ist und der Druck nicht unter dem Sollwert liegt. Liegt der Zylinderfülldruck unter dem Minimum, tauschen Sie ihn gegen einen vollen Zylinder aus. 3. Stellen Sie sicher, dass die Zusammensetzung des Kalibriergaszylinders, die sich auf der Zylinderkennzeichnung oder auf dem Analysenzertifikat des Herstellers befindet, der Zusammensetzung für Kalibriergaszylinder in der Komponentendatentabelle von MON2020 entspricht. Weichen die Werte voneinander ab, bearbeiten Sie die Komponentendatentabelle, um den richtigen Wert widerzuspiegeln. Führen Sie die Kalibrierungssequenz erneut durch. 4. Kontaktieren Sie Ihren Vertreter von Emerson Process Management wenn das Broblem weiterbin besteht

Alarmname	Mögliche Ursachen/Lösung	
Calibration CV Check Failed (Kalibrierung CV Prüfung ist fehlgeschlagen)	 Der Calorific Value (Brennwert), der während des GC-Warmstarts berechnet wurde, stimmt mit dem Wert des Kalibriergas-Zertifikats nicht überein. Die letzte Kalibrierungssequenz ist fehlgeschlagen. 1. Überprüfen Sie, ob die Absperrventile des Kalibrierungsgaszylinders geöffnet sind. 	
	 Überprüfen Sie, ob der Kalibriergasdruck richtig eingestellt ist und der Druck nicht unter dem Sollwert liegt. Liegt der Zylinderfülldruck unter dem Minimum, tauschen Sie ihn gegen einen vollen Zylinder aus. 	
	3. Stellen Sie sicher, dass die Zusammensetzung des Kalibriergaszylinders, die sich auf der Zylinderkennzeichnung oder auf dem Analysenzertifikat des Herstellers befindet, der Zusammensetzung für Kalibriergaszylinder in der Komponentendatentabelle von MON2020 entspricht. Weichen die Werte voneinander ab, bearbeiten Sie die Komponentendatentabelle, um den richtigen Wert widerzuspiegeln. Führen Sie die Kalibrierungssequenz erneut durch.	
	 Kontaktieren Sie Ihren Vertreter von Emerson Process Management, wenn das Problem weiterhin besteht. 	
Stored Data Integrity Failure (Integritätsfehler der gespeicherten Daten)	Der GC hat eine Abweichung in den Archiven der gespeicherten Daten festgestellt. Die Prüfsumme der Daten, die beim Speichern erzeugt wurde, stimmt mit der aktuellen Prüfsumme der Ergebnisse nicht überein. Die Ergebnisse sind wahrscheinlich fehlerhaft. Setzen Sie die archivierten Daten mittels MON2020 über den Menüpfad Logs/Reports -> Reset Archive Data (Protokolle/Berichte -> Archivierte Daten zurücksetzen) zurück. Tauschen Sie die CPU-Platine aus, falls das Problem	
ROM Checksum Failure (ROM Prüfsummenfehler)	weiterhin besteht. Die aktuelle Prüfsumme des NOR Flash, auf dem die Firmware des GC gespeichert ist, stimmt mit der vom Werk herausgegebenen Prüfsumme nicht überein. Installieren Sie die GC-Firmware mittels MON2020 Upgrade Firmware Utility (Dienstprogramm für Firmware-Upgrade) erneut. Tauschen Sie die CPU-Platine aus, falls das Problem weiterhin besteht, da voraussichtlich der NOR Flash beschädigt ist.	

Testpunkte

Abbildung 4-1: Unteres Gehäuse mit Testpunkten auf der Rückwandplatine

Die Rückwandplatine verfügt über Testpunkte, um den Spannungsausgang der E/A- Grundplatine messen zu können. Die Testpunkte befinden sich auf der unteren rechten Seite der Karte, wenn diese im Gehäuse installiert ist. Bei der Messung mit einem Voltmeter sollten die Messwerte den in den folgenden Tabellen angezeigten Werten entsprechen. Ein Messwert, der den Tabellenwerten nicht entspricht, weist eventuell auf eine fehlerhafte E/A-Grundplatine hin. Tauschen Sie die möglicherweise defekte Karte durch eine andere aus und führen Sie eine erneute Messung durch. Berühren Sie den Testpunkt "D GND" mit der Minus-Prüfspitze des Voltmeters und den gewünschten Testpunkt mit der Plus-Prüfspitze des Voltmeters, um einen Messwert für diesen Testpunkt zu erhalten. FVIN ist isoliert. Testen mit Referenz zu FGND

Die folgenden Testpunkte sind den folgenden GC-Komponenten zugeordnet:

Testpunkt	GC-Komponente	Toleranzen
24V LOOP	24 V Loop-Spannung	24 V ± 2,4 V
24V (geregelt)	GC-Spannung	24 V ± 2,4 V
17V	Vorverstärker (Eingang für die Brückenschaltung)	17,5 V ± 0,5 V
12V	Optionale E/A-Karten	12 V ± 0,6 V
5V1	System-Chips	5,1 V ± 0,25 V
3V	System-Chips	3,4 V ± 0,15 V
FVIN,	Feldspannungseingang	±0 V - 3 V
F GND	Feldspannungsmasse	21 V - 30 V
SV1, SV2	Elektromagnetspannungen, welche die Heizung/Elek- tromagnetkarte ansteuert	24 V ± 2,4 V

Tabelle 4-1: Rückwandplatine – Testpunkte der GC-Komponenten

Der Eingangsspannungsbereich für die DC/DC-Spannungsversorgung liegt zwischen 21 und 30 Volt. Der Eingangsbereich für die AC/DC-Spannungsversorgung liegt zwischen 90 und 264 Volt (automatische Bereichserkennung).

Spannungs-LEDs

Über den Testpunkten befindet sich ein Satz LEDs. Diese LEDs dienen zur raschen Inspektion des Spannungsstatus einiger der elektrischen GC-Komponenten.

Abbildung 4-2: Spannungs-LEDs

Die folgenden LEDs stehen mit den nachstehenden GC-Komponenten in Verbindung:

LED	GC-Komponente		
FUSE OPEN	Leuchtet rot, wenn die Sicherung durchgebrannt ist oder entfernt wurde; andernfalls leuchtet die LED nicht.		
24 LOOP	Leuchtet grün – 24-V-Messkreisspannung ist OK.		
(Spannung)	Leuchtet nicht – Problem mit der 24-V-Messkreisspannung.		
	Empfehlung: Dies kann entweder durch eine fehlerhafte E/A-Grundplatine oder eine fehlerhafte kundenseitige Verkabelung des Analogausgangs verursacht werden.		
24V (geregelt)	Leuchtet grün – Geregelte 24-V-Spannung ist OK		
	Leuchtet nicht – Problem mit der geregelten 24-V-Spannung.		
	Empfehlung: Dies kann durch einen Kurzschluss auf einer Platine oder durch die Verkabelung im Ofen verursacht werden. Isolieren Sie die fehlerhafte Komponente und tauschen Sie anschließend die fehlerhafte Platine aus oder beheben Sie den Kurzschluss.		
17V	Leuchtet grün – Die 17-V-Spannung für den Vorverstärker ist OK.		
(Eingang für	Leuchtet nicht – Die 17-V-Spannung für den Vorverstärker ist nicht OK.		
den Vorver-	Empfehlung: Tauschen Sie die E/A-Grundplatine aus.		
stärker)			

LED	GC-Komponente
12V	Leuchtet grün – Die 12-V-Spannung ist OK.
(Eingang für	Leuchtet nicht – Die 12-V-Spannung ist nicht OK.
die E/A- Karten)	Empfehlung: Dies kann durch eine fehlerhafte E/A-Grundplatine oder einen Kurzschluss auf der CPU- oder ROC-Erweiterungskarte verursacht werden. Isolieren Sie das Problem und tauschen Sie die fehlerhafte Platine aus.
5V1	Leuchtet grün – Die 5,1-V-Spannung ist OK.
	Leuchtet nicht – Problem mit der 5,1-V-Spannung.
	Empfehlung: Das Problem kann durch eine fehlerhafte E/A-Grundplatine oder durch eine Karte, die zu viel Strom zieht, verursacht werden. Isolieren Sie die Karte, die dieses Problem verursacht, und tauschen Sie diese aus.
3V	Leuchtet grün oder gelb/grün – Die 3,3-V-Spannung ist OK.
	Leuchtet nicht – Es liegt ein Problem vor.
POWER ON	Leuchtet grün, wenn der GC eingeschaltet ist; andernfalls leuchtet die LED nicht.

Temperatur

Verwenden Sie die MON2020-Software, um die Temperatur von Detektoren und Säulen zu überwachen und dadurch zu bestimmen, ob der GC thermisch stabil ist.

Wenn Sie über MON2020 mit dem GC verbunden sind, wählen Sie Heaters... (Heizungen) im Menü Hardware, um auf diese Funktion zuzugreifen. Das Fenster *Heaters* wird angezeigt.

Bei der Anzeige des Fensters Heaters sind die typischen Konfigurationen des Heizsystems wie folgt:

- Heater 1 ist die zylinderförmige Heizung.
- Heater 2 ist die Detektorblock-Heizung.

Die Spalte *Temperature (Temperatur)* im Fenster *Heaters (Heizungen)* zeigt die aktuelle Temperatur an; die Spalte *Current PWM* zeigt die für den Betrieb der Heizung verwendete Leistung in Prozent.

Die Einstellungen und Werte, die im Fenster *Heaters (Heizungen)* erscheinen und in der nachstehenden *Tabelle 4-2* aufgeführt sind, werden basierend auf der kundenspezifischen Anwendung werkseitig voreingestellt. Diese Werte sollten nicht geändert werden, es sei denn, dies wird von Application Engineering, Kundenservice-Personal oder als Teil einer Anforderung für eine Werksanwendung empfohlen.

Tabelle 4-2: Das Fenster "Heaters" (Heizungen) – Temperatureinstellungen

Funktion	Typische Einstellung
Detektor oder analytische Blocktemperatur	80 °C (176 °F)
Ofentemperatur	80 °C (176 °F)
Unbelegt	-

4.3.5 Dichtigkeitsprüfung des GC

Die Überprüfung auf Undichtigkeiten sollte ein fester Bestandteil jedes Wartungsprotokolls sein. Siehe *Dichtigkeitsprüfung des GC*.

Verstopfte Leitungen, Säulen und Ventile

Sind Leitungen, Säulen oder Ventile verstopft, überprüfen Sie den Gasdurchfluss an den Ventilanschlüssen. Verwenden Sie hierzu das Durchflussdiagramm in der Zeichnungszusammenstellung als Referenz und beachten Sie folgende Punkte bezüglich der Durchflussdiagramme:

- Durchflusswege von Anschluss zu Anschluss sind entweder mit einer durchgängigen oder gestrichelten Linie dargestellt.
- Eine gestrichelte Linie zeigt die Durchflussrichtung an, wenn das Ventil "ON" ist, also mit Spannung versorgt wird.
- Eine durchgängige Linie zeigt die Durchflussrichtung an, wenn das Ventil "OFF" ist, also nicht mit Spannung versorgt wird.

4.3.6 Ventile

Kundenseitig sind nur minimale Reparatur- und Wartungsarbeiten erforderlich (z. B. Austausch der Membranen).

Erforderliche Werkzeuge für die Ventilwartung

Die Werkzeuge, die für Reparatur- und allgemeine Wartungsarbeiten der XA-Ventile erforderlich sind, umfassen:

- Drehmomentschlüssel, mit lb-ft-Skala
- 1/2"-Muffe für Ventile mit 10 Ports
- 7/16"-Muffe für Ventile mit 6 Ports
- 1/4"-Gabelschlüssel
- 5/16"-Gabelschlüssel
- 5/32"-Innensechskantschlüssel

Ventil-Ersatzteile

Für jedes wartungsbedürftige Ventil ist ein Membran-Kit erforderlich. Für XA-Ventile mit 6 Anschlüssen hat dies die Teile-Nr. 2-4-0710-248, für XA-Ventile mit 10 Anschlüssen lautet die Teile-Nr. 2-4-0710-171.

Ventilüberholung

Anmerkung

XA-Ersatzventile sind ab Werk verfügbar. Weitere Informationen erhalten Sie von Emerson Process Management.

So warten Sie ein Ventil:

- 1. Sperren Sie die Trägergas- und Kalibriergasströme zur Einheit ab.
- 2. Entfernen Sie die zylinderförmige Heizung aus dem Ofensystem.
- 3. Ist das fehlerhafte Ventil nicht leicht zugänglich, lösen Sie die Flügelschraube und drehen Sie den Ofen auf die Seite.
- 4. Trennen Sie alle Leitungen, die zum Ventil führen.
- 5. Entfernen Sie mithilfe eines Innensechskantschlüssels die zwei Schrauben der Grundplatte an dem Ventil, das ersetzt oder gewartet werden soll. Das Ventil kann jetzt aus dem GC entfernt werden.
- 6. Lösen Sie die Kraftschraube des Ventils.

Die Kraftschraube (Pfeil) am 6-Port-Ventil (links) und am 10-Port-Ventil (rechts)

- 7. Halten Sie die Kolbenplatte fest und ziehen Sie das Ventil gerade aus dem Block heraus. Der Passstift kann leicht kleben.
- 8. Entfernen Sie die alten Ventilmembranen und Dichtungen und legen Sie sie zur Seite.
- Reinigen Sie die Dichtfläche falls erforderlich mit einem fusselfreien Tuch und Isopropanol.
 Blasen Sie die Dichtfläche mit sauberer, trockener Instrumentenluft oder Trägergas ab.
 Schmutz, Staub oder Fusseln können zu problematischen Leckagen führen.

Anmerkung

Verwenden Sie für das Ventil keine Reinigungsmittel auf Ölbasis.

- 10. Tauschen Sie die alten Membranen und Dichtungen in der gleichen Reihenfolge gegen die neu gelieferten aus.
- 11. So bringen Sie das Ventil wieder an:

- a. Richten Sie die Stifte an den Öffnungen im Block aus und drücken Sie die Ventileinheit in ihre Position.
- b. Ziehen Sie die Kraftschraube des Ventils an. Das 6-Wege-Ventil erfordert ein Anzugsdrehmoment von 20 ft/lb, das 10-Port-Ventil erfordert ein Anzugsdrehmoment von 30 ft/lb.
- c. Schließen Sie alle Leitungen in den gleichen Positionen wieder an.

Entfernen und Austauschen der Magnetventile

Sowohl die Magnetventile im Ofensystem als auch die zur Strömungsumschaltung können ausgetauscht werden. Gehen Sie hierzu wie folgt vor:

WARNUNG!

Trennen Sie die lokale und ggf. externe Spannungsversorgungen und stellen Sie sicher, dass die Atmosphäre frei von explosiven Gasen ist. Die Nichtbeachtung dieses Warnhinweises kann zu schweren oder tödlichen Verletzungen oder zu Sachschäden führen.

- 1. Entfernen Sie die Wärmeschutzabdeckung der oberen Gehäusekammer.
- 2. Lösen Sie die Befestigungsschrauben des Magnetventils und entfernen Sie das Ventil.
- 3. Zum Wiedereinbau des Magnetventils führen Sie die Schritte zum Entfernen in umgekehrter Reihenfolge durch. Vergessen Sie nicht, eine kleine Menge Silikonfett dort auf den Einbauort (Pneumatikblock, 4-Wege-Strömungsblock usw.) aufzutragen, wo das Magnetventil angebracht wird, um die nötige Dichtheit zu garantieren.

4.3.7 Detektor-Wartung

Wenn ein Wärmeleitfähigkeitsdetektor (TCD) nicht normal arbeitet, sollte er ausgetauscht werden. Zu den Anzeichen eines fehlerhaften TCDs gehört (jedoch nicht nur) Folgendes:

- Ein Chromatogramm mit einer wandernden oder abweichenden Basisline;
- Ein Chromatogramm mit einer rauschenden Basisline;
- Ein Chromatogramm ohne Peaks;
- Kein Chromatogramm.

Ein Test für einen fehlerhaften TCD umfasst die Widerstandsmessung jedes Filaments mittels eines Voltmeters. Ein Thermistorenpaar sollte jeweils dieselben Messwerte ergeben; deshalb sollte das Thermistorpaar ausgetauscht werden, wenn sich die Messwerte deutlich unterscheiden. Andernfalls wird die TCD-Brücke unausgeglichen, rauschend und abweichend sein.

Erforderliche Werkzeuge für die Wartung des Wärmeleitfähigkeitsdetektors (TCD)

Zum Entfernen und Austauschen von Wärmeleitfähigkeitsdetektoren ist ein Schlitzschraubendreher erforderlich, für Testmessungen ein Voltmeter.

TCD-Ersatzteile

Folgende Teile sind für den Austausch eines TCD erforderlich:

- Thermistor-Dichtung (Teile-Nr.: 2-3-0500-391)
- Thermistor-Satz (Teile-Nr.: 2-6-1611-083)

Abbildung 4-4: TCD mit Block

Austauschen eines Wärmeleitfähigkeitsdetektors (TCD)

So entfernen Sie einen Wärmeleitfähigkeitsdetektor (TCD) aus dem GC zur Reparatur oder zum Austausch:

WARNUNG!

Trennen Sie die lokale und ggf. externe Spannungsversorgungen und stellen Sie sicher, dass die Atmosphäre frei von explosiven Gasen ist. Die Nichtbeachtung dieses Warnhinweises kann zu schweren oder tödlichen Verletzungen oder zu Sachschäden führen.

- 1. Unterbrechen Sie die Spannungsversorgung zum Gerät.
- 2. Entfernen Sie den Domdeckel und die Wärmeschutzabdeckung, wenn Sie dies noch nicht getan haben.
- 3. Lösen Sie die Schrauben und entfernen Sie den/die TCDs aus dem TCD-Block und von den Gasanschlüssen. Achten Sie darauf, dass Sie die Teflon[®]-Unterlegscheibe nicht beschädigen, die zwischen TCD und TCD-Block angebracht ist.

- C. Wärmeleitfähigkeitsdetektor (TCD)
- 4. Zum Wiedereinbau des TCD führen Sie die Schritte zum Entfernen des Bauteils in umgekehrter Reihenfolge aus.

Anmerkung

Ziehen Sie die Blockschrauben mit einem Drehmomentschlüssel auf 0,14 Nm (20 in-oz) fest.

4.3.8 Messen des Trägergas-Durchflusses

Sie benötigen für diese Messung einen genauen Durchflussmesser. So messen Sie den Durchfluss:

- 1. Ermitteln Sie die entsprechende Durchflussrate anhand der Parameterliste, die dem GC beiliegt.
- 2. Bringen Sie einen Durchflussmesser am Abluftausgang (mit der Aufschrift "MV1") auf der rechten Seite des GC an. Der Durchflusswert sollte dem Wert in der Parameterliste entsprechen.

4.3.9 Elektrische Bauteile

Der GC ist so konzipiert, dass ein Betrieb über einen langen Zeitraum hinweg ohne präventive oder regelmäßige Wartung möglich ist.

WARNUNG!

Trennen Sie die lokale und ggf. externe Spannungsversorgungen und stellen Sie sicher, dass die Atmosphäre frei von explosiven Gasen ist. Die Nichtbeachtung dieses Warnhinweises kann zu schweren oder tödlichen Verletzungen oder zu Sachschäden führen.

Bevor Sie den GC öffnen, stellen Sie mithilfe der MON2020 Software sicher, dass keine Konfigurations- oder Parameterfehler vorliegen.

So greifen sie auf das Platinengehäuse zu:

- 1. Stellen Sie sicher, dass die Einheit von der Stromversorgung getrennt ist und sich im Ex-freien Bereich befindet.
- 2. Entfernen Sie die Frontabdeckung.
- 3. Notieren Sie sich Lage und die Richtung aller entfernten Platinen. Lösen Sie die Verriegelung(en) und entfernen/ersetzen Sie die Leiterplatte(n) wie erforderlich.

Austauschen der AC/DC-Spannungsversorgung

Die AC/DC-Spannungsversorgung befindet sich an der linken Wand der unteren Gehäusekammer neben dem Platinengehäuse. Durch Entfernen von Frontabdeckung, Schalttafel oder Bedieninterface von der unteren Gehäusekammer kann auf die Spannungsversorgung zugegriffen werden.

WARNUNG!

Trennen Sie die lokale und ggf. externe Spannungsversorgungen und stellen Sie sicher, dass die Atmosphäre frei von explosiven Gasen ist. Die Nichtbeachtung dieses Warnhinweises kann zu schweren oder tödlichen Verletzungen oder zu Sachschäden führen.

Abbildung 4-6: AC/DC-Spannungsversorgung in der unteren Gehäusekammer

Zum Entfernen und Austauschen der AC/DC-Spannungsversorgung ist ein Kreuzschlitzschraubendreher der Größe 2 erforderlich.

So entfernen Sie die AC/DC-Spannungsversorgung:

- 1. Trennen Sie die Spannungsversorgung zum GC.
- 2. Lösen Sie die Schrauben und entfernen Sie die Frontabdeckung.
- 3. Entfernen Sie die Schalttafel oder das Bedieninterface, um Zugriff auf das Platinengehäuse zu erhalten.

4. Sofern ein transparenter Gehäusedeckel vorhanden ist, entfernen Sie diesen vom Platinengehäuse.

- 5. Ziehen Sie alle Leiterplatten im Platinengehäuse ab, aber entfernen Sie diese nicht.
- 6. Lösen Sie die drei Anschlussstifte der Schalttafel. Entfernen Sie auch die Unterlegscheiben.
- 7. Heben Sie das Platinengehäuse mit den Leiterplatten an und entfernen Sie es aus der unteren Gehäusekammer.
- 8. Lösen und entfernen Sie den Stift, der der Spannungsversorgung am nächsten liegt.
- 9. Ziehen Sie den Stecker ab, der sich oben links auf der Spannungsversorgung befindet.
- 10. Ziehen Sie die Niederspannungsleitung ab, die an der Unterkante der Rückwandplatine angeordnet ist.
- 11. Trennen Sie unverzüglich die Erdungsleitung von der Spannungsversorgung an der Gehäuseerde im Inneren der unteren Gehäusekammeröffnung.
- 12. Entfernen Sie die Mutter genau über der Spannungsversorgung. Die Spannungsversorgung ist nun von den befestigenden Gewindebolzen gelöst und kann aus ihrem Träger genommen werden. Entfernen Sie die Spannungsversorgung vorsichtig, um Beschädigungen durch störende Leitungen zu vermeiden.
- 13. Setzen Sie die neue Spannungsversorgung in den Träger und stellen Sie sicher, dass alle Leitungen freie Enden haben und verbunden werden können.

Zum Installieren einer neuen Spannungsversorgung führen Sie diese Schritte in umgekehrter Reihenfolge durch.

4.3.10 Werkseinstellungen für Steckbrücken und Schalter

Die folgende Tabelle zeigt die Werkseinstellungen für Steckbrücken und Schalter auf den verschiedenen Leiterplatten im Elektrogehäuse.

Steckbrückeneinstellung	
	Beschreibung
Ē	Nicht gesetzt. Steckbrücken-Shunt ist nur an einem Pin installiert.
	Gesetzt. Steckbrücken-Shunt ist an beiden Pins installiert.
Ē	Gesetzt. Diese Steckbrücke hat drei Pins und der Steckbrücken- Shunt ist an Pins 2 und 3 installiert.
	Die dunklen Bereiche () zeigen die Position der Schaltaktoren.

Abbildung 4-8: Werkseitige Steckbrückeneinstellung auf Vorverstärkerplatine

Abbildung 4-9: Werkseitige Steckbrückeneinstellung auf Heizungs-/ Magnetventilplatine

Abbildung 4-1	Werkseitige Steckbrücken- und Schaltereinstellungen auf E/A- Grundplatine
Jumpers	JP1 JP2 JP3
Switches	SW1 SW2 SW3 SW3 SW4 SW5 SW5 SW6 SW7 SW8

Abbildung 4-11: Werkseitige Schaltereinstellung auf Rückwandplatine

4.3.11 Kommunikation

Der Gaschromatograph 770XA verfügt über vier Ports für die serielle Kommunikation: Port 0, Port 1, Port 2 und Port 3, der dediziert für die Verbindung von PC und GC vorgesehen ist. Der Modus für jeden der ersten drei Ports kann auf RS-232, RS-422 oder RS-485 eingestellt werden. Die Port-Konfigurationen werden in der Regel bei der Bestellung vom Kunden spezifiziert und anschließend im Werk eingestellt. Siehe *Ändern der Leitungstreiber*, um Leitungstreiber zu ändern.

Anmerkung

Die Rückwand verfügt über zwei Schalter, die sich bei SW1 befinden. Der erste Schalter wird für den Start des DHCP-Servers verwendet. Siehe *Abschnitt 3.5.8* bzgl. weiterer Informationen. Der zweite Schalter ist für zukünftige Verwendungszwecke reserviert.

Auf der Rückwand befinden sich zwei Ethernet-Ports:

Name	Position	Anschlusstyp
ETHERNET1	J22	RJ45 (DHCP-aktiviert)
ETHERNET2	TB11	4-Leiter-Anschlussklemmenblock

Maximale Entfernung nach Kommunikationtyp

Kommunikationsart	Max. Kabellänge
RS-232	15,24 m (50 ft.)
RS-422/RS-485	1219,2 m (4000 ft.)
Ethernet (CAT5)	91,44 m (300 ft.)

Ändern der Leitungstreiber

Die folgende Tabelle zeigt die relevanten Merkmale der seriellen Ports des GC.

Port-Name	Port-Modus	Position der Anschlussklem- menleiste auf der Rückwandpla- tine	Unterstützte Kommunikations- modi
Port 0	RS-232	TB1	Modbus [®] ASCII/RTU
	RS-422, RS-485	TB2	
Port 1	RS-232	TB5	Modbus ASCII/RTU
	RS-422, RS-485	TB6	
Port 2	RS-232	TB8	Modbus ASCII/RTU
	RS-422, RS-485	ТВ9	
Port 3	RS-232	J23 (LAPTOP/PC)	Modbus ASCII/RTU
(DB9-Anschluss)			Direkte Verbindung mittels MON2020

Anmerkung

Port 3 kann zum Herstellen einer Direktverbindung zum PC genutzt werden.

Die Werkseinstellung für jeden Port ist RS-232. So ändern Sie die Einstellung eines seriellen Ports:

- 1. Starten Sie die Software MON2020 und verbinden Sie sich mit dem GC.
- 2. Wählen Sie aus dem Menü Applications (Anwendungen) die Option Communication... (Kommunikation) aus. Das Fenster *Communication* (Kommunikation) wird angezeigt.
- Wählen Sie den entsprechenden Modus aus der Dropdown-Liste Port f
 ür den entsprechenden seriellen Port aus. Die zur Verf
 ügung stehenden Optionen sind RS-232, RS-485 oder RS-422.
- 4. Klicken Sie auf OK.
- 5. Schließen Sie die Software MON2020.
- 6. Schalten Sie den GC aus.
- 7. Entfernen Sie die E/A-Grundplatine, die sich im Platinengehäuse im unteren Gehäuse des GC befindet.
- Die richtigen Schaltereinstellungen f
 ür jeden Modus k
 önnen Sie den folgenden Abbildungen entnehmen. In der ersten Spalte sind die Port-Nummern aufgelistet; die erste Zeile zeigt den Kommunikationsmodus an. Die Tabellenzelle, an der sich der gew
 ünschte Port und Modus schneiden, beinhaltet die entsprechenden Schaltereinstellungen f
 ür diese Konfiguration.

Port 0 entspricht Kanal 1 auf jedem Schalter; Port 1 entspricht Kanal 2 auf jedem Schalter; Port 2 entspricht Kanal 3 auf jedem Schalter.

Abbildung 4-13: RS-232

Abbildung 4-14: RS-422 (Vollduplex/4-Leiter)

Abbildung 4-15: RS-485 (Halbduplex/2-Leiter)

Wollen Sie für Port 1 den RS-232-Modus einstellen, dann müssen Sie Kanal 2 an SW13 in die untere Stellung bringen.

9. Die Schalteranordnung auf der E/A-Grundplatine sehen Sie in *Abbildung 4-16*.

Abbildung 4-16: Schalter für serielle Ports auf der E/A-Grundplatine

10. Stellen Sie sicher, dass sich SW12 in der unteren Stellung befindet, da Port 0 sonst nicht funktionieren wird.

Anmerkung

Normalerweise sollte SW12 nie eingestellt werden. Dieser Schalter wird vom Werk zu Testzwecken verwendet. Sollte sich der Schalter in der oberen Stellung befinden, stellen Sie sicher, dass Sie ihn wieder auf die Werkseinstellung zurücksetzen, d. h. in die untere Stellung bringen.

- 11. Um einen Leitungsabschluss für einen seriellen Port zu aktivieren, bringen Sie den entsprechenden Port an SW10 in die unterste Position.
- 12. Tauschen Sie die E/A-Grundplatine im Platinengehäuse aus.
- 13. Weitere Informationen finden Sie in der folgenden Tabelle, die die richtige Anschlussklemmenverkabelung für jeden Modus und Port anzeigt. In der ersten Spalte sind die Port-Nummern aufgelistet; die erste Zeile zeigt den Kommunikationsmodus an. Die Tabellenzelle, an der sich der gewünschte Port und Modus schneiden, beinhaltet die entsprechende Verkabelung für diese Konfiguration.

14. Verwenden Sie folgende Grafik, um die entsprechenden Anschlussklemmenleisten auf der Rückwandplatine zu lokalisieren:

Abbildung 4-17: Positionen der Anschlussklemmenleisten auf der Rückwandplatine

15. Nach Abschluss der korrekten Verkabelung der Anschlussklemmenleisten können Sie den GC starten.

Optionale serielle Ports RS-232

Der Anschluss einer optionalen RS-232-Platine in einem oder beiden Erweiterungs-E/A-Steckplätzen des GC-Platinengehäuses im Elektronikgehäuse ist möglich.

Dieser zusätzliche Steckplatz kann für die Kommunikation via Modbus ASCII/RTU verwendet werden oder um eine direkte Verbindung zu einem Computer herzustellen, auf dem die MON2020 Software installiert ist.

So installieren Sie eine optionale RS-232-Platine:

- 1. Starten Sie die Software MON2020 und verbinden Sie sich mit dem GC.
- 2. Wählen Sie die Option E/A-Karten ... im Menü Tools aus. Das Fenster E/A-Karten wird angezeigt.
- 3. Identifizieren Sie den entsprechenden Kartensteckplatz in der Spalte *Bezeichnung* und wählen Sie Kommunikationsmodul RS-232 aus der entsprechenden Dropdown-Liste *Kartentyp* aus.
- 4. Klicken Sie auf OK.
- 5. Schalten Sie den GC aus.
- 6. Installieren Sie die RS-232-Platine im entsprechenden E/A-Steckplatz des GC-Platinengehäuses.
- 7. Starten Sie den GC.

Optionale serielle RS-485-/RS-422-Ports

Der Anschluss einer optionalen RS-485-Platine in einem oder beiden Erweiterungs-E/A-Steckplätzen des GC-Platinengehäuses im Elektronikgehäuse ist möglich. Die Karte ist im Modus RS-422 (4-adrig) oder RS-485 (2-adrig) konfigurierbar. Standardmäßig ist der Modus RS-485 eingestellt; siehe Konfiguration des optionalen seriellen RS-485-Ports für die Funktion als serieller RS-422-Port.

Dieser zusätzliche Steckplatz kann für die Kommunikation via Modbus ASCII/RTU verwendet werden oder um eine direkte Verbindung zu einem Computer herzustellen, auf dem die MON2020 Software installiert ist. Bei Verwendung zur Verbindung mit MON2020 gelten die folgenden Einschränkungen:

- Begrenzte Bandbreite.
- Wird nur unter Windows XP[®] unterstützt der Port funktioniert nicht unter Windows Vista[®],
 Windows 7[®], Windows 8[®], Windows 8.1[®] oder Windows 10[®].
- Das Kontrollkästchen "Use PPP protocol for serial connection (use SLIP if unchecked)" (PPP-Protokoll für serielle Verbindungen verwenden [wenn nicht ausgewählt, SLIP verwenden]) muss im Fenster Program Settings (Programmeinstellungen) in MON2020 abgewählt sein.

Installieren einer optionalen, seriellen RS-485/RS-422-Schnittstellenkarte

So installieren Sie eine optionale Karte für serielle RS-485/RS-422-Ports.

- 1. Starten Sie die Software MON2020 und verbinden Sie sich mit dem GC.
- 2. Wählen Sie die Option E/A-Karten ... im Menü Tools aus. Das Fenster E/A-Karten wird angezeigt.
- 3. Identifizieren Sie den entsprechenden Kartensteckplatz in der Spalte *Bezeichnung* und wählen Sie Kommunikationsmodul RS-422/485 aus der entsprechenden Dropdown-Liste *Kartentyp* aus.
- 4. Klicken Sie auf OK.
- 5. Schalten Sie den GC aus.
- 6. Installieren Sie die serielle RS-485/RS-422-Schnittstellenkarte im entsprechenden E/A-Steckplatz des GC-Platinengehäuses.
- 7. Starten Sie den GC.

Konfiguration des optionalen seriellen RS-485-Ports für die Funktion als serieller RS-422-Port

Verwenden Sie die folgenden Tabellen, um mehr über die richtigen Einstellungen der Steckbrücken zu erfahren, die Sie für die Konfiguration des optionalen seriellen RS-485- Ports benötigen, damit dieser als serieller RS-422-Port funktioniert:

Steckbrücken	RS-485 (Halbduplex/2-Leiter)	RS-422 (Vollduplex/4-Leiter)	
J3	Halb	Voll	
J5	Halb	Voll	
	Abschluss EIN	Abschluss AUS	
J4	Ein	Aus	
J6	Ein	Aus	
	TB1 Anschlussklemmen		
	RS-485 (Halbduplex/2-Leiter)	RS-422 (Vollduplex/4-Leiter)	
А	RxTx+	Rx+	
В	RxTx-	Rx-	
Y	Öffner	Tx+	
Z	Öffner	Тх-	

4.3.12 Analogeingänge und -ausgänge

Die Analogausgänge können mit der MON2020-Programmsoftware kalibriert oder eingestellt werden. In jedem Fall sollten diese Ausgänge nach der Erstinstallation mit einem kalibrierten digitalen Messgerät am Skalennull- und Skalenendwert gemessen werden. Daraufhin kann die Spanne mit der MON2020-Software eingestellt werden, sodass sie Werte von Null bis 100 Prozent der verwendeten, benutzerdefinierten Einheiten wiedergibt.

Nominal wird die Kalibrierung in einem Spektrum von 4-20 Milliampere (mA) Ausgangssignal von jedem Analogkanal eingestellt. Jedoch können die Kalibrierungen für den Skalennullwert mit einem 4 mA Ausgangssignal eingestellt werden. Der GC liest dies und behandelt es als Wert für den Nullpunktabgleich. Die Kalibrierung für den Skalenendwert kann mit einem Ausgangssignal von bis zu 20 mA eingestellt werden. Der GC liest dies und behandelt es als Anpassungswert für den Skalenendwert.

Falls der Verdacht besteht, dass die Spanne auf einem bestimmten Kanal nach einiger Zeit bzw. intensiver Nutzung nicht mehr genau ist, sollte der Analogausgang für diesen Kanal neu kalibriert werden.

Einstellung der Analogausgänge

Die Ersteinstellungen der Analogausgänge erfolgt vor der Auslieferung. Sie werden ab Werk auf die Standardwerte (4-20 mA) eingestellt. Abhängig von der Ausgangsverkabelung/Impedanz ist eventuell eine Überprüfung und/oder Einstellung dieser Werte erforderlich. Falls die Geräte voneinander entfernt aufgestellt sind, muss diese Einstellung eventuell von zwei Personen ausgeführt werden. Dies erfordert ein kalibriertes digitales Messgerät, um den Skalennull- und Skalenendwert am empfangenden Ende zu überprüfen. Die Skala oder Spanne kann anschließend mit der MON2020-Software angepasst werden.

Es besteht die Möglichkeit, die Analogausgänge mit unterschiedlichen Einheiten, Volt oder Prozent zu kalibrieren.

4.3.13 Digitale Binäreingänge und -ausgänge

Für Anweisungen bezüglich des Anschlusses der digitalen Ein- und Ausgänge an den GC-Abschlussplatinen siehe *Abschnitt 3.5.13* für weitere Einzelheiten.
4.3.14 Empfohlene Ersatzteile

Eine Aufstellung der empfohlenen Ersatzteile finden Sie in *Anhang F*. Die in der Tabelle aufgelisteten Mengen stellen die Anzahl der Ersatzteile dar, die die meisten Eventualitäten für bis zu fünf Gaschromatographen oder mehr als fünf GCs oder kritische Installationen abdecken.

Allerdings bietet Emerson Process Management Serviceverträge an, die die Bestandshaltung von Ersatzteilen für den GC überflüssig machen. Weitere Informationen zu Serviceverträgen erhalten Sie bei Ihrem Vertreter von Emerson Process Management.

4.3.15 Aktualisieren der eingebetteten Software

Das Basis-Betriebssystem (BOS – Base Operating System) verfügt über ähnliche Funktionen wie DOS, Windows® oder Linux®-Betriebssysteme. Das BOS bietet die grundsätzlichen Ressourcen und Schnittstellen, um Aufgaben des Benutzers durchzuführen. Anders als DOS, Windows® oder Linux® ist BOS ein eingebettetes, präventives Echtzeit- und Multi-Tasking-Betriebssystem. Es gibt keine direkte Schnittstelle auf der Benutzerebene. Beziehen Sie sich auf das MON2020-Benutzerhandbuch, wenn für Ihr System ein BOS-Upgrade erforderlich ist.

Um die gewünschten Funktionen des Gaschromatographen für den Benutzer auszuführen, verwenden die Anwendungen des GC die Tools, die von BOS bereitgestellt werden. Es gibt verschiedene Anwendungen, um die unterschiedlichen gaschromatographischen Anforderungen zu erfüllen. Weitere Einzelheiten bezüglich des Ladens einer neuen Anwendung oder der Aktualisierung einer bestehenden Anwendung finden Sie im MON2020-Benutzerhandbuch.

A Anhang A: Bedieninterface(LOI - Local Operator Interface)

A.1 Interface-Komponenten zur Anzeige und Eingabe von Daten

Das Local Operator Interface (LOI) hat mehrere Möglichkeiten zur Bedienung des GC.

- A. LCD screen
- B. Keypads
- C. LED indicators

A.1.1 Leuchtdioden-Anzeigen (LED)

Das lokale Bedieninterface (LOI) ist mit drei Leuchtdioden (LED) ausgestattet, die den allgemeinen Status des Gaschromatographen anzeigen. Diese LEDs befinden sich rechts vom Anzeigebildschirm. Jede leuchtende LED zeigt einen bestimmten Zustand an.

A.1.2 LCD-Anzeige

Die LCD-Anzeige hat eine Größe von 111,4 x 83,5 mm. Das Display verfügt über eine maximale Auflösung von 640 x 4800 Pixel und unterstützt sowohl Text- als auch Grafikelemente. Hintergrundbeleuchtung, Kontrast und Helligkeit werden durch die Software gesteuert. Kontrast und Helligkeit können vom Benutzer eingestellt werden.

A.1.3 Tastenfeld

Das Tastenfeld besteht aus acht Infrarot-Tasten. Siehe Abschnitt A.2.3 bzgl. weiterer Informationen.

Die Befehlstasten

Die vier Tasten oberhalb des LCD-Bildschirms sind "Befehlstasten".

Die Pfeiltasten

Die vier Tasten unterhalb des LCD-Bildschirms sind Pfeiltasten, die Ihnen die Navigation innerhalb des Bildschirms ermöglichen, indem sie den Cursor von Feld zu Feld scrollen oder bewegen. Diese Tasten funktionieren auf die gleiche Weise wie die Pfeiltasten auf einer Computertastatur.

Betätigen einer Taste

Eine Taste wird "gedrückt", indem Sie den Finger auf dem Glas über der jeweiligen Tastenaussparung platzieren und den Finger dann entfernen. Behalten Sie den Finger auf der Tastenaussparung, wird die Taste so lange betätigt, bis Sie den Finger entfernen.

A.2 Verwendung des Bedieninterface

A.2.1 Inbetriebnahme

Nach dem Einschalten des GC befindet sich das Bedieninterface automatisch im Statusanzeigemodus, in dem es den Bildschirm der PTB-zugelassenen Werte zeigt.

Sie können im Statusanzeigemodus jederzeit das Hauptmenü aufrufen, indem Sie "ENTER" oder "F2" drücken. Verwenden Sie die "EXIT"-Taste, um das Hauptmenü zu verlassen und das Bedieninterface wieder in den Statusanzeigemodus zu versetzen. Wenn Sie sich vom Hauptmenü aus am GC anmelden, um Verfahren durchzuführen oder Daten zu bearbeiten, werden Sie beim Verlassen des Menüs automatisch vom Bedieninterface abgemeldet.

A.2.2 Navigationsmenüs

Sie können im Statusanzeigemodus jederzeit das Hauptmenü aufrufen, indem Sie "ENTER" oder "F2" drücken.

Verwenden Sie die AUFWÄRTS- oder ABWÄRTS-Pfeiltasten, um zwischen Feldern und Bedienelementen innerhalb jedes Dropdown-Menüs zu navigieren. Wenn Sie die ABWÄRTS-Pfeiltaste gedrückt halten, während Sie sich im letzten Feld eines Dropdown- Menüs befinden, gelangen Sie zum ersten Feld auf dem Bildschirm. Wenn Sie die AUFWÄRTS-Pfeiltaste gedrückt halten, während Sie sich im ersten Feld eines Dropdown- Menüs befinden, gelangen Sie zum letzten Feld auf dem Bildschirm.

Verwenden Sie die Taste "ENTER" (Eingabe) im *Hauptmenü*, um Untermenüs und individuelle Menüpunkte zu aktivieren.

Drücken Sie "EXIT" (Verlassen), um das Hauptmenü zu verlassen und das Bedieninterface (LOI) wieder in den Statusanzeigemodus zu versetzen, in dem kein Menü aufgeklappt ist. Ist ein Menü aufgeklappt, drücken Sie "EXIT", um das Menü zu schließen.

Wenn Sie sich vom Hauptmenü aus am GC anmelden, um Verfahren durchzuführen oder Daten zu bearbeiten, werden Sie beim Verlassen des Menüs automatisch vom Bedieninterface (LOI) abgemeldet.

Über das *Hauptmenü* können Sie auf alle im Bedieninterface (LOI) verfügbaren Anzeigen zugreifen. Sie müssen jedoch angemeldet sein, um Änderungen vornehmen zu können. Wenn Sie nicht angemeldet sind und versuchen, ein Feld zu bearbeiten, erscheint zunächst der Bildschirm *Login* (Anmeldung).

Nach einer Inaktivitätszeit von 15 Minuten werden Sie automatisch abgemeldet.

A.2.3 Bildschirmnavigation

Das Bedieninterface (LOI) bietet mehrere Funktionen. Es kann zu überprüfende oder zu bearbeitende Daten anzeigen oder zum Einleiten von Aktionen verwendet werden.

Innerhalb einer jeden Anzeige ist die Funktion der Eingabetaste "ENTER" vom Kontext abhängig. Die ENTER-Taste kann verwendet werden, um Änderungen zu überprüfen und zu speichern oder um eine Aktion zu einzuleiten.

Wenn ein Überprüfungsfehler gefunden wurde, nachdem die Eingabe mit "ENTER" bestätigt wurde, erscheint die Meldung "Invalid Entry" (Ungültige Eingabe). Drücken Sie "ENTER" erneut, um die Meldung zu schließen, und geben Sie anschließend die Daten erneut ein.

Drücken Sie auf "EXIT", um die aktuell geöffnete Anzeige zu schließen. Nachdem Sie die Änderungen in der Anzeige gemacht haben, erscheint auf dem Bedieninterface eine Bestätigungsmeldung, die Sie fragt, ob Ihre Änderungen gespeichert werden sollen.

Verwenden Sie die Pfeiltasten, um die entsprechende Schaltfläche auszuwählen, und drücken Sie "ENTER". Wenn Sie No (Nein) auswählen, werden Ihre Änderungen verworfen und das Hauptmenü wird angezeigt; wenn Sie Cancel (Abbrechen) auswählen, wird das Meldungsfenster geschlossen und Sie werden zurück zum aktuellen Bildschirm geleitet; wenn Sie Yes (Ja) auswählen, werden Sie nach der Validierung und Speicherung Ihrer Änderungen zurück zum Hauptmenü geleitet.

Die Tasten "F1" und "F2" sind kontextabhängig. Eine Einwortbeschreibung der Funktionen jeder dieser Tasten erscheint in einem grünen Dialogfenster direkt unter der Taste in der Titelleiste oben in der Vollbildanzeige.

In einigen Fällen kann "F1" dazu verwendet werden, um entweder zwischen dem Scrollen von Zeile zu Zeile oder von Seite zu Seite umzuschalten. Wenn dies möglich ist, erscheint die aktuell ausgewählte Option (Zeile oder Seite) mit schwarzer Schrift auf grünem Hintergrund, während die nicht ausgewählte Option mit grünem Text auf schwarzem Hintergrund angezeigt wird. Die Tabelle unten zeigt die Funktionen, die mit der Taste "F1" möglich sind:

MOVE	Drücken Sie "F1", um den Cursor innerhalb des Bildschirmrands zu bewegen.
EDIT	Drücken Sie "F1", um den Bearbeitungsdialog des Feldes zu öffnen, in dem sich der Cursor befindet. Die Art des Dialogs, der angezeigt wird, ist vom zu bearbeitenden Feld abhängig. Weitere Informationen finden Sie im Abschnitt <i>Abschnitt</i> <i>A.2.4</i> und <i>Abschnitt A.2.5</i> .
SELECT	Drücken Sie "F1", um das Feld auszuwählen, das Sie bearbeiten möchten.
BACKSP	Drücken Sie "F1", um das Zeichen links vom Cursor zu löschen.
LN PG	Drücken Sie "F1", um von Zeile zu Zeile innerhalb einer Anzeige zu blättern.
LN PG	Drücken Sie "F1", um von Seite zu Seite innerhalb einer Anzeige zu blättern.

Anmerkung

Wenn in diesem Anhang auf die F1-Taste verwiesen wird, wird die aktuell gültige Funktion der Taste in Klammern angezeigt. Beispiel: F1 (MOVE = BEWEGEN) oder F1 (SELECT = AUSWÄHLEN).

Die Taste "F2" dient dazu, alle Bildschirme zu schließen und zurück zum Hauptmenü zu gelangen, wenn die Aufforderung "MAIN" angezeigt wird.

Ein Navigationssymbol oben rechts am Bildschirmrand zeigt an, welche Navigationstasten im aktuell angezeigten Bildschirm aktiv sind.

\diamondsuit	\diamondsuit	\diamondsuit	\diamond
None	Left	Up	Right
\diamondsuit	\diamond	\diamond	\diamond
Down	Left/Right	Up/Down	All

Wenn Sie eine Taste drücken und diese gültig ist, blinkt ein grünes Quadrat oben links. Ist die Taste nicht gültig, blinkt ein rotes Feld oben links.

A.2.4 Bearbeitung von numerischen Feldern

Wenn der Fokus auf einem editierbaren Feld liegt, dann wird durch Drücken von "F1" (Bearbeiten) der Bearbeitungsdialog angezeigt, der den Originaltext enthält.

Mit den Tasten "Pfeil nach links" und "Pfeil nach rechts" können Sie die einzelnen Zeichen innerhalb des Feldes durchlaufen und die Zeichen auswählen, die Sie ändern möchten.

Verwenden Sie die Tasten "Pfeil nach oben" und "Pfeil nach unten", um den Wert für jede Ziffer auszuwählen. Die möglichen Werte sind 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, "–" (Minus), "." (Punkt) und "E".

Der Wert "-" ist für vorzeichenbehaftete Zahlen verfügbar.

Die Werte "." und "E" sind für Fließkommazahlen verfügbar, mit Ausnahme von Retentionszeiten und geplanten Ereigniswerten.

Bei der Eingabe eines Fließkommawertes gelten die folgenden Regeln:

- Mehr als ein einzelnes "E" ist nicht erlaubt.
- Mehr als ein einzelner "." ist nicht erlaubt.
- Wenn die vorherige Position ein "E" ist, dann ist kein "." und keine "O" erlaubt.
- Ein "-" ist nur nach einem "E" oder als erste Position erlaubt.
- Wenn die vorherige Position ein "." ist, dann ist kein "E" erlaubt.
- Wenn das erste Zeichen ein "-" und der aktuelle Index 1 ist, dann ist kein "." erlaubt.
- Wenn die vorherige Position ein "–" ist, dann ist keine "0" erlaubt.
- Wenn das nächste Zeichen ein "E" ist, dann ist an der vorherigen Stelle kein "" erlaubt.

Mit der Taste "Pfeil nach unten" können Sie sich rückwärts durch die Liste vom aktuellen Wert der ausgewählten Ziffer bewegen.

Mit der Taste "Pfeil nach oben" können Sie sich vorwärts durch die Liste vom aktuellen Wert der ausgewählten Ziffer bewegen.

Die Taste "F1" (BACKSP) fungiert als Rücktaste und löscht die Ziffer (links von der aktuellen Position) unverzüglich.

Die "ENTER"-Taste bestätigt und speichert den Eintrag und schließt anschließend den Bearbeitungsdialog. Der neue Eintrag wird im Feld angezeigt.

Die "EXIT"-Taste beendet jede eingegebene Änderung, schließt den Bearbeitungsdialog und stellt den vorherigen Wert des Feldes wieder her.

A.2.5 Bearbeitung von nicht-numerischen Feldern

Die Tastenfunktion bei der Bearbeitung von nicht-numerischen Daten ist kontextabhängig.

Bearbeiten von alphanumerischen Feldern

In alphanumerische Felder können sowohl Ziffern (0–9) als auch Buchstaben (a–z, A–Z) eingeben werden.

Aktivieren und deaktivieren von Kontrollkästchen

Drücken Sie die F1-Taste (SELECT = AUSWÄHLEN), um ein Kontrollkästchen zu aktivieren bzw. zu deaktivieren.

Abbildung A-2:	Aktivieren und	deaktivieren	eines	Kontrollkästchens
----------------	----------------	--------------	-------	-------------------

		Scale			
Det 1	X Us	e Defaults			
🚫 Det 2	X Min:	0.00	Y Min:	-10.00	
🔾 Both	X Max:	100,00	Y Max:	100-00	
snow bunched data					
Live					

Klicken auf Schaltflächen

Drücken Sie F1 EXECUTE (AUSFÜHREN), um auf die Schaltfläche zu klicken und den Befehl auszuführen.

Auswählen von Optionsschaltflächen

- 1. Drücken Sie die F1-Taste (SELECT = AUSWÄHLEN), um eine Optionsschaltflächen-Gruppe auszuwählen.
- 2. Mithilfe der Abwärts- oder Aufwärtspfeiltaste können Sie sich durch die verschiedenen Optionsschaltflächen innerhalb der Gruppe bewegen.
- Drücken Sie die Eingabetaste "ENTER", um die aktuelle Auswahl zu übernehmenoder drücken Sie "EXIT" (Verlassen), um die Änderungen zu verwerfen und die bisherige Auswahl wiederherzustellen.

Auswählen eines Elements aus einem Listenfeld

1. Drücken Sie die F1-Taste (SELECT = AUSWÄHLEN), während Sie sich im Listenfeld befinden, um in den Bearbeitungsmodus zu gelangen.

Abbildung A-3:	Auswählen eines Listenfelds	
SELEC	T MAIN	Emerson LOI 🔶
Chromatogram	Hardware Application Logs/Reports	Control Manage
	Start Single Stream Analysis - D1	O
	Stream:	
	Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7	
	 Purge Stream for 60 seconds Continuous operation 	

- 2. Mit der Abwärts- oder Aufwärtspfeiltaste können Sie zwischen den einzelnen Werten innerhalb des Listenfelds wechseln.
- 3. Drücken Sie die Eingabetaste "ENTER", um die aktuelle Auswahl zu übernehmen oder drücken Sie "EXIT" (Verlassen), um die Änderung zu verwerfen und die bisherige Auswahl im Listenfeld wiederherzustellen.

Auswählen eines Elements aus einem Kombinationsfeld

 Drücken Sie die F1-Taste (SELECT = AUSWÄHLEN), während Sie sich im Kombinationsfeld befinden. Der Dialog "Combo" (Kombination) wird aufgerufen und zeigt eine Liste der verfügbaren Auswahlmöglichkeiten an.

Abbildung A-4: Auswä	hlen eines Kombinationsf	elds	
	MAIN	Valves1	
Sample/BF 1	Dual Column Auto 🝷 💽	Sample/BF 2 Auto 🝷 🚺	
SSO 1 Auto Goff On Auto	Select an Item		
S2 Auto		to 🔸 🔘	
S5 Auto 🝷 🔘	S6 Auto 🝷 💽	FID H2 Off • 🚺	

- 2. Mit der Abwärts- oder Aufwärtspfeiltaste können Sie sich zwischen den einzelnen Auswahlmöglichkeiten bewegen.
- Drücken Sie die Eingabetaste "ENTER", um den gewünschten Wert auszuwählen oder drücken Sie "EXIT" (Verlassen), um den ursprünglichen Wert des Kombinationsfelds wiederherzustellen.

Eingabe von Datum und Uhrzeit

 Drücken Sie die F1-Taste (SELECT = AUSWÄHLEN), während Sie sich im Feld "Datum und Uhrzeit" befinden. Das Dialogfeld "Enter the Date and Time" (Datum und Uhrzeit eingeben) wird angezeigt. Standardmäßig wird zuerst "Monat" aufgeführt.

Label	VDT	Auto	Total Runs	Avg Runs	Start Tin	ne	Interval	st
							HR	
Stream 1								S1
Stream 2								S2
Stream 3			Enter	Date and	Time 🌔 🕨			53
Stream 4								S4
Stream 5		_						S5
Stream 6		Jan	1, 1970	00:00:00				56
Stream 7					-	:00:0	1	6
Stream 8	VDT_	-				:00:0	1	7

Abbildung A-5: Eingeben von Datum und Uhrzeit

- Mithilfe der ABWÄRTS- oder AUFWÄRTS-Pfeiltaste können Sie den Wert der Einheit ändern,
 d. h. Sie können von Januar zu Februar oder von 1 zu 2 wechseln.
- 3. Verwenden Sie die LINKE und RECHTE Pfeiltaste, um Einheiten zu ändern: So können Sie von Monaten zu Jahren oder von Stunden zu Minuten wechseln.

Anmerkung

Wenn Sie sich ganz links befinden, ist die LINKE Pfeiltaste nicht aktiv. Mit der RECHTEN Pfeiltaste verhält es sich genauso: Befinden Sie sich ganz rechts, ist diese nicht aktiv.

4. Bestätigen Sie Ihre Änderungen mit "ENTER" (Eingabetaste). Um Ihre Änderungen zu verwerfen und die ursprünglichen Werte wiederherzustellen, drücken Sie auf "EXIT" Verlassen).

Einstellen der Zeit

- Drücken Sie die F1-Taste (SELECT = AUSWÄHLEN), während Sie sich im Feld *Time* (Zeit) befinden. Das Dialogfeld *Enter the Time* (Zeit eingeben) wird angezeigt. Standardmäßig wird zuerst "Stunde" aufgeführt.
- 2. Mit der AUFWÄRTS- und ABWÄRTS-Pfeiltaste können Sie den Wert ändern.
- 3. Verwenden Sie die LINKE und RECHTE Pfeiltaste, um Einheiten zu ändern: So können Sie beispielsweise von Stunden zu Minuten wechseln.

Anmerkung

Wenn Sie sich ganz links befinden, ist die LINKE Pfeiltaste nicht aktiv. Mit der RECHTEN Pfeiltaste verhält es sich genauso: Befinden Sie sich ganz rechts, ist diese nicht aktiv.

4. Bestätigen Sie Ihre Änderungen mit "ENTER" (EINGABE). Um Ihre Änderungen zu verwerfen und die ursprünglichen Werte wiederherzustellen, drücken Sie auf "EXIT"(Verlassen).

A.3 Bildschirmnavigations- und Interaktions-Tutorial

Dieses Tutorial führt Sie durch die einzelnen Schritte, die zum Bearbeiten der Daten auf einem Bildschirm erforderlich sind. Sie enthält alle vorstehenden Informationen, um die typische Navigation und Interaktion mit dem Bedieninterface zu zeigen. Sie erfahren, wie Sie die folgenden Maßnahmen durchführen:

- Öffnen und Schließen von Bildschirmen
- Navigieren in Tabellen
- Auswählen von Feldern zum Bearbeiten
- Speichern von Daten
- 1. Klicken Sie so oft auf die RECHTE Pfeiltaste im *Main Menu* (Hauptmenü), bis Sie zum Menü *Application* (Anwendung) gelangen. Das Untermenü *System* ist bereits ausgewählt, da es das erste Element in der Liste ist.

Anmerkung

In diesem Fall ist mit "Klicken" das Tippen auf die Glasfläche direkt über dem Loch der Pfeiltaste gemeint.

Abbildung A-6: Zum Menü "Application" (Anwendung) navigieren

Anmerkung

Beachten Sie das Navigationssymbol oben rechts. Dieses zeigt an, dass alle vier Pfeiltasten aktiv sind. Dadurch können Sie zu allen Menü- und Untermenüpunkten navigieren.

Anmerkung

Beachten Sie, dass die grünen Eingabeaufforderungsfelder leer sind. Das bedeutet, dass die Tasten "F1" und "F2" im *Main Menu* (Hauptmenü) nicht aktiv sind.

2. Tippen Sie ENTER (Eingabe) an. Der Bildschirm System wird angezeigt.

Analyzer Name	237	
GC Model	GC700XA	
System Description	Test Fixture for integration	
Firmware Version	0.8.0, 2009/07/24	
GC Serial No		
Company Name	Emerson Process Management	
GC Location	RAI's office	
Is Multi User Write Enabled?	8	
Maintenance Mode	a	
Sync GC with FFB time		
Standard Component Table Versi	1	
Unit System	English	
GC Mode	1-Strm 2-Det 1-Mthd	
Det1-Default Stream Sequence	Sequence 1	
Det1-ISO Calculations	×	
Det1-GPA Calculations		

Anmerkung

Beachten Sie das Navigationssymbol oben rechts. Dieses zeigt an, dass keine Pfeiltasten aktiv sind.

Beachten Sie, dass die grünen Eingabeaufforderungsfelder jetzt Schlüsselwörter mit Funktionen anzeigen. "MAIN" (Haupt-) bedeutet Folgendes: Wenn Sie die F2-Taste betätigen, dann schließt das Bedieninterface den aktuellen Bildschirm und Sie gelangen zurück zum *Main Menu* (Hauptmenü). "MOVE" (Bewegen) bedeutet Folgendes: Wenn Sie die F1-Taste betätigen, können Sie die Pfeiltasten zum Navigieren innerhalb des Bildschirms *System* verwenden.

- Tippen Sie auf "F1". Das Bedieninterface wechselt in den Modus "Edit" (Bearbeiten). Beachten Sie das Navigationssymbol oben rechts. Dieses zeigt an, dass die Abwärtspfeiltaste aktiv ist.
- 4. Tippen Sie einmal auf die Abwärtspfeiltaste. Jetzt zeigt das Navigationssymbol an, dass Abwärts- und Aufwärtspfeiltasten aktiv sind.
- Tippen Sie einmal auf die Aufwärtspfeiltaste, um zur vorherigen Zelle zurückzukehren. Das Navigationssymbol zeigt erneut an, dass nur die Abwärtspfeiltaste aktiv ist. Beachten Sie, dass das grüne Eingabeaufforderungsfeld "F1" jetzt "EDIT" (Bearbeiten) anzeigt.
- 6. Tippen Sie auf "F1".

Sie müssen am GC angemeldet sein, um Änderungen am Bildschirm vornehmen zu können. Wenn Sie versuchen, ein Feld zu bearbeiten, bevor Sie angemeldet sind, so wie Sie es eben getan haben, dann zeigt das Bedieninterface den Dialog *Login* (Anmelden) an und fordert Sie auf, sich anzumelden.

Analyzer Name		237	
GC Model		GC700XA	
System Description		Test Fixture for integration	
Firmware Version		0.8.0, 2009/07/24	
GC Serial No		Login	
Company Name		Login	
GC Location			
Is Multi User Write I		The second se	
Maintenance Mode	User	DANIEL •	
Sync GC with FFB t			
Standard Compone	PIN		
Jnit System			
GC Mode			
Det1-Default Stream Sec	uence	Sequence 1	
Det1-ISO Calculations		*	
Det1-GPA Calculations			

Abbildung A-8: Sie müssen am GC angemeldet sein, um Änderungen am Bildschirm vorzunehmen

Anmerkung

Beachten Sie, dass im Dialog Login (Anmelden) auch ein Navigationssymbol vorhanden ist.

7. Tippen Sie zum Auswählen auf "F1" (SELECT = AUSWÄHLEN) und navigieren Sie inder Liste nach oben oder unten, um Ihren Benutzernamen zu markieren.

Anmerkung

Wenn in dem noch verbleibenden Teil dieser Anleitung auf die F1-Taste verwiesen wird, wird die aktuell gültige Funktion der Taste in Klammern angezeigt. Beispiel: F1 (MOVE = BEWEGEN) oder F1 (SELECT = AUSWÄHLEN).

- 8. Tippen Sie ENTER (Eingabe) an.
- 9. Gehen Sie zum Feld *Pin*, drücken Sie die F1-Taste (EDIT= BEARBEITEN) und geben Sie Ihr Kennwort ein.
- Tippen Sie zweimal auf ENTER (EINGABE).
 Da Sie jetzt angemeldet sind, können Sie die Felder auf dem Bildschirm bearbeiten.
- Tippen Sie auf F1 (EDIT = BEARBEITEN).
 Der Dialog *Enter the data* (Daten eingeben) wird angezeigt.

nalyzer Name	237	
iC Model	GC700XA	
ystem Description	Test Fixture for integration	
irmware Version	0.8.0, 2009/07/24	
C Serial No		
ompany Name	te a t	
iC Location	Enter the data 🌔	
Multi User Write En		
laintenance Mode		
ync GC with FFB tim 237		
tandard Componen		
nit System		
C Mode	1-Strm 2-Det 1-Mthd	
et1-Default Stream Sequence	Sequence 1	
et1-ISO Calculations	*	
et1-GPA Calculations		

Abbildung A-9: Mithilfe des Dialogs "Enter the data" (Daten eingeben) können Sie das ausgewählte Feld bearbeiten.

- 12. Drücken Sie die Taste "F1" (Backspace), um ein Zeichen zu löschen Verwenden Sie zur Eingabe neuer Daten die Aufwärts- und Abwärtspfeiltasten, um zwischen den verschiedenen, verfügbaren Zeichen zu wechseln. Verwenden Sie die rechte Pfeiltaste, um ein neues Zeichen zum Feld hinzuzufügen.
- 13. Ist die Dateneingabe abgeschlossen, drücken Sie "ENTER" (Eingabe), um die neuen Informationen zu validieren und zu speichern. Drücken Sie "EXIT" (Verlassen), um die Änderungen zu verwerfen.

Analyzer Name	237 GC	
GC Model	GC700XA	
System Description	Test Fixture for integration	
Firmware Version	0.8.0, 2009/07/24	
GC Serial No		
Company Name	t a state of the s	
GC Location	Enter the data	
ls Multi User Write En		
Maintenance Mode		
Sync GC with FFB tim 237 GC		
Standard Componen		
Unit System		
GC Mode	1-Strm 2-Det 1-Mthd	
Det1-Default Stream Sequence	Sequence 1	
Det1-ISO Calculations	×	
Det1-GPA Calculations		

Abbildung A-10: Im Feld sind jetzt neue Daten gespeichert.

Anmerkung

Wenn ein Überprüfungsfehler gefunden wurde, nachdem die Eingabe mit "ENTER" bestätigt wurde, erscheint die Meldung "Invalid Entry" (Ungültige Eingabe). Drücken Sie "ENTER" (Eingabe), um die Meldung zu schließen und geben Sie anschließend Ihre Daten erneut ein.

14. Verwenden Sie die Abwärtspfeiltaste, um zum Kontrollkästchen *Is Multi User Write Enabled?* (Ist Multi-User-Schreibberechtigung aktiviert?) zu gelangen.

Abbildung A-11: Das Kontrollkästchen "Is Multi User Write Enabled?" (Ist Multi-User-Schreibberechtigung aktiviert?)

SELECT MA	IN	System 🌔
Analyzer Name	237 GC	1
GC Model	GC700XA	1
System Description	Test Fixture for integration	1
Firmware Version	0.8.0, 2009/07/24	
GC Serial No		
Company Name	Emerson Process Management	
GC Location	RAI's office	
Is Multi User Write Enabled?	8	
Maintenance Mode	D	
Sync GC with FFB time		
Standard Component Table Versi	1	
Unit System	English	
GC Mode	1-Strm 2-Det 1-Mthd	
Det1-Default Stream Sequence	Sequence 1	
Det1-ISO Calculations	×	
Det1-GPA Calculations		

15. Drücken Sie F1 (SELECT = AUSWÄHLEN). Das Kontrollkästchen wird deaktiviert.

Analyzer Name	237 GC	
GC Model	GC700XA	
System Description	Test Fixture for integration	
Firmware Version	0.8.0, 2009/07/24	
GC Serial No		
Company Name	Emerson Process Management	
GC Location	RAI's office	
ls Multi User Write Enabled?	0	
Maintenance Mode	<u></u>	
Sync GC with FFB time		
Standard Component Table Versi	1	
Jnit System	English	
GC Mode	1-Strm 2-Det 1-Mthd	
Det1-Default Stream Sequence	Sequence 1	
Det1-ISO Calculations	*	
Det1-GPA Calculations		

Abbildung A-12: Das Kontrollkästchen "Is Multi User Write Enabled?" (Ist Multi-User-Schreibberechtigung aktiviert?)

- 16. Klicken Sie erneut F1 (SELECT = AUSWÄHLEN), um das Kontrollkästchen wieder zu aktivieren.
- 17. Navigieren Sie zum Feld "GC Mode" (GC-Modus).

Analyzer Name	237 GC	
GC Model	GC700XA	
System Description	Test Fixture for integration	
Firmware Version	0.8.0, 2009/07/24	
GC Serial No		
Company Name	Emerson Process Management]
GC Location	RAI's office]
Is Multi User Write Enabled?	*	
Maintenance Mode	8]
Sync GC with FFB time	. D.	
Standard Component Table Versi	1	
Unit System	English]
GC Mode	1-Strm 2-Det 1-Mthd	
Det1-Default Stream Sequence	Sequence 1	
Det1-ISO Calculations	*	
Det1-GPA Calculations	- D-	

Abbildung A-13: Das Feld "GC Mode" (GC-Modus)

18. Drücken Sie "F1" (SELECT = AUSWÄHLEN). Das Kombinationsfeld *Select an Item* (Ein Element auswählen) wird angezeigt.

Analyzer Name		237 GC	
GC Model		GC700XA	
System Description		Test Fixture for integration	
Firmware Version		0.8.0, 2009/07/24	
GC Serial No			
Company Name		Select an Item 🛛 🌗	
GC Location	1-Strm 1-De	t 1-Mtbd	
s Multi User Write E	1-Strm 2-De	t 1-Mthd	
Maintenance Mode	2-Strm 2-De	t 2-Mthd	
Sync GC with FFB ti	1-Strm 2-De	t 2-Mthd	
Standard Compone			
Jnit System			
GC Mode		12 20111 2 200 2 1000	2
Det1-Default Stream	n Sequence	Sequence 1	
Det1-ISO Calculation	าร		
Det1-GPA Calculatio	ns		

Abbildung A-14: Das Kombinationsfeld "Select an Item" (Ein Element auswählen)

Scrollen Sie mithilfe der Abwärtspfeiltaste bis zum letzten Element im Kombinationsfeld. Drücken Sie "ENTER"(Eingabe).

19. Drücken Sie die Eingabetaste "ENTER" ein zweites Mal, um alle Änderungen in der Tabelle zu speichern.

Anmerkung

Wenn Sie an diesem Punkt die Eingabetaste "ENTER" nicht drücken, gehen alle Ihre Änderungen verloren.

20. Drücken Sie die Taste "F2" (MAIN = HAUPT-), um zum *Main Menu* (Hauptmnenue) zurückzukehren.

Damit endet das Tutorial.

A.4 Die Bedieninterface-Bildschirme

Das Hauptmenü verfügt über sechs Untermenüs auf der oberen Ebene: Chromatogram (Chromatogramm), Hardware, Applications (Anwendungen), Control (Steuerung), Logs/ Reports (Protokolle/Berichte) und Manage (Verwaltung).

Die nachstehende Tabelle listet die Untermenüs und Befehle auf, die im Hauptmenü verfügbar sind.

Untermenü	Befehl	Unterbefehle	Referenz
Chromato- gram			
	View (Ansicht)		
		Chromatogram Settings (Chromatogramm-Einstellungen)	Abbildung A-16
		Live Chromatogram View Screen (Status Mode) – Ansichtsbildschirm für Live-Chromatogramme im Status-Modus	Abbildung A-17
		Live Chromatogram Screen	Abbildung A-18
		(Advanced Mode) – Bildschirm für Live-Chromatogramme im erweiterten Modus	
		Archived Chromatogram Screen (Advanced Mode) – Bildschirm für archivierte Chromatogramme im erweiterten Modus	Abbildung A-19
		Live & Archived Chromatogram Viewer Options Menu (Menü für die Ansichtsoptionen für Live- und archivierte Chromatogramme)	Abbildung A-18
		CGM ScalingScreen (Bildschirm CGM-Skalierung)	Abbildung A-21
		Chromatogram CDT Table (Komponententabelle)	Abbildung A-22
		Chromatogram TEV Table (Tabelle der zeitgesteuerten Ereignisse)	Abbildung A-23
		Chromatogram Raw Data Table (Rohdaten-Tabelle)	Abbildung A-24

Untermenü	Befehl	Unterbefehle	Referenz
Hardware			Abbildung A-25
	Heaters (Heizungen)		Abbildung A-26
	Valves (Ventile)		Abbildung A-27
	Detectors (Detektoren)		Abbildung A-28
	Discrete Inputs (Binäreingänge)		Abbildung A-29
	Discrete Outputs (Binärausgänge)		Abbildung A-30
	Analog Inputs (Analogeingänge)		Abbildung A-31
	Analog Outputs (Analogausgänge)		Abbildung A-32
	Installed Hardware (Installierte Hardware)		Abbildung A-33
Application (Anwendung)			Abbildung A-34
	System		Abbildung A-35
	Component Data (Komponentendaten)		Abbildung A-36
		CDT 1	
		CDT 2	
		CDT 3	
		CDT 4	
	Timed Events (Zeitgesteuerte Ereignisse)		Abbildung A-37 – Abbildung A-40
		TEV 1	
		TEV 2	
		TEV 3	
		TEV 4	
	Streams (Ströme)		Abbildung A-41
	Status		Abbildung A-43
		DET1	
		DET2	
	Ethernet Ports		Abbildung A-44

Untermenü	Befehl	Unterbefehle	Referenz
Logs/Reports (Protokolle/ Berichte)			Abbildung A-45
	Maintenance Log (Wartungsprotokoll)		Abbildung A-46
	Event Log (Ereignisprotokoll)		Abbildung A-47
	Alarm Log (Alarmprotokoll)		Abbildung A-48
	Unack Alarms (Unbestätigte Alarme)		Abbildung A-49
	Active Alarms (Aktive Alarme)		Abbildung A-50
	Report Display (Berichtsanzeige)		Abbildung A-51
Control (Steuerung)			Abbildung A-53
	Auto Sequence (Auto Sequenz)		Abbildung A-54
	Single Stream (Einzelner Strom)		Abbildung A-55
	Halt (Anhalten)		Abbildung A-56
	Calibration (Kalibrierung)		Abbildung A-57
	Validation (Validierung)		Abbildung A-58
	Stop Now (Stoppen)		Abbildung A-59
Manage (Verwalten)			Abbildung A-60
	LOI Settings (Bedieninterface- Einstellungen)		Abbildung A-61
	Change PIN (PIN ändern)		Abbildung A-62
	Diagnostics (Diagnose)		Abbildung A-63
	Log out (Abmelden)		kein Bildschirm

Siehe *Benutzerhandbuch der MON2020-Software für Gaschromatographen* für detaillierte Informationen bezüglich den in der obigen Tabelle aufgeführten Befehlen.

A.4.1 Das Menü Chromatogram (Chromatogramm)

Das Menü *Chromatogram (Chromatogramm)* ermöglicht die Ansicht von "live" und archivierten Chromatogrammen und den zugehörigen CDT- und TEV-Tabellen sowie das Bearbeiten der Anzeigeeigenschaften in den Chromatogramm-Bildschirmen.

Siehe Abschnitt "Verwendung der Chromatograph-Funktionen" im *Benutzerhandbuch der MON2020-Software für Gaschromatographen* für detaillierte Informationen bezüglich der Chromatogramm-Menüanzeigen.

	MAIN		CGM Set	ings 🌔	Þ
Detector		Scale			
• Det 1	x u	se Defaults			
O Det 2	X Min:	0.00	Y Min:	-30.00	
O Both	X Max:	100,00	Y Max:	100.00	

Abbildung A-16: Der Bildschirm Chromatogram Settings (Chromatogramm- Einstellungen)

Abbildung A-17: Der Bildschirm Live-Chromatogramm (Status-Modus)

Anmerkung

Das hellblaue Feld zeigt die gegenwärtige Analysezeit an.

Anmerkung

Das hellblaue Feld zeigt die gegenwärtige Analysezeit an.

Abbildung A-19: Der Bildschirm Archiviertes Chromatogramm (Erweiterter Modus)

Abbildung A-20: Bildschirm mit Ansichtsoptionen für Live- und archivierte Chromatogramme

Anmerkung

Das hellblaue Feld zeigt die x- (Analysezeit) und y-Koordinaten (Amplitude) des Cursors an.

Abbildung A-21: Der Bildschirm Chromatogram Scaling (Chromatogramm-Skalierung)

MOVE	MAIN		Chromatogram - CDT	Ô
Component	Det	Time (s)		
C6+ 47/35/17	1	0		
PROPANE	1	0		
I-BUTANE	1	0		
n-BUTANE	1	0		
NEOPENTANE	1	0		
I-PENTANE	1	0		
n-PENTANE	1	0		
NITROGEN	1	0		
METHANE	1	0		
CARBON DIOXIDE	1	0		
ETHANE	1	0		
n-NONANE	2	0		
n-HEXANE	2	0		
n-HEPTANE	2	0		
n-OCTANE	2	0		

Abbildung A-22: Der Bildschirm Chromatogram CDT Table (Komponententabelle)

Abbildung A-23: Der Bildschirm Chromatogram TEV Table (Zeitgesteuerte Ventil-Ereignisse)

MOVE	MAIN Ch	romatogra	m - Timed Events
Event Type	Vlv/Det	Value	Time(s)
nhibit	1	On	0
nhibit	2	On	0
gain	1	3	0
gain	2	3	0
/alve #	4 - SSO 1	On	0
/alve #	5 - SSO 2	On	1
Slope Sens	1	48	2
/alve #	2 - Dual Column	On	2
Peak Width	1	4	3
Peak Width	2	8	3
lope Sens	2	20	4
/alve #	1 - Sample/BF 1	On	5
/alve #	3 - Sample/BF 2	On	5
Strm Sw			11
/alve #	1 - Sample/BF 1	Off	22
nhibit	1	Off	28
/alve #	3 - Sample/BF 2	Off	29

V	aw Data	atogram - R	hrom	(AIN	M	MOVE	
eal	Integ End	Integ Start	Mthd	Det	Peak Height	Peak Area	Ret Time	CGM#
=	37.00	28.28	4	1	108016.00	1.080138e+07	31.64	1
	57.32	48.52	4	1	663498.00	5.835703e+07	50.84	2
	69.96	61.24	2	1	169487.00	1.969691e+07	64.52	3
	81.72	69.96	3	1	149399.00	2.050477e+07	73.64	4
	115.00	100.60	2	1	35830.00	7602548	107.16	5
	131.32	115.00	3	1	32862.00	7923298	121.08	6
	154.76	146.04	2	1	1215238.00	8.977114e+07	150.44	7
	175.96	154.76	3	1	14688585.00	2.543412e+09	155.72	8
	206.12	189.00	1	1	232365.00	4.195382e+07	195.08	9
	245.80	223.08	1	1	927175.00	2.392152e+08	230.12	10
	40.76	33.88	100	2	46955.00	3913621	35.96	1
	75.80	67.96	4	2	56071.00	9260314	71.00	2
	94.68	81.72	4	2	58527.00	1.058497e+07	86.20	3
	102.04	67.48	500	2	0.00	1.984529e+07	102.04	4
	143.64	124.44	1	2	33175.00	8018536	132.12	5
•				-				•1

Abbildung A-24: Der Bildschirm Chromatogram Raw Data Table (Rohdatentabelle)

A.4.2 Das Menü Hardware

Das Menü *Hardware* ermöglicht Ihnen die Ansicht und Verwaltung der Hardware-Komponenten des GC.

Siehe Abschnitt "Verwendung der Hardware-Funktionen" im *Benutzerhandbuch der MON2020-Software für Gaschromatographen* für detaillierte Informationen bezüglich der *Hardware* Menüanzeigen.

romatogram Hardware Application Logs/Reports Control Manage Heaters Valves Electronic Pressure Control Detectors Discrete Inputs Discrete Outputs Analog Outputs installed Hardware					emers	Carleson	- Y
Heaters Valves Electronic Pressure Control Detectors Discrete Inputs Discrete Outputs Analog Inputs Analog Outputs installed Hardware	romatogram	Hardware	Application	Logs/Reports	Control	Manage	
Valves Electronic Pressure Control Detectors Discrete Inputs Discrete Outputs Analog Inputs Analog Outputs Installed Hardware		Heaters	i				
Electronic Pressure Control Detectors Discrete Inputs Discrete Outputs Analog Inputs Analog Outputs Installed Hardware		Valves					
Detectors Discrete Inputs Discrete Outputs Analog Inputs Analog Outputs Installed Hardware		Electron	nic Pressure Co	ontrol			
Discrete Inputs Discrete Outputs Analog Inputs Analog Outputs Installed Hardware		Detecto	ors				
Discrete Outputs Analog Inputs Analog Outputs Installed Hardware		Discrete	e Inputs				
Analog Inputs Analog Outputs Installed Hardware		Discrete	e Outputs				
Analog Outputs installed Hardware		Analog	Inputs				
installed Hardware		Analog	Outputs				
		installe	d Hardware				

DEGCPCTDEGCPCTHeater 1Not Used0.00.0Heater 2Not Used0.00.0Heater 3Not Used0.00.0Heater 4Not Used0.00.0	Label	Switch	Setpoint	PWM Output	Temperature	Cu P
Heater 1 Not Used 0.0 0.0 Heater 2 Not Used 0.0 0.0 Heater 3 Not Used 0.0 0.0 Heater 4 Not Used 0.0 0.0			DEGC	PCT	DEGC	PCT
Heater 2 Not Used 0.0 0.0 Heater 3 Not Used 0.0 0.0 Heater 4 Not Used 0.0 0.0	Heater 1	Not Used			0.0	0.0
Heater 3 Not Used 0.0 0.1 Heater 4 Not Used 0.0 0.1	Heater 2	Not Used			0.0	0.0
Heater 4 Not Used 0.0 0.0	Heater 3	Not Used			0.0	0.0
	Heater 4	Not Used			0.0	0.0

Abbildung A-26: Der Bildschirm Heaters (Heizungen)

Abbildung A-27: Der Bildschirm Valves (Ventile)

Anmerkung

Es wird die Verwendung (Sample/BF1, Dual Column), der Modus (Auto, Off) und der Zustand (grün = ein, schwarz = aus, rot = Fehler) der einzelnen Ventile angezeigt. Siehe Abschnitt "Konfiguration der Ventile" im *Benutzerhandbuch der MON2020-Software für Gaschromatographen* bzgl. weiterer Informationen.

MOVE	MAIN		Detectors 📢	∢
Det #		1	2	-
Detector		FID	TCD	
Gain		Low	Low	
Filter				
Moving Avg				
FID Temp RTD		RTD 1		
FID Ignition		Manual		
Ignition Attempts		5		
Wait Time Bet Tries	SEC	10		
Igniter On Duration	SEC	1		
Flame On Sense Temp	DEGC	100.0		
Flame Out Sense Temp	DEGC	90.0		
Temperature	DEGC	47.90	0.00	
Preamp Val		-8388609	0	
FID Flame Temp	DEGC			÷
				0

Abbildung A-28: Der Bildschirm Detectors (Detektoren)

Abbildung A-29: Der Bildschirm Discrete Inputs (Binäreingänge)

	MOVE	MAIN		Disc	crete Inputs 🛛 🤤
	Label	Switch	Invert Polarity	Current Value	Status
	iscrete Input 1	Auto		Off	Ok:
D	iscrete Input 2	Auto		Off	Ok
D	iscrete Input 3	Auto		On	Ok
D	liscrete Input 4	Auto		On	Ok
D	iscrete Input 5	Auto		On	Ok.
D	iscrete Input 6	Auto		On	Ok:
D	liscrete Input 7	Auto		On	Ok
) (*

	MOVE	AIN	D	iscrete Out	puts 🔶
Γ	Label	Usage	Switch	Invert Polarity	Start
1	Discrete Output 1	Common Alarm	Auto		
2	Discrete Output 2	DO	Auto		01-01-1970 0
3	Discrete Output 3	DO	Auto		01-01-1970 0
4	Discrete Output 4	DO	Auto		01-01-1970 0
5	Discrete Output 5	DO	Auto		01-01-1970 0
		(1)			() ()

Abbildung A-30: Der Bildschirm Discrete Outputs (Binärausgänge)

Abbildung A-31: Der Bildschirm Analog Inputs (Analogeingänge)

MOVE MA	IN			Analog	Inputs	¢	
Label	Zero Scale	Full Scale	Switch	mA/Volts	Fixed Value	mA	V
						MA	V
1 Analog Input 1	0	100	Variable	mA		0.00	
2 Analog Input 2	0	100	Variable	mA		0.00	

	MOVE	MAIN	Analog Outputs
	Label	Switch	Variable
1	Analog Output 1	Variable	
2	Analog Output 2	Variable	
3	Analog Output 3	Variable	
4	Analog Output 4	Variable	
5	Analog Output 5	Variable	
6	Analog Output 6	Variable	
7	Analog Output 7	Variable	
8	Analog Output 8	Variable	
9	Analog Output 9	Variable	
10	Analog Output 10	Variable	
<u> </u>			

Abbildung A-32: Der Bildschirm Analog Outputs (Analogausgänge)

Abbildung A-33: Der Bildschirm Installed Hardware (Installierte Hardware)

	MOVE	MAIN	Installe	d Hardware 🛛 🄶
	IO Name		IO Function	Slot Number
1	PREAMP_STR:SLOT_	1:PREAMP_STE	Preamp Streaming	Slot 1
2	PREAMP_STR:SLOT_	1:PREAMP_STE	Preamp Streaming	Slot 1
3	PREAMP_CFG:SLOT_	1:PREAMP_CF	Preamp Configuration	Slot 1
4	PREAMP_CFG:SLOT_	1:PREAMP_CF	Preamp Configuration	Slot 1
5	DIAGNOSTIC:SLOT_1	:DIAGNOSTIC_	Diagnostic	Slot 1
6	HTR_CTRL:SLOT_2:H	TR_CTRL_1	Heater Control	Slot 2
7	HTR_CTRL:SLOT_2:H	TR_CTRL_2	Heater Control	Slot 2
8	HTR_CTRL:SLOT_2:H	TR_CTRL_3	Heater Control	Slot 2
9	HTR_CTRL:SLOT_2:H	TR_CTRL_4	Heater Control	Slot 2
10	SOL:SLOT_2:SOL_1		Solenoid	Slot 2
11	SOL:SLOT_2:SOL_2		Solenoid	Slot 2
12	SOL:SLOT_2:SOL_3		Solenoid	Slot 2
13	SOL:SLOT_2:SOL_4		Solenoid	Slot 2
14	SOL:SLOT_2:SOL_5		Solenoid	Slot 2
15	SOL:SLOT_2:SOL_6		Solenoid	Slot 2
16	SOL:SLOT_2:SOL_7		Solenoid	Slot 2
17	SOL:SLOT 2:SOL 8		Solenoid	Slot 2

A.4.3 Das Menü Application (Anwendung)

Abbildung A-34: Das Menü Application (Anwendung)

Im Menü *Application (Anwendung)* können Sie die CDT-, TEV- und Strömungstabellen für den GC aufrufen. Auf die Bildschirme *System, Status* und *Ethernet Ports* können Sie von diesem Menü aus ebenso zugreifen.

Siehe Abschnitt "Verwendung der Anwendungsfunktionen" im *Benutzerhandbuch der MON2020-Software für Gaschromatographen* für detaillierte Informationen bezüglich der *Application* (*Anwendung*) Menüanzeigen.

are <u>Application</u> System Compone Timed Eve Streams Status	Logs/Repo ent Data+ ents +	rts <u>C</u> ontrol	<u>M</u> anage	
System Compone Timed Eve Streams Status	ent Data) ents)			
Compone Timed Eve Streams Status	ent Data + ents +			
Timed Eve Streams Status	ents •			
Streams Status				
Status				
Ethernet	Ports			

MOVE NAVA	System 📢	1
Analyzer Name	AT12896	11
System Description	Riel Gas-Analyzer	
Site Id	342	
Company Name	Emerson Process Management	
Location	a sided Sheiter	1
Model	700XA	
Serial Number	9016854	17
Firmware Version	2.7.2.2015/11/10.0xc7b081eb	ŧ
Standard Component Table Version for	OFA-Standard 2145-09	11
Standard Component Table Version for i	ISO 6976:1995(E)	
COM FCAL Archive	Kees Last FCAL Per Day	
CGM FVAL Archive	Keep Last Publi Per Day	
Date Format	MNSDDSYYYY	
Date Field Separator	1	
Time Format	HOLINDIASS	18
Time Notation	24.60	11
Time Notation Synchronize with FF Timing	24 AV	
Time Notation Synchronize with FF Timing Update Chronology Update	24 HU System	
Time Notation Synchronize with FF Timing	24 HU System	
Time Notation Synchronize with FF Timing Unice Pr LN PG MAIN Allow Multiple Writers Maintenance Mode	24 HV System	
Time Notation Synchronize with FF Timing Under Or LN: PG MAIN Allow Multiple Writers Maintenance Mode Max Warmstart Delay	24 HV 24 HV System 00:02:00	
Time Notation Synchronize with FF Timing Under Or LNS PG Allow Multiple Writers Maintenance Mode Max Warmstart Delay Energy Value Check	24 HV 24 HV System 00:02:00 X	
Time Notation Synchronize with FF Timing	System	
Time Notation Synchronize with FF Timing	System	
Time Notation Synchronize with FF Timing LAC PG Allow Multiple Writers Maintenance Mode Max Warmstart Delay Energy Value Check Sales Order Number Calibration Retry on Failure Calibration Repeatability Check	System	
Time Notation Synchronize with FF Timing Allow Multiple Writers Maintenance Mode Max Warmstart Delay Energy Value Check Sales Order Number Calibration Retry on Failure Calibration Repeatability Check Metrology Type	X ✓ 00:02:00 × 726070-1 × I × I PTB	
Time Notation Synchronize with FF Timing LAC PG Allow Multiple Writers Maintenance Mode Max Warmstart Delay Energy Value Check Sales Order Number Calibration Retry on Failure Calibration Repeatability Check Metrology Type GC Id	X 00:02:00 X 726070-1 X 1 PTB 28	
Imme Notation Synchronize with FF Timing Synchronize with FF Timing Synchronize with FF Timing Allow Multiple Writers Allow Multiple Writers Maintenance Mode Max Warmstart Delay Energy Value Check Sales Order Number Calibration Retry on Failure Calibration Repeatability Check Metrology Type GC Id Identification Number	X 00:02:00 X 726070-1 X 1 PTB 28 1	
Imme Notation Synchronize with FF Timing Synchronize with FF Timing PG Maintenance Mode Maintenance Mode Max Warmstart Delay Energy Value Check Sales Order Number Calibration Retry on Failure Calibration Repeatability Check Metrology Type GC Id Identification Number Configuration Checksum at Lockout	X 00:02:00 X 726070-1 X PTB 28 1 Oxc4e63918	
Imme Notation Synchronize with FF Timing Synchronize with FF Timing PG Maintenance Mode Maintenance Mode Max Warmstart Delay Energy Value Check Sales Order Number Calibration Retry on Failure Calibration Repeatability Check Metrology Type GC Id Identification Number Configuration Checksum at Lockout Current Configuration Checksum	X 00:02:00 X 726070-1 X PTB 28 1 Oxc4e63918 Oxc4e63918	
Imme Notation Synchronize with FF Timing Synchronize with FF Timing PG Maine Allow Multiple Writers Maintenance Mode Max Warmstart Delay Energy Value Check Sales Order Number Calibration Retry on Failure Calibration Repeatability Check Metrology Type GC Id Identification Number Configuration Checksum at Lockout Current Configuration Checksum Checksum Update Time	X X 00:02:00 X 726070-1 X 726070-1 X 9TB 28 1 0xc4e63918 0xc4e63918 0xc4e63918 11/23/2015 08:00:11	
Imme Notation Synchronize with FF Timing Synchronize with FF Timing Allow Multiple Writers Allow Multiple Writers Maintenance Mode Max Warmstart Delay Energy Value Check Sales Order Number Calibration Retry on Failure Calibration Repeatability Check Metrology Type GC Id Identification Number Configuration Checksum at Lockout Current Configuration Checksum Checksum Update Time Purge Duration	X X 00:02:00 X 726070-1 X 726070-1 X 726070-1 X 00:02:00 X 726070-1 X 726070-1 X 00:02:00 X 726070-1 X 100:02:00 X 726070-1 X 11/20/2015 08:00:11 0x:00:00:00:00:00:00:00:00:00:00:00:00:0	
Time Notation Synchronize with FF Timing Allow Multiple Writers Maintenance Mode Max Warmstart Delay Energy Value Check Sales Order Number Calibration Retry on Failure Calibration Repeatability Check Metrology Type GC Id Identification Number Configuration Checksum at Lockout Current Configuration Checksum Checksum Update Time Purge Duration GC Mode	X X 00:02:00 X 726070-1 X 726070-1 X 00:02:00 X 726070-1 X 1 726070-1 X 1 00:02:00 X 726070-1 X 1 1 00:02:00 X 726070-1 X 1 1 00:02:00 X 726070-1 X 1 0 00:02:00 X 1:00:00 X 1:00:00 X 0:00:01 X 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01 0:00:01:00:01 0:00:01 0:00:01:00:01 0:00:01 0:00:01:00:01:00:01 0:00:01 0:00:01:00:01:00:01 0:00:01 0:00:01:00:01:00:01 0:00:01 0:00:01:00:01:00:01:00:01 0:00:01 0:00:01:00:0	

Der Bildschirm System bietet die folgenden Informationen, die für das gesetzliche Messwesen wichtig sind:

- 1. Firmware-Version, Datum und Prüfsumme
- 2. 32-Bit-Prüfsumme der GC-Konfiguration und die Uhrzeit, zu der sie das letzte Mal berechnet wurde
- 3. 32-Bit-Prüfsumme der GC-Konfiguration zum Zeitpunkt der Verriegelung des GC-Sicherheitsschalters
- 4. Schaltfläche "Update Checksum" (Prüfsumme aktualisieren), die verwendet werden kann, um die 32-Bit-Prüfsumme der GC-Konfiguration zu berechnen.

	Component	srst	Det #	Ret Time	Resp Fact	Calib Type	
				SEC			
1	C6+ 47/35/17	Std	1	0.0	1.0394e+08	Fixed	0
2	PROPANE	Std	1	0.0	0	Single-Level	0.
3	i-BUTANE	Std	1	0.0	0	Single-Level	0.
4	n-BUTANE	Std	1	0.0	0	Single-Level	0.
5	NEOPENTANE	Std	1	0.0	0	Single-Level	0
6	I-PENTANE	Std	1	0.0	0	Single-Level	0.
7	n-PENTANE	Std	1	0.0	0	Single-Level	0.
B	NITROGEN	Std	1	0.0	0	Single-Level	2,4
9	METHANE	Std	1	0.0	0	Single-Level	89
10	CARBON DIOXIDE	Std	1	0.0	0	Single-Level	0.
11	ETHANE	Std	1	0.0	0	Single-Level	5
12	n-NONANE	Std	2	0.0	0	Single-Level	0.
13	n-HEXANE	Std	2	0.0	0	Single-Level	0.
14	n-HEPTANE	Std	2	0.0	0	Single-Level	0.

Abbildung A-36: Der CDT-Bildschirm (Komponententabelle)

Abbildung A-37: Der Bildschirm TEV - Valve Events (Ventilereignisse)

	MOV	E MAI	IN	
	Туре	Valve/DO #	State	Time
				SEC
1	Valve #	4 - SSO 1	On	0.0
2	Valve #	5 - SSO 2	On	1.0
3	Valve #	2 - Dual Column	On	2.0
4	Valve #	1 - Sample/BF 1	On	5.0
5	Valve #	3 - Sample/BF 2	On	5.0
б	Strm Sw			11.0
7	Valve #	1 - Sample/BF 1	Off	22.0
8	Valve #	3 - Sample/BF 2	Off	29.0
9	Valve #	4 - SSO 1	Off	30.0
10	Valve #	5 - SSO 2	Off	30.0E
11	Valve #	2 - Dual Column	Off	42.1
12	Valve #	2 - Dual Column	On	137.0

MOVE		MAIN		Integration Events 1
Туре	Det #	Value	Time	
			SEC	
Inhibit	1	On	0.0	
Inhibit	2	On	0.0	
Slope Sens	1	48	2.0	
Peak Width	1	4	3.0	
Peak Width	2	8	3.0	
Slope Sens	2	20	4.0	
Inhibit	1	Off	28.0	
Inhibit	2	Off	31.5	
Inhibit	2	On	40.8	
Inhibit	1	On	42.0	
Inhibit	1	Off	47.0	
Inhibit	2	Off	67.0	
Summation	2	On	67.5	
Inhibit	1	On	93.0	
Peak Width	1	8	94.0	
Slope Sens	1	48	94.2	

Abbildung A-38: Der Bildschirm TEV - Integration Events (Integrationsereignisse)

Abbildung A-39: Der Bildschirm TEV - Spectrum Gain Events (Spektrumsverstärkungs-Ereignisse)

MOVE	MAIN	Analysis Time 1
Analysis Time	Cycle Time	
SEC	SEC	
290	300	

Abbildung A-40: Der Bildschirm TEV - Analysis Time (Analysezeit)

Abbildung A-41: Der Bildschirm Streams (Ströme)

Label	Det #	Usage	CDT	TEV	VDT	Auto	Total Runs	Avg Runs	
								1	
Stream 1	1	Analy	CDT_1	TEV_1					
Stream 2	1	Analy	CDT_1	TEV_1					
Stream 3	1	Analy	CDT_1	TEV_1					
Stream 4	1	Analy	CDT_1	TEV_1					
Stream 5	1	Analy	CDT_1	TEV_1					
Stream 6	1	Analy	CDT_1	TEV_1					
Stream 7	1	Cal	CDT_1	TEV_1		×	1	1	01-0
Stream 8	1	Validate	CDT_1	TEV_1	VDT_1	×	1	1	01-0

Stream:	1(Stream 1) Analy	ysis Start Time:	09/05/2014 04:11	L:08 PM
Rhon	0.7635	cg/m ³	C6+ 47/35/17	0.1041	%
Hs	39.3552 M	4J/m ³	Propane	1.0006	%
			i-Butane	0.2994	%
			n-Butane	0.3030	%
			Neopentane	0.0000	%
			i-Pentane	0.1000	%
			n-Pentane	0.1000	%
			Nitrogen	2.4941	%
			Methane	89.5989	%
			Carbon Dioxide	0.9997	%
			Ethane	5.0002	%

Der Bildschirm bietet folgende Informationen:

Die letzten Analyseergebnisse:

- 1. Stromnummer/-name
- 2. Startzeit der Analyse
- 3. Molprozent (%) aller Komponenten
- 4. Normale Dichte
- 5. Bruttobrennwert

Der Bildschirm bietet ebenso folgende GC-Informationen:

- 1. GC-Name
- 2. Aktueller Modus
- 3. Aktueller Strom
- 4. Nächster Strom
- 5. Laufzeit und Zykluszeit in Sekunden
- 6. Aktuelles Datum/Uhrzeit des GC
| bbildung A-44: Der | Bildschirm Ethernet F | Ports | |
|--------------------|-----------------------|----------------|------------|
| MOVE | MAIN | Ethernet Ports | \Diamond |
| Eth0 | Enable | | |
| Eth0 IP Address | 172.16.17.251 | | |
| Eth0 Mask | 255.255.255.0 | | |
| Eth1 | Disable | | |
| Eth1 IP Address | | | |
| Eth1 Mask | | | |
| Gateway | 172.16.17.1 | | |
| | | | |
| | | | |
| | | | |

A.4.4 Das Menü Logs/Reports (Protokolle/Berichte)

Das Menü *Logs/Reports (Protokolle/Berichte)* ermöglicht die Ansicht der verschiedenen Berichte, die vom GC verfügbar sind.

Siehe Abschnitt "Protokolldateien und Berichte" im *Benutzerhandbuch der MON2020-Software für Gaschromatographen* für detaillierte Informationen bezüglich der *Logs/Reports (Protokolle/Berichte)* Menüanzeigen.

Abbildung A-4	5: Das M	enü Logs/R	eports (Protok	olle/Be	erichte)		
			En	nerso	n LOI	¢	
Chromatogram	<u>H</u> ardware	Application	Logs/Reports (Maintenance Event Log Alarm Log Unack Alarms Active Alarms Report Displa H(S) Archive	Control Log s ay	Manage		

	MOVE	MAIN	Ma	aintenance Log	Ŷ
	User ID		Date		
1 DA 2 DA	ANIEL	02/26/2 02/26/2	2016 09:06:32 AM 2016 09:06:01 AM	Changed Cal Cyline Changed He Cyline	der Jer
					••

Abbildung A-46: Der Bildschirm Maintenance Log (Wartungsprotokoll)

Abbildung A-47:	Der Bildschirr	n Event Logs	(Ereignisprotokolle)
-----------------	----------------	--------------	----------------------

MOVE	MAIN		Event Logs	
User ID	Date	Time		
DANIEL	07/29/2009	11:46:59 AM	CC_1_LOI_STATUS_VAR_CON	F +
DANIEL	07/29/2009	11:46:59 AM	CC_1_LOI_STATUS_VAR_CON	F
DANIEL	07/29/2009	11:46:39 AM	CC_1_LOI_STATUS_VAR_CON	F
DANIEL	07/29/2009	11:46:39 AM	CC_1_LOI_STATUS_VAR_CON	F
DANIEL	07/29/2009	11:46:39 AM	CC_1_LOI_STATUS_VAR_CON	F
DANIEL	07/29/2009	11:46:39 AM	CC_1_LOI_STATUS_VAR_CON	F
DANIEL	07/29/2009	11:46:39 AM	CC_1_LOI_STATUS_VAR_CON	F
DANIEL	07/29/2009	11:46:39 AM	CC_1_LOI_STATUS_VAR_CON	F
DANIEL	07/29/2009	11:46:39 AM	CC_1_LOI_STATUS_VAR_CON	F
DANIEL	07/29/2009	11:46:39 AM	CC_1_LOI_STATUS_VAR_CON	F
DANIEL	07/29/2009	11:46:39 AM	CC_1_LOI_STATUS_VAR_CON	F
DANIEL	07/29/2009	11:41:38 AM	System Config.GC Location :	
DANIEL	07/29/2009	11:41:38 AM	System Config.System Desc	r
DANIEL	07/29/2009	11:31:38 AM	Single Stream Run Initiated	-
SYSTEMTASK	07/29/2009	11:16:08 AM	GC Restarted	
SYSTEMTASK	07/29/2009	11:16:08 AM	Power Failure	-
DANIEL	07/29/2009	10:47:58 AM	System Config.GC Mode : Ch	
	Щ		••	J

MOVE	MAIN	Alarm Logs 🔶
Date & Time	Name	Status
07/29/2009 11:47:59 A	M Detectors. Flame Status. TCD 2	CLR
07/29/2009 11:47:42 A	M Detectors. Flame Status. TCD 2	SET
07/29/2009 11:47:42 A	M Detectors.Flame Status.FID 1	CLR
07/29/2009 11:31:40 A	M GC Status.Cur State	CLR
07/29/2009 11:16:16 A	M Detectors. Flame Status. FID 1	SET
07/29/2009 11:16:16 A	M Detectors.Scaling Factor.TCD 2	SET
07/29/2009 11:16:16 A	M GC Status.Cur State	SET
07/29/2009 11:16:16 A	M LTLOI. Status, LOI Status	SET
07/29/2009 11:02:13 A	M Detectors. Flame Status. FID 1	SET
07/29/2009 11:02:13 A	M Detectors.Scaling Factor.TCD 2	SET
07/29/2009 11:02:13 A	M LTLOI.Status.LOI Status	SET
07/29/2009 11:02:13 A	M GC Status Cur State	SET
07/29/2009 10:07:43 A	M Detectors.Scaling Factor.TCD 2	SET
07/29/2009 10:07:43 A	M Detectors. Flame Status. FID 1	SET
07/29/2009 10:07:43 A	M GC Status.Warmup Status	SET
07/29/2009 10:07:43 A	M GC Status.Cur State	SET
07/29/2009 10:07:43 A	MITI OLStatus LOI Status	SFT
•		

Abbildung A-48: Der Bildschirm Alarm Logs (Alarmprotokolle)

Abbildung A-49: Der Bildschirm Unack Alarms (Unbestätigte Alarme)

	MOVE		MAIN	U	nack A	larms 📢	
Status	State	Date	e & Time	Name	Туре	Limit	Va
UnAc*	INACTIVE	07/29/200	9 11 47.59 AM	Detectors Flame			
UnAck	INACTIVE	07/29/200	9 11:47:42 AM	Detectors.Flame			
UnAck	INACTIVE	07/29/200	9 11:31:40 AM	GC Status.Cur State			
UnAck	ACTIVE	07/29/200	9 11:16:16 AM	LTLOI.Status.LOI Status			
UnAck	ACTIVE	07/29/200	9 11:16:16 AM	Detectors.Scaling	LOW	11.800000	0.00
•							() F
		1	Ack	Ack All			

	MO	VE	MAIN		Active	Alarms	<u>¢</u>
Status	State	Date	& Time	Name	Туре	Limit	Valu
Undex	ACTIVE	07/29/2009	11:16:16 AM	LTLOI Status LOI Statu	s		
UnAck	ACTIVE	07/29/2009	11:16:16 AM	Detectors.Scaling	LOW	11,800000	0.000
•					1		
		c	lear	Clear All			

Abbildung A-50: Der Bildschirm Active Alarms (Aktive Alarme)

M	OVE	MAIN		H _s Archive	\bigcirc
Date	Time	Stream	Hs		
04/28/2016	11:22:55 AM	2	38.9859		
04/28/2016	11:21:55 AM	2	38.9859		
04/28/2016	11:20:55 AM	2	38.9859		
04/28/2016	11:19:55 AM	2	38.9859		
04/28/2016	11:18:55 AM	2	38.9859		
04/28/2016	11:17:55 AN	2	38.9859		
04/28/2016	11:16:55 AM	2	38.9859		
04/28/2016	11:15:55 AM	2	38.9859		
04/28/2016	11:14:55 AM	2	38.9859		
04/28/2016	11:13:55 AM	2	38.9859		
04/28/2016	11:12:55 AM	2	38.9859		
04/28/2016	11:11:55 AM	2	38.9859		
04/28/2016	11:10:55 AM	2	38.9859		
04/28/2016	11:09:55 AN	2	38.9859		
04/28/2016	11:08:55 AM	2	38.9859		
04/28/2016	11:07:55 AM	2	38.9859		
04/28/2016	11:06:55 AN	2	38.9859		
	19 mm mm 44	a			

Abbildung A-52: Bildschirm CV_Archive

A.4.5 Das Menü Control (Steuerung)

Das Menü *Control (Steuerung)* ermöglicht das Stoppen, Kalibrieren oder die automatische Regelung eines Probenstroms vom Analysator.

Siehe Abschnitt "Control-Menü" im *Benutzerhandbuch der MON2020-Software für Gaschromatographen* für detaillierte Informationen bezüglich der *Control (Steuerung)* Menüanzeigen.

Chromatogram Hardware Application Logs/Reports Control Manage Auto Sequence Single Stream Halt Calibration
Chromatogram Hardware Application Logs/Reports Control Manage Auto Sequence Single Stream Halt Calibration
Calibration
Validation

SELECT MAIN Emerson LOI Chromatogram Hardware Application Logs/Reports Control Manage
Chromatogram Hardware Application Logs/Reports Control Manage
Start Single Stream Analysis - D1
Stream: Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Ctroam 7 Purge Stream for 60 seconds Continuous operation

Abbildung A-56: Der Bildschirm Halt (Anhalten)

Abbildung A-57	: Der Bil	dschirm Ca	libration (Kal	ibrierun	g)		
SELEC	т	MAIN		Emers	on LOI	¢.	
Ch <u>r</u> omatogram	<u>H</u> ardware	<u>Application</u>	Logs/Reports	<u>C</u> ontrol	<u>M</u> anage		
		Star	rt Calibration - I	01 🌔			
	Stream	1:					
Strea X Pur C		n 7 ge Stream for Hibration Type Normal	60 seconds e For	ced			

Abbildung A-58: Der Bildschirm Validation (Validierung)

Start Validation - D1					
Stream: Stream 8 Purge Stream for 60 seconds		Sta	art Validation -	D1 🔶	
R Purge Stream for 60 seconds	Stream	n 8			
Purge Stream for 60 seconds					
	🕱 Purg	je Stream for	60 seconds		

A.4.6 Das Menü Manage (Verwalten)

Das Menü *Manage (Verwalten)* ermöglicht die Änderung der Bedieninterface-Einstellungen und des Benutzer-Kennworts. In diesem Menü können Sie sich ebenso von dem verbundenen GC abmelden.

Siehe Abschnitt "Das Menü Manage" im *Benutzerhandbuch der MON2020-Software für Gaschromatographen* für detaillierte Informationen bezüglich der *Manage (Verwalten)* Menüanzeigen.

EXECUTE MAIN LOI Settings
Brightness :
Up Down
Boost :
Up Down
Prompt to confirm save changes

Abbildung A-62: Der Bildschirm Change PIN (PIN ändern)

EDIT MAIN	Change PIN	¢
User	DANIEL	
Old PIN]
New PIN		
Confirm New PIN		

On board temperature		47 DegC	-
Board Revision	2	3	
Firmware Revision	~	0.0,2	
2. Heater Solenoid [SLOT_2] Diagnos	tic details		
System 3.3V Input	÷	3.27925 V	
System 5V Input	-	4.93401 V	
On board temperature	÷.	24.7 DegC	
Board Revision	-	2	
Firmware Revision		1.0.6	
3. Base IO [SLOT_BASE_IO] Diagnosti	c details :		
System 3.3V Input		3.28934 V	
System 5V Input	-	4.93401 V	
System 24 Volt	-	23.2947 V	
System 24 Volt Current Dr.	awn-	0.474 A	
On board temperature	6	42.2 DegC	
FID Sense voltage	÷1	0.921 V	
Board Revision	187	3	
Firmware Revision	-	1.0.8	

Abbildung A-63: Der Bildschirm Diagnostics (Diagnose)

A.5 Bedieninterface-Sicherheitsschalter setzen

Der Bedieninterface-Sicherheitsschalter wird gesetzt, um die Messeinstellungen des 770XA Gaschromatographen vor ungewollter oder unbeabsichtigter Änderung zu schützen.

Der Sicherheitsschalter befindet sich auf der Rückseite der Platine des Bedieninterface (LOI-Platine). Dieser einfache Schalter mit zwei Schaltstellungen kann entweder in die verriegelte oder in die entriegelte Position gesetzt werden. Der Schalter befindet sich am unteren Rand auf der Rückseite der LOI-Platine.

Abbildung A-64: Sicherheitsschalter auf der LOI-Platine

Der Gaschromatograph wird ab Werk mit dem Sicherheitsschalter in der entriegelten Position ausgeliefert. In der entriegelten Position können durch autorisierte Benutzer Änderungen vorgenommen werden. Wenn der GC bereit ist, in den Modus für gesetzliches Messwesen zu wechseln, sollte der Sicherheitsschalter in die verriegelte Position geschaltet und verplombt werden.

So ändern Sie die Position des Sicherheitsschalters:

1. Schalten Sie den GC aus.

WARNUNG!

Stellen Sie sicher, dass das Gerät von der Spannungsversorgung getrennt wurde, bevor Sie die Frontabdeckung öffnen. Ein Nichteinhalten dieses Verfahrens kann zu Personenschäden führen.

- 2. Öffnen Sie die Frontabdeckung des GC.
- 3. Entfernen Sie die LOI-Platine vorsichtig von den Abstandshaltern, auf denen sie montiert ist.
- 4. Drehen Sie die Platine um und lokalisieren Sie den Sicherheitsschalter. Der Schalter befindet sich unten auf der LOI-Platine.
- 5. Ändern Sie die Schalterposition um das Bedieninterface (LOI) zu sperren.
- 6. Installieren Sie die LOI-Platine erneut auf den Abstandshaltern.
- 7. Bringen Sie die Frontabdeckung wieder auf dem 770XA Gaschromatographen an.
- Schalten Sie den 770XA GC ein.
 Nach der Initialisierung des GC zeigen alle Bildschirme auf dem Bedieninterface (LOI) ein "Schloss"-Symbol (verriegelt). Siehe nachstehende Abbildung (Schloss oben rechts).

Abbildung A-65: Bedieninterface-Bildschirm PTB-approved Values (PTB-zugelassene Werte) – gesperrt

0.7645 kg/m ³ 39.3153 MJ/m ³	C6+ 47/35/17	0.0295 %
39.3153 MJ/m ³		
	Propane	0.9900 %
	i-Butane	0.2910 %
	n-Butane	0.2890 %
	Neopentane	0.1010 %
	i-Pentane	0.0970 %
	n-Pentane	0.0970 %
	Nitrogen	2.5000 %
	Methane	89.6155 %
	Carbon Dioxide	1.0000 %
	Ethane	4.9900 %
		n-Butane n-Butane Neopentane i-Pentane n-Pentane Nitrogen Methane Carbon Dioxide Ethane

Hinweis

Wenn sich der Sicherheitsschalter in der verriegelten Position befindet, können nur begrenzt Änderungen vorgenommen werden. Siehe *Abschnitt B.1* bzgl. der Einzelheiten für zulässige Änderungen.

9. Bereiten Sie den 770XA GC auf die Verplombung vor. Siehe *Abschnitt A.6*.

A.6 Verplombung des 770XA Gaschromatographen

Der Gaschromatograph 770XA muss verplombt werden, um unberechtigte Änderungen zu verhindern.

Verwenden Sie das folgende Verfahren, um eine manipulationssichere Verplombung des Gaschromatographen 770XA zu erreichen.

Abbildung A-66: Versiegelung des Gaschromatographen

- A. Versiegelung des Schraubdeckels über der Hauptanzeige
- B. Versiegelung des Domdeckels
- C. Versiegelung des Seitendeckels

Verwenden Sie eichamtlich zugelassene Klebesiegel, um den Gaschromatographen an den drei in der Abbildung A-66 gezeigten Stellen manipulationssicher zu versiegeln.

A.7 Fehlersuche und -beseitigung bei einem leeren Bedieninterface-Bildschirm

- 1. Lösen Sie die Schrauben und entfernen Sie das Bedieninterface vom GC.
- 2. Drehen Sie das Bedieninterface, um das Motherboard und die zugehörige Elektronik freizulegen.

Abbildung A-67: Steckbrücken an J105 auf dem Motherboard des Bedieninterface

3. Prüfen Sie die Steckbrücken, die sich an J105 auf dem Motherboard befinden. Diese Steckbrücken steuern die Spannungsversorgung des Bildschirms. Um ordnungsgemäß zu funktionieren, muss eine Steckbrücke die Pins 3 und 4 verbinden. Ist das nicht der Fall, stellen Sie diese Verbindung her.

Bleibt der Bildschirm immer noch leer, setzen Sie sich mit dem Kundendienst in Verbindung.

Anhang B: Konformität des 770XA mit WELMEC

B.1 770XA

B

Konformität mit WELMEC 7.2 Ausgabe 4

Dieses Dokument beschreibt die Konformität des Rosemount Analytical Gaschromatographen 770XA mit den Anforderungen, die in WELMEC 7.2 Ausgabe 4 festgelegt sind.

B.2 Basiskonfiguration

Der Gaschromatograph 770XA ist ein für einen bestimmten Zweck gefertigtes Messinstrument des Typs P. Das Messinstrument zeichnet sich durch folgende Eigenschaften aus:

- Das Instrument verfügt über einen eingebetteten Prozessor mit einer Anwendungs-Firmware, der speziell für Messungen von Gaszusammensetzungen und anderen physikalischen Eigenschaften von Gasen entwickelt wurde.
- Der Gaschromatograph hat keine universell einsetzbare Firmware, und die Firmware kann nicht für andere Verwendungen umfunktioniert werden.
- Das Betriebssystem des Geräts wird ausschließlich für die Initialisierung der Hardware verwendet. Es arbeitet mit der Anwendungs-Firmware zusammen und dient zum Starten der Anwendungs-Firmware beim Einschaltvorgang. Das Gerät bietet dem Endbenutzer keine Betriebssystem-Konsole.
- Die Anwendungs-Firmware des Geräts ist auf die Typenzulassung festgelegt und kann vom Endbenutzer nicht geändert werden.
- Es besteht keine Möglichkeit, die Firmware zu programmieren, während sich diese in der Betriebsart für gesetzliches Messwesen befindet (Sicherheitsschalter in verriegelter Position und Gehäuse verplombt).

B.3 Erweiterungen

Zutreffende IT-Konfigurationen

- Erweiterung L (Langzeitspeicherung von Daten)
- Erweiterung T (Übertragung von Messergebnissen)

Nicht zutreffende IT-Konfigurationen

- Erweiterung S (Software-Trennung) Software-Trennung ist in der Firmware des Geräts nicht implementiert.
- Erweiterung D (Software-Download) Wenn sich das Gerät im Modus für das gesetzliche Messwesen (Sicherheitsschalter in der verriegelten Position und Gehäuse verplombt) befindet, kann die Firmware des Geräts nicht modifiziert werden.

Gerätespezifische Softwareanforderungen

Gerätespezifische Softwareanforderungen treffen nicht zu, da ein Gaschromatograph nicht mit den in der Richtlinie bestehenden Klassifizierungen für Instrumente konform ist.

B.4 Konformität mit den Anforderungen des Typs P

Tabelle B-1:	Konformität	mit den	Anforderungen	des ⁻	Typs P
--------------	-------------	---------	---------------	------------------	--------

Kennung	Name	Beschreibung
P1	Dokumentation	Detaillierte Funktionen des Bedieninterface und Betriebsanweisungen sind im System- und Referenzhandbuch zu finden.
Ρ2	Software-Kennzeichnung	 Die Firmware des Geräts wird eindeutig durch drei Teilbereiche gekennzeichnet: 1. Version 2. Build Datum 3. 32-Bit-Prüfsumme Beispiel: 2.1.1, 2014/06/19, 0x91a60323 - Die Version und das Build Datum sind in der Firmware selbst integriert. Die 32-Bit-Prüfsumme der Firmware wird unter Verwendung der gesamten Firmware-Datei generiert. Die Prüfsumme ändert sich, wenn Änderungen an der Firmware vorgenommen werden. Auf die Firmware-Version kann über das Bedieninterface zugegriffen werden. 1. Gehen Sie zum Hauptmenü. 2. Öffnen Sie den Bildschirm "System" über Application -> System (Anwendung > System). 3. Das Feld "Firmware Version" zeigt die "Software Identification" (Software-Kennzeichnung).
Р3	Einfluss über das Bedieninterface	 Wenn sich das Gerät im Modus für gesetzliches Messwesen (Sicherheitsschalter in der verriegelten Position und Gehäuse verplombt) befindet, können über das Bedieninterface nur begrenzt Änderungen am Gerät vorgenommen werden. Die folgenden Änderungen werden zugelassen: Clear Unacknowledged Alarms (Unbestätigte Alarme löschen) Start Auto Sequence (Auto-Sequenzierung starten) Start Single Stream Analysis (Einzelstrom-Analyse starten) Start Calibration (es wird nur das Starten von normalen Kalibrierungen zugelassen; erzwungene Kalibrierungen werden nicht zugelassen) Start Validation (Validierung starten) Halt Analysis (Analyse anhalten) Wenn sich das Gerät im Modus für gesetzliches Messwesen (Sicherheits- schalter in der verriegelten Position und Gehäuse verplombt) befindet, werden folgende Maßnahmen nicht zugelassen: Konfigurationsänderungen (wie z. B. Ventilsteuerung, Integrationsereignisse, Komponenten, Stromzuweisung usw.) Zurücksetzen von archivierten Ergebnissen und Protokollen

Kennung	Name	Beschreibung
P4	Einfluss über die Kommunikationsschnitt- stelle	 Wenn sich das Gerät im Modus für gesetzliches Messwesen (Sicherheitsschalter in der verriegelten Position und Gehäuse verplombt) befindet, können über die serielle oder TCP Modbus- Schnittstelle nur begrenzt Änderungen am Gerät durchgeführt werden. Die folgenden Änderungen werden zugelassen: Update Date/Time (Datum/Uhrzeit aktualisieren) Clear Unacknowledged Alarms (Unbestätigte Alarme löschen) Reset New Data Flags (Neue Daten-Flags zurücksetzen – wird für das "Handshaking" mit einem Modbus-Master verwendet) Start Auto Sequence (Auto-Sequenzierung starten) Start Single Stream Analysis (Einzelstrom-Analyse starten) Start Calibration (es wird nur das Starten von normalen Kalibrierungen zugelassen; erzwungene Kalibrierungen werden nicht zugelassen) Start Validation (Validierung starten) Halt Analysis (Analyse anhalten)
Р5	Schutz gegen unbeabsichtigte	 a. Hait Analysis (Analyse annalten) Es gibt zwei Mechanismen für die Erkennung von unbeabsichtigten Änderungen:
	Anderungen	 ROM Checksum Validation (ROM - Prüfsummenvalidierung) – Die Prüfsumme der Firmware wird in periodischen Abständen neu berechnet. Wenn die berechnete Prüfsumme vom ursprünglichen Wert abweicht, wird der Alarm "ROM Checksum Failure" (ROM- Prüfsummenfehler) ausgelöst. Configuration Checksum Validation (Validierung der Konfigurations-Prüfsumme) Die Configuration Data Checksum (Konfigurations- Datenprüfsumme) wird berechnet und in der Geräte- Datenbank zwischengespeichert, wenn sich der
		Sicherheitsschalter in der verriegelten Position befindet. Anschließend berechnet das Gerät die Configuration Checksum (Konfigurations-Prüfsumme) in regelmäßigen Abständen neu. Über das Bedieninterface kann auf die Configuration Checksum at Lockout (Konfigurations- Prüfsumme bei Sperrung) und auf die Current Configuration Checksum (Aktuelle Konfigurations-Prüfsumme – sowie den Datums-/Zeitstempel, wann diese generiert wurde) zugegriffen werden.
		 a. Gehen Sie zum Hauptmenü. b. Öffnen Sie den Bildschirm "System" über Application -> System (Anwendung > System).
		 c. Die Spalten Configuration Checksum at Lockout (Konfigurations-Prüfsumme bei Sperrung), Current Configuration Checksum (Aktuelle Konfigurations- Prüfsumme) und Checksum Update Time (Prüfsummen- Aktualisierungszeit) stellen den Bediener die notwendigen Informationen bereit, um bestätigen zu können, ob unbeabsichtigte Änderungen vorgenommen wurden. b. Bei Bedarf kann der Bediener über das Bedieninterface eine
		Neu- berechnung der Konfigurations-Prüfsumme anfordern.

Tabelle B-1: Konformität mit den Anforderungen des Typs P (Fortsetzung)

Kennung	Name	Beschreibung
P6	Schutz gegen beabsichtigte Änderungen	Das Gerät ist mit einem Originalitätssiegel verschlossen, sodass keine beabsichtigten Änderungen an der Hardware vorgenommen werden können.
Ρ7	Parameter-Schutz	 Parameter werden durch drei Regelungen geschützt: Wenn sich der Sicherheitsschalter in der verriegelten Position befindet, wird nur ein begrenzter Satz an zugelassenen Maßnahmen erlaubt.
		2. Das Gerät pflegt eine Protokolldatei der Parameteränderungen - jegliche Änderungen werden protokolliert.
		 Die Funktion "Configuration Checksum Validation" (Validierung der Konfigurations-Pr üfsumme) stellt sicher, dass Änderungen sofort erkannt werden.

Tabelle B-1: Konformität mit den Anforderungen des Typs P (Fortsetzung)

B.5 Konformität mit den Anforderungen des Typs L

Kennung	Name	Beschreibung
L1	Vollständigkeit der gespeicherten Messdaten	Das Gerät archiviert Analyseberichte, sodass diese zu einem späteren Zeitpunkt abgerufen werden können. Gaszusammensetzung, Heizwert, Kompressibilität und Wobbe werden für jeden dieser Analyseeinträge zusammen mit Angaben zur Identifizierung, wie z. B. eine einzigartige 32-Bit-Sequenz-Nummer, Datums-/Zeitstempel der Probeninjektion und der Strom, der mit dem Ergebnis assoziiert ist, gespeichert. Alarme werden in einem Alarmprotokoll-Ringspeicher gespeichert. Neuere Alarme führen dazu, dass der älteste Alarm gelöscht wird. Bei der Änderung der aktuellen Betriebsart wird ein Ereignis in einem Ereignisprotokoll-Ringspeicher aufgezeichnet. Neuere Ereignisse führen dazu, dass das älteste Ereignis gelöscht wird. Der Alarm- und auch der Ereignisprotokoll-Ringspeicher verfügen über 1.000 Slots. Außerdem werden Gerätekalibrierungs- und Validierungsberichte gespeichert, die zu einem späteren Zeitpunkt abgerufen werden können. Diese Einträge werden ebenfalls mit Identifizierungsangaben gespeichert, wie z. B. eine einzigartige 32-Bit-Sequenznummer, Datums- /Zeitstempel der Probeninjektion und die Strom-Nr., für welche die Kalibrierung/Validierung ausgeführt wurde.
L2	Schutz gegen unbeabsichtigte Änderungen	Die folgenden Mechanismen sind vorgesehen: Archivierte Ergebnisse, Ereignisprotokolle und Alarmprotokolle werden zusammen mit einer CRC16-Prüfsumme als Einträge in der Geräte- Datenbank gespeichert. Beim Abruf der Daten wird die Prüfsumme neu berechnet und die gespeicherte Prüfsumme wird mit der berechneten verglichen. Wenn diese beiden Prüfsummen nicht übereinstimmen, wird der Alarm "Stored Data Integrity Failure" (Integritätsfehler der gespeicherten Daten) ausgelöst. Die Geräte-Datenbank löscht die ältesten Daten automatisch, um Platz für neue Daten zu schaffen.

Kennung	Name	Beschreibung
L3	Datenintegrität	Wenn sich das Gerät in der Betriebsart für gesetzliches Messwesen befindet (Sicherheitsschalter in der verriegelten Position und verplombtes Gehäuse), können Benutzer keine Analyseergebnisse zurückzusetzen und/oder Alarm-/ Ereignisprotokolle auf der Benutzeroberfläche löschen.
L4	Echtheit der gespeicherten Messdaten	Jeder Dateneintrag wird zusammen mit einer einzigartigen Sequenznummer im Gerät gespeichert. Mit dem Datums-/Zeitstempel eines Dateneintrags kann der Bericht/das Ergebnis wieder hergestellt werden, vorausgesetzt, die automatische Speicherbereinigung hat es noch nicht gelöscht (da es zu alt war).
L5	Vertraulichkeit der Schlüssel	In diesem Instrument werden keine geheimen Schlüssel verwendet.
L6	Abrufen von gespeicherten Daten	Der Alarm "Stored Data Integrity Failure" (Integritätsfehler der gespeicherten Daten) wird erzeugt, wenn ein Problem mit der Integrität der gespeicherten Daten vorliegt.
L7	Automatisches Speichern	Ergebnisse werden automatisch am Ende jedes Analyse-/Kalibrier- /Validierungszyklus gespeichert. Für das Speichern ist kein Eingriff durch den Benutzer erforderlich.
L8	Speicherkapazität und - kontinuität	Das Gerät verfügt über die in Tabelle B-2 aufgeführte Speicherkapazität.

Tabelle B-2: Speicherkapazität

Тур	Anzahl der Einträge	Anmerkungen
Analyseergebnisse	31.744	88 Tage bei einer Zykluszeit von 4 Minuten
Endgültige Kalibrierergebnisse	370	Endgültige Kalibrierergebnisse von einem Jahr
Endgültige Validierungsergebnisse	370	Endgültige Validierungsergebnisse von einem Jahr
Stündliche Durchschnittswerte (bis zu 256 Variablen)	2.400	100 Tage
Tägliche Durchschnittswerte (bis zu 256 Variablen)	365	1 Jahr
Wöchentliche Durchschnittswerte (bis zu 256 Variablen)	58	1 Jahr
Monatliche Durchschnittswerte (bis zu 256 Variablen)	12	1 Jahr
Variable Durchschnittswerte (bis zu 256 Variablen)	2.360	
Jeder Lauf (bis zu 256 Variablen)	2.360	
Alarmprotokolle	1.000	
Ereignisprotokolle	1.000	
Brennwert-Archiv	265.320	2 Jahre und 1 Woche Brennwertergebnisse bei einer Zykluszeit von 4 Minuten.

B.6 Konformität mit den Anforderungen des Typs T

Im Gerät ist eine Modbus Slave-Geräteschnittstelle implementiert, um den Datenzugriff auf Master-Geräte zu ermöglichen, die Messdaten benötigen. Die folgenden Schnittstellen werden unterstützt:

- Serielle Modbus-Schnittstelle über RS232, RS422 und RS485
- Modbus TCP/IP über kabelgebundenes Ethernet

Kennung	Name	Beschreibung			
Τ1	Vollständigkeit der übertragenen Daten	 Es können komplette Mess-Datensätze vom Gerät zu einem Modbus Master-Gerät übertragen werden. Die folgenden Informationen können vom Gerät über Modbus abgefragt werden: Messergebnisse (Gaszusammensetzung, Brennwert, Wobbe- Index, Kompressibilität) Datums-/Zeitstempel für die Messung Software-Kennzeichnung (Firmware-Version, ROM- Prüfsumme) 			
		4. Gerätekennzeichnung (Identifizierungs-Nr., Site-ID)			
Τ2	Schutz gegen unbeabsichtigte Änderungen	Als Teil jedes seriellen Modbus-Paketes ist ein 16-Bit-CRC verfügbar. Der Empfänger kann den CRC-Wert überprüfen, um sicherzustellen, dass die empfangenen Daten gültig sind. Das Übertragungsprotokoll für Modbus TCP/IP umfasst eine CRC- Überprüfung, um sicherzustellen, dass die Pakete nicht beschädigt sind.			
Т3	Datenintegrität	Dies trifft nicht zu. Das Instrument ist in einem geschlossenen Netzwerk installiert, in dem alle Geräte dem gesetzlichen Messwesen unterliegen.			
Τ4	Echtheit der Übertragungsdaten	Dies trifft nicht zu. Das Instrument ist in einem geschlossenen Netzwerk installiert, in dem alle Geräte dem gesetzlichen Messwesen unterliegen.			
Т5	Vertraulichkeit der Schlüssel	In diesem Gerät werden keine geheimen Schlüssel verwendet.			
Т6	Handhabung von beschädigten Daten	Der CRC-Wert für eingehende serielle Modbus-Anfragen wird überprüft und die Anfrage wird ignoriert, wenn der CRC-Wert nicht übereinstimmt.			
Т7	Übertragungsverzögerung	Dies trifft nicht zu. Das Instrument arbeitet unabhängig und benötigt für den Betrieb keine Eingangsparameter von einem externen Gerät. Darüber hinaus hat es keine Schnittstelle für das Master-Gerät und fragt deshalb keine anderen Geräte ab.			
Т8	Verfügbarkeit von Übertragungsdiensten	Dies trifft nicht zu. Das Instrument arbeitet unabhängig und setzt den Betrieb auch dann fort, wenn keine Kommunikationsschnittstelle verfügbar ist. Das Gerät speichert Daten mehrerer Monate und kann Master-Geräten gespeicherte Daten bereitstellen, sobald die Kommunikationsschnittstellen wiederhergestellt sind.			

C Anhang C: 770XA GC-Berechnungen

C.1 Gaschromatograph-Berechnungen

Idealgas-Brennwerte

Die Brennwerte des Gasgemischs werden, abhängig von den durch den Parameter CV Units ausgewählten Brennwerteinheiten, auf Molbasis, Massebasis oder Volumenbasis berechnet. Die Brennwerte werden, abhängig vom Parameter CV Table, bei Verbrennungstemperatur von entweder 0 °C, 15 °C, 20 °C oder 25 °C berechnet. Die Heizwerte für die individuellen Komponenten werden ISO 6976:2016, Tabelle 3, entnommen, unter Verwendung der Werte für die gewählte Verbrennungstemperatur.

C.1.1 ISO 6976-Berechnungen

Die Berechnung der Gaseigenschaften wird mittels einer auf Mol, Masse oder Volumen basierenden Berechnung des Brennwerts gemäß ISO 6976:2016 vorgenommen. Die Verbrennungs-Referenztemperatur kann 0, 15, 20 oder 25 °C betragen. Die Mess-Referenztemperatur kann 0, 15 oder 20 °C betragen.

C.1.2 Idealgas-Brennwerte

Die Brennwerte des Gasgemischs werden, abhängig von den durch den Parameter CV Units ausgewählten Brennwerteinheiten, auf Molbasis, Massebasis oder Volumenbasis berechnet. Die Brennwerte werden, abhängig vom Parameter CV Table, bei einer Verbrennungstemperatur von entweder 0 °C, 15 °C, 20 °C oder 25 °C berechnet. Die Heizwerte für die individuellen Komponenten werden ISO 6976:2016, Tabelle 3, entnommen, unter Verwendung der Werte für die gewählte Verbrennungstemperatur.

C.1.3 Molbasis:

CV Units = MJ_per_mol. (MJ/Mol)

Ref. ISO 6976:2016, Abschnitt 5.1, Gleichung (4).

HSUP-Dry(Mol) =

$${}_{1}^{n}\Sigma(CONCN_{j}^{*}H_{j})^{*}\frac{1}{100}^{*}$$

CONCN_i = Normalisierte (wenn ausgewählt) Konzentration der Komponente "j", in Mol%.

 H_j = Heizwerte entsprechend ISO 6976 Tabelle 3, in kJ/Mol.

n = Gesamtanzahl der Gas-Komponenten.

"100" wandelt Molprozent in Mol-Fraktionen um. "1000" wandelt kJ/Mol in MJ/Mol um.

C.1.4 Massebasis:

CVUnits = MJ_per_kg (MJ/kg)

Ref. ISO 6976:2016, Abschnitt 6.1, Gleichung (5).

HSUP-Dry(Masse) = 1000 * HSUP-Dry(Mol) / M in MJ/kg

wobei:

HSUP-Dry(Masse) = höchster trockener Idealgas-Brennwert der Gasprobe, in MJ/kg. "1000" wandelt MJ/Mol in kJ/Mol um.

M = Molmasse des Gemischs =
$$1/100 \times \sum_{j=1}^{N} (CONCN_j \times M_j)$$

M_j = die Molmasse der Komponente j gemäß ISO 6976:2016 Tabelle 1.

C.1.5 Volumenbasis:

CVUnits = MJ_per_m3 (MJ/m3)

- ODER kJ_per_m3 (kJ/m3)
- ODER kCal_per_m3 (kCalories/m3)
- ODER kWhr_per_m3 (kWh/m3)

Ref. ISO 6976:2016, Abschnitt 7.1, Gleichung (8).

Die Mess-Referenztemperatur wird durch den Parameter CV Table spezifiziert. Der Mess-Differenzdruck beträgt 1,01325 bar

HSUP-Dry(Volumen) = 1000 * Faktor * HSUP-Dry(Mol) * p2/(R*T2) CV Units

wobei:

HSUP-Dry(Volumen) = höchster trockener Idealgas-Brennwert der Gasprobe in den durch

CV Units ausgewählten Einheiten.

"1000" wandelt MJ/Mol in kJ/Mol um.

p2 = Mess-Differenzdruck = 101,325 kPa

R = universelle Gas-Konstante = 8,314510 J.mol/K (ISO 6976:2016, B.1) T2 = Mess-Referenztemperatur in Grad Kelvin

Der Faktor wandelt von Mj/m3 in die benötigten Einheiten um:

- Wenn CVUnits = MJ_per_m3 Faktor = 1
- Wenn CVUnits = kJ_per_m3 Faktor = 1000.
- Wenn CVUnits = Kcal_per_m3 Faktor = 238,8459
- Wenn CVUnits = KWHr_per_m3 Faktor = 0,2777778

Anmerkung

Die niedrigsten Brennwerte werden auf dieselbe Weise berechnet (mit der Ausnahme, dass die niedrigsten Brennwerte von der ISO-Tabelle 3 verwendet werden).

C.1.6 Ideale relative Gasdichte

Ref ISO 6976:2016, Abschnitt 8.1, Gleichung (11).

Ideale relative Dichte =
$$1/100 \times 1/M_{air} \times \sum CONC_j \times M_j$$

j=1

wobei:

M_{Luft} = Molmasse von trockener Standardluft = 28,9626 kg/kmol

C.1.7 Relative Realgas-Dichte

Ref. ISO 6976:2016, Abschnitt 8.2, Gleichung (14). Die relative Dichte von Realgas wird wie folgt berechnet:

D = ideale relative Dichte * ($Z_{Luft}/Z_{Gemisch}$)

wobei:

Z_{Luft} = Kompressibilitätsfaktor von trockener Standardluft bei der ausgewählten Mess-Referenztemperatur – 1,01325 bar.

- Bei einer Messtemperatur von 0 °C Z_{Luft} = 0,99941
- Bei einer Messtemperatur von 15 °C Z_{Luft} = 0,99958
- Bei einer Messtemperatur von 20 °C Z_{Luft} = 0,99963

Z_{Gemisch} = Kompressibilitätsfaktor der Gasprobe bei der ausgewählten Mess-Referenztemperatur – 1,01325 bar (wie im nächsten Abschnitt berechnet).

C.1.8 Kompressibilität

Ref. ISO 6976:2016, Abschnitt 4.2, Gleichung (3).

Der Kompressibilitätsfaktor Z_{Gemisch} wird bei der ausgewählten Mess-Referenztemperatur berechnet – 1,01325 bar.

 $Z_{Gemisch} = 1 - (x_1 Tb_1 + x_2 Tb_2 + x_3 Tb_3 + ...x_n Tb_n)^2$ wobei:

Z_{Gemisch} = Kompressibilität der gesamten Gasprobe

Tb1, Tb2, ... Tb_n = Summierungsfaktoren für jede Komponente, entnommen aus ISO 6976:2016, Tabelle 2, unter Verwendung der Werte für die ausgewählte Mess-Referenztemperatur – 1,01325 bar.

C.1.9 Trockene Realgas-Brennwerte

Ref. ISO 6976:2016, Abschnitt 7.2, Gleichung (10).

Die Idealgas-Werte für CV und Dichte müssen auf Realgas-Werte berichtigt werden.

Wenn der Brennwert auf Mol- oder Massebasis berechnet wird, ist keine Korrektur erforderlich.

Bei der Auswahl von volumetrischen Einheiten werden die Brennwerte wie folgt berichtigt:

CV Realgas = CV Idealgas / $Z_{Gemisch}$

C.1.10 Gesättigte Realgas-Brennwerte

Die Brennwerte bei einer mit Wasser gesättigten Gas-Basis werden, gemäß der Gleichung F.2 (außer Volumeneffekt) in ISO6976:2016, aus den trockenen Brennwerten berechnet. Die in Abschnitt F.3 und F.4 beschriebenen Sekundäreffekte werden ignoriert.

CORR. HSUP SAT (gesättigt) = CORR. HSUP DRY (trocken)* (p2 - pw) / p2.

wobei:

p2 = Mess-Differenzdruck = 1,01325 bar

pw = Sättigungsdampfdruck von Wasser bei der ausgewählten Mess-Referenztemperatur.

- Bei einer Mess-Referenztemperatur von 0 °C (p2-pw)/p2 = 0,99397
- Bei einer Mess-Referenztemperatur von 15 °C (p2-pw)/p2 = 0,98317
- Bei einer Mess-Referenztemperatur von 20 °C (p2-pw)/p2 = 0,97693

C.1.11 Wobbe-Index

Der Wobbe-Index des Probengases wird gemäß ISO6976:2016 Abschnitt 8.2, Gleichung (16) berechnet. Die für die Berechnung des Wobbe-Index verwendeten Referenztemperaturen sind diejenigen, die durch den Parameter CV Table definiert werden.

Die Einheiten sind dieselben, wie die, die für den Brennwert (CV Units) ausgewählt wurden.

WOBBE-Index =

Corrected H (Gross) (Real Relative Density)^{1/2} CVUnits

Der niedrigste Wobbe-Index wird ebenso wie oben aufgeführt berechnet (mit der Ausnahme, dass bei dieser Berechnung der niedrigste Brennwert verwendet wird).

C.1.12 Gewichtsprozent-Berechnung

WT%n = CONCn * MWn / SUMk

wobei:

WT%_n = Gewicht-% der Komponente "n".

CONC_n = Konzentration (in Mol-%) der Komponente "n".

 MW_n = Molekulargewicht der Komponente "n".

 $\sum_{i=1}^{\infty} (CONC_i)(MW_i)$ (Summe der Gewichte aller Komponenten in der Probe)

D Anhang D: Software-Architektur

D.1 Software-Architektur – Übersicht

Die 770XA Analysator-Software ist auf zwei Platinen implementiert – XA CPU-Hauptplatine (CPU) und Bedieninterface (LOI - Local Operator Interface).

D.2 CPU

Die CPU-Platine läuft mit einem Linux-Betriebssystem. Das Betriebssystem initialisiert die verschiedenen Hardware-Komponenten auf der Platine und startet die Anwendungs-Firmware. Die Anwendungs-Firmware führt Folgendes aus:

- 1. Speichern/Abrufen der Anwendungskonfiguration (wie z. B. zeitgesteuerte Ereignisse, Komponentendaten-Tabellen, Strom- und Ventilkonfiguration)
- 2. Ausführen von Analysen:
 - a. Ein-/Ausschalten von Magnetventilen gemäß den Tabellen für zeitgesteuerte Ereignisse
 - b. Auslesen der Detektor-Rohdaten von den TCD/FID/FPD-Detektoren
 - c. Verwendung der Ereignisse in den Integrationstabellen zeitgesteuerter Ereignisse, um Peaks von Detektor-Rohdaten zu erkennen
 - d. Zuweisung von Peaks zu Komponenten basierend auf deren Retentionszeiten
 - e. Berechnung des Molprozent f
 ür jede Komponente und des Heizwerts des Gases (zus
 ätzlich zu verschiedenen anderen Komponenten- und Stromresultaten) basierend auf den Peakfl
 ächen.
- 3. Verwaltung der Strom-Sequenzierung
 - a. Ausführung von normalen Analysen (entweder an einem Einzelstrom oder an einer

Stromsequenz)

- b. Kalibrierung des Analysators in festgelegten Abständen.
- c. Validierung des Analysator-Betriebs in festgelegten Abständen (falls konfiguriert).
- 4. Überwachung auf Alarmbedingungen und Protokollierung von Alarmen, die in einem Alarmprotokoll-Ringspeicher aktiv/inaktiv werden.
- 5. Speicherung von Analyseergebnissen in einem Analyseergebnis-Ringspeicher und von Chromatogrammen in einem Chromatogramm-Archiv.
- 6. Ausführung einer zeitgesteuerten Mittelwertermittlung, wobei die Ergebnisse in einem Ringspeicher für Mittelwertergebnisse gespeichert werden.
- 7. Überwachung auf Änderungen der Anwendungskonfiguration, wobei diese in einem Ereignisprotokoll-Ringspeicher protokolliert werden
- 8. Speichern/Abrufen der Kommunikationskonfiguration.
 - a. TCP/IP-Einstellungen (IP-Adresse, Subnetzmaske, Gateway-Adresse).
 - b. Einstellungen der seriellen Kommunikation (Baudrate, Start-/Stoppbits, Parität, Typ des seriellen Treibers).
 - c. Modbus-ID für Modbus TCP/IP-Kommunikation.
 - d. Modbus-ID für serielle Modbus-Kommunikation.
 - e. Konfiguration der Modbus-Register.
- 9. Implementierung einer Modbus Client-Schnittstelle. Diese Schnittstelle ermöglicht Modbus-Mastergeräten das Abrufen von Ergebnissen und Status über einen seriellen oder Ethernet-Port.
- 10. Bereitstellung der folgenden Schnittstellen für das Bedieninterface (LOI):
 - a. Schnittstelle, um die Anwendungs- und Kommunikationskonfiguration abzurufen.
 - b. Schnittstelle, um die Anwendungs- und Kommunikationskonfiguration zu modifizieren.
 - c. Schnittstelle, um Alarm- und Ereignisprotokolle abzurufen.
 - d. Schnittstelle, um Berichte und Chromatogramme abzurufen.
 - e. Schnittstelle, um den Analysebetrieb zu steuern. Folgende Befehle werden unterstützt:
 - a. Halt Analysis (Analyse anhalten)
 - b. Start Auto-sequence (Auto-Sequenzierung starten)
 - c. Start Single Stream Analysis (Einzelstrom-Analyse starten)
 - d. Start Manual Calibration (Manuelle Kalibrierung starten)
 - e. Start Manual Validation (Manuelle Validierung starten)

D.3 Bedieninterface (LOI)

Die LOI-Platine läuft unter einem Linux-Betriebssystem auf dem 770XA. Das Betriebssystem initialisiert die verschiedenen Hardware-Komponenten auf der Platine und startet die grafische Benutzeroberfläche (GUI). Das GUI bietet folgende Funktionalitäten:

D.3.1 Statusanzeige

Der Statusanzeigebildschirm bietet folgende Informationen:

1. Alarmstatus (GRÜN – es liegen keine Alarme vor, ROT – es liegen aktive Alarme vor, GELB – es liegen unbestätigte Alarme vor)

- 2. Aktueller Betriebsstatus (aktueller Modus, aktueller Strom, nächster Strom)
- 3. Ergebnisse (wie z. B. Molprozent, CV, Proben-Dosierzeit)

D.3.2 Erweiterte Menü-basierte Benutzeroberfläche (GUI)

Die erweiterte Menü-basierte Benutzeroberfläche (GUI) bietet Folgendes:

- 1. Ansicht und Modifizierung der Anwendungs- und Kommunikationskonfiguration
- 2. Ansicht von Ergebnissen, Chromatogrammen, Berichten, Ereignis- und Alarmprotokollen
- 3. Ansicht des Betriebsstatus (aktueller Betriebsmodus, Strom der analysiert wird, nächster Strom)
- 4. Steuerung des Analysatorbetriebs (Analyse starten, Analyse anhalten, Kalibrierung starten, Validierung starten)

Alle Bildschirme der erweiterten Benutzeroberfläche sind schreibgeschützt. Der Benutzer muss sich mit einem gültigen Benutzernamen und Kennwort anmelden, um Änderungen vornehmen zu können. Nicht alle Benutzer können die Bildschirme bearbeiten. Nur Benutzer einer Benutzer-Anmeldeebene (Supervisor/Technician) mit ausreichenden Zugriffsrechten können Änderungen vornehmen.

D.4 CPU-Platine – LOI Software-Interface

Die folgenden Server laufen auf der CPU-Platine:

- Externer Proxy Daemon
- Chromatogramm-Server
- FTP-Server

D.4.1 Externer Proxy Daemon

Der externe Proxy Daemon dient als primäre Schnittstelle für das Bedieninterface (LOI), um

Informationen von der CPU-Platine abzurufen. Das Bedieninterface kommuniziert mit diesem Task mittels eines proprietären Protokolls über TCP/IP.

Er dient folgenden Zwecken:

- Benutzerverwaltung
- Authentifizierung
- Lesen/Schreiben in der Datenbank
- Lesen von archivierten Berichten, Ereignis- und Alarmprotokollen

Benutzerverwaltung

Es gibt vier Benutzerebenen:

- Administrator
- Supervisor
- Regular
- Read-only

Die Zugriffseinschränkungen sind nachstehend aufgeführt:

Benutzerzu- griffsebene	Anwendungs- und Kommuni- kationskonfigu- ration	Analysator- Steuerung	Benutzer hinzufügen/ entfernen	Kennwort für alle Benutzer zurücksetzen	Eigenes Kennwort ändern
Administrator	Voll	Ja	Ja	Ja	Ja
Supervisor	Voll	Ja	Nein	Nein	Ja
Technician	Teilweise	Ja	Nein	Nein	Ja
Read-only	Nur lesen	Nein	Nein	Nein	Ja

Authentifizierung

Der Benutzer muss sich mit einem gültigen Benutzernamen und Kennwort anmelden, um Änderungen vornehmen zu können. Das Kennwort ist mittels des DES-Algorithmus (Datenverschlüsselungsstandard) mit einem 64-Bit-Schlüssel verschlüsselt. Das Bedieninterface (LOI) verschlüsselt das Kennwort und der externe Proxy Daemon entschlüsselt es.

Lesen/Schreiben in der Datenbank

Für das Speichern von Anwendungskonfigurationen, Kommunikationskonfigurationen, Analyseergebnissen und Status-/Steuerinformationen werden Tabellen verwendet. Der externe Proxy Daemon bietet Schnittstellen, um diese Tabellen zu lesen oder sie zu beschreiben.

Lesen von archivierten Berichten, Ereignis- und Alarmprotokollen

Analyseergebnisse, Ergebnisse zeitgesteuerter Mittelwerte sowie Ereignis- und Alarmprotokolle werden in Ringspeichern abgelegt. Der externe Proxy Daemon bietet Schnittstellen zum Lesen von Analyseergebnissen und Ergebnissen zeitgesteuerter Mittelwerte in Form von Berichten im Textformat sowie von Ereignis- und Alarmprotokollen in Form von XML-Dateien. Die Schnittstellenfunktion erzeugt die Berichtdatei und speichert diese in einem temporären Dateisystem auf der CPU-Platine. Das Bedieninterface (LOI) verwendet ein Datenübertragungsprotokoll (FTP), um die temporäre Datei von der CPU-Platine zum Bedieninterface zu übertragen.

D.4.2 Chromatogramm-Server

Chromatogramme werden in einem nicht-flüchtigen Dateisystem als binäre XML-Dateien gespeichert. Jedes Mal, wenn neue Informationen (Detektordaten, ein erkannter Peak usw.) verfügbar sind, wird der binären XML-Datei ein neuer Eintrag hinzugefügt. Das Bedieninterface (LOI) fragt den Chromatogramm-Server alle 100 ms ab. Wenn neue Einträge in der binären XML-Datei verfügbar sind, werden diese zur Anzeige im Chromatogram Viewer an das Bedieninterface gesendet.

D.4.3 FTP-Server

Der FTP-Server wird für die Übertragung von Berichten, Protokollen und archivierten Chromatogrammen von der CPU-Platine auf das Bedieninterface (LOI) verwendet.

D.5 Interne Bestandteile der CPU-Platine

D.5.1 Database Manager (Datenbank-Manager)

D.5.2 Database Manager – Gespeicherte Datentypen

In der Datenbank können zwei Datentypen gespeichert werden – Table Data (Tabellendaten) und Logs (Protokolldateien). Tabellen werden in Tabellen-Datenstrukturen und Protokolldateien in Ringspeichern gespeichert.

Tabellendaten

Die folgenden Informationen werden in Form von Tabellen in Tabellendaten-Strukturen in der Datenbank gespeichert:

- Anwendungskonfiguration Komponentendaten, Validierungsdaten, zeitgesteuerte Ereignisse, Ventilkonfiguration, Heizungseinstellungen, Trägergas- Druckeinstellungen, Alarmkonfiguration, Konfiguration des zeitgesteuerten Mittelwerts, Einstellungen der Binäreingänge, Einstellungen der Binärausgänge, Einstellungen der Analogeingänge und Einstellungen der Analogausgänge.
- Kommunikationskonfiguration serieller Port (Baudrate, Start-/Stoppbits, Parität) und Einstellungen des TCP/IP-Ports (IP-Adresse, Subnetzmaske, Gateway-IP- Adresse), Modbus-Mapping (Slave-Adresse, Registeradresse, Datentyp, Variablen- Mapping, Zugriffstyp).
- Status Heizungsstatus, EPC-Status, aktueller Betriebsstatus, Status der Analogeingänge, Status der Digitaleingänge, Status der Analogausgänge, Status der Digitalausgänge.
- Steuerung Gewünschte Betriebsart, einschließlich Command State (Befehlszustand) und Stream Number (Strom-Nr.).

Protokolldateien

Die folgenden Informationen werden als Logs (Protokolldateien) im Ringspeicher gespeichert:

- 1. Analyseergebnisse
- 2. Zeitgesteuerte Mittelwertergebnisse
- 3. Ereignisprotokolle
- 4. Alarmprotokolle

Die Ringspeicher haben eine vordefinierte Tiefe, die in der Firmware angegeben ist. Wenn der Ringspeicher voll ist, werden die ältesten Daten durch neu hinzugefügte Daten auf dem Ringspeicher ersetzt.

Jeder Eintrag auf dem Ringspeicher wird zusammen mit einem 16-Bit-CRC gespeichert. Beim Abruf des Eintrags wird der gespeicherte 16-Bit-CRC mit dem CRC-Wert der aktuellen Daten verglichen. Dies wird durchgeführt, um sicherzustellen, dass die Daten nicht versehentlich modifiziert wurden.

Database Manager - Datenzugriffsmodelle

- 1. Client-Server-Modell Bei diesem Modell fordert der Client Daten an und der Database Manager reagiert unverzüglich mit Daten.
- Publisher-Subscriber-Modell Bei diesem Modell meldet sich der Client beim Database Manager bezüglich Änderungen in bestimmten Tabellen-/Ringspeichern. Bei einer Änderung (durch einen anderen Task und nicht vom Client ausgeführt) benachrichtigt der Database Manager den Abonnenten, dass neue Änderungen bezüglich der beobachteten Tabellen-/ Ringspeicher vorliegen.

Alarmierung und Auditierung

Audit Task (Auditfunktion)

Der Audit Task meldet sich bezüglich Änderungen an der Anwendungs- und Kommunikationskonfiguration sowie auch an Steuerungs-Tabellenpunkten beim Database Manager. Jedes Mal, wenn Änderungen an der Konfiguration oder an der Betriebsart vorgenommen werden, benachrichtigt der Database Manager den Audit Task. Der Audit Task protokolliert anschließend die vorgenommenen Änderungen im Auditprotokoll.

Der Audit Task berechnet ebenso in regelmäßigen Abständen ein 32-Bit-CRC der Konfiguration und speichert den CRC-Wert in der Datenbank. Wenn sich der Analysator im Modus "Legal Metrology Control" (Steuerung für gesetzliches Messwesen) befindet, weist dieser CRC-Wert darauf hin, ob die Konfiguration des Analysators unbeabsichtigt oder durch bösartige Absichten modifiziert wurde.

Alarm Task (Alarmfunktion)

Der Alarm Task meldet sich bezüglich Änderungen von Status- (wie z. B. Ofentemperatur) und Analyseergebnissen beim Database Manager. Jedes Mal, wenn sich die Werte ändern, benachrichtigt der Database Manager den Alarm Task. Der Alarm Task überprüft, ob die Werte innerhalb der Toleranzgrenzen liegen. Falls nicht, protokolliert der Alarm Task einen Eintrag im Alarmprotokoll.

Der Alarm Task berechnet ebenso einen 32-Bit-CRC der Anwendungs-Firmware. Wenn sich der CRC-Wert der Anwendungs-Firmware ändert, wird ein Alarm erzeugt, um darauf hinzuweisen, dass es ein Problem mit dem ROM-Dateisystem gab.

Steuerung von Ofentemperatur und Druck

Hardware Serializer Task

Der Hardware Serializer Task dient zwei Zwecken:

- 1. Er serialisiert den Zugriff auf die Hardware-Ressourcen, wie z. B. Heizungen, Ventiltreiber und Detektoren.
- 2. Er bietet ein Hardware-unabhängiges Interface für den Zugriff von Tasks auf die Hardware-Ressourcen.

Heater Task (Heizungsfunktion)

Der Heater Task liest die Konfiguration (Sollwert und PID-Konstanten) der Heizungen aus den Konfigurationstabellen in der Datenbank. Anschließend sendet er die Konfigurationseinstellungen über den Hardware Serializer Task zur Heizung. Der Task überwacht dann periodisch die Temperatur der Heizung und aktualisiert diese in den Statustabellen der Datenbank.

EPC Task (Elektronische Druckreglerfunktion)

Der EPC (Elektronischer Druckregler) Task liest die Konfiguration (Sollwert und PID- Konstanten) des elektronischen Druckreglers aus den Konfigurationstabellen in der Datenbank. Anschließend werden die Konfigurationseinstellungen über den Hardware Serializer Task zum EPC gesendet. Der EPC Task überwacht dann periodisch den Druck und aktualisiert diesen in den Statustabellen der Datenbank.

Ein- und Ausgänge

Der Input Output Task (Eingangs-/Ausgangsfunktion) dient folgenden Zwecken:

- 1. Lesen der Werte von Analog- und Binäreingängen in periodischen Abständen und Aktualisierung der Ergebnisse in der Datenbank über den Database Manager.
- 2. Überprüfen, ob Ergebnisvariablen den Analogausgängen zugeordnet sind. Wenn dies der Fall ist, meldet sich dieser Task beim Database Manager bezüglich der Aktualisierung dieser Variablen. Wenn er eine Benachrichtigung erhält, aktualisiert er den neuen Wert des Analogausgangs über den Hardware Serializer Task.

Überprüfen, ob Statusvariablen den Binärausgängen zugeordnet sind. Wenn dies der Fall ist, meldet sich dieser Task beim Database Manager bezüglich der Aktualisierung dieser Variablen. Wenn er eine Benachrichtigung erhält, aktualisiert er den neuen Wert des Binärausgangs über den Hardware Serializer Task.

Analysis Task (Analysefunktion)

Hardware Timed Event Task (Hardware-Funktion für zeitgesteuerte Ereignisse)

Der Hardware Timed Event Task liest die Konfigurationsdatenbank, um die Ventilereignisse für eine bestimmte Analyse zu ermitteln. Wenn dieser Task den Startbefehl vom Stream Controller Task erhält, beginnt er basierend auf den zeitgesteuerten Ereignissen mit der Aktivierung von Ventilen. Er sendet Befehle zum Hardware Serializer Task, um Magnetventile ein- oder auszuschalten.

Peak Processing Task (Peak-Verarbeitungsfunktion)

Der Peak Processing Task liest die Konfigurationsdatenbank, um die Integrationsereignisse für eine bestimmte Analyse zu ermitteln. Wenn der Task den Startbefehl vom Stream Controller Task erhält, beginnt er, Detektor-Rohzählungen vom Detektor-Vorverstärker über den Hardware Serializer Task zu lesen. Er beginnt nach Peaks der Detektor-Rohdaten zu suchen und identifiziert diese. Für jeden Peak berechnet dieser Task auch Peak-Fläche und -Höhe. Dieser Task schreibt die Detektor-Rohzählungen und Informationen zur Peak-Fläche in eine Live-Chromatogramm-Datei, sobald diese Informationen verfügbar sind.

Der Chromatogram Server Task kann gleichzeitig auf diese Datei zugreifen, um das Live-Chromatogramm zum Bedieninterface (LOI) zu übertragen.

Der Peak Processing Task speichert die Peak-Daten in der Datenbank. Nachdem ein komplettes Chromatogramm erfasst wurde, sendet der Peak Processing Task den Befehl

"Done" (Fertig) an den Calculation Task (Berechnungsfunktion).

Calculation Task (Berechnungsfunktion)

Der Calculation Task liest die Peak-Flächen aus der Datenbank und ordnet die Peaks den Komponenten in der Komponentendaten-Tabelle zu. Nachdem jeder Peak identifiziert wurde, fährt dieser Task mit den erforderlichen Berechnungen fort. Für Analyseläufe berechnet dieser Task das Molprozent für jeden Peak zusammen mit anderen Ergebnissen (wie z. B. Heizwert, Wobbe, Dichte, usw.). Nachdem alle Berechnungen durchgeführt wurden, werden alle Ergebnisse in der Datenbank gespeichert und es wird der Befehl "Done" (Fertig) zum Stream Controller Task gesendet, um dem Task mitzuteilen, dass der nächste Zyklus beginnen kann.

Stream Controller Task (Stromregler-Funktion)

Der Stream Controller Task dient als primäres Zeitplanungsprogramm für den Analysator. Der Task meldet sich beim Database Manager bezüglich Aktualisierungen der Steuerungs-Tabellenpunkte. Jedes Mal, wenn ein neuer Befehl vom Bedieninterface ausgegeben wird, benachrichtigt der Database Manager den Stream Controller Task, der wiederum den Befehl liest und ausführt. Der Stream Controller Task führt einen der folgenden Befehle aus:

- 1. Start Single Stream Continuous Analysis Kontinuierliche fortlaufende Analyse desselben Stroms.
- 2. Start Single Stream Non-continuous Analysis Ausführen der Analyse an einem bestimmten Strom und anschließendes Anhalten des Betriebs.
- 3. Start Auto Sequence Analyse an einer Stromsequenz durchführen (der Reihe nach). Die Sequenz erneut starten, nachdem die komplette Sequenz ausgeführt wurde.
- 4. Halt Analysis Den aktuellen Lauf beenden und in Standby übergehen.
- 5. Start Manual Calibration Manuelle Kalibrierung starten.
- 6. Start Manual Validation Manuelle Validierung starten.

Zusätzlich zur Handhabung der Befehle vom Bedieninterface ermöglicht dieser Task Folgendes:

- 1. Kalibrierung des Analysators zu einem festgelegten Zeitpunkt (falls konfiguriert). Nach Abschluss der Kalibrierung wird der normale Betrieb fortgesetzt.
- 2. Validierung des Analysators zu einem festgelegten Zeitpunkt (falls konfiguriert). Nach Abschluss der Validierung wird der normale Betrieb fortgesetzt.
- 3. Beim Einschalten des Analysators nach einem Stromausfall wartet dieser, bis der Ofen den Sollwert für die Ofentemperatur erreicht und sich stabilisiert hat, bevor der vorherige Betrieb fortgesetzt wird.

Modbus-Kommunikation

Modbus-Mastergeräte können Ergebnisse und Status mittels der seriellen Modbus- Schnittstelle

oder der Modbus TCP/IP-Schnittstelle abrufen.

Modbus Serial Task (Serielle Modbus-Funktion)

Der Modbus Serial Task überwacht verfügbare serielle Ports auf eingehende Modbus ASCII/ RTU-Anfragen. Wenn der Task eine Anfrage erhält, überprüft er diese auf Gültigkeit (die CRC-Überprüfung der Pakete sollte erfolgreich sein und die Slave-Adresse sollte übereinstimmen). Bei einer gültigen Anfrage wird diese analysiert, um den Bereich der angeforderten Register zu ermitteln. Anschließend liest der Task die Modbus-Konfiguration aus der Datenbank, um die entsprechenden Tabellenpunkte zu bestimmen, die mit dem angeforderten Adressbereich assoziiert sind. Danach liest der Task die entsprechenden Daten aus der Datenbank und übermittelt die Antwort.

Modbus TCP/IP Task (Modbus TCP/IP-Funktion)

Der Modbus TCP/IP Task überwacht den Modbus TCP/IP-Port (TCP-Port 502) auf eingehende Modbus TCP/IP-Verbindungsanfragen. Wenn der Task eine Verbindungsanfrage empfängt, löst er
einen Unterprozess aus, der anschließend die Verbindung akzeptiert. Der übergeordnete Prozess wartet weiterhin auf eingehende Modbus TCP/IP-Verbindungsanfragen. Der Unterprozess wartet auf Modbus TCP/IP- Anfragen an neu erstellten Verbindungen. Wenn der Task eine Anfrage erhält, überprüft er diese auf Gültigkeit (die CRC-Überprüfung der Pakete sollte erfolgreich sein und die Slave- Adresse sollte übereinstimmen). Bei einer gültigen Anfrage wird diese analysiert, um den Bereich der angeforderten Register zu ermitteln. Anschließend liest der Task die Modbus-Konfiguration aus der Datenbank, um die entsprechenden Tabellenpunkte zu bestimmen, die mit dem angeforderten Adressbereich assoziiert sind. Danach liest der Task die entsprechenden Daten aus der Datenbank und übermittelt die Antwort.

D.6 Hardware-Elektronik – Übersicht

Dieser Abschnitt bietet eine Übersicht über die allgemeine Hardware-Architektur.

D.6.1 Blockschaltbild

- A. GRÜN zeigt die standardmäßige (normale) GC-Konfiguration.
- B. GELB zeigt die optionalen Erweiterungskomponenten.
- C. GRAU zeigt die zukünftige Architekturerweiterung.

D.6.2 Inter-Board-Kommunikation – Hardware-Busse

Für die Inter-Board-Kommunikation stehen drei unabhängige Hardware-Busse zur Verfügung:

- CAN Bus 1 lokaler Bus für die Inter-Board-Kommunikation
- SPI Bus lokaler Bus für die Inter-Board-Kommunikation
- CAN Bus 2 WIRD DERZEIT NICHT VERWENDET. Wird f
 ür die zuk
 ünftige Erweiterung mit NeSSI-Komponenten (Intelligente Probensysteme) verwendet.

D.6.3 XA-Platinen

Die folgenden Platinen können auf der Rückwandplatine des Modells 770XA installiert werden:

- 1. Rückwandplatine Enthält Steckplätze für die Montage des Hauptprozessors (CPU) und der E/A-Platinen. Bietet Anschlussklemmen für den Anschluss von kundenseitigen E/As.
- Main CPU Board (Hauptprozessor-Platine) Implementiert die meisten Analysator-Funktionalitäten, einschließlich der Erzeugung von Chromatogrammen, der Ausgabe von Ergebnissen, der Speicherung von Ergebnissen sowie der Kommunikation mit der Außenwelt. Diese Platine läuft mit einer eingebetteten Linux-Version.
- Preamp Board (Vorverstärkerplatine):
 a. Jede Platine unterstützt zwei Detektorkanäle

- 4. Driver Board (Treiberplatine):
 - a. Steuert Magnete an
 - b. Liest die Ofentemperatur
 - c. Steuert die Ofentemperatur
 - d. Liest die digitalen Statuseingänge der Druckgrenzschalter
- 5. Base I/O (E/A-Grundplatine):
 - a. Liest 4–20 mA Analogeingänge (2 Kanäle)
 - b. Steuert 4-20 mA Analogausgänge an (6 Kanäle)
 - c. Liest Binäreingänge (5 Kanäle)
 - d. Steuert Binärausgänge an (5 Kanäle)
 - e. Serielle Kommunikation (3 Kanäle, auswählbare RS232/422/485-Treiber)
- 6. Feldbus:
 - a. Sendet die Ergebnisse der Prozessvariablen zum Host
 - b. Empfängt GC-Steuerbefehle vom Host. Unterstützt die folgenden Befehle:
 - Start Auto Sequence (Auto-Sequenzierung starten)
 - Start Single Stream Analysis (Einzelstrom-Analyse starten)
 - Start Calibration (Kalibrierung starten)
 - Start Validation (Validierung starten)
 - Halt Analyzer (Analysator anhalten)
- 7. FID/FPD Interface Boards (FID/FPD-Schnittstellenplatinen):
 - a. Null-Vorverstärker
 - b. Flammensteuerung
- 8. E/A-Erweiterungsmodule
 - a. Analogausgang (4 Kanäle)
 - b. Analogeingang (4 Kanäle)
 - c. Digitaleingang (8 Kanäle)
 - d. Digitalausgang (5 Kanäle)
 - e. Relaisausgang (5 Kanäle)
 - f. Kommunikation RS232
 - g. Kommunikation RS485
 - h. Kommunikation Modem

D.7 Externe Schnittstellen

D.7.1 Modbus-Schnittstelle – Übersicht

Modbus ist ein digitales Protokoll für die Übertragung von Informationen zwischen zwei elektronischen Geräten. Es wurde ursprünglich von Modicon für die Verwendung mit deren SPS (speicherprogrammierbare Steuerung) entwickelt. Dieses ursprünglich für serielle Kommunikation entwickelte Protokoll wurde später erweitert, um es auf Anwendungsebene über TCP/IP in Ethernet-Netzwerken einsetzen zu können. Sowohl serielle Modbus- als auch TCP-Modbus-Protokolle verwenden eine Master-Slave-Hierarchie. Dadurch kann ein Master-Gerät mit Slave-Geräten kommunizieren, Informationen von diesen abfragen und Änderungen an der Gerätekonfiguration vornehmen. Nur Mastergeräte können mit Slave-Geräten kommunizieren. Die Kommunikation von Master zu Master und Slave zu Slave ist mittels des Modbus-Protokolls nicht zulässig.

770XA GC unterstützen zwei Modbus-Schnittstellen – SIM_2251 und User Modbus.

SIM_2251

Alle GC für den eichgenauen Verkehr von Gas werden mit der SIM_2251 Modbus- Schnittstelle ausgeliefert. Die Schnittstelle verfügt über folgende Eigenschaften:

Das Mapping ist vordefiniert.

- Alle modernen Flow Computer erkennen diese Schnittstelle unmittelbar und können Ergebnisse vom GC abrufen, ohne dass sie zusätzlich programmiert werden müssen.
- Bei der SIM_2251-Schnittstelle bestimmt der Registerbereich den Datentyp.

Registerbereich	Datentyp	Datengröße
1000 – 2999	Boolean/Spule	1 Bit
3000 – 4999	Ganzzahl ohne Vorzeichen	16 Bit
5000 – 6999	Langer Wert ohne	32 Bit
7000 – 8999	IEEE Fließkomma	32 Bit

User Modbus (Benutzer-Modbus)

Der GC unterstützt eine generische Version der Modbus-Schnittstelle, mit welcher der Endbenutzer das Modbus-Mapping individuell anpassen kann, wenn der Modbus-Master die SIM_2251-Schnittstelle nicht unterstützt oder wenn ein einfacheres Modbus-Mapping gewünscht wird.

User Modbus unterscheidet sich von der SIM_2251-Schnittstelle wie folgt:

- 1. Dieses Mapping kann vom Endbenutzer definiert werden (wenn sich der Sicherheitsschalter des GC in der entriegelten Position befindet).
- 2. Die folgenden Registerbereiche werden unterstützt:

Registerbereich	Datentyp	Datengröße
0 – 9999	Boolean/Spule	1 Bit
0 – 9999	Ganzzahl ohne Vorzeichen	16 Bit

Für die Übertragung von 32-Bit-Daten wie z. B. IEEE Fließkomma-Ergebnisse können zwei aufeinanderfolgende Register verwendet werden. Um ein einzelnes IEEE Fließkomma- Ergebnis zu lesen, muss die SPS zwei Register vom GC lesen. Der GC überträgt das "Low Order" (niederwertige) Wort (16 Bits) zuerst und dann das "High Order" (höherwertige) Wort (16 Bits). Die SPS setzt die Daten wieder zusammen, um das 32-Bit-Ergebnis zu erstellen.

D.8 Vordefinierte Modbus Map-Dateien

D.8.1 Definition von Begriffen

Register # (Register-Nr.): Modbus-Registernummer

Data Type (Datentyp): Die folgenden Datentypen werden unterstützt:

- INT 16-Bit-Ganzzahlenwert
- FLOAT 32-Bit IEEE einfach genauer Fließkommawert
- Bitmap (INT) 16 Boolean-Werte in eine einzelne 16-Bit-Ganzzahl gepackt. Jedes Bit stellt einen Boolean-Wert dar.
- Long 32 Bit langer Ganzzahlenwert
- Bitmap (Long) 32 Boolean-Werte in eine 32 Bit lange Ganzzahl gepackt. Jedes Bit stellt einen Boolean-Wert dar.
- CALED_FP_1 .. SCALED_FP_32 Skalierter Fließkomma-Datentyp; wird auch als

"Ranged Integers" (bereichsangeordnete Ganzzahlen) bezeichnet. Ein 32-Bit- Fließkommawert wird in eine 16-Bit-Ganzzahl umgewandelt.

Variable: Systemvariable, die einem Modbus-Register zugeordnet ist.

Record # (Eintrags-Nr.): Dieses Feld trifft nur für Archive Average System Variables (Archiv – Mittelwert-Systemvariablen) zu. Record # teilt dem GC mit, welchen historischen Mittelwert er abrufen soll. Zum Beispiel bezieht sich Record #1 auf den aktuellsten Mittelwert. Record #2 bezieht sich auf den zweitaktuellsten Mittelwert usw.

Access (Zugriff): Kann entweder schreibgeschützt sein oder mit Schreib-/Leserechten. Ein kleiner Teil der GC-Systemvariablen kann über einen Modbus-Master aktualisiert werden. Beschreibbare Register müssen im Mapping auf RD_WR (Schreib-/Leserechte) gesetzt werden, bevor sie über einen Modbus-Master beschrieben werden können.

Format: Dieses Feld trifft für Systemvariablen zu, die Datum/Zeit beinhalten. Datum/Zeit werden intern im 32-Bit-Unix-Format "time_t" gespeichert. Das Formatfeld wird verwendet, um Datum/Zeit in eine visuell lesbare Form umzuwandeln. Die verfügbaren Formatbestandteile sind:

- MM 2-stelliger Monat (01 12)
- DD 2-stelliger Monatstag (01 31)
- YY 2-stelliges Jahr (00 99)
- YYYY 4-stelliges Jahr (1970 2038)
- hh 2-stellige Stundenanzeige im 24-Stunden-Format (0 23)
- mm 2-stellige Minutenanzeige (00 59)
- ss 2-stellige Sekundenanzeige (00 59)
- MMDDYY 6-stellige Datumsanzeige. Für den 4. Januar 2010 enthält dieses Register 10410.
 Für den 7. November 2012 enthält dieses Register 110712.
- DDMMYY 6-stellige Datumsanzeige. Für den 4. Januar 2010 enthält dieses Register 40110.
 Für den 7. November 2012 enthält dieses Register 71112.
- YYMMDD 6-stellige Datumsanzeige. Für den 17. April 2007 enthält dieses Register 70417. Für den 31. Januar 2014 enthält dieses Register 140131.
- hhmmss 6-stellige Zeitanzeige im 24-Stunden-Format.
- hhmm 4-stellige Zeitanzeige im 24-Stunden-Format.

D.8.2 SIM2251 Modbus-Mapping

Tabelle D-1: SIM2251 Modbus-Mapping

Register- Nr.	Datentyp	Variable	Eintrags- Nr.	Zugriff	Format
1001	BOOLEAN	Current Value[1 - Discrete Output 1]		RD_ONLY	
1002	BOOLEAN	Current Value[2 - Discrete Output 2]		RD_ONLY	
1003	BOOLEAN	Current Value[3 - Discrete Output 3]		RD_ONLY	
1004	BOOLEAN	Current Value[4 - Discrete Output 4]		RD_ONLY	
1005	BOOLEAN	Current Value[5 - Discrete Output 5]		RD_ONLY	
1006	BOOLEAN	Current Value[1 - Discrete Input 1]		RD_ONLY	
1007	BOOLEAN	Current Value[2 - Discrete Input 2]	<u> </u>	RD_ONLY	
1008	BOOLEAN	Current Value[3 - Discrete Input 3]		RD_ONLY	
1009	BOOLEAN	Current Value[4 - Discrete Input 4]		RD_ONLY	
1010	BOOLEAN	Current Value[5 - Discrete Input 5]		RD_ONLY	
3001	INT	Last Analy_Component Code(UK)[1 - Component 1]		RD_ONLY	
3002	INT	Last Analy_Component Code(UK)[2 - Component 2]		RD_ONLY	
3003	INT	Last Analy_Component Code(UK)[3 - Component 3]	-	RD_ONLY	
3004	INT	Last Analy_Component Code(UK)[4 - Component 4]		RD_ONLY	
3005	INT	Last Analy_Component Code(UK)[5 - Component 5]	-	RD_ONLY	
3006	INT	Last Analy_Component Code(UK)[6 - Component 6]		RD_ONLY	
3007	INT	Last Analy_Component Code(UK)[7 - Component 7]		RD_ONLY	
3008	INT	Last Analy_Component Code(UK)[8 - Component 8]		RD_ONLY	
3009	INT	Last Analy_Component Code(UK)[9 - Component 9]		RD_ONLY	
3010	INT	Last Analy_Component Code(UK)[10 - Component 10]		RD_ONLY	
3011	INT	Last Analy_Component Code(UK)[11 - Component 11]		RD_ONLY	
3012	INT	Last Analy_Component Code(UK)[12 - Component 12]		RD_ONLY	
3013	INT	Last Analy_Component Code(UK)[13 - Component 13]		RD_ONLY	
3014	INT	Last Analy_Component Code(UK)[14 - Component 14]		RD_ONLY	
3015	INT	Last Analy_Component Code(UK)[15 - Component 15]		RD_ONLY	
3016	INT	Last Analy_Component Code(UK)[16 - Component 16]		RD_ONLY	
3017	INT	Last Analy_Component Code(UK)[1 - Component 1]	Γ	RD_ONLY	「 <u> </u>
3018	INT	Last Analy_Component Code(UK)[2 - Component 2]		RD_ONLY	
3019	INT	Last Analy_Component Code(UK)[3 - Component 3]		RD_ONLY	

3020	INT	Last Analy_Component Code(UK)[4 - Component 4]	RD_ONLY	
3021	INT	Last Analy_Component Code(UK)[5 - Component 5]	RD_ONLY	
3022	INT	Last Analy_Component Code(UK)[6 - Component 6]	RD_ONLY	
3023	INT	Last Analy_Component Code(UK)[7 - Component 7]	RD_ONLY	
3024	INT	Last Analy_Component Code(UK)[8 - Component 8]	RD_ONLY	
3025	INT	Last Analy_Component Code(UK)[9 - Component 9]	RD_ONLY	
3026	INT	Last Analy_Component Code(UK)[10 - Component 10]	RD_ONLY	
3027	INT	Last Analy_Component Code(UK)[11 - Component 11]	RD_ONLY	
3028	INT	Last Analy_Component Code(UK)[12 - Component 12]	RD_ONLY	
3029	INT	Last Analy_Component Code(UK)[13 - Component 13]	RD_ONLY	
3030	INT	Last Analy_Component Code(UK)[14 - Component 14]	RD_ONLY	
3031	INT	Last Analy_Component Code(UK)[15 - Component 15]	RD_ONLY	
3032	INT	Last Analy_Component Code(UK)[16 - Component 16]	RD_ONLY	
3033	INT	Run Time (1/30 Sek.)	RD_ONLY	
3034	INT	Last Analy_Stream Number	RD_ONLY	
3035	INT	Last Analy_CDT Stream Mask	RD_ONLY	
3036	INT	Current Time(time_t)	RD_WR	MM
3037	INT	Current Time(time_t)	RD_WR	TT
3038	INT	Current Time(time_t)	RD_WR	11
3039	INT	Current Time(time_t)	RD_WR	hh
3040	INT	Current Time(time_t)	RD_WR	mm
3041	INT	Last Analy_Start Time	RD_ONLY	MM
3042	INT	Last Analy_Start Time	RD_ONLY	TT
3043	INT	Last Analy_Start Time	RD_ONLY	11
3044	INT	Last Analy_Start Time	RD_ONLY	hh
3045	INT	Last Analy_Start Time	RD_ONLY	mm
3046	Bitmap (INT)	0: Nicht belegt, 1: Nicht belegt, 2:System Alarm_Alarm On - Last Analysis_Analog In- put 1 Low Signal, 3:System Alarm_Alarm On - Last Analysis_Analog Input 1 High Sig- nal, 4:System Alarm_Alarm On - Last Analy- sis_Analog Input 2 Low Signal, 5:System Alarm_Alarm On - Last Analysis_Analog In- put 2 High Signal, 6: Nicht belegt, 7: Nicht belegt, 8:System Alarm_Alarm On - Last Analysis_Analog Output 1 Low Signal, 9:System Alarm_Alarm On - Last Analysis_ Analog Output 1 High Signal, 10:System Alarm_Alarm On - Last Analysis_Analog Output 2 Low Signal, 11:System Alarm_Alarm On - Last Analysis_Analog	RD_ONLY	

	C L 1 C b	Output 2 High Signal, 12:System Alarm_Alarr ast Analysis_Analog Output 3 Low Signal, 3:System Alarm_Alarm On - Last Analysis_ A Output 3 High Signal, 14:Analyzer Failure, 15 Pelegt	n On - Analog : Nicht	
3047	Bitmap(INT)	0:System Alarm_Alarm On - Current Analy- sis_Power Failure, 1:Calibration Failed, 2:Preamp Failure, 3: Nicht belegt, 4: Nicht belegt, 5: Nicht belegt, 6: Nicht belegt, 7: Nicht belegt, 8: Nicht belegt, 9: Nicht be- legt, 10: Nicht belegt, 11: Nicht belegt, 12: Nicht belegt, 13: Nicht belegt, 14: Nicht be- legt, 15: Nicht belegt		RD_ONLY
3048	INT	1 - Stream 1_Active Low Limit Alarms		RD_ONLY
3049	INT	1 - Stream 1_Active High Limit Alarms		RD_ONLY
3050	INT	2 - Stream 2_Active Low Limit Alarms		RD_ONLY
3051	INT	2 - Stream 2_Active High Limit Alarms		RD_ONLY
3052	INT	3 - Stream 3_Active Low Limit Alarms		RD_ONLY
3053	INT	3 - Stream 3_Active High Limit Alarms		RD_ONLY
3054	INT	4 - Stream 4_Active Low Limit Alarms		RD_ONLY
3055	INT	4 - Stream 4_Active High Limit Alarms		RD_ONLY
3056	INT	5 - Stream 5_Active Low Limit Alarms		RD_ONLY
3057	INT	5 - Stream 5_Active High Limit Alarms		RD_ONLY
3058	INT	New Data Flag		RD_WR
3059	INT	Analy/Calib Flag		RD_ONLY
3060	INT	Daily Avg Updated		RD_WR
3061	INT	Last Stream		RD_ONLY
3062	INT	2 - Stream 2_New Data Available		RD_WR
3063	INT	3 - Stream 3_New Data Available		RD_WR
3064	INT	4 - Stream 4_New Data Available		RD_WR
3065	INT	5 - Stream 5_New Data Available		RD_WR
3066	INT	Component Data 1_Reference Code[1]		RD_ONLY
3067	INT	Component Data 1_Reference Code[2]		RD_ONLY
3068	INT	Component Data 1_Reference Code[3]		RD_ONLY
3069	INT	Component Data 1_Reference Code[4]		RD_ONLY
3070	INT	Component Data 1_Reference Code[5]		RD_ONLY
3071	INT	Component Data 1_Reference Code[6]		RD_ONLY
3072	INT	Component Data 1_Reference Code[7]		RD_ONLY
3073	INT	Component Data 1_Reference Code[8]		RD_ONLY
3074	INT	Component Data 1_Reference Code[9]		RD_ONLY
3075	INT	Component Data 1_Reference Code[10]		RD_ONLY
3076	INT	Component Data 1_Reference Code[11]		RD_ONLY

3077	INT	Component Data 1_Reference Code[12]	RD_ONLY
3078	INT	Component Data 1_Reference Code[13]	RD_ONLY
3079	INT	Component Data 1_Reference Code[14]	RD_ONLY
3080	INT	Component Data 1_Reference Code[15]	RD_ONLY
3081	INT	Component Data 1_Reference Code[16]	RD_ONLY
3082	INT	Component Data 2_Reference Code[1]	RD_ONLY
3083	INT	Component Data 2_Reference Code[2]	RD_ONLY
3084	INT	Component Data 2_Reference Code[3]	RD_ONLY
3085	INT	Component Data 2_Reference Code[4]	RD_ONLY
3086	INT	Component Data 2_Reference Code[5]	RD_ONLY
3087	INT	Component Data 2_Reference Code[6]	RD_ONLY
3088	INT	Component Data 2_Reference Code[7]	RD_ONLY
3089	INT	Component Data 2_Reference Code[8]	RD_ONLY
3090	INT	Component Data 2_Reference Code[9]	RD_ONLY
3091	INT	Component Data 2_Reference Code[10]	RD_ONLY
3092	INT	Component Data 2_Reference Code[11]	RD_ONLY
3093	INT	Component Data 2_Reference Code[12]	RD_ONLY
3094	INT	Component Data 2_Reference Code[13]	RD_ONLY
3095	INT	Component Data 2_Reference Code[14]	RD_ONLY
3096	INT	Component Data 2_Reference Code[15]	RD_ONLY
3097	INT	Component Data 2_Reference Code[16]	RD_ONLY
3098	INT	Calculations Configuration_Primary CV Units	RD_ONLY
3099	INT	Last Run Data Valid 1	RD_WR
3100	INT	Last Run Data Valid 2	RD_WR
3101	INT	Last Run Data Valid 3	RD_WR
3102	INT	Last Run Data Valid 4	RD_WR
3103	INT	Last FCalib_New RF Update Flag[1 - Component 1]	RD_ONLY
3104	INT	Last FCalib_New RF Update Flag[2 - Component 2]	RD_ONLY
3105	INT	Last FCalib_New RF Update Flag[3 - Component 3]	RD_ONLY
3106	INT	Last FCalib_New RF Update Flag[4 - Component 4]	RD_ONLY
3107	INT	Last FCalib_New RF Update Flag[5 - Component 5]	RD_ONLY
3108	INT	Last FCalib_New RF Update Flag[6 - Component 6]	RD_ONLY
3109	INT	Last FCalib_New RF Update Flag[7 - Component 7]	RD_ONLY
3110	INT	Last FCalib_New RF Update Flag[8 - Component 8]	RD_ONLY

3111	INT	Last FCalib_New RF Update Flag[9 - Component 9]	RD_ONLY
3112	INT	Last FCalib_New RF Update Flag[10 - Component 10]	RD_ONLY
3113	INT	Last FCalib_New RF Update Flag[11 - Component 11]	RD_ONLY
3114	INT	Last FCalib_New RF Update Flag[12 - Component 12]	RD_ONLY
3115	INT	Last FCalib_New RF Update Flag[13 - Component 13]	RD_ONLY
3116	INT	Last FCalib_New RF Update Flag[14 - Component 14]	RD_ONLY
3117	INT	Last FCalib_New RF Update Flag[15 - Component 15]	RD_ONLY
3118	INT	Last FCalib_New RF Update Flag[16 - Component 16]	RD_ONLY
3119	INT	Last FCalib_New RF Update Flag[17 - Component 17]	RD_ONLY
3120	INT	Last FCalib_New RF Update Flag[18 - Component 18]	RD_ONLY
3121	INT	Last FCalib_New RF Update Flag[19 - Component 19]	RD_ONLY
3122	INT	Last FCalib_New RF Update Flag[20 - Component 20]	RD_ONLY
3123	INT	Last FCalib_New RF Update Flag[1 - Component 1]	RD_ONLY
3124	INT	Last FCalib_New RF Update Flag[2 - Component 2]	RD_ONLY
3125	INT	Last FCalib_New RF Update Flag[3 - Component 3]	RD_ONLY
3126		Last FCalib_New RF Update Flag[4 - Component 4]	RD_ONLY
3127		Last FCalib_New RF Update Flag[5 - Component 5]	RD_ONLY
3128		Last FCalib_New RF Update Flag[6 - Component 6]	RD_ONLY
3129		Last FCalib_New RF Update Flag[7 - Component 7]	RD_ONLY
3130		Component 8]	RD_ONLY
3131		Last FCalib_New RF Update Flag[9 - Component 9]	RD_ONLY
3132		Last FCallb_New RF Update Flag[10 - Component 10]	KD_ONLY
3133		Last FCalib_New RF Update Flag[11 - Component 11]	RD_ONLY
3134	INT	Last FCalib_New RF Update Flag[12 - Component 12]	RD_ONLY
3135	INT	Last FCalib_New RF Update Flag[13 - Component 13]	RD_ONLY
3136	INT	Last FCalib_New RF Update Flag[14 -	RD_ONLY

		Component 14]	
3137	INT	Last FCalib_New RF Update Flag[15 - Component 15]	RD_ONLY
3138	INT	Last FCalib_New RF Update Flag[16 - Component 16]	RD_ONLY
3139	INT	Last FCalib_New RF Update Flag[17 - Component 17]	RD_ONLY
3140	INT	Last FCalib_New RF Update Flag[18 - Component 18]	RD_ONLY
3141	INT	Last FCalib_New RF Update Flag[19 - Component 19]	RD_ONLY
3142	INT	Last FCalib_New RF Update Flag[20 - Component 20]	RD_ONLY
3143	INT	Last FCalib_New RF Update Flag[1 - Component 1]	RD_ONLY
3144	INT	Last FCalib_New RF Update Flag[2 - Component 2]	RD_ONLY
3145	INT	Last FCalib_New RF Update Flag[3 - Component 3]	RD_ONLY
3146	INT	Last FCalib_New RF Update Flag[4 - Component 4]	RD_ONLY
3147	INT	Last FCalib_New RF Update Flag[5 - Component 5]	RD_ONLY
3148	INT	Last FCalib_New RF Update Flag[6 - Component 6]	RD_ONLY
3149	INT	Last FCalib_New RF Update Flag[7 - Component 7]	RD_ONLY
3150	INT	Last FCalib_New RF Update Flag[8 - Component 8]	RD_ONLY
3151	INT	Last FCalib_New RF Update Flag[9 - Component 9]	RD_ONLY
3152	INT	Last FCalib_New RF Update Flag[10 - Component 10]	RD_ONLY
3153	INT	Last FCalib_New RF Update Flag[11 - Component 11]	RD_ONLY
3154	INT	Last FCalib_New RF Update Flag[12 - Component 12]	RD_ONLY
3155	INT	Last FCalib_New RF Update Flag[13 - Component 13]	RD_ONLY
3156	INT	Last FCalib_New RF Update Flag[14 - Component 14]	RD_ONLY
3157	INT	Last FCalib_New RF Update Flag[15 - Component 15]	RD_ONLY
3158	INT	Last FCalib_New RF Update Flag[16 - Component 16]	RD_ONLY
3159	INT	Last FCalib_New RF Update Flag[17 - Component 17]	RD_ONLY
3160	INT	Last FCalib_New RF Update Flag[18 - Component 18]	RD_ONLY
3161	INT	Last FCalib_New RF Update Flag[19 - Component 19]	RD_ONLY

3162	INT	Last FCalib_New RF Update Flag[20 - Component 20]	RD_ONLY
3163	INT	Last FCalib_New RF Update Flag[1 - Component 1]	RD_ONLY
3164	INT	Last FCalib_New RF Update Flag[2 - Component 2]	RD_ONLY
3165	INT	Last FCalib_New RF Update Flag[3 - Component 3]	RD_ONLY
3166	INT	Last FCalib_New RF Update Flag[4 - Component 4]	RD_ONLY
3167	INT	Last FCalib_New RF Update Flag[5 - Component 5]	RD_ONLY
3168	INT	Last FCalib_New RF Update Flag[6 - Component 6]	RD_ONLY
3169	INT	Last FCalib_New RF Update Flag[7 - Component 7]	RD_ONLY
3170	INT	Last FCalib_New RF Update Flag[8 - Component 8]	RD_ONLY
3171	INT	Last FCalib_New RF Update Flag[9 - Component 9]	RD_ONLY
3172	INT	Last FCalib_New RF Update Flag[10 - Component 10]	RD_ONLY
3173	INT	Last FCalib_New RF Update Flag[11 - Component 11]	RD_ONLY
3174	INT	Last FCalib_New RF Update Flag[12 - Component 12]	RD_ONLY
3175	INT	Last FCalib_New RF Update Flag[13 - Component 13]	RD_ONLY
3176	INT	Last FCalib_New RF Update Flag[14 - Component 14]	RD_ONLY
3177	INT	Last FCalib_New RF Update Flag[15 - Component 15]	RD_ONLY
3178	INT	Last FCalib_New RF Update Flag[16 - Component 16]	RD_ONLY
3179	INT	Last FCalib_New RF Update Flag[17 - Component 17]	RD_ONLY
3180	INT	Last FCalib_New RF Update Flag[18 - Component 18]	RD_ONLY
3181	INT	Last FCalib_New RF Update Flag[19 - Component 19]	RD_ONLY
3182	INT	Last FCalib_New RF Update Flag[20 - Component 20]	RD_ONLY
5001	LONG	Last Analy_Cycle Time (1/30th sec)	RD_ONLY
5002	LONG	Last Calib_Calib Time (1/30 Sek.)	RD_ONLY
7001	FLOAT	Last Analy_Mole %[1 - Component 1]	RD_ONLY
7002	FLOAT	Last Analy_Mole %[2 - Component 2]	RD_ONLY
7003	FLOAT	Last Analy_Mole %[3 - Component 3]	RD_ONLY
7004	FLOAT	Last Analy_Mole %[4 - Component 4]	RD_ONLY
7005	FLOAT	Last Analy_Mole %[5 - Component 5]	RD_ONLY

7006	FLOAT	Last Analy_Mole %[6 - Component 6]	RD_ONLY
7007	FLOAT	Last Analy_Mole %[7 - Component 7]	RD_ONLY
7008	FLOAT	Last Analy_Mole %[8 - Component 8]	RD_ONLY
7009	FLOAT	Last Analy_Mole %[9 - Component 9]	RD_ONLY
7010	FLOAT	Last Analy_Mole %[10 - Component 10]	RD_ONLY
7011	FLOAT	Last Analy_Mole %[11 - Component 11]	RD_ONLY
7012	FLOAT	Last Analy_Mole %[12 - Component 12]	RD_ONLY
7013	FLOAT	Last Analy_Mole %[13 - Component 13]	RD_ONLY
7014	FLOAT	Last Analy_Mole %[14 - Component 14]	RD_ONLY
7015	FLOAT	Last Analy_Mole %[15 - Component 15]	RD_ONLY
7016	FLOAT	Last Analy_Mole %[16 - Component 16]	RD_ONLY
7017	FLOAT	Last Analy_Weight %[1 - Component 1]	RD_ONLY
7018	FLOAT	Last Analy_Weight %[2 - Component 2]	RD_ONLY
7019	FLOAT	Last Analy_Weight %[3 - Component 3]	RD_ONLY
7020	FLOAT	Last Analy_Weight %[4 - Component 4]	RD_ONLY
7021	FLOAT	Last Analy_Weight %[5 - Component 5]	RD_ONLY
7022	FLOAT	Last Analy_Weight %[6 - Component 6]	RD_ONLY
7023	FLOAT	Last Analy_Weight %[7 - Component 7]	RD_ONLY
7024	FLOAT	Last Analy_Weight %[8 - Component 8]	RD_ONLY
7025	FLOAT	Last Analy_Weight %[9 - Component 9]	RD_ONLY
7026	FLOAT	Last Analy_Weight %[10 - Component 10]	RD_ONLY
7027	FLOAT	Last Analy_Weight %[11 - Component 11]	RD_ONLY
7028	FLOAT	Last Analy_Weight %[12 - Component 12]	RD_ONLY
7029	FLOAT	Last Analy_Weight %[13 - Component 13]	RD_ONLY
7030	FLOAT	Last Analy_Weight %[14 - Component 14]	RD_ONLY
7031	FLOAT	Last Analy_Weight %[15 - Component 15]	RD_ONLY
7032	FLOAT	Last Analy_Weight %[16 - Component 16]	RD_ONLY
7033	FLOAT	Last Analy_ISO CV Sup Dry - Pri	RD_ONLY
7034	FLOAT	Last Analy_ISO CV Sup Sat - Pri	RD_ONLY
7035	FLOAT	Last Analy_ISO Real Rel Den Gas - Pri	RD_ONLY
7036	FLOAT	Last Analy_ISO Z Factor - Pri	RD_ONLY
7037	FLOAT	Last Analy_ISO Wobbe Index Sup - Pri	RD_ONLY
7038	FLOAT	Last Analy_Total Unnormalized Conc	RD_ONLY
7039	FLOAT	Last Analy_ISO Avg Molar Mass	RD_ONLY
7040	FLOAT	Calc Result[1 - User Cal 1]	RD_ONLY

7041	FLOAT	Calc Result[2 - User Cal 2]		RD_ONLY
7042	FLOAT	Calc Result[3 - User Cal 3]		RD_ONLY
7043	FLOAT	Calc Result[4 - User Cal 4]		RD_ONLY
7044	FLOAT	Calc Result[5 - User Cal 5]		RD_ONLY
7045	FLOAT	Nicht belegt		RD_ONLY
7046	FLOAT	Last Analy_ISO CV Sup Dry - Sec		RD_ONLY
7047	FLOAT	Last Analy_ISO CV Sup Sat - Sec		RD_ONLY
7048	FLOAT	Last Analy_ISO CV Inf Dry - Sec		RD_ONLY
7049	FLOAT	Last Analy_ISO CV Inf Sat - Sec		RD_ONLY
7050	FLOAT	Last Analy_ISO Z Factor - Sec		RD_ONLY
7051	FLOAT	Last Analy_ISO Real Rel Den Gas - Sec		RD_ONLY
7052	FLOAT	Last Analy_ISO Gas Den kg/m3 - Sec		RD_ONLY
7053	FLOAT	Last Analy_ISO Wobbe Index Sup - Sec		RD_ONLY
7054	FLOAT	Last Analy_ISO Wobbe Index Inf - Sec		RD_ONLY
7055	FLOAT	Avg[1 - Average 1]		RD_ONLY
7056	FLOAT	Avg[2 - Average 2]		RD_ONLY
7057	FLOAT	Avg[3 - Average 3]		RD_ONLY
7058	FLOAT	Avg[4 - Average 4]		RD_ONLY
7059	FLOAT	Avg[5 - Average 5]		RD_ONLY
7060	FLOAT	Avg[6 - Average 6]		RD_ONLY
7061	FLOAT	Avg[7 - Average 7]		RD_ONLY
7062	FLOAT	Avg[8 - Average 8]		RD_ONLY
7063	FLOAT	Avg[9 - Average 9]		RD_ONLY
7064	FLOAT	Avg[10 - Average 10]		RD_ONLY
7065	FLOAT	Avg[11 - Average 11]		RD_ONLY
7066	FLOAT	Avg[12 - Average 12]		RD_ONLY
7067	FLOAT	Avg[13 - Average 13]		RD_ONLY
7068	FLOAT	Avg[14 - Average 14]		RD_ONLY
7069	FLOAT	Avg[15 - Average 15]		RD_ONLY
7070	FLOAT	Archive_Avg[1 - Average 1]	1	RD_ONLY
7071	FLOAT	Archive_Avg[2 - Average 2]	1	RD_ONLY
7072	FLOAT	Archive_Avg[3 - Average 3]	1	RD_ONLY
7073	FLOAT	Archive_Avg[4 - Average 4]	1	RD_ONLY
7074	FLOAT	Archive_Avg[5 - Average 5]	1	RD_ONLY
7075	FLOAT	Archive_Avg[6 - Average 6]	1	RD_ONLY
7076	FLOAT	Archive_Avg[7 - Average 7]	1	RD_ONLY
7077	FLOAT	Archive_Avg[8 - Average 8]	1	RD_ONLY
7078	FLOAT	Archive_Avg[9 - Average 9]	1	RD_ONLY
7079	FLOAT	Archive_Avg[10 - Average 10]	1	RD_ONLY

7080	FLOAT	Archive_Avg[11 - Average 11]	1	RD_ONLY	
7081	FLOAT	Archive_Avg[12 - Average 12]	1	RD_ONLY	
7082	FLOAT	Archive_Avg[13 - Average 13]	1	RD_ONLY	
7083	FLOAT	Archive_Avg[14 - Average 14]	1	RD_ONLY	
7084	FLOAT	Archive_Avg[15 - Average 15]	1	RD_ONLY	
7085	FLOAT	Current Value[1 - Analog Input 1]		RD_ONLY	
7086	FLOAT	Current Value[2 - Analog Input 2]		RD_ONLY	
7087	FLOAT	Last Analy_ISO CV Inf Dry - Pri		RD_ONLY	
7088	FLOAT	Last Analy_ISO CV Inf Sat - Pri		RD_ONLY	
7089	FLOAT	Last Analy_ISO Wobbe Index Inf - Pri		RD_ONLY	
7090	FLOAT	Last Analy_ISO Gas Den kg/m3 - Pri		RD_ONLY	
7091	FLOAT	Last FCalib_Total Calibration Runs		RD_ONLY	
7092	FLOAT	Last FCalib_Total Average Runs		RD_ONLY	
7093	FLOAT	Auto Calibration Start Time		RD_ONLY	hhmm
7094	FLOAT	GC Control_Stream Sequence Select		RD_WR	
7095	FLOAT	Last Analy_Response Factor[1 - Component 1]		RD_ONLY	
7096	FLOAT	Last Analy_Response Factor[2 - Component 2]		RD_ONLY	
7097	FLOAT	Last Analy_Response Factor[3 - Component 3]		RD_ONLY	
7098	FLOAT	Last Analy_Response Factor[4 - Component 4]		RD_ONLY	
7099	FLOAT	Last Analy_Response Factor[5 - Component 5]		RD_ONLY	
7100	FLOAT	Last Analy_Response Factor[6 - Component 6]		RD_ONLY	
7101	FLOAT	Last Analy_Response Factor[7 - Component 7]		RD_ONLY	
7102	FLOAT	Last Analy_Response Factor[8 - Component 8]		RD_ONLY	
7103	FLOAT	Last Analy_Response Factor[9 - Component 9]		RD_ONLY	
7104	FLOAT	Last Analy_Response Factor[10 - Component 10]		RD_ONLY	
7105	FLOAT	Last Analy_Response Factor[11 - Component 11]		RD_ONLY	
7106	FLOAT	Last Analy_Response Factor[12 - Component 12]		RD_ONLY	
7107	FLOAT	Last Analy_Response Factor[13 - Component 13]		RD_ONLY	
7108	FLOAT	Last Analy_Response Factor[14 - Component 14]		RD_ONLY	
7109	FLOAT	Last Analy_Response Factor[15 - Component 15]		RD_ONLY	
7110	FLOAT	Last Analy_Response Factor[16 - Component 16]		RD_ONLY	

7111	FLOAT	Last FCalib ISO CV Sup Dry - Pri	RD ONLY
7112	FLOAT	Last FCalib_ISO CV Sup Sat - Pri	RD_ONLY
7113	FLOAT	Last FCalib_ISO CV Inf Dry - Pri	RD_ONLY
7114	FLOAT	Last FCalib_ISO CV Inf Sat - Pri	RD_ONLY
7115	FLOAT	Last FCalib_ISO Z Factor - Pri	RD_ONLY
7116	FLOAT	Last FCalib_ISO Real Rel Den Gas - Pri	RD_ONLY
7117	FLOAT	Last FCalib_ISO Gas Den kg/m3 - Pri	RD_ONLY
7118	FLOAT	Last FCalib_ISO Wobbe Index Sup - Pri	RD_ONLY
7119	FLOAT	Last FCalib_ISO Wobbe Index Inf - Pri	RD_ONLY
7120	FLOAT	Last FCalib_ISO Avg Molar Mass	RD_ONLY
7121	FLOAT	Last FCalib_Total Unnormalized Conc	RD_ONLY
7122	FLOAT	Last Calib_Stream Number	RD_ONLY
7123	FLOAT	Last Analy_GS(M)R Incomp Combustion Factor	RD_ONLY
7124	FLOAT	Last Analy_GS(M)R Soot Index	RD_ONLY
7125	FLOAT	Last Analy_Ratio of Latent Heat Cap	RD_ONLY
7126	FLOAT	Avg[1 - Average 1]	RD_ONLY
7127	FLOAT	Avg[2 - Average 2]	RD_ONLY
7128	FLOAT	Avg[3 - Average 3]	RD_ONLY
7129	FLOAT	Avg[4 - Average 4]	RD_ONLY
7130	FLOAT	Avg[5 - Average 5]	RD_ONLY
7131	FLOAT	Avg[6 - Average 6]	RD_ONLY
7132	FLOAT	Avg[7 - Average 7]	RD_ONLY
7133	FLOAT	Avg[8 - Average 8]	RD_ONLY
7134	FLOAT	Avg[9 - Average 9]	RD_ONLY
7135	FLOAT	Avg[10 - Average 10]	RD_ONLY
7136	FLOAT	Avg[11 - Average 11]	RD_ONLY
7137	FLOAT	Avg[12 - Average 12]	RD_ONLY
7138	FLOAT	Avg[13 - Average 13]	RD_ONLY
7139	FLOAT	Avg[14 - Average 14]	RD_ONLY
7140	FLOAT	Avg[15 - Average 15]	RD_ONLY
7141	FLOAT	Avg[16 - Average 16]	RD_ONLY
7142	FLOAT	Avg[17 - Average 17]	RD_ONLY
7143	FLOAT	Avg[18 - Average 18]	RD_ONLY
7144	FLOAT	Avg[19 - Average 19]	RD_ONLY
7145	FLOAT	Avg[20 - Average 20]	RD_ONLY
7146	FLOAT	Avg[21 - Average 21]	RD_ONLY
7147	FLOAT	Avg[22 - Average 22]	RD_ONLY
7148	FLOAT	Avg[23 - Average 23]	RD_ONLY

7149	FLOAT	Avg[24 - Average 24]	RD_ONLY
7150	FLOAT	Avg[25 - Average 25]	RD_ONLY
7151	FLOAT	Avg[26 - Average 26]	RD_ONLY
7152	FLOAT	Avg[27 - Average 27]	RD_ONLY
7153	FLOAT	Avg[28 - Average 28]	RD_ONLY
7154	FLOAT	Avg[29 - Average 29]	RD_ONLY
7155	FLOAT	Avg[30 - Average 30]	RD_ONLY
7156	FLOAT	Avg[31 - Average 31]	RD_ONLY
7157	FLOAT	Avg[32 - Average 32]	RD_ONLY
7158	FLOAT	Avg[33 - Average 33]	RD_ONLY
7159	FLOAT	Avg[34 - Average 34]	RD_ONLY
7160	FLOAT	Avg[35 - Average 35]	RD_ONLY
7161	FLOAT	Avg[36 - Average 36]	RD_ONLY
7162	FLOAT	Max[1 - Average 1]	RD_ONLY
7163	FLOAT	Max[2 - Average 2]	RD_ONLY
7164	FLOAT	Max[3 - Average 3]	RD_ONLY
7165	FLOAT	Max[4 - Average 4]	RD_ONLY
7166	FLOAT	Max[5 - Average 5]	RD_ONLY
7167	FLOAT	Max[6 - Average 6]	RD_ONLY
7168	FLOAT	Max[7 - Average 7]	RD_ONLY
7169	FLOAT	Max[8 - Average 8]	RD_ONLY
7170	FLOAT	Max[9 - Average 9]	RD_ONLY
7171	FLOAT	Max[10 - Average 10]	RD_ONLY
7172	FLOAT	Max[11 - Average 11]	RD_ONLY
7173	FLOAT	Max[12 - Average 12]	RD_ONLY
7174	FLOAT	Max[13 - Average 13]	RD_ONLY
7175	FLOAT	Max[14 - Average 14]	RD_ONLY
7176	FLOAT	Max[15 - Average 15]	RD_ONLY
7177	FLOAT	Max[16 - Average 16]	RD_ONLY
7178	FLOAT	Max[17 - Average 17]	RD_ONLY
7179	FLOAT	Max[18 - Average 18]	RD_ONLY
7180	FLOAT	Max[19 - Average 19]	RD_ONLY
7181	FLOAT	Max[20 - Average 20]	RD_ONLY
7182	FLOAT	Max[21 - Average 21]	RD_ONLY
7183	FLOAT	Max[22 - Average 22]	RD_ONLY
7184	FLOAT	Max[23 - Average 23]	RD_ONLY
7185	FLOAT	Max[24 - Average 24]	RD_ONLY
7186	FLOAT	Max[25 - Average 25]	RD_ONLY
7187	FLOAT	Max[26 - Average 26]	RD_ONLY

7188	FLOAT	Max[27 - Average 27]	RD_ONLY
7189	FLOAT	Max[28 - Average 28]	RD_ONLY
7190	FLOAT	Max[29 - Average 29]	RD_ONLY
7191	FLOAT	Max[30 - Average 30]	RD_ONLY
7192	FLOAT	Max[31 - Average 31]	RD_ONLY
7193	FLOAT	Max[32 - Average 32]	RD_ONLY
7194	FLOAT	Max[33 - Average 33]	RD_ONLY
7195	FLOAT	Max[34 - Average 34]	RD_ONLY
7196	FLOAT	Max[35 - Average 35]	RD_ONLY
7197	FLOAT	Max[36 - Average 36]	RD_ONLY
7198	FLOAT	Min[1 - Average 1]	RD_ONLY
7199	FLOAT	Min[2 - Average 2]	RD_ONLY
7200	FLOAT	Min[3 - Average 3]	RD_ONLY
7201	FLOAT	Min[4 - Average 4]	RD_ONLY
7202	FLOAT	Min[5 - Average 5]	RD_ONLY
7203	FLOAT	Min[6 - Average 6]	RD_ONLY
7204	FLOAT	Min[7 - Average 7]	RD_ONLY
7205	FLOAT	Min[8 - Average 8]	RD_ONLY
7206	FLOAT	Min[9 - Average 9]	RD_ONLY
7207	FLOAT	Min[10 - Average 10]	RD_ONLY
7208	FLOAT	Min[11 - Average 11]	RD_ONLY
7209	FLOAT	Min[12 - Average 12]	RD_ONLY
7210	FLOAT	Min[13 - Average 13]	RD_ONLY
7211	FLOAT	Min[14 - Average 14]	RD_ONLY
7212	FLOAT	Min[15 - Average 15]	RD_ONLY
7213	FLOAT	Min[16 - Average 16]	RD_ONLY
7214	FLOAT	Min[17 - Average 17]	RD_ONLY
7215	FLOAT	Min[18 - Average 18]	RD_ONLY
7216	FLOAT	Min[19 - Average 19]	RD_ONLY
7217	FLOAT	Min[20 - Average 20]	RD_ONLY
7218	FLOAT	Min[21 - Average 21]	RD_ONLY
7219	FLOAT	Min[22 - Average 22]	RD_ONLY
7220	FLOAT	Min[23 - Average 23]	RD_ONLY
7221	FLOAT	Min[24 - Average 24]	RD_ONLY
7222	FLOAT	Min[25 - Average 25]	RD_ONLY
7223	FLOAT	Min[26 - Average 26]	RD_ONLY
7224	FLOAT	Min[27 - Average 27]	RD_ONLY
7225	FLOAT	Min[28 - Average 28]	RD_ONLY
7226	FLOAT	Min[29 - Average 29]	RD_ONLY

7227	FLOAT	Min[30 - Average 30]		RD_ONLY
7228	FLOAT	Min[31 - Average 31]		RD_ONLY
7229	FLOAT	Min[32 - Average 32]		RD_ONLY
7230	FLOAT	Min[33 - Average 33]		RD_ONLY
7231	FLOAT	Min[34 - Average 34]		RD_ONLY
7232	FLOAT	Min[35 - Average 35]		RD_ONLY
7233	FLOAT	Min[36 - Average 36]		RD_ONLY
7234	FLOAT	Archive_Avg[1 - Average 1]	1	RD_ONLY
7235	FLOAT	Archive_Avg[2 - Average 2]	1	RD_ONLY
7236	FLOAT	Archive_Avg[3 - Average 3]	1	RD_ONLY
7237	FLOAT	Archive_Avg[4 - Average 4]	1	RD_ONLY
7238	FLOAT	Archive_Avg[5 - Average 5]	1	RD_ONLY
7239	FLOAT	Archive_Avg[6 - Average 6]	1	RD_ONLY
7240	FLOAT	Archive_Avg[7 - Average 7]	1	RD_ONLY
7241	FLOAT	Archive_Avg[8 - Average 8]	1	RD_ONLY
7242	FLOAT	Archive_Avg[9 - Average 9]	1	RD_ONLY
7243	FLOAT	Archive_Avg[10 - Average 10]	1	RD_ONLY
7244	FLOAT	Archive_Avg[11 - Average 11]	1	RD_ONLY
7245	FLOAT	Archive_Avg[12 - Average 12]	1	RD_ONLY
7246	FLOAT	Archive_Avg[13 - Average 13]	1	RD_ONLY
7247	FLOAT	Archive_Avg[14 - Average 14]	1	RD_ONLY
7248	FLOAT	Archive_Avg[15 - Average 15]	1	RD_ONLY
7249	FLOAT	Archive_Avg[16 - Average 16]	1	RD_ONLY
7250	FLOAT	Archive_Avg[17 - Average 17]	1	RD_ONLY
7251	FLOAT	Archive_Avg[18 - Average 18]	1	RD_ONLY
7252	FLOAT	Archive_Avg[19 - Average 19]	1	RD_ONLY
7253	FLOAT	Archive_Avg[20 - Average 20]	1	RD_ONLY
7254	FLOAT	Archive_Avg[21 - Average 21]	1	RD_ONLY
7255	FLOAT	Archive_Avg[22 - Average 22]	1	RD_ONLY
7256	FLOAT	Archive_Avg[23 - Average 23]	1	RD_ONLY
7257	FLOAT	Archive_Avg[24 - Average 24]	1	RD_ONLY
7258	FLOAT	Archive_Avg[25 - Average 25]	1	RD_ONLY
7259	FLOAT	Archive_Avg[26 - Average 26]	1	RD_ONLY
7260	FLOAT	Archive_Avg[27 - Average 27]	1	RD_ONLY
7261	FLOAT	Archive_Avg[28 - Average 28]	1	RD_ONLY
7262	FLOAT	Archive_Avg[29 - Average 29]	1	RD_ONLY
7263	FLOAT	Archive_Avg[30 - Average 30]	1	RD_ONLY
7264	FLOAT	Archive_Avg[31 - Average 31]	1	RD_ONLY
7265	FLOAT	Archive_Avg[32 - Average 32]	1	RD_ONLY

7266	FLOAT	Archive_Avg[33 - Average 33]	1	RD_ONLY
7267	FLOAT	Archive_Avg[34 - Average 34]	1	RD_ONLY
7268	FLOAT	Archive_Avg[35 - Average 35]	1	RD_ONLY
7269	FLOAT	Archive_Avg[36 - Average 36]	1	RD_ONLY
7270	FLOAT	Archive_Max[1 - Average 1]	1	RD_ONLY
7271	FLOAT	Archive_Max[2 - Average 2]	1	RD_ONLY
7272	FLOAT	Archive_Max[3 - Average 3]	1	RD_ONLY
7273	FLOAT	Archive_Max[4 - Average 4]	1	RD_ONLY
7274	FLOAT	Archive_Max[5 - Average 5]	1	RD_ONLY
7275	FLOAT	Archive_Max[6 - Average 6]	1	RD_ONLY
7276	FLOAT	Archive_Max[7 - Average 7]	1	RD_ONLY
7277	FLOAT	Archive_Max[8 - Average 8]	1	RD_ONLY
7278	FLOAT	Archive_Max[9 - Average 9]	1	RD_ONLY
7279	FLOAT	Archive_Max[10 - Average 10]	1	RD_ONLY
7280	FLOAT	Archive_Max[11 - Average 11]	1	RD_ONLY
7281	FLOAT	Archive_Max[12 - Average 12]	1	RD_ONLY
7282	FLOAT	Archive_Max[13 - Average 13]	1	RD_ONLY
7283	FLOAT	Archive_Max[14 - Average 14]	1	RD_ONLY
7284	FLOAT	Archive_Max[15 - Average 15]	1	RD_ONLY
7285	FLOAT	Archive_Max[16 - Average 16]	1	RD_ONLY
7286	FLOAT	Archive_Max[17 - Average 17]	1	RD_ONLY
7287	FLOAT	Archive_Max[18 - Average 18]	1	RD_ONLY
7288	FLOAT	Archive_Max[19 - Average 19]	1	RD_ONLY
7289	FLOAT	Archive_Max[20 - Average 20]	1	RD_ONLY
7290	FLOAT	Archive_Max[21 - Average 21]	1	RD_ONLY
7291	FLOAT	Archive_Max[22 - Average 22]	1	RD_ONLY
7292	FLOAT	Archive_Max[23 - Average 23]	1	RD_ONLY
7293	FLOAT	Archive_Max[24 - Average 24]	1	RD_ONLY
7294	FLOAT	Archive_Max[25 - Average 25]	1	RD_ONLY
7295	FLOAT	Archive_Max[26 - Average 26]	1	RD_ONLY
7296	FLOAT	Archive_Max[27 - Average 27]	1	RD_ONLY
7297	FLOAT	Archive_Max[28 - Average 28]	1	RD_ONLY
7298	FLOAT	Archive_Max[29 - Average 29]	1	RD_ONLY
7299	FLOAT	Archive_Max[30 - Average 30]	1	RD_ONLY
7300	FLOAT	Archive_Max[31 - Average 31]	1	RD_ONLY
7301	FLOAT	Archive_Max[32 - Average 32]	1	RD_ONLY
7302	FLOAT	Archive_Max[33 - Average 33]	1	RD_ONLY
7303	FLOAT	Archive_Max[34 - Average 34]	1	RD_ONLY
7304	FLOAT	Archive_Max[35 - Average 35]	1	RD_ONLY

7305	FLOAT	Archive_Max[36 - Average 36]	1	RD_ONLY
7306	FLOAT	Archive_Min[1 - Average 1]	1	RD_ONLY
7307	FLOAT	Archive_Min[2 - Average 2]	1	RD_ONLY
7308	FLOAT	Archive_Min[3 - Average 3]	1	RD_ONLY
7309	FLOAT	Archive_Min[4 - Average 4]	1	RD_ONLY
7310	FLOAT	Archive_Min[5 - Average 5]	1	RD_ONLY
7311	FLOAT	Archive_Min[6 - Average 6]	1	RD_ONLY
7312	FLOAT	Archive_Min[7 - Average 7]	1	RD_ONLY
7313	FLOAT	Archive_Min[8 - Average 8]	1	RD_ONLY
7314	FLOAT	Archive_Min[9 - Average 9]	1	RD_ONLY
7315	FLOAT	Archive_Min[10 - Average 10]	1	RD_ONLY
7316	FLOAT	Archive_Min[11 - Average 11]	1	RD_ONLY
7317	FLOAT	Archive_Min[12 - Average 12]	1	RD_ONLY
7318	FLOAT	Archive_Min[13 - Average 13]	1	RD_ONLY
7319	FLOAT	Archive_Min[14 - Average 14]	1	RD_ONLY
7320	FLOAT	Archive_Min[15 - Average 15]	1	RD_ONLY
7321	FLOAT	Archive_Min[16 - Average 16]	1	RD_ONLY
7322	FLOAT	Archive_Min[17 - Average 17]	1	RD_ONLY
7323	FLOAT	Archive_Min[18 - Average 18]	1	RD_ONLY
7324	FLOAT	Archive_Min[19 - Average 19]	1	RD_ONLY
7325	FLOAT	Archive_Min[20 - Average 20]	1	RD_ONLY
7326	FLOAT	Archive_Min[21 - Average 21]	1	RD_ONLY
7327	FLOAT	Archive_Min[22 - Average 22]	1	RD_ONLY
7328	FLOAT	Archive_Min[23 - Average 23]	1	RD_ONLY
7329	FLOAT	Archive_Min[24 - Average 24]	1	RD_ONLY
7330	FLOAT	Archive_Min[25 - Average 25]	1	RD_ONLY
7331	FLOAT	Archive_Min[26 - Average 26]	1	RD_ONLY
7332	FLOAT	Archive_Min[27 - Average 27]	1	RD_ONLY
7333	FLOAT	Archive_Min[28 - Average 28]	1	RD_ONLY
7334	FLOAT	Archive_Min[29 - Average 29]	1	RD_ONLY
7335	FLOAT	Archive_Min[30 - Average 30]	1	RD_ONLY
7336	FLOAT	Archive_Min[31 - Average 31]	1	RD_ONLY
7337	FLOAT	Archive_Min[32 - Average 32]	1	RD_ONLY
7338	FLOAT	Archive_Min[33 - Average 33]	1	RD_ONLY
7339	FLOAT	Archive_Min[34 - Average 34]	1	RD_ONLY
7340	FLOAT	Archive_Min[35 - Average 35]	1	RD_ONLY
7341	FLOAT	Archive_Min[36 - Average 36]	1	RD_ONLY
7342	FLOAT	Archive_Avg[1 - Average 1]	2	RD_ONLY
7343	FLOAT	Archive_Avg[2 - Average 2]	2	RD_ONLY

7344	FLOAT	Archive_Avg[3 - Average 3]	2	RD_ONLY
7345	FLOAT	Archive_Avg[4 - Average 4]	2	RD_ONLY
7346	FLOAT	Archive_Avg[5 - Average 5]	2	RD_ONLY
7347	FLOAT	Archive_Avg[6 - Average 6]	2	RD_ONLY
7348	FLOAT	Archive_Avg[7 - Average 7]	2	RD_ONLY
7349	FLOAT	Archive_Avg[8 - Average 8]	2	RD_ONLY
7350	FLOAT	Archive_Avg[9 - Average 9]	2	RD_ONLY
7351	FLOAT	Archive_Avg[10 - Average 10]	2	RD_ONLY
7352	FLOAT	Archive_Avg[11 - Average 11]	2	RD_ONLY
7353	FLOAT	Archive_Avg[12 - Average 12]	2	RD_ONLY
7354	FLOAT	Archive_Avg[13 - Average 13]	2	RD_ONLY
7355	FLOAT	Archive_Avg[14 - Average 14]	2	RD_ONLY
7356	FLOAT	Archive_Avg[15 - Average 15]	2	RD_ONLY
7357	FLOAT	Archive_Avg[16 - Average 16]	2	RD_ONLY
7358	FLOAT	Archive_Avg[17 - Average 17]	2	RD_ONLY
7359	FLOAT	Archive_Avg[18 - Average 18]	2	RD_ONLY
7360	FLOAT	Archive_Avg[19 - Average 19]	2	RD_ONLY
7361	FLOAT	Archive_Avg[20 - Average 20]	2	RD_ONLY
7362	FLOAT	Archive_Avg[21 - Average 21]	2	RD_ONLY
7363	FLOAT	Archive_Avg[22 - Average 22]	2	RD_ONLY
7364	FLOAT	Archive_Avg[23 - Average 23]	2	RD_ONLY
7365	FLOAT	Archive_Avg[24 - Average 24]	2	RD_ONLY
7366	FLOAT	Archive_Avg[25 - Average 25]	2	RD_ONLY
7367	FLOAT	Archive_Avg[26 - Average 26]	2	RD_ONLY
7368	FLOAT	Archive_Avg[27 - Average 27]	2	RD_ONLY
7369	FLOAT	Archive_Avg[28 - Average 28]	2	RD_ONLY
7370	FLOAT	Archive_Avg[29 - Average 29]	2	RD_ONLY
7371	FLOAT	Archive_Avg[30 - Average 30]	2	RD_ONLY
7372	FLOAT	Archive_Avg[31 - Average 31]	2	RD_ONLY
7373	FLOAT	Archive_Avg[32 - Average 32]	2	RD_ONLY
7374	FLOAT	Archive_Avg[33 - Average 33]	2	RD_ONLY
7375	FLOAT	Archive_Avg[34 - Average 34]	2	RD_ONLY
7376	FLOAT	Archive_Avg[35 - Average 35]	2	RD_ONLY
7377	FLOAT	Archive_Avg[36 - Average 36]	2	RD_ONLY
7378	FLOAT	Archive_Max[1 - Average 1]	2	RD_ONLY
7379	FLOAT	Archive_Max[2 - Average 2]	2	RD_ONLY
7380	FLOAT	Archive_Max[3 - Average 3]	2	RD_ONLY
7381	FLOAT	Archive_Max[4 - Average 4]	2	RD_ONLY
7382	FLOAT	Archive_Max[5 - Average 5]	2	RD_ONLY

7383	FLOAT	Archive_Max[6 - Average 6]	2	RD_ONLY
7384	FLOAT	Archive_Max[7 - Average 7]	2	RD_ONLY
7385	FLOAT	Archive_Max[8 - Average 8]	2	RD_ONLY
7386	FLOAT	Archive_Max[9 - Average 9]	2	RD_ONLY
7387	FLOAT	Archive_Max[10 - Average 10]	2	RD_ONLY
7388	FLOAT	Archive_Max[11 - Average 11]	2	RD_ONLY
7389	FLOAT	Archive_Max[12 - Average 12]	2	RD_ONLY
7390	FLOAT	Archive_Max[13 - Average 13]	2	RD_ONLY
7391	FLOAT	Archive_Max[14 - Average 14]	2	RD_ONLY
7392	FLOAT	Archive_Max[15 - Average 15]	2	RD_ONLY
7393	FLOAT	Archive_Max[16 - Average 16]	2	RD_ONLY
7394	FLOAT	Archive_Max[17 - Average 17]	2	RD_ONLY
7395	FLOAT	Archive_Max[18 - Average 18]	2	RD_ONLY
7396	FLOAT	Archive_Max[19 - Average 19]	2	RD_ONLY
7397	FLOAT	Archive_Max[20 - Average 20]	2	RD_ONLY
7398	FLOAT	Archive_Max[21 - Average 21]	2	RD_ONLY
7399	FLOAT	Archive_Max[22 - Average 22]	2	RD_ONLY
7400	FLOAT	Archive_Max[23 - Average 23]	2	RD_ONLY
7401	FLOAT	Archive_Max[24 - Average 24]	2	RD_ONLY
7402	FLOAT	Archive_Max[25 - Average 25]	2	RD_ONLY
7403	FLOAT	Archive_Max[26 - Average 26]	2	RD_ONLY
7404	FLOAT	Archive_Max[27 - Average 27]	2	RD_ONLY
7405	FLOAT	Archive_Max[28 - Average 28]	2	RD_ONLY
7406	FLOAT	Archive_Max[29 - Average 29]	2	RD_ONLY
7407	FLOAT	Archive_Max[30 - Average 30]	2	RD_ONLY
7408	FLOAT	Archive_Max[31 - Average 31]	2	RD_ONLY
7409	FLOAT	Archive_Max[32 - Average 32]	2	RD_ONLY
7410	FLOAT	Archive_Max[33 - Average 33]	2	RD_ONLY
7411	FLOAT	Archive_Max[34 - Average 34]	2	RD_ONLY
7412	FLOAT	Archive_Max[35 - Average 35]	2	RD_ONLY
7413	FLOAT	Archive_Max[36 - Average 36]	2	RD_ONLY
7414	FLOAT	Archive_Min[1 - Average 1]	2	RD_ONLY
7415	FLOAT	Archive_Min[2 - Average 2]	2	RD_ONLY
7416	FLOAT	Archive_Min[3 - Average 3]	2	RD_ONLY
7417	FLOAT	Archive_Min[4 - Average 4]	2	RD_ONLY
7418	FLOAT	Archive_Min[5 - Average 5]	2	RD_ONLY
7419	FLOAT	Archive_Min[6 - Average 6]	2	RD_ONLY
7420	FLOAT	Archive_Min[7 - Average 7]	2	RD_ONLY
7421	FLOAT	Archive_Min[8 - Average 8]	2	RD_ONLY

7422	FLOAT	Archive_Min[9 - Average 9]	2	RD_ONLY
7423	FLOAT	Archive_Min[10 - Average 10]	2	RD_ONLY
7424	FLOAT	Archive_Min[11 - Average 11]	2	RD_ONLY
7425	FLOAT	Archive_Min[12 - Average 12]	2	RD_ONLY
7426	FLOAT	Archive_Min[13 - Average 13]	2	RD_ONLY
7427	FLOAT	Archive_Min[14 - Average 14]	2	RD_ONLY
7428	FLOAT	Archive_Min[15 - Average 15]	2	RD_ONLY
7429	FLOAT	Archive_Min[16 - Average 16]	2	RD_ONLY
7430	FLOAT	Archive_Min[17 - Average 17]	2	RD_ONLY
7431	FLOAT	Archive_Min[18 - Average 18]	2	RD_ONLY
7432	FLOAT	Archive_Min[19 - Average 19]	2	RD_ONLY
7433	FLOAT	Archive_Min[20 - Average 20]	2	RD_ONLY
7434	FLOAT	Archive_Min[21 - Average 21]	2	RD_ONLY
7435	FLOAT	Archive_Min[22 - Average 22]	2	RD_ONLY
7436	FLOAT	Archive_Min[23 - Average 23]	2	RD_ONLY
7437	FLOAT	Archive_Min[24 - Average 24]	2	RD_ONLY
7438	FLOAT	Archive_Min[25 - Average 25]	2	RD_ONLY
7439	FLOAT	Archive_Min[26 - Average 26]	2	RD_ONLY
7440	FLOAT	Archive_Min[27 - Average 27]	2	RD_ONLY
7441	FLOAT	Archive_Min[28 - Average 28]	2	RD_ONLY
7442	FLOAT	Archive_Min[29 - Average 29]	2	RD_ONLY
7443	FLOAT	Archive_Min[30 - Average 30]	2	RD_ONLY
7444	FLOAT	Archive_Min[31 - Average 31]	2	RD_ONLY
7445	FLOAT	Archive_Min[32 - Average 32]	2	RD_ONLY
7446	FLOAT	Archive_Min[33 - Average 33]	2	RD_ONLY
7447	FLOAT	Archive_Min[34 - Average 34]	2	RD_ONLY
7448	FLOAT	Archive_Min[35 - Average 35]	2	RD_ONLY
7449	FLOAT	Archive_Min[36 - Average 36]	2	RD_ONLY
7450	FLOAT	Archive_Avg[1 - Average 1]	3	RD_ONLY
7451	FLOAT	Archive_Avg[2 - Average 2]	3	RD_ONLY
7452	FLOAT	Archive_Avg[3 - Average 3]	3	RD_ONLY
7453	FLOAT	Archive_Avg[4 - Average 4]	3	RD_ONLY
7454	FLOAT	Archive_Avg[5 - Average 5]	3	RD_ONLY
7455	FLOAT	Archive_Avg[6 - Average 6]	3	RD_ONLY
7456	FLOAT	Archive_Avg[7 - Average 7]	3	RD_ONLY
7457	FLOAT	Archive_Avg[8 - Average 8]	3	RD_ONLY
7458	FLOAT	Archive_Avg[9 - Average 9]	3	RD_ONLY
7459	FLOAT	Archive_Avg[10 - Average 10]	3	RD_ONLY
7460	FLOAT	Archive_Avg[11 - Average 11]	3	RD_ONLY

7461	FLOAT	Archive_Avg[12 - Average 12]	3	RD_ONLY
7462	FLOAT	Archive_Avg[13 - Average 13]	3	RD_ONLY
7463	FLOAT	Archive_Avg[14 - Average 14]	3	RD_ONLY
7464	FLOAT	Archive_Avg[15 - Average 15]	3	RD_ONLY
7465	FLOAT	Archive_Avg[16 - Average 16]	3	RD_ONLY
7466	FLOAT	Archive_Avg[17 - Average 17]	3	RD_ONLY
7467	FLOAT	Archive_Avg[18 - Average 18]	3	RD_ONLY
7468	FLOAT	Archive_Avg[19 - Average 19]	3	RD_ONLY
7469	FLOAT	Archive_Avg[20 - Average 20]	3	RD_ONLY
7470	FLOAT	Archive_Avg[21 - Average 21]	3	RD_ONLY
7471	FLOAT	Archive_Avg[22 - Average 22]	3	RD_ONLY
7472	FLOAT	Archive_Avg[23 - Average 23]	3	RD_ONLY
7473	FLOAT	Archive_Avg[24 - Average 24]	3	RD_ONLY
7474	FLOAT	Archive_Avg[25 - Average 25]	3	RD_ONLY
7475	FLOAT	Archive_Avg[26 - Average 26]	3	RD_ONLY
7476	FLOAT	Archive_Avg[27 - Average 27]	3	RD_ONLY
7477	FLOAT	Archive_Avg[28 - Average 28]	3	RD_ONLY
7478	FLOAT	Archive_Avg[29 - Average 29]	3	RD_ONLY
7479	FLOAT	Archive_Avg[30 - Average 30]	3	RD_ONLY
7480	FLOAT	Archive_Avg[31 - Average 31]	3	RD_ONLY
7481	FLOAT	Archive_Avg[32 - Average 32]	3	RD_ONLY
7482	FLOAT	Archive_Avg[33 - Average 33]	3	RD_ONLY
7483	FLOAT	Archive_Avg[34 - Average 34]	3	RD_ONLY
7484	FLOAT	Archive_Avg[35 - Average 35]	3	RD_ONLY
7485	FLOAT	Archive_Avg[36 - Average 36]	3	RD_ONLY
7486	FLOAT	Archive_Max[1 - Average 1]	3	RD_ONLY
7487	FLOAT	Archive_Max[2 - Average 2]	3	RD_ONLY
7488	FLOAT	Archive_Max[3 - Average 3]	3	RD_ONLY
7489	FLOAT	Archive_Max[4 - Average 4]	3	RD_ONLY
7490	FLOAT	Archive_Max[5 - Average 5]	3	RD_ONLY
7491	FLOAT	Archive_Max[6 - Average 6]	3	RD_ONLY
7492	FLOAT	Archive_Max[7 - Average 7]	3	RD_ONLY
7493	FLOAT	Archive_Max[8 - Average 8]	3	RD_ONLY
7494	FLOAT	Archive_Max[9 - Average 9]	3	RD_ONLY
7495	FLOAT	Archive_Max[10 - Average 10]	3	RD_ONLY
7496	FLOAT	Archive_Max[11 - Average 11]	3	RD_ONLY
7497	FLOAT	Archive_Max[12 - Average 12]	3	RD_ONLY
7498	FLOAT	Archive_Max[13 - Average 13]	3	RD_ONLY
7499	FLOAT	Archive_Max[14 - Average 14]	3	RD_ONLY

7500	FLOAT	Archive_Max[15 - Average 15]	3	RD_ONLY
7501	FLOAT	Archive_Max[16 - Average 16]	3	RD_ONLY
7502	FLOAT	Archive_Max[17 - Average 17]	3	RD_ONLY
7503	FLOAT	Archive_Max[18 - Average 18]	3	RD_ONLY
7504	FLOAT	Archive_Max[19 - Average 19]	3	RD_ONLY
7505	FLOAT	Archive_Max[20 - Average 20]	3	RD_ONLY
7506	FLOAT	Archive_Max[21 - Average 21]	3	RD_ONLY
7507	FLOAT	Archive_Max[22 - Average 22]	3	RD_ONLY
7508	FLOAT	Archive_Max[23 - Average 23]	3	RD_ONLY
7509	FLOAT	Archive_Max[24 - Average 24]	3	RD_ONLY
7510	FLOAT	Archive_Max[25 - Average 25]	3	RD_ONLY
7511	FLOAT	Archive_Max[26 - Average 26]	3	RD_ONLY
7512	FLOAT	Archive_Max[27 - Average 27]	3	RD_ONLY
7513	FLOAT	Archive_Max[28 - Average 28]	3	RD_ONLY
7514	FLOAT	Archive_Max[29 - Average 29]	3	RD_ONLY
7515	FLOAT	Archive_Max[30 - Average 30]	3	RD_ONLY
7516	FLOAT	Archive_Max[31 - Average 31]	3	RD_ONLY
7517	FLOAT	Archive_Max[32 - Average 32]	3	RD_ONLY
7518	FLOAT	Archive_Max[33 - Average 33]	3	RD_ONLY
7519	FLOAT	Archive_Max[34 - Average 34]	3	RD_ONLY
7520	FLOAT	Archive_Max[35 - Average 35]	3	RD_ONLY
7521	FLOAT	Archive_Max[36 - Average 36]	3	RD_ONLY
7522	FLOAT	Archive_Min[1 - Average 1]	3	RD_ONLY
7523	FLOAT	Archive_Min[2 - Average 2]	3	RD_ONLY
7524	FLOAT	Archive_Min[3 - Average 3]	3	RD_ONLY
7525	FLOAT	Archive_Min[4 - Average 4]	3	RD_ONLY
7526	FLOAT	Archive_Min[5 - Average 5]	3	RD_ONLY
7527	FLOAT	Archive_Min[6 - Average 6]	3	RD_ONLY
7528	FLOAT	Archive_Min[7 - Average 7]	3	RD_ONLY
7529	FLOAT	Archive_Min[8 - Average 8]	3	RD_ONLY
7530	FLOAT	Archive_Min[9 - Average 9]	3	RD_ONLY
7531	FLOAT	Archive_Min[10 - Average 10]	3	RD_ONLY
7532	FLOAT	Archive_Min[11 - Average 11]	3	RD_ONLY
7533	FLOAT	Archive_Min[12 - Average 12]	3	RD_ONLY
7534	FLOAT	Archive_Min[13 - Average 13]	3	RD_ONLY
7535	FLOAT	Archive_Min[14 - Average 14]	3	RD_ONLY
7536	FLOAT	Archive_Min[15 - Average 15]	3	RD_ONLY
7537	FLOAT	Archive_Min[16 - Average 16]	3	RD_ONLY
7538	FLOAT	Archive_Min[17 - Average 17]	3	RD_ONLY

7539	FLOAT	Archive_Min[18 - Average 18]	3	RD_ONLY
7540	FLOAT	Archive_Min[19 - Average 19]	3	RD_ONLY
7541	FLOAT	Archive_Min[20 - Average 20]	3	RD_ONLY
7542	FLOAT	Archive_Min[21 - Average 21]	3	RD_ONLY
7543	FLOAT	Archive_Min[22 - Average 22]	3	RD_ONLY
7544	FLOAT	Archive_Min[23 - Average 23]	3	RD_ONLY
7545	FLOAT	Archive_Min[24 - Average 24]	3	RD_ONLY
7546	FLOAT	Archive_Min[25 - Average 25]	3	RD_ONLY
7547	FLOAT	Archive_Min[26 - Average 26]	3	RD_ONLY
7548	FLOAT	Archive_Min[27 - Average 27]	3	RD_ONLY
7549	FLOAT	Archive_Min[28 - Average 28]	3	RD_ONLY
7550	FLOAT	Archive_Min[29 - Average 29]	3	RD_ONLY
7551	FLOAT	Archive_Min[30 - Average 30]	3	RD_ONLY
7552	FLOAT	Archive_Min[31 - Average 31]	3	RD_ONLY
7553	FLOAT	Archive_Min[32 - Average 32]	3	RD_ONLY
7554	FLOAT	Archive_Min[33 - Average 33]	3	RD_ONLY
7555	FLOAT	Archive_Min[34 - Average 34]	3	RD_ONLY
7556	FLOAT	Archive_Min[35 - Average 35]	3	RD_ONLY
7557	FLOAT	Archive_Min[36 - Average 36]	3	RD_ONLY
7558	FLOAT	Component Data 1_Multi-level Calib 'a'[1]		RD_ONLY
7559	FLOAT	Component Data 1_Multi-level Calib 'a'[2]		RD_ONLY
7560	FLOAT	Component Data 1_Multi-level Calib 'a'[3]		RD_ONLY
7561	FLOAT	Component Data 1_Multi-level Calib 'a'[4]		RD_ONLY
7562	FLOAT	Component Data 1_Multi-level Calib 'a'[5]		RD_ONLY
7563	FLOAT	Component Data 1_Multi-level Calib 'a'[6]		RD_ONLY
7564	FLOAT	Component Data 1_Multi-level Calib 'a'[7]		RD_ONLY
7565	FLOAT	Component Data 1_Multi-level Calib 'a'[8]		RD_ONLY
7566	FLOAT	Component Data 1_Multi-level Calib 'a'[9]		RD_ONLY
7567	FLOAT	Component Data 1_Multi-level Calib 'a'[10]		RD_ONLY
7568	FLOAT	Component Data 1_Multi-level Calib 'a'[11]		RD_ONLY
7569	FLOAT	Component Data 1_Multi-level Calib 'a'[12]		RD_ONLY
7570	FLOAT	Component Data 1_Multi-level Calib 'a'[13]		RD_ONLY

7571	FLOAT	Component Data 1_Multi-level Calib 'a'[14]	RD_ONLY
7572	FLOAT	Component Data 1_Multi-level Calib 'a'[15]	RD_ONLY
7573	FLOAT	Component Data 1_Multi-level Calib 'a'[16]	RD_ONLY
7574	FLOAT	Component Data 1_Multi-level Calib 'b'[1]	RD_ONLY
7575	FLOAT	Component Data 1_Multi-level Calib 'b'[2]	RD_ONLY
7576	FLOAT	Component Data 1_Multi-level Calib 'b'[3]	RD_ONLY
7577	FLOAT	Component Data 1_Multi-level Calib 'b'[4]	RD_ONLY
7578	FLOAT	Component Data 1_Multi-level Calib 'b'[5]	RD_ONLY
7579	FLOAT	Component Data 1_Multi-level Calib 'b'[6]	RD_ONLY
7580	FLOAT	Component Data 1_Multi-level Calib 'b'[7]	RD_ONLY
7581	FLOAT	Component Data 1_Multi-level Calib 'b'[8]	RD_ONLY
7582	FLOAT	Component Data 1_Multi-level Calib 'b'[9]	RD_ONLY
7583	FLOAT	Component Data 1_Multi-level Calib 'b'[10]	RD_ONLY
7584	FLOAT	Component Data 1_Multi-level Calib 'b'[11]	RD_ONLY
7585	FLOAT	Component Data 1_Multi-level Calib 'b'[12]	RD_ONLY
7586	FLOAT	Component Data 1_Multi-level Calib 'b'[13]	RD_ONLY
7587	FLOAT	Component Data 1_Multi-level Calib 'b'[14]	RD_ONLY
7588	FLOAT	Component Data 1_Multi-level Calib 'b'[15]	RD_ONLY
7589	FLOAT	Component Data 1_Multi-level Calib 'b'[16]	RD_ONLY
7590	FLOAT	Component Data 1_Multi-level Calib 'c'[1]	RD_ONLY
7591	FLOAT	Component Data 1_Multi-level Calib 'c'[2]	RD_ONLY
7592	FLOAT	Component Data 1_Multi-level Calib 'c'[3]	RD_ONLY
7593	FLOAT	Component Data 1_Multi-level Calib 'c'[4]	RD_ONLY
7594	FLOAT	Component Data 1_Multi-level Calib 'c'[5]	RD_ONLY
7595	FLOAT	Component Data 1_Multi-level Calib 'c'[6]	RD_ONLY
7596	FLOAT	Component Data 1_Multi-level Calib	RD_ONLY

		'c'[7]	
7597	FLOAT	Component Data 1_Multi-level Calib 'c'[8]	RD_ONLY
7598	FLOAT	Component Data 1_Multi-level Calib 'c'[9]	RD_ONLY
7599	FLOAT	Component Data 1_Multi-level Calib 'c'[10]	RD_ONLY
7600	FLOAT	Component Data 1_Multi-level Calib 'c'[11]	RD_ONLY
7601	FLOAT	Component Data 1_Multi-level Calib 'c'[12]	RD_ONLY
7602	FLOAT	Component Data 1_Multi-level Calib 'c'[13]	RD_ONLY
7603	FLOAT	Component Data 1_Multi-level Calib 'c'[14]	RD_ONLY
7604	FLOAT	Component Data 1_Multi-level Calib 'c'[15]	RD_ONLY
7605	FLOAT	Component Data 1_Multi-level Calib 'c'[16]	RD_ONLY
7606	FLOAT	Component Data 1_Multi-level Calib 'd'[1]	RD_ONLY
7607	FLOAT	Component Data 1_Multi-level Calib 'd'[2]	RD_ONLY
7608	FLOAT	Component Data 1_Multi-level Calib 'd'[3]	RD_ONLY
7609	FLOAT	Component Data 1_Multi-level Calib 'd'[4]	RD_ONLY
7610	FLOAT	Component Data 1_Multi-level Calib 'd'[5]	RD_ONLY
7611	FLOAT	Component Data 1_Multi-level Calib 'd'[6]	RD_ONLY
7612	FLOAT	Component Data 1_Multi-level Calib 'd'[7]	RD_ONLY
7613	FLOAT	Component Data 1_Multi-level Calib 'd'[8]	RD_ONLY
7614	FLOAT	Component Data 1_Multi-level Calib 'd'[9]	RD_ONLY
7615	FLOAT	Component Data 1_Multi-level Calib 'd'[10]	RD_ONLY
7616	FLOAT	Component Data 1_Multi-level Calib 'd'[11]	RD_ONLY
7617	FLOAT	Component Data 1_Multi-level Calib 'd'[12]	RD_ONLY
7618	FLOAT	Component Data 1_Multi-level Calib 'd'[13]	RD_ONLY
7619	FLOAT	Component Data 1_Multi-level Calib 'd'[14]	RD_ONLY
7620	FLOAT	Component Data 1_Multi-level Calib 'd'[15]	RD_ONLY
7621	FLOAT	Component Data 1_Multi-level Calib 'd'[16]	RD_ONLY

7622	FLOAT	Component Data 1_Rel Resp Factor[1]	RD_ONLY
7623	FLOAT	Component Data 1_Rel Resp Factor[2]	RD_ONLY
7624	FLOAT	Component Data 1_Rel Resp Factor[3]	RD_ONLY
7625	FLOAT	Component Data 1_Rel Resp Factor[4]	RD_ONLY
7626	FLOAT	Component Data 1_Rel Resp Factor[5]	RD_ONLY
7627	FLOAT	Component Data 1_Rel Resp Factor[6]	RD_ONLY
7628	FLOAT	Component Data 1_Rel Resp Factor[7]	RD_ONLY
7629	FLOAT	Component Data 1_Rel Resp Factor[8]	RD_ONLY
7630	FLOAT	Component Data 1_Rel Resp Factor[9]	RD_ONLY
7631	FLOAT	Component Data 1_Rel Resp Factor[10]	RD_ONLY
7632	FLOAT	Component Data 1_Rel Resp Factor[11]	RD_ONLY
7633	FLOAT	Component Data 1_Rel Resp Factor[12]	RD_ONLY
7634	FLOAT	Component Data 1_Rel Resp Factor[13]	RD_ONLY
7635	FLOAT	Component Data 1_Rel Resp Factor[14]	RD_ONLY
7636	FLOAT	Component Data 1_Rel Resp Factor[15]	RD_ONLY
7637	FLOAT	Component Data 1_Rel Resp Factor[16]	RD_ONLY
7638	FLOAT	Component Data 2_Multi-level Calib 'a'[1]	RD_ONLY
7639	FLOAT	Component Data 2_Multi-level Calib 'a'[2]	RD_ONLY
7640	FLOAT	Component Data 2_Multi-level Calib 'a'[3]	RD_ONLY
7641	FLOAT	Component Data 2_Multi-level Calib 'a'[4]	RD_ONLY
7642	FLOAT	Component Data 2_Multi-level Calib 'a'[5]	RD_ONLY
7643	FLOAT	Component Data 2_Multi-level Calib 'a'[6]	RD_ONLY
7644	FLOAT	Component Data 2_Multi-level Calib 'a'[7]	RD_ONLY
7645	FLOAT	Component Data 2_Multi-level Calib 'a'[8]	RD_ONLY
7646	FLOAT	Component Data 2_Multi-level Calib 'a'[9]	RD_ONLY
7647	FLOAT	Component Data 2_Multi-level Calib 'a'[10]	RD_ONLY
7648	FLOAT	Component Data 2_Multi-level Calib 'a'[11]	RD_ONLY
7649	FLOAT	Component Data 2_Multi-level Calib 'a'[12]	RD_ONLY
7650	FLOAT	Component Data 2_Multi-level Calib 'a'[13]	RD_ONLY
7651	FLOAT	Component Data 2_Multi-level Calib 'a'[14]	RD_ONLY
7652	FLOAT	Component Data 2_Multi-level Calib 'a'[15]	RD_ONLY

7653	FLOAT	Component Data 2_Multi-level Calib 'a'[16]	RD_ONLY
7654	FLOAT	Component Data 2_Multi-level Calib 'b'[1]	RD_ONLY
7655	FLOAT	Component Data 2_Multi-level Calib 'b'[2]	RD_ONLY
7656	FLOAT	Component Data 2_Multi-level Calib 'b'[3]	RD_ONLY
7657	FLOAT	Component Data 2_Multi-level Calib 'b'[4]	RD_ONLY
7658	FLOAT	Component Data 2_Multi-level Calib 'b'[5]	RD_ONLY
7659	FLOAT	Component Data 2_Multi-level Calib 'b'[6]	RD_ONLY
7660	FLOAT	Component Data 2_Multi-level Calib 'b'[7]	RD_ONLY
7661	FLOAT	Component Data 2_Multi-level Calib 'b'[8]	RD_ONLY
7662	FLOAT	Component Data 2_Multi-level Calib 'b'[9]	RD_ONLY
7663	FLOAT	Component Data 2_Multi-level Calib 'b'[10]	RD_ONLY
7664	FLOAT	Component Data 2_Multi-level Calib 'b'[11]	RD_ONLY
7665	FLOAT	Component Data 2_Multi-level Calib 'b'[12]	RD_ONLY
7666	FLOAT	Component Data 2_Multi-level Calib 'b'[13]	RD_ONLY
7667	FLOAT	Component Data 2_Multi-level Calib 'b'[14]	RD_ONLY
7668	FLOAT	Component Data 2_Multi-level Calib 'b'[15]	RD_ONLY
7669	FLOAT	Component Data 2_Multi-level Calib 'b'[16]	RD_ONLY
7670	FLOAT	Component Data 2_Multi-level Calib 'c'[1]	RD_ONLY
7671	FLOAT	Component Data 2_Multi-level Calib 'c'[2]	RD_ONLY
7672	FLOAT	Component Data 2_Multi-level Calib 'c'[3]	RD_ONLY
7673	FLOAT	Component Data 2_Multi-level Calib 'c'[4]	RD_ONLY
7674	FLOAT	Component Data 2_Multi-level Calib 'c'[5]	RD_ONLY
7675	FLOAT	Component Data 2_Multi-level Calib 'c'[6]	RD_ONLY
7676	FLOAT	Component Data 2_Multi-level Calib 'c'[7]	RD_ONLY
7677	FLOAT	Component Data 2_Multi-level Calib 'c'[8]	RD_ONLY
7678	FLOAT	Component Data 2_Multi-level Calib	RD_ONLY

		'c'[9]	
7679	FLOAT	Component Data 2_Multi-level Calib 'c'[10]	RD_ONLY
7680	FLOAT	Component Data 2_Multi-level Calib 'c'[11]	RD_ONLY
7681	FLOAT	Component Data 2_Multi-level Calib 'c'[12]	RD_ONLY
7682	FLOAT	Component Data 2_Multi-level Calib 'c'[13]	RD_ONLY
7683	FLOAT	Component Data 2_Multi-level Calib 'c'[14]	RD_ONLY
7684	FLOAT	Component Data 2_Multi-level Calib 'c'[15]	RD_ONLY
7685	FLOAT	Component Data 2_Multi-level Calib 'c'[16]	RD_ONLY
7686	FLOAT	Component Data 2_Multi-level Calib 'd'[1]	RD_ONLY
7687	FLOAT	Component Data 2_Multi-level Calib 'd'[2]	RD_ONLY
7688	FLOAT	Component Data 2_Multi-level Calib 'd'[3]	RD_ONLY
7689	FLOAT	Component Data 2_Multi-level Calib 'd'[4]	RD_ONLY
7690	FLOAT	Component Data 2_Multi-level Calib 'd'[5]	RD_ONLY
7691	FLOAT	Component Data 2_Multi-level Calib 'd'[6]	RD_ONLY
7692	FLOAT	Component Data 2_Multi-level Calib 'd'[7]	RD_ONLY
7693	FLOAT	Component Data 2_Multi-level Calib 'd'[8]	RD_ONLY
7694	FLOAT	Component Data 2_Multi-level Calib 'd'[9]	RD_ONLY
7695	FLOAT	Component Data 2_Multi-level Calib 'd'[10]	RD_ONLY
7696	FLOAT	Component Data 2_Multi-level Calib 'd'[11]	RD_ONLY
7697	FLOAT	Component Data 2_Multi-level Calib 'd'[12]	RD_ONLY
7698	FLOAT	Component Data 2_Multi-level Calib 'd'[13]	RD_ONLY
7699	FLOAT	Component Data 2_Multi-level Calib 'd'[14]	RD_ONLY
7700	FLOAT	Component Data 2_Multi-level Calib 'd'[15]	RD_ONLY
7701	FLOAT	Component Data 2_Multi-level Calib 'd'[16]	RD_ONLY
7702	FLOAT	Component Data 2_Rel Resp Factor[1]	RD_ONLY
7703	FLOAT	Component Data 2_Rel Resp Factor[2]	RD_ONLY
7704	FLOAT	Component Data 2_Rel Resp Factor[3]	RD_ONLY

7705	FLOAT	Component Data 2_Rel Resp Factor[4]	RD_ONLY
7706	FLOAT	Component Data 2_Rel Resp Factor[5]	RD_ONLY
7707	FLOAT	Component Data 2_Rel Resp Factor[6]	RD_ONLY
7708	FLOAT	Component Data 2_Rel Resp Factor[7]	RD_ONLY
7709	FLOAT	Component Data 2_Rel Resp Factor[8]	RD_ONLY
7710	FLOAT	Component Data 2_Rel Resp Factor[9]	RD_ONLY
7711	FLOAT	Component Data 2_Rel Resp Factor[10]	RD_ONLY
7712	FLOAT	Component Data 2_Rel Resp Factor[11]	RD_ONLY
7713	FLOAT	Component Data 2_Rel Resp Factor[12]	RD_ONLY
7714	FLOAT	Component Data 2_Rel Resp Factor[13]	RD_ONLY
7715	FLOAT	Component Data 2_Rel Resp Factor[14]	RD_ONLY
7716	FLOAT	Component Data 2_Rel Resp Factor[15]	RD_ONLY
7717	FLOAT	Component Data 2_Rel Resp Factor[16]	RD_ONLY
7718	FLOAT	Avg[1 - Average 1]	RD_ONLY
7719	FLOAT	Avg[2 - Average 2]	RD_ONLY
7720	FLOAT	Avg[3 - Average 3]	RD_ONLY
7721	FLOAT	Avg[4 - Average 4]	RD_ONLY
7722	FLOAT	Avg[5 - Average 5]	RD_ONLY
7723	FLOAT	Avg[6 - Average 6]	RD_ONLY
7724	FLOAT	Avg[7 - Average 7]	RD_ONLY
7725	FLOAT	Avg[8 - Average 8]	RD_ONLY
7726	FLOAT	Avg[9 - Average 9]	RD_ONLY
7727	FLOAT	Avg[10 - Average 10]	RD_ONLY
7728	FLOAT	Avg[11 - Average 11]	RD_ONLY
7729	FLOAT	Avg[12 - Average 12]	RD_ONLY
7730	FLOAT	Avg[13 - Average 13]	RD_ONLY
7731	FLOAT	Avg[14 - Average 14]	RD_ONLY
7732	FLOAT	Avg[15 - Average 15]	RD_ONLY
7733	FLOAT	Avg[16 - Average 16]	RD_ONLY
7734	FLOAT	Avg[17 - Average 17]	RD_ONLY
7735	FLOAT	Avg[18 - Average 18]	RD_ONLY
7736	FLOAT	Avg[19 - Average 19]	RD_ONLY
7737	FLOAT	Avg[20 - Average 20]	RD_ONLY
7738	FLOAT	Avg[21 - Average 21]	RD_ONLY
7739	FLOAT	Avg[22 - Average 22]	RD_ONLY
7740	FLOAT	Avg[23 - Average 23]	RD_ONLY
7741	FLOAT	Avg[24 - Average 24]	RD_ONLY
7742	FLOAT	Avg[25 - Average 25]	RD_ONLY
7743	FLOAT	Avg[26 - Average 26]	RD_ONLY

7744	FLOAT	Avg[27 - Average 27]	RD_ONLY
7745	FLOAT	Avg[28 - Average 28]	RD_ONLY
7746	FLOAT	Avg[29 - Average 29]	RD_ONLY
7747	FLOAT	Avg[30 - Average 30]	RD_ONLY
7748	FLOAT	Avg[31 - Average 31]	RD_ONLY
7749	FLOAT	Avg[32 - Average 32]	RD_ONLY
7750	FLOAT	Avg[33 - Average 33]	RD_ONLY
7751	FLOAT	Avg[34 - Average 34]	RD_ONLY
7752	FLOAT	Avg[35 - Average 35]	RD_ONLY
7753	FLOAT	Avg[36 - Average 36]	RD_ONLY
7754	FLOAT	Avg[37 - Average 37]	RD_ONLY
7755	FLOAT	Avg[38 - Average 38]	RD_ONLY
7756	FLOAT	Avg[39 - Average 39]	RD_ONLY
7757	FLOAT	Avg[40 - Average 40]	RD_ONLY
7758	FLOAT	Avg[41 - Average 41]	RD_ONLY
7759	FLOAT	Avg[42 - Average 42]	RD_ONLY
7760	FLOAT	Avg[43 - Average 43]	RD_ONLY
7761	FLOAT	Avg[44 - Average 44]	RD_ONLY
7762	FLOAT	Avg[45 - Average 45]	RD_ONLY
7763	FLOAT	Avg[46 - Average 46]	RD_ONLY
7764	FLOAT	Avg[47 - Average 47]	RD_ONLY
7765	FLOAT	Avg[48 - Average 48]	RD_ONLY
7766	FLOAT	Avg[49 - Average 49]	RD_ONLY
7767	FLOAT	Avg[50 - Average 50]	RD_ONLY
7768	FLOAT	Avg[51 - Average 51]	RD_ONLY
7769	FLOAT	Avg[52 - Average 52]	RD_ONLY
7770	FLOAT	Avg[53 - Average 53]	RD_ONLY
7771	FLOAT	Avg[54 - Average 54]	RD_ONLY
7772	FLOAT	Avg[55 - Average 55]	RD_ONLY
7773	FLOAT	Avg[56 - Average 56]	RD_ONLY
7774	FLOAT	Avg[57 - Average 57]	RD_ONLY
7775	FLOAT	Avg[58 - Average 58]	RD_ONLY
7776	FLOAT	Avg[59 - Average 59]	RD_ONLY
7777	FLOAT	Avg[60 - Average 60]	RD_ONLY
7778	FLOAT	Avg[61 - Average 61]	RD_ONLY
7779	FLOAT	Avg[62 - Average 62]	RD_ONLY
7780	FLOAT	Avg[63 - Average 63]	RD_ONLY
7781	FLOAT	Avg[64 - Average 64]	RD_ONLY
7782	FLOAT	Avg[65 - Average 65]	RD_ONLY

7783	FLOAT	Avg[66 - Average 66]	RD_ONLY
7784	FLOAT	Avg[67 - Average 67]	RD_ONLY
7785	FLOAT	Avg[68 - Average 68]	RD_ONLY
7786	FLOAT	Avg[69 - Average 69]	RD_ONLY
7787	FLOAT	Avg[70 - Average 70]	RD_ONLY
7788	FLOAT	Avg[71 - Average 71]	RD_ONLY
7789	FLOAT	Avg[72 - Average 72]	RD_ONLY
7790	FLOAT	Avg[73 - Average 73]	RD_ONLY
7791	FLOAT	Avg[74 - Average 74]	RD_ONLY
7792	FLOAT	Avg[75 - Average 75]	RD_ONLY
7793	FLOAT	Avg[76 - Average 76]	RD_ONLY
7794	FLOAT	Avg[77 - Average 77]	RD_ONLY
7795	FLOAT	Avg[78 - Average 78]	RD_ONLY
7796	FLOAT	Avg[79 - Average 79]	RD_ONLY
7797	FLOAT	Avg[80 - Average 80]	RD_ONLY
7798	FLOAT	Avg[81 - Average 81]	RD_ONLY
7799	FLOAT	Avg[82 - Average 82]	RD_ONLY
7800	FLOAT	Avg[83 - Average 83]	RD_ONLY
7801	FLOAT	Avg[84 - Average 84]	RD_ONLY
7802	FLOAT	Avg[85 - Average 85]	RD_ONLY
7803	FLOAT	Avg[86 - Average 86]	RD_ONLY
7804	FLOAT	Avg[87 - Average 87]	RD_ONLY
7805	FLOAT	Avg[88 - Average 88]	RD_ONLY
7806	FLOAT	Avg[89 - Average 89]	RD_ONLY
7807	FLOAT	Avg[90 - Average 90]	RD_ONLY
7808	FLOAT	Avg[91 - Average 91]	RD_ONLY
7809	FLOAT	Avg[92 - Average 92]	RD_ONLY
7810	FLOAT	Avg[93 - Average 93]	RD_ONLY
7811	FLOAT	Avg[94 - Average 94]	RD_ONLY
7812	FLOAT	Avg[95 - Average 95]	RD_ONLY
7813	FLOAT	Avg[96 - Average 96]	RD_ONLY
7814	FLOAT	Avg[97 - Average 97]	RD_ONLY
7815	FLOAT	Avg[98 - Average 98]	RD_ONLY
7816	FLOAT	Avg[99 - Average 99]	RD_ONLY
7817	FLOAT	Avg[100 - Average 100]	RD_ONLY
7818	FLOAT	Avg[101 - Average 101]	RD_ONLY
7819	FLOAT	Avg[102 - Average 102]	RD_ONLY
7820	FLOAT	Avg[103 - Average 103]	RD_ONLY
7821	FLOAT	Avg[104 - Average 104]	RD_ONLY

7822	FLOAT	Avg[105 - Average 105]		RD_ONLY
7823	FLOAT	Avg[106 - Average 106]		RD_ONLY
7824	FLOAT	Avg[107 - Average 107]		RD_ONLY
7825	FLOAT	Avg[108 - Average 108]		RD_ONLY
7826	FLOAT	Avg[109 - Average 109]		RD_ONLY
7827	FLOAT	Avg[110 - Average 110]		RD_ONLY
7828	FLOAT	Avg[111 - Average 111]		RD_ONLY
7829	FLOAT	Avg[112 - Average 112]		RD_ONLY
7830	FLOAT	Avg[113 - Average 113]		RD_ONLY
7831	FLOAT	Avg[114 - Average 114]		RD_ONLY
7832	FLOAT	Avg[115 - Average 115]		RD_ONLY
7833	FLOAT	Avg[116 - Average 116]		RD_ONLY
7834	FLOAT	Avg[117 - Average 117]		RD_ONLY
7835	FLOAT	Avg[118 - Average 118]		RD_ONLY
7836	FLOAT	Avg[119 - Average 119]		RD_ONLY
7837	FLOAT	Avg[120 - Average 120]		RD_ONLY
7838	FLOAT	Avg[121 - Average 121]		RD_ONLY
7839	FLOAT	Avg[122 - Average 122]		RD_ONLY
7840	FLOAT	Avg[123 - Average 123]		RD_ONLY
7841	FLOAT	Avg[124 - Average 124]		RD_ONLY
7842	FLOAT	Avg[125 - Average 125]		RD_ONLY
7843	FLOAT	Avg[126 - Average 126]		RD_ONLY
7844	FLOAT	Avg[127 - Average 127]		RD_ONLY
7845	FLOAT	Avg[128 - Average 128]		RD_ONLY
7846	FLOAT	Archive_Avg[1 - Average 1]	1	RD_ONLY
7847	FLOAT	Archive_Avg[2 - Average 2]	1	RD_ONLY
7848	FLOAT	Archive_Avg[3 - Average 3]	1	RD_ONLY
7849	FLOAT	Archive_Avg[4 - Average 4]	1	RD_ONLY
7850	FLOAT	Archive_Avg[5 - Average 5]	1	RD_ONLY
7851	FLOAT	Archive_Avg[6 - Average 6]	1	RD_ONLY
7852	FLOAT	Archive_Avg[7 - Average 7]	1	RD_ONLY
7853	FLOAT	Archive_Avg[8 - Average 8]	1	RD_ONLY
7854	FLOAT	Archive_Avg[9 - Average 9]	1	RD_ONLY
7855	FLOAT	Archive_Avg[10 - Average 10]	1	RD_ONLY
7856	FLOAT	Archive_Avg[11 - Average 11]	1	RD_ONLY
7857	FLOAT	Archive_Avg[12 - Average 12]	1	RD_ONLY
7858	FLOAT	Archive_Avg[13 - Average 13]	1	RD_ONLY
7859	FLOAT	Archive_Avg[14 - Average 14]	1	RD_ONLY
7860	FLOAT	Archive_Avg[15 - Average 15]	1	RD_ONLY
7861	FLOAT	Archive_Avg[16 - Average 16]	1	RD_ONLY
------	-------	------------------------------	---	---------
7862	FLOAT	Archive_Avg[17 - Average 17]	1	RD_ONLY
7863	FLOAT	Archive_Avg[18 - Average 18]	1	RD_ONLY
7864	FLOAT	Archive_Avg[19 - Average 19]	1	RD_ONLY
7865	FLOAT	Archive_Avg[20 - Average 20]	1	RD_ONLY
7866	FLOAT	Archive_Avg[21 - Average 21]	1	RD_ONLY
7867	FLOAT	Archive_Avg[22 - Average 22]	1	RD_ONLY
7868	FLOAT	Archive_Avg[23 - Average 23]	1	RD_ONLY
7869	FLOAT	Archive_Avg[24 - Average 24]	1	RD_ONLY
7870	FLOAT	Archive_Avg[25 - Average 25]	1	RD_ONLY
7871	FLOAT	Archive_Avg[26 - Average 26]	1	RD_ONLY
7872	FLOAT	Archive_Avg[27 - Average 27]	1	RD_ONLY
7873	FLOAT	Archive_Avg[28 - Average 28]	1	RD_ONLY
7874	FLOAT	Archive_Avg[29 - Average 29]	1	RD_ONLY
7875	FLOAT	Archive_Avg[30 - Average 30]	1	RD_ONLY
7876	FLOAT	Archive_Avg[31 - Average 31]	1	RD_ONLY
7877	FLOAT	Archive_Avg[32 - Average 32]	1	RD_ONLY
7878	FLOAT	Archive_Avg[33 - Average 33]	1	RD_ONLY
7879	FLOAT	Archive_Avg[34 - Average 34]	1	RD_ONLY
7880	FLOAT	Archive_Avg[35 - Average 35]	1	RD_ONLY
7881	FLOAT	Archive_Avg[36 - Average 36]	1	RD_ONLY
7882	FLOAT	Archive_Avg[37 - Average 37]	1	RD_ONLY
7883	FLOAT	Archive_Avg[38 - Average 38]	1	RD_ONLY
7884	FLOAT	Archive_Avg[39 - Average 39]	1	RD_ONLY
7885	FLOAT	Archive_Avg[40 - Average 40]	1	RD_ONLY
7886	FLOAT	Archive_Avg[41 - Average 41]	1	RD_ONLY
7887	FLOAT	Archive_Avg[42 - Average 42]	1	RD_ONLY
7888	FLOAT	Archive_Avg[43 - Average 43]	1	RD_ONLY
7889	FLOAT	Archive_Avg[44 - Average 44]	1	RD_ONLY
7890	FLOAT	Archive_Avg[45 - Average 45]	1	RD_ONLY
7891	FLOAT	Archive_Avg[46 - Average 46]	1	RD_ONLY
7892	FLOAT	Archive_Avg[47 - Average 47]	1	RD_ONLY
7893	FLOAT	Archive_Avg[48 - Average 48]	1	RD_ONLY
7894	FLOAT	Archive_Avg[49 - Average 49]	1	RD_ONLY
7895	FLOAT	Archive_Avg[50 - Average 50]	1	RD_ONLY
7896	FLOAT	Archive_Avg[51 - Average 51]	1	RD_ONLY
7897	FLOAT	Archive_Avg[52 - Average 52]	1	RD_ONLY
7898	FLOAT	Archive_Avg[53 - Average 53]	1	RD_ONLY
7899	FLOAT	Archive_Avg[54 - Average 54]	1	RD_ONLY

7900	FLOAT	Archive_Avg[55 - Average 55]	1	RD_ONLY
7901	FLOAT	Archive_Avg[56 - Average 56]	1	RD_ONLY
7902	FLOAT	Archive_Avg[57 - Average 57]	1	RD_ONLY
7903	FLOAT	Archive_Avg[58 - Average 58]	1	RD_ONLY
7904	FLOAT	Archive_Avg[59 - Average 59]	1	RD_ONLY
7905	FLOAT	Archive_Avg[60 - Average 60]	1	RD_ONLY
7906	FLOAT	Archive_Avg[61 - Average 61]	1	RD_ONLY
7907	FLOAT	Archive_Avg[62 - Average 62]	1	RD_ONLY
7908	FLOAT	Archive_Avg[63 - Average 63]	1	RD_ONLY
7909	FLOAT	Archive_Avg[64 - Average 64]	1	RD_ONLY
7910	FLOAT	Archive_Avg[65 - Average 65]	1	RD_ONLY
7911	FLOAT	Archive_Avg[66 - Average 66]	1	RD_ONLY
7912	FLOAT	Archive_Avg[67 - Average 67]	1	RD_ONLY
7913	FLOAT	Archive_Avg[68 - Average 68]	1	RD_ONLY
7914	FLOAT	Archive_Avg[69 - Average 69]	1	RD_ONLY
7915	FLOAT	Archive_Avg[70 - Average 70]	1	RD_ONLY
7916	FLOAT	Archive_Avg[71 - Average 71]	1	RD_ONLY
7917	FLOAT	Archive_Avg[72 - Average 72]	1	RD_ONLY
7918	FLOAT	Archive_Avg[73 - Average 73]	1	RD_ONLY
7919	FLOAT	Archive_Avg[74 - Average 74]	1	RD_ONLY
7920	FLOAT	Archive_Avg[75 - Average 75]	1	RD_ONLY
7921	FLOAT	Archive_Avg[76 - Average 76]	1	RD_ONLY
7922	FLOAT	Archive_Avg[77 - Average 77]	1	RD_ONLY
7923	FLOAT	Archive_Avg[78 - Average 78]	1	RD_ONLY
7924	FLOAT	Archive_Avg[79 - Average 79]	1	RD_ONLY
7925	FLOAT	Archive_Avg[80 - Average 80]	1	RD_ONLY
7926	FLOAT	Archive_Avg[81 - Average 81]	1	RD_ONLY
7927	FLOAT	Archive_Avg[82 - Average 82]	1	RD_ONLY
7928	FLOAT	Archive_Avg[83 - Average 83]	1	RD_ONLY
7929	FLOAT	Archive_Avg[84 - Average 84]	1	RD_ONLY
7930	FLOAT	Archive_Avg[85 - Average 85]	1	RD_ONLY
7931	FLOAT	Archive_Avg[86 - Average 86]	1	RD_ONLY
7932	FLOAT	Archive_Avg[87 - Average 87]	1	RD_ONLY
7933	FLOAT	Archive_Avg[88 - Average 88]	1	RD_ONLY
7934	FLOAT	Archive_Avg[89 - Average 89]	1	RD_ONLY
7935	FLOAT	Archive_Avg[90 - Average 90]	1	RD_ONLY
7936	FLOAT	Archive_Avg[91 - Average 91]	1	RD_ONLY
7937	FLOAT	Archive_Avg[92 - Average 92]	1	RD_ONLY
7938	FLOAT	Archive_Avg[93 - Average 93]	1	RD_ONLY

7939	FLOAT	Archive_Avg[94 - Average 94]	1	RD_ONLY
7940	FLOAT	Archive_Avg[95 - Average 95]	1	RD_ONLY
7941	FLOAT	Archive_Avg[96 - Average 96]	1	RD_ONLY
7942	FLOAT	Archive_Avg[97 - Average 97]	1	RD_ONLY
7943	FLOAT	Archive_Avg[98 - Average 98]	1	RD_ONLY
7944	FLOAT	Archive_Avg[99 - Average 99]	1	RD_ONLY
7945	FLOAT	Archive_Avg[100 - Average 100]	1	RD_ONLY
7946	FLOAT	Archive_Avg[101 - Average 101]	1	RD_ONLY
7947	FLOAT	Archive_Avg[102 - Average 102]	1	RD_ONLY
7948	FLOAT	Archive_Avg[103 - Average 103]	1	RD_ONLY
7949	FLOAT	Archive_Avg[104 - Average 104]	1	RD_ONLY
7950	FLOAT	Archive_Avg[105 - Average 105]	1	RD_ONLY
7951	FLOAT	Archive_Avg[106 - Average 106]	1	RD_ONLY
7952	FLOAT	Archive_Avg[107 - Average 107]	1	RD_ONLY
7953	FLOAT	Archive_Avg[108 - Average 108]	1	RD_ONLY
7954	FLOAT	Archive_Avg[109 - Average 109]	1	RD_ONLY
7955	FLOAT	Archive_Avg[110 - Average 110]	1	RD_ONLY
7956	FLOAT	Archive_Avg[111 - Average 111]	1	RD_ONLY
7957	FLOAT	Archive_Avg[112 - Average 112]	1	RD_ONLY
7958	FLOAT	Archive_Avg[113 - Average 113]	1	RD_ONLY
7959	FLOAT	Archive_Avg[114 - Average 114]	1	RD_ONLY
7960	FLOAT	Archive_Avg[115 - Average 115]	1	RD_ONLY
7961	FLOAT	Archive_Avg[116 - Average 116]	1	RD_ONLY
7962	FLOAT	Archive_Avg[117 - Average 117]	1	RD_ONLY
7963	FLOAT	Archive_Avg[118 - Average 118]	1	RD_ONLY
7964	FLOAT	Archive_Avg[119 - Average 119]	1	RD_ONLY
7965	FLOAT	Archive_Avg[120 - Average 120]	1	RD_ONLY
7966	FLOAT	Archive_Avg[121 - Average 121]	1	RD_ONLY
7967	FLOAT	Archive_Avg[122 - Average 122]	1	RD_ONLY
7968	FLOAT	Archive_Avg[123 - Average 123]	1	RD_ONLY
7969	FLOAT	Archive_Avg[124 - Average 124]	1	RD_ONLY
7970	FLOAT	Archive_Avg[125 - Average 125]	1	RD_ONLY
7971	FLOAT	Archive_Avg[126 - Average 126]	1	RD_ONLY
7972	FLOAT	Archive_Avg[127 - Average 127]	1	RD_ONLY
7973	FLOAT	Archive_Avg[128 - Average 128]	1	RD_ONLY
7974	FLOAT	Last FCalib_New Resp Factor[1 - Compo- nent 1]		RD_ONLY
7975	FLOAT	Last FCalib_New Resp Factor[2 - Component 2]		RD_ONLY
7976	FLOAT	Last FCalib_New Resp Factor[3 -		RD_ONLY

		Component 3]	
7977	FLOAT	Last FCalib_New Resp Factor[4 -	RD_ONLY
		Component 4]	
7978	FLOAT	Last FCalib_New Resp Factor[5 -	RD_ONLY
7070	FLOAT	Last ECalib. New Resp Eactor[6 -	
1919	TLOAT	Compoent 6]	
7980	FLOAT	Last FCalib_New Resp Factor[7 -	RD_ONLY
		Compoent 7]	
7981	FLOAT	Last FCalib_New Resp Factor[8 - Component 8]	RD_ONLY
7982	FLOAT	Last FCalib_New Resp Factor[9 -	RD_ONLY
		Component 9]	
7983	FLOAT	Last FCalib_New Resp Factor[10 - Component 10]	RD_ONLY
7984	FLOAT	Last FCalib_New Resp Factor[11 -	RD_ONLY
		Component 11]	
7985	FLOAT	Last FCalib_New Resp Factor[12 - Component 12]	RD_ONLY
7986	FLOAT	Last FCalib_New Resp Factor[13 - Component 13]	RD_ONLY
7987	FLOAT	Last FCalib_New Resp Factor[14 - Component 14]	RD_ONLY
7988	FLOAT	Last FCalib_New Resp Factor[15 -	RD_ONLY
7000	FLOAT	Component 15	
7989	FLUAT	Component 16]	RD_UNLY
7990	FLOAT	Last FCalib_New Resp Factor[17 -	RD_ONLY
		Component 17]	
7991	FLOAT	Last FCalib_New Resp Factor[18 -	RD_ONLY
7002	FLOAT	Last ECalib. New Pose Easter[10	
7992	FLOAT	Component 19]	
7993	FLOAT	Last FCalib_New Resp Factor[20 -	RD_ONLY
		Component 20]	
7994	FLOAT	Last FCalib_New Resp Factor[1 - Component 1]	RD_ONLY
7995	FLOAT	Last FCalib_New Resp Factor[2 - Component 2]	RD_ONLY
7996	FLOAT	Last FCalib_New Resp Factor[3 - Component 3]	RD_ONLY
7997	FLOAT	Last FCalib_New Resp Factor[4 - Component 4]	RD_ONLY
7998	FLOAT	Last FCalib_New Resp Factor[5 -	RD_ONLY
7999	FLOAT	Last FCalib_New Resp Factor[6 -	RD_ONLY
		Component 6]	
8000	FLOAT	Last FCalib_New Resp Factor[7 - Component 7]	RD_ONLY
8001	FLOAT	Last FCalib_New Resp Factor[8 -	RD_ONLY
		Component 8]	

8002	FLOAT	Last FCalib_New Resp Factor[9 - Component 9]	RD_ONLY
8003	FLOAT	Last FCalib_New Resp Factor[10 - Component 10]	RD_ONLY
8004	FLOAT	Last FCalib_New Resp Factor[11 - Component 11]	RD_ONLY
8005	FLOAT	Last FCalib_New Resp Factor[12 - Component 12]	RD_ONLY
8006	FLOAT	Last FCalib_New Resp Factor[13 - Component 13]	RD_ONLY
8007	FLOAT	Last FCalib_New Resp Factor[14 - Component 14]	RD_ONLY
8008	FLOAT	Last FCalib_New Resp Factor[15 - Component 15]	RD_ONLY
8009	FLOAT	Last FCalib_New Resp Factor[16 - Component 16]	RD_ONLY
8010	FLOAT	Last FCalib_New Resp Factor[17 - Component 17]	RD_ONLY
8011	FLOAT	Last FCalib_New Resp Factor[18 - Component 18]	RD_ONLY
8012	FLOAT	Last FCalib_New Resp Factor[19 - Component 19]	RD_ONLY
8013	FLOAT	Last FCalib_New Resp Factor[20 - Component 20]	RD_ONLY
8014	FLOAT	Last FCalib_New Resp Factor[1 - Component 1]	RD_ONLY
8015	FLOAT	Last FCalib_New Resp Factor[2 - Component 2]	RD_ONLY
8016	FLOAT	Last FCalib_New Resp Factor[3 - Component 3]	RD_ONLY
8017	FLOAT	Last FCalib_New Resp Factor[4 - Component 4]	RD_ONLY
8018	FLOAT	Last FCalib_New Resp Factor[5 - Component 5]	RD_ONLY
8019	FLOAT	Last FCalib_New Resp Factor[6 - Component 6]	RD_ONLY
8020	FLOAT	Last FCalib_New Resp Factor[7 - Component 7]	RD_ONLY
8021	FLOAT	Last FCalib_New Resp Factor[8 - Component 8]	RD_ONLY
8022	FLOAT	Last FCalib_New Resp Factor[9 - Component 9]	RD_ONLY
8023	FLOAT	Last FCalib_New Resp Factor[10 - Component 10]	RD_ONLY
8024	FLOAT	Last FCalib_New Resp Factor[11 - Component 11]	RD_ONLY
8025	FLOAT	Last FCalib_New Resp Factor[12 - Component 12]	RD_ONLY
8026	FLOAT	Last FCalib_New Resp Factor[13 - Component 13]	RD_ONLY
8027	FLOAT	Last FCalib_New Resp Factor[14 -	RD_ONLY

		Component 14]	
8028	FLOAT	Last FCalib_New Resp Factor[15 -	RD_ONLY
		Component 15]	
8029	FLOAT	Last FCalib_New Resp Factor[16 -	RD_ONLY
		Component 16]	
8030	FLOAT	Last FCalib_New Resp Factor[17 -	RD_ONLY
0024	FLOAT	Component 17]	
8031	FLUAT	Last FCallb_New Resp Factor[18 -	RD_ONLY
8032	FLOAT	Last FCalib New Resp Factor[19 -	
0032	120/11	Component 19]	
8033	FLOAT	Last FCalib New Resp Factor[20 -	RD ONLY
		Component 20]	_
8034	FLOAT	Last FCalib_New Resp Factor[1 -	RD_ONLY
		Component 1]	
8035	FLOAT	Last FCalib_New Resp Factor[2 -	RD_ONLY
0000		Component 2]	
8036	FLOAT	Last FCallb_New Resp Factor[3 -	RD_ONLY
8037	FLOAT	Last ECalib New Resp Factor[4 -	
0037		Component 4]	
8038	FLOAT	Last FCalib_New Resp Factor[5 -	RD_ONLY
		Component 5]	
8039	FLOAT	Last FCalib_New Resp Factor[6 -	RD_ONLY
		Component 6]	
8040	FLOAT	Last FCalib_New Resp Factor[7 -	RD_ONLY
80/11	FLOAT	Last ECalib New Pesp Factor [8 -	
0041		Component 8]	
8042	FLOAT	Last FCalib_New Resp Factor[9 -	RD_ONLY
		Component 9]	
8043	FLOAT	Last FCalib_New Resp Factor[10 -	RD_ONLY
		Component 10]	
8044	FLOAT	Last FCalib_New Resp Factor[11 -	RD_ONLY
80/15	FLOAT	Last ECalib New Resp Factor[12]	
0045		Component 12]	
8046	FLOAT	Last FCalib_New Resp Factor[13 -	RD_ONLY
		Component 13]	
8047	FLOAT	Last FCalib_New Resp Factor[14 -	RD_ONLY
		Component 14]	
8048	FLOAT	Last FCalib_New Resp Factor[15 -	RD_ONLY
8010	FLOAT	Last ECalib New Pesp Factor[16 -	
0045		Component 16]	
8050	FLOAT	Last FCalib_New Resp Factor[17 -	RD_ONLY
		Component 17]	
8051	FLOAT	Last FCalib_New Resp Factor[18 -	RD_ONLY
		Component 18]	
8052	FLOAT	Last FCalib_New Resp Factor[19 -	RD_ONLY
		component 1a]	

8053	FLOAT	Last FCalib_New Resp Factor[20 - Compo nent 20]	RD_ONLY
8054	FLOAT	Last FCalib_New Ret Time[1 - Component 1]	RD_ONLY
8055	FLOAT	Last FCalib_New Ret Time[2 - Component 2]	RD_ONLY
8056	FLOAT	Last FCalib_New Ret Time[3 - Component 3]	RD_ONLY
8057	FLOAT	Last FCalib_New Ret Time[4 - Component 4]	RD_ONLY
8058	FLOAT	Last FCalib_New Ret Time[5 - Component 5]	RD_ONLY
8059	FLOAT	Last FCalib_New Ret Time[6 - Component 6]	RD_ONLY
8060	FLOAT	Last FCalib_New Ret Time[7 - Component 7]	RD_ONLY
8061	FLOAT	Last FCalib_New Ret Time[8 - Component 8]	RD_ONLY
8062	FLOAT	Last FCalib_New Ret Time[9 - Component 9]	RD_ONLY
8063	FLOAT	Last FCalib_New Ret Time[10 - Component 10]	RD_ONLY
8064	FLOAT	Last FCalib_New Ret Time[11 - Component 11]	RD_ONLY
8065	FLOAT	Last FCalib_New Ret Time[12 - Component 12]	RD_ONLY
8066	FLOAT	Last FCalib_New Ret Time[13 - Component 13]	RD_ONLY
8067	FLOAT	Last FCalib_New Ret Time[14 - Component 14]	RD_ONLY
8068	FLOAT	Last FCalib_New Ret Time[15 - Component 15]	RD_ONLY
8069	FLOAT	Last FCalib_New Ret Time[16 - Component 16]	RD_ONLY
8070	FLOAT	Last FCalib_New Ret Time[17 - Component 17]	RD_ONLY
8071	FLOAT	Last FCalib_New Ret Time[18 - Component 18]	RD_ONLY
8072	FLOAT	Last FCalib_New Ret Time[19 - Component 19]	RD_ONLY
8073	FLOAT	Last FCalib_New Ret Time[20 - Component 20]	RD_ONLY
8074	FLOAT	Last FCalib_New Ret Time[1 - Component 1]	RD_ONLY
8075	FLOAT	Last FCalib_New Ret Time[2 - Component 2]	RD_ONLY
8076	FLOAT	Last FCalib_New Ret Time[3 - Component 3]	RD_ONLY
8077	FLOAT	Last FCalib_New Ret Time[4 - Component 4]	RD_ONLY
8078	FLOAT	Last FCalib_New Ret Time[5 -	RD_ONLY

		Component 5]	
8079	FLOAT	Last FCalib_New Ret Time[6 -	RD_ONLY
		Component 6]	
8080	FLOAT	Last FCalib_New Ret Time[7 -	RD_ONLY
0001	FLOAT	Lact ECalib Now Pot Time R	
0001	FLOAT	Component 8]	RD_ONET
8082	FLOAT	Last FCalib New Ret Time[9 -	RD ONLY
		Component 9]	_
8083	FLOAT	Last FCalib_New Ret Time[10 -	RD_ONLY
		Component 10]	
8084	FLOAT	Last FCalib_New Ret Time[11 -	RD_ONLY
0005	FLOAT	Component 11]	
8085	FLUAT	Component 12]	RD_ONLY
8086	FLOAT	Last FCalib New Ret Time[13 -	RD ONLY
		Component 13]	_
8087	FLOAT	Last FCalib_New Ret Time[14 -	RD_ONLY
		Component 14]	
8088	FLOAT	Last FCalib_New Ret Time[15 -	RD_ONLY
2020	FLOAT	Component 15j	
8089	FLOAT	Component 16	RD_ONET
8090	FLOAT	Last FCalib New Ret Time[17 -	RD ONLY
		Component 17]	_
8091	FLOAT	Last FCalib_New Ret Time[18 -	RD_ONLY
		Component 18]	
8092	FLOAT	Last FCalib_New Ret Time[19 -	RD_ONLY
8002	FLOAT	Last ECalib. New Pot Time[20	
8095	TLOAT	Component 20]	
8094	FLOAT	Last FCalib New Ret Time[1 -	RD ONLY
		Component 1]	_
8095	FLOAT	Last FCalib_New Ret Time[2 -	RD_ONLY
		Component 2]	
8096	FLOAT	Last FCalib_New Ret Time[3 -	RD_ONLY
8097	FLOAT	Last ECalib New Ret Time[4 -	
0057	120/11	Component 4]	
8098	FLOAT	Last FCalib_New Ret Time[5 -	RD_ONLY
		Component 5]	
8099	FLOAT	Last FCalib_New Ret Time[6 -	RD_ONLY
9100	FLOAT	Component 6]	
8100	FLUAT	Last FCallb_New Ret Time[7 -	KD_UNLY
8101	FLOAT	Last FCalib New Ret Time[8 -	RD ONLY
		Component 8]	
8102	FLOAT	Last FCalib_New Ret Time[9 -	RD_ONLY
		Component 9]	
8103	FLOAT	Last FCalib_New Ret Time[10 -	RD_ONLY
		Component 10J	

8104	FLOAT	Last FCalib_New Ret Time[11 -	RD_ONLY
8105	FLOAT	Last FCalib_New Ret Time[12 - Component 12]	RD_ONLY
8106	FLOAT	Last FCalib_New Ret Time[13 - Component 13]	RD_ONLY
8107	FLOAT	Last FCalib_New Ret Time[14 - Component 14]	RD_ONLY
8108	FLOAT	Last FCalib_New Ret Time[15 - Component 15]	RD_ONLY
8109	FLOAT	Last FCalib_New Ret Time[16 - Component 16]	RD_ONLY
8110	FLOAT	Last FCalib_New Ret Time[17 - Component 17]	RD_ONLY
8111	FLOAT	Last FCalib_New Ret Time[18 - Component 18]	RD_ONLY
8112	FLOAT	Last FCalib_New Ret Time[19 - Component 19]	RD_ONLY
8113	FLOAT	Last FCalib_New Ret Time[20 - Component 20]	RD_ONLY
8114	FLOAT	Last FCalib_New Ret Time[1 - Component 1]	RD_ONLY
8115	FLOAT	Last FCalib_New Ret Time[2 - Component 2]	RD_ONLY
8116	FLOAT	Last FCalib_New Ret Time[3 - Component 3]	RD_ONLY
8117	FLOAT	Last FCalib_New Ret Time[4 - Component 4]	RD_ONLY
8118	FLOAT	Last FCalib_New Ret Time[5 - Component 5]	RD_ONLY
8119	FLOAT	Last FCalib_New Ret Time[6 - Component 6]	RD_ONLY
8120	FLOAT	Last FCalib_New Ret Time[7 - Component 7]	RD_ONLY
8121	FLOAT	Last FCalib_New Ret Time[8 - Component 8]	RD_ONLY
8122	FLOAT	Last FCalib_New Ret Time[9 - Component 9]	RD_ONLY
8123	FLOAT	Last FCalib_New Ret Time[10 - Component 10]	RD_ONLY
8124	FLOAT	Last FCalib_New Ret Time[11 - Component 11]	RD_ONLY
8125	FLOAT	Last FCalib_New Ret Time[12 - Component 12]	RD_ONLY
8126	FLOAT	Last FCalib_New Ret Time[13 - Component 13]	RD_ONLY
8127	FLOAT	Last FCalib_New Ret Time[14 - Component 14]	RD_ONLY
8128	FLOAT	Last FCalib_New Ret Time[15 - Component 15]	RD_ONLY
8129	FLOAT	Last FCalib_New Ret Time[16 -	RD_ONLY

		Component 16]	
8130	FLOAT	Last FCalib_New Ret Time[17 -	RD_ONLY
		Component 17]	
8131	FLOAT	Last FCalib_New Ret Time[18 -	RD_ONLY
		Component 18]	
8132	FLOAT	Last FCalib_New Ret Time[19 -	RD_ONLY
		Component 19]	
8133	FLOAT	Last FCalib_New Ret Time[20 -	RD_ONLY
		Component 20]	
8134	FLOAT	Last FCalib_Old Resp Factor[1 -	RD_ONLY
0125	FLOAT	Last ECalib. Old Bose Easter[2	
0122	FLOAT	Component 2]	RD_ONET
8136	FLOAT	Last ECalib. Old Resp Factor[3 -	
0150	120/11	Component 3]	
8137	FLOAT	Last FCalib Old Resp Factor[4 -	RD ONLY
		Component 4]	_
8138	FLOAT	Last FCalib_Old Resp Factor[5 -	RD_ONLY
		Component 5]	
8139	FLOAT	Last FCalib_Old Resp Factor[6 -	RD_ONLY
		Component 6]	
8140	FLOAT	Last FCalib_Old Resp Factor[7 -	RD_ONLY
		Component 7]	
8141	FLOAT	Last FCalib_Old Resp Factor[8 -	RD_ONLY
0140	FLOAT	Last ECalib. Old Bose Easter[0	
8142	FLOAT	Component 9]	RD_ONLY
8143	FLOAT	Last ECalib. Old Resp Factor[10 -	
0110	120/11	Component 10]	
8144	FLOAT	Last FCalib Old Resp Factor[11 -	RD ONLY
		Component 11]	
8145	FLOAT	Last FCalib_Old Resp Factor[12 -	RD_ONLY
		Component 12]	
8146	FLOAT	Last FCalib_Old Resp Factor[13 -	RD_ONLY
		Component 13]	
8147	FLOAT	Last FCalib_Old Resp Factor[14 -	RD_ONLY
01/0	FLOAT	Last ECalib. Old Bosp Easter[15	
0140	FLOAT	Component 15]	KD_ONET
8149	FLOAT	Last ECalib. Old Resp Factor[16 -	BD ONLY
0115	120/11	Component 16]	
8150	FLOAT	Last FCalib_Old Resp Factor[17 -	RD_ONLY
		Component 17]	
8151	FLOAT	Last FCalib_Old Resp Factor[18 -	RD_ONLY
		Component 18]	
8152	FLOAT	Last FCalib_Old Resp Factor[19 -	RD_ONLY
		Component 19]	
8153	FLOAT	Last FCalib_Old Resp Factor[20 -	RD_ONLY
0164	FLOAT	Last ECalib. Old Boon Factor[1	
8154	FLUAT	Last realib_Old Kesp Factor[1 -	

8155	FLOAT	Last FCalib_Old Resp Factor[2 - Component 2]	RD_ONLY
8156	FLOAT	Last FCalib_Old Resp Factor[3 - Component 3]	RD_ONLY
8157	FLOAT	Last FCalib_Old Resp Factor[4 - Component 4]	RD_ONLY
8158	FLOAT	Last FCalib_Old Resp Factor[5 - Component 5]	RD_ONLY
8159	FLOAT	Last FCalib_Old Resp Factor[6 - Component 6]	RD_ONLY
8160	FLOAT	Last FCalib_Old Resp Factor[7 - Component 7]	RD_ONLY
8161	FLOAT	Last FCalib_Old Resp Factor[8 - Component 8]	RD_ONLY
8162	FLOAT	Last FCalib_Old Resp Factor[9 - Component 9]	RD_ONLY
8163	FLOAT	Last FCalib_Old Resp Factor[10 - Component 10]	RD_ONLY
8164	FLOAT	Last FCalib_Old Resp Factor[11 - Component 11]	RD_ONLY
8165	FLOAT	Last FCalib_Old Resp Factor[12 - Component 12]	RD_ONLY
8166	FLOAT	Last FCalib_Old Resp Factor[13 - Component 13]	RD_ONLY
8167	FLOAT	Last FCalib_Old Resp Factor[14 - Component 14]	RD_ONLY
8168	FLOAT	Last FCalib_Old Resp Factor[15 - Component 15]	RD_ONLY
8169	FLOAT	Last FCalib_Old Resp Factor[16 - Component 16]	RD_ONLY
8170	FLOAT	Last FCalib_Old Resp Factor[17 - Component 17]	RD_ONLY
8171	FLOAT	Last FCalib_Old Resp Factor[18 - Component 18]	RD_ONLY
8172	FLOAT	Last FCalib_Old Resp Factor[19 - Component 19]	RD_ONLY
8173	FLOAT	Last FCalib_Old Resp Factor[20 - Component 20]	RD_ONLY
8174	FLOAT	Last FCalib_Old Resp Factor[1 - Component 1]	RD_ONLY
8175	FLOAT	Last FCalib_Old Resp Factor[2 - Component 2]	RD_ONLY
8176	FLOAT	Last FCalib_Old Resp Factor[3 - Component 3]	RD_ONLY
8177	FLOAT	Last FCalib_Old Resp Factor[4 - Component 4]	RD_ONLY
8178	FLOAT	Last FCalib_Old Resp Factor[5 - Component 5]	RD_ONLY
8179	FLOAT	Last FCalib_Old Resp Factor[6 - Component 6]	RD_ONLY
8180	FLOAT	Last FCalib_Old Resp Factor[7 -	RD_ONLY

		Component 7]	
8181	FLOAT	Last FCalib_Old Resp Factor[8 -	RD_ONLY
		Component 8]	
8182	FLOAT	Last FCalib_Old Resp Factor[9 -	RD_ONLY
		Component 9]	
8183	FLOAT	Last FCalib_Old Resp Factor[10 -	RD_ONLY
		Component 10]	
8184	FLOAT	Last FCalib_Old Resp Factor[11 -	RD_ONLY
0105	FLOAT	Component 11	
8185	FLUAT	Last FCallb_Old Resp Factor[12 -	RD_ONLY
8186	FLOAT	Last ECalib. Old Resp Factor[13 -	
0100	TLOAT	Component 13]	
8187	FLOAT	Last FCalib Old Resp Factor[14 -	RD ONLY
	_	Component 14]	
8188	FLOAT	Last FCalib_Old Resp Factor[15 -	RD_ONLY
		Component 15]	
8189	FLOAT	Last FCalib_Old Resp Factor[16 -	RD_ONLY
		Component 16]	
8190	FLOAT	Last FCalib_Old Resp Factor[17 -	RD_ONLY
		Component 17]	
8191	FLOAT	Last FCalib_Old Resp Factor[18 -	RD_ONLY
9102	FLOAT	Component 18j	
8192	FLUAT	Last FCallb_Old Resp Factor[19 -	RD_ONLY
8193	FL ΩΑΤ	Last ECalib. Old Resp Factor[20 -	
0155		Component 20]	
8194	FLOAT	Last FCalib Old Resp Factor[1 -	RD ONLY
		Component 1]	_
8195	FLOAT	Last FCalib_Old Resp Factor[2 -	RD_ONLY
		Component 2]	
8196	FLOAT	Last FCalib_Old Resp Factor[3 -	RD_ONLY
		Component 3]	
8197	FLOAT	Last FCalib_Old Resp Factor[4 -	RD_ONLY
0100	FLOAT	Component 4]	
8198	FLUAT	Component 5]	RD_ONLY
8199	FLOAT	Last ECalib Old Resp Factor[6 -	
0133	120/11	Component 6]	
8200	FLOAT	Last FCalib Old Resp Factor[7 -	RD ONLY
		Component 7]	
8201	FLOAT	Last FCalib_Old Resp Factor[8 -	RD_ONLY
		Component 8]	
8202	FLOAT	Last FCalib_Old Resp Factor[9 -	RD_ONLY
		Component 9]	
8203	FLOAT	Last FCalib_Old Resp Factor[10 -	RD_ONLY
0204	FLOAT	Component 10j	
8204	FLUAT	Last FCallb_UID Kesp Factor[11 -	KD_UNLY
8205	FLOAT	Last ECalib. Old Resp Eactor[12	
5205		Component 12]	
1	1		

8206	FLOAT	Last FCalib_Old Resp Factor[13 - Component 13]	RD_ONLY
8207	FLOAT	Last FCalib_Old Resp Factor[14 - Component 14]	RD_ONLY
8208	FLOAT	Last FCalib_Old Resp Factor[15 - Component 15]	RD_ONLY
8209	FLOAT	Last FCalib_Old Resp Factor[16 - Component 16]	RD_ONLY
8210	FLOAT	Last FCalib_Old Resp Factor[17 - Component 17]	RD_ONLY
8211	FLOAT	Last FCalib_Old Resp Factor[18 - Component 18]	RD_ONLY
8212	FLOAT	Last FCalib_Old Resp Factor[19 - Component 19]	RD_ONLY
8213	FLOAT	Last FCalib_Old Resp Factor[20 - Component 20]	RD_ONLY
8214	FLOAT	Last FCalib_Old Ret Time[1 – Component 1]	RD_ONLY
8215	FLOAT	Last FCalib_Old Ret Time[2 – Component 2]	RD_ONLY
8216	FLOAT	Last FCalib_Old Ret Time[3 – Component 3]	RD_ONLY
8217	FLOAT	Last FCalib_Old Ret Time[4 – Component 4]	RD_ONLY
8218	FLOAT	Last FCalib_Old Ret Time[5 – Component 5]	RD_ONLY
8219	FLOAT	Last FCalib_Old Ret Time[6 –	RD_ONLY
8220	FLOAT	Last FCalib_Old Ret Time[7 –	RD_ONLY
8221	FLOAT	Last FCalib_Old Ret Time[8 –	RD_ONLY
8222	FLOAT	Last FCalib_Old Ret Time[9 –	RD_ONLY
8223	FLOAT	Last FCalib_Old Ret Time[10 - Component 10]	RD_ONLY
8224	FLOAT	Last FCalib_Old Ret Time[11 - Component 11]	RD_ONLY
8225	FLOAT	Last FCalib_Old Ret Time[12 - Component 12]	RD_ONLY
8226	FLOAT	Last FCalib_Old Ret Time[13 - Component 13]	RD_ONLY
8227	FLOAT	Last FCalib_Old Ret Time[14 - Component 14]	RD_ONLY
8228	FLOAT	Last FCalib_Old Ret Time[15 - Component 15]	RD_ONLY
8229	FLOAT	Last FCalib_Old Ret Time[16 - Component 16]	RD_ONLY
8230	FLOAT	Last FCalib_Old Ret Time[17 - Component 17]	RD_ONLY

8231	FLOAT	Last FCalib_Old Ret Time[18 -	RD_ONLY
		Component 18]	
8232	FLOAT	Last FCalib_Old Ret Time[19 -	RD_ONLY
		Component 19]	
8233	FLOAT	Last FCalib_Old Ret Time[20 - Component 20]	RD_ONLY
8234	FLOAT	Last FCalib Old Ret Time[1 –	RD ONLY
		Component 1]	
8235	FLOAT	Last FCalib_Old Ret Time[2 –	RD_ONLY
		Component 2]	
8236	FLOAT	Last FCalib_Old Ret Time[3 –	RD_ONLY
		Component 3]	
8237	FLOAT	Last FCalib_Old Ret Time[4 –	RD_ONLY
		Component 4]	
8238	FLOAT	Last FCalib_Old Ret Time[5 –	RD_ONLY
		Component 5]	
8239	FLOAT	Last FCalib_Old Ret Time[6 –	RD_ONLY
		Component 6]	
8240	FLOAT	Last FCalib_Old Ret Time[7 –	RD_ONLY
		Component 7]	
8241	FLOAT	Last FCalib_Old Ret Time[8 –	RD_ONLY
		Component 8]	
8242	FLOAT	Last FCalib_Old Ret Time[9 –	RD_ONLY
		Component 9]	
8243	FLOAT	Last FCalib_Old Ret Time[10 -	RD_ONLY
		Component 10]	
8244	FLOAT	Last FCalib_Old Ret Time[11 -	RD_ONLY
		Component 11]	
8245	FLOAT	Last FCalib_Old Ret Time[12 -	RD_ONLY
0246	FLOAT	Component 12]	
8240	FLOAT	Component 13]	RD_ONLY
8247	FLOAT	Last ECalib. Old Ret Time[14 -	
0247	120/11	Component 14]	
8248	FLOAT	Last FCalib Old Ret Time[15 -	RD ONLY
		Component 15]	_
8249	FLOAT	Last FCalib_Old Ret Time[16 -	RD_ONLY
		Component 16]	
8250	FLOAT	Last FCalib_Old Ret Time[17 -	RD_ONLY
		Component 17]	
8251	FLOAT	Last FCalib_Old Ret Time[18 -	RD_ONLY
0050		Component 18j	
8252	FLOAT	Last FCallb_Old Ret Time[19 -	RD_ONLY
8253	ΕΙΟΔΤ	Last ECalib. Old Bet Time[20 -	
0200		Component 20]	
8254	FLOAT	Last FCalib Old Ret Time[1 –	RD ONLY
		Component 1]	
8255	FLOAT	Last FCalib_Old Ret Time[2 –	RD_ONLY
		Component 2]	

8256	FLOAT	Last FCalib_Old Ret Time[3 –	RD_ONLY
8257	FLOAT	Last FCalib_Old Ret Time[4 –	RD_ONLY
8258	FLOAT	Last FCalib_Old Ret Time[5 –	RD_ONLY
8259	FLOAT	Last FCalib_Old Ret Time[6 –	RD_ONLY
8260	FLOAT	Last FCalib_Old Ret Time[7 – Component 7]	RD_ONLY
8261	FLOAT	Last FCalib_Old Ret Time[8 – Component 8]	RD_ONLY
8262	FLOAT	Last FCalib_Old Ret Time[9 – Component 9]	RD_ONLY
8263	FLOAT	Last FCalib_Old Ret Time[10 - Component 10]	RD_ONLY
8264	FLOAT	Last FCalib_Old Ret Time[11 - Component 11]	RD_ONLY
8265	FLOAT	Last FCalib_Old Ret Time[12 - Component 12]	RD_ONLY
8266	FLOAT	Last FCalib_Old Ret Time[13 - Component 13]	RD_ONLY
8267	FLOAT	Last FCalib_Old Ret Time[14 - Component 14]	RD_ONLY
8268	FLOAT	Last FCalib_Old Ret Time[15 - Component 15]	RD_ONLY
8269	FLOAT	Last FCalib_Old Ret Time[16 - Component 16]	RD_ONLY
8270	FLOAT	Last FCalib_Old Ret Time[17 - Component 17]	RD_ONLY
8271	FLOAT	Last FCalib_Old Ret Time[18 - Component 18]	RD_ONLY
8272	FLOAT	Last FCalib_Old Ret Time[19 - Component 19]	RD_ONLY
8273	FLOAT	Last FCalib_Old Ret Time[20 - Component 20]	RD_ONLY
8274	FLOAT	Last FCalib_Old Ret Time[1 – Component 1]	RD_ONLY
8275	FLOAT	Last FCalib_Old Ret Time[2 – Component 2]	RD_ONLY
8276	FLOAT	Last FCalib_Old Ret Time[3 – Component 3]	RD_ONLY
8277	FLOAT	Last FCalib_Old Ret Time[4 – Component 4]	RD_ONLY
8278	FLOAT	Last FCalib_Old Ret Time[5 – Component 5]	RD_ONLY
8279	FLOAT	Last FCalib_Old Ret Time[6 –	RD_ONLY
8280	FLOAT	Last FCalib_Old Ret Time[7 –	RD_ONLY

		Component 7]		
8281	FLOAT	Last FCalib_Old Ret Time[8 –	RD_ONLY	
		Component 8]	 	
8282	FLOAT	Last FCalib_Old Ret Time[9 –	RD_ONLY	
		Component 9]		
8283	FLOAT	Last FCalib_Old Ret Time[10 -	RD_ONLY	
9794	FLOAT	Last ECalib. Old Pat Time[11 -		
0204	FLOAT	Component 11]	ND_ONLT	
8285	FLOAT	Last FCalib_Old Ret Time[12 -	RD_ONLY	
		Component 12]		
8286	FLOAT	Last FCalib_Old Ret Time[13 -	RD_ONLY	
0207	FLOAT	Component 13]		
8287	FLUAT	Component 14]	RD_ONLY	
8288	FLOAT	Last FCalib Old Ret Time[15 -	RD ONLY	
		Component 15]	_	
8289	FLOAT	Last FCalib_Old Ret Time[16 -	RD_ONLY	
0000	EL O A T	Component 16]		
8290	FLOAT	Last FCallb_Old Ret Time[17 -	RD_ONLY	
8291	FLOAT	Last FCalib Old Ret Time[18 -	RD ONLY	
		Component 18]	_	
8292	FLOAT	Last FCalib_Old Ret Time[19 -	RD_ONLY	
		Component 19]		
8293	FLOAT	Last FCalib_Old Ret Time[20 -	RD_ONLY	
8963	FLOAT	Clear All Alarms	RD WR	
8964	FLOAT			
0000				N 4 N 4
9006		Current Time(time_t)	RD_WR	
9007	INT	Current Time(time_t)	RD_WR	TT
9008	INT	Current Time(time_t)	RD_WR	1111
9009	INT	Current Time(time_t)	RD_WR	hh
9010	INT	Current Time(time_t)	RD_WR	mm
9011	INT	Current Time(time_t)	RD_WR	SS
9012	INT	Nicht belegt	RD_ONLY	
9013	INT	Modbus Id[1 - Port 0]	RD_ONLY	
9014	INT	Site Id	RD WR	
9022	INT	Analysis Time	 RD ONLY	
9023	INT	Nicht belegt		
9024				
9024				
9025			 KD_UNLY	
9026	INT	Run Time	RD_ONLY	
9027	INT	Nicht belegt	RD_ONLY	
9028	INT	Current Stream	RD_ONLY	

9029	INT	Nicht belegt	RD_ONLY	
9030	INT	GC Control_Analyser Control (Write Reg 9030)	RD_WR	
9031	INT	Nicht belegt	RD_ONLY	
9032	INT	GC Calibrating	RD_ONLY	
9033	INT	Nicht belegt	RD_ONLY	
9034	INT	Active Alarm Flag	RD_ONLY	
9035	INT	UnAck Alarm Flag	RD_ONLY	
9036	INT	Hourly Average Reset time	RD_ONLY	11
9037	INT	Hourly Average Reset time	RD_ONLY	MM
9038	INT	Hourly Average Reset time	RD_ONLY	TT
9039	INT	Hourly Average Reset time	RD_ONLY	hh
9040	INT	Hourly Average Reset time	RD_ONLY	mm
9041	INT	Daily Average Reset time	RD_ONLY	11
9042	INT	Daily Average Reset time	RD_ONLY	ММ
9043	INT	Daily Average Reset time	RD_ONLY	TT
9044	INT	Daily Average Reset time	RD_ONLY	hh
9045	INT	Daily Average Reset time	RD_ONLY	mm
9046	INT	Weekly Average Reset time	RD_ONLY	11
9047	INT	Weekly Average Reset time	RD_ONLY	MM
9048	INT	Weekly Average Reset time	RD_ONLY	TT
9049	INT	Weekly Average Reset time	RD_ONLY	hh
9050	INT	Weekly Average Reset time	RD_ONLY	mm
9051	INT	Monthly Average Reset time	RD_ONLY	11
9052	INT	Monthly Average Reset time	RD_ONLY	ММ
9053	INT	Monthly Average Reset time	RD_ONLY	TT
9054	INT	Monthly Average Reset time	RD_ONLY	hh
9055	INT	Monthly Average Reset time	RD_ONLY	mm
9056	INT	Variable Average Reset time	RD_ONLY	11
9057	INT	Variable Average Reset time	RD_ONLY	ММ
9058	INT	Variable Average Reset time	RD_ONLY	TT
9059	INT	Variable Average Reset time	RD_ONLY	hh
9060	INT	Variable Average Reset time	RD_ONLY	mm

1001..1005 (Discrete Output 1..5 Current Value): Aktueller Zustand des Binärausgangs; "1" weist darauf hin, dass der Ausgang "On" (Ein) ist, "0" weist darauf hin, dass der Ausgang "Off" (Aus) ist.

1006..1010 (Discrete Inputs 1..5 Current Value): Aktueller Zustand des Binäreingangs; "1" weist darauf hin, dass der Eingang "On" (Ein) ist, "0" weist darauf hin, das der Eingang "Off" (Aus) ist.

3001..3016/3017..3032 (Component Code): Komponentencodes für Komponenten, deren Mol-%-Ergebnisse in den Registern 7001..7016 verfügbar sind. 3033 (Run Time in 1/30th Sec): Aktuelle GC-Laufzeit. Wenn Run Time = 200 Sekunden ist, liest dieses Register 6000.

3034 (Last Analy_Stream Number): Der Strom, der zuletzt analysiert wurde.

3035 (Last Analy_CDT Stream Mask):

- Bit 0: Enthält "1", wenn Strom 1 CDT1 verwendet; andernfalls "0"
- Bit 1: Enthält "1", wenn Strom 2 CDT1 verwendet; andernfalls "0"
- Bit 2: Enthält "1", wenn Strom 3 CDT1 verwendet; andernfalls "0"
- •
- Bit 15: Enthält "1", wenn Strom 16 CDT1 verwendet; andernfalls "0"

3036..3040 (Current GC Time): Enthält die aktuelle GC-Zeit. Kann beschrieben werden, um das Datum/die Zeit des GC zu aktualisieren.

3041..3045 (Last Analy_Start Time): Probeninjektionszeit für den Strom, der zuletzt analysiert wurde.

3046..3047 (Alarm Bitmaps): Boolesche Alarmzustände. "1" - Alarm ist aktiv, "0" – Alarm ist inaktiv.

3046 Bit 14 (Analyzer Failure): Dieses Bit wird auf "1" gesetzt, wenn einer der Grenzschalteralarme für den Trägerdruck/Niederdruck aktiv ist.

3048 (Stream 1 Active Low Limit Alarms):

- Bit 0: Enthält "1", wenn User Limit Alarm 1 mit Strom 1 assoziiert ist und wenn ein Low Limit-Zustand gegenwärtig aktiv ist. Dieses Bit wird "0" enthalten, wenn entweder User Limit Alarm 1 nicht mit Strom 1 assoziiert ist oder wenn kein Low Limit-Alarmzustand besteht.
- Bit 1: Enthält "1", wenn User Limit Alarm 2 mit Strom 1 assoziiert ist und wenn ein Low Limit-Zustand gegenwärtig aktiv ist. Dieses Bit wird "0" enthalten, wenn entweder User Limit Alarm 2 nicht mit Strom 1 assoziiert ist oder wenn kein Low Limit-Alarmzustand besteht.
- .
- Bit 15: Enthält "1", wenn User Limit Alarm 16 mit Strom 1 assoziiert ist und wenn ein Low Limit-Zustand gegenwärtig aktiv ist. Dieses Bit wird "0" enthalten, wenn entweder User Limit Alarm 16 nicht mit Strom 1 assoziiert ist oder wenn kein Low Limit-Alarmzustand besteht.

3049 (Stream 1 Active High Limit Alarms):

- Bit 0: Enthält "1", wenn User Limit Alarm 1 mit Strom 1 assoziiert ist und ein High Limit-Zustand gegenwärtig aktiv ist. Dieses Bit wird "0" enthalten, wenn entweder User Limit Alarm 1 nicht mit Strom 1 assoziiert ist oder wenn kein High Limit-Alarmzustand besteht.
- Bit 1: Enthält "1", wenn User Limit Alarm 2 mit Strom 1 assoziiert ist und ein High Limit-Zustand gegenwärtig aktiv ist. Dieses Bit wird "0" enthalten, wenn entweder User Limit Alarm 2 nicht mit Strom 1 assoziiert ist oder wenn kein High Limit-Alarmzustand besteht.
- .
- Bit 15: Enthält "1", wenn User Limit Alarm 16 mit Strom 1 assoziiert ist und ein High Limit-Zustand gegenwärtig aktiv ist. Dieses Bit wird "0" enthalten, wenn entweder User Limit Alarm 16 nicht mit Strom 1 assoziiert ist oder wenn kein High Limit- Alarmzustand besteht.

3050 .. 3057 (Stream 2..5 Active High/Low Limit Alarms): Diese Register enthalten den Grenzalarm-Status für die Ströme 2 bis 5. Die Implementierung dieser Register ist identisch wie bei Stream 1 Active Low/High Alarms (Register 3048/3049).

3058 (New Data Flag): Dieses Flag ist auf "1" gesetzt, wenn neue Daten in den Last Analysis Results Registers (Ergebnisregister der letzten Analyse) verfügbar sind. Dies ist ein Lese-/Schreibregister, damit ein Modbus-Master das Flag löschen kann, sobald die neuen Ergebnisse gelesen wurden.

3059 (Anly/Calib Flag): Dieses Flag ist auf "1" gesetzt, um darauf hinzuweisen, dass die letzten Analyseergebnisse von einem Analyselauf stammen. Dieses Flag ist auf "0" gesetzt, um darauf

hinzuweisen, dass die letzten Analyseergebnisse von einem Kalibrierlauf stammen. Ein Modbus-Master kann die Register 3058 und 3059 verwenden, um zu ermitteln, wann neue Analyseergebnisse auf dem GC verfügbar sind.

3060 (Daily Avg Updated): Dieses Flag ist auf "1" gesetzt, um darauf hinzuweisen, dass neue tägliche Durchschnittsergebnisse verfügbar sind. Dies ist ein Lese-/Schreibregister, damit ein Modbus-Master das Flag löschen kann, sobald die neuen Ergebnisse gelesen wurden.

3062..3065 (Stream 2..5 New Data Available): Dieses Flag ist auf "1" gesetzt, wenn neue Daten für den spezifischen Strom verfügbar sind. Dies ist ein Lese-/Schreibregister, damit ein Modbus-Master das Flag löschen kann, sobald die neuen Ergebnisse gelesen wurden.

3066..3081 (CDT1 Reference Component Code for Relative Calibration): Indirekte Kalibrierung -Referenz-Komponentencodes für die Komponenten 1..16. Ein Standardwert null bedeutet, dass die indirekte Kalibrierung nicht verwendet wird.

3082..3097 (CDT2 Reference Component Code for Relative Calibration): Indirekte Kalibrierung -Referenz-Komponentencodes für die Komponenten 1..16. Ein Standardwert null bedeutet, dass die indirekte Kalibrierung nicht verwendet wird.

Wert	Einheit
1	kJ/m3
2	kCal/m3
3	kWh/m3
4	MJ/m3
5	MJ/kg
6	MJ/mol

3098 (CV units of current data):

3099..3102 (Valid data flags): Dieses Flag ist auf "1" gesetzt, wenn den Modbus- Registern neue gültige Daten hinzugefügt werden. Es ist auf "0" gesetzt, wenn ein Alarm aktiv ist. Die 4 Kopien dieses Flags funktionieren auf die gleiche Weise und sind für die Verwendung durch 4 unabhängige Modbus-Master-Geräte (angeschlossen an den 4 seriellen Ports) bestimmt. Dies ist ein Lese-/Schreibregister, damit ein Modbus-Master das Flag löschen kann, sobald die neuen Ergebnisse gelesen wurden.

3103..3182 (Calibration update flags): Auf "1" gesetzt, wenn die Response-Faktoren während der Kalibrierung aktualisiert werden.

5001 (Last Analy_Cycle Time (1/30th sec)): Zykluszeit für die letzte Analyse in 1/30 Sekunden. Wenn die Zykluszeit beispielsweise 300 Sekunden beträgt, liest dieses Register 9000.

5002 (Last Cal_Cycle Time (1/30th sec)): Zykluszeit für den letzten Kalibrierlauf in 1/30 Sekunden. Wenn die Zykluszeit beispielsweise 300 Sekunden beträgt, liest dieses Register 9000.

7001..7016 (Last Analy Mole %): Diese Register enthalten die Mol-%-Ergebnisse für den letzten Analyselauf. Die Reihenfolge der Komponenten in diesen Registern kann durch das Lesen der Register 3001..3016 (enthalten die Komponentencodes) ermittelt werden.

7017..7032 (Last Analy Weight %): Diese Register enthalten die Gewicht-%-Ergebnisse für den letzten Analyselauf. Die Reihenfolge der Komponenten in diesen Registern kann durch das Lesen der Register 3001..3016 (enthalten die Komponentencodes) ermittelt werden.

7033..7039: Ergebnisse des letzten Analysestroms 7040..7044: Benutzer-Berechnungsergebnisse 1..5 7046..7054: Ergebnisse des letzten Analysestroms

7055..7069: Aktuell laufender Durchschnitt für die Averages (Durchschnitte) 1 bis 15

7070..7084: Letzter archivierter Durchschnitt für die Averages (Durchschnitte)1 bis 15 7085..7086:

Aktuelle Analogeingangswerte für Analogeingang 1 und 2

7087..7090: Ergebnisse des letzten Analysestroms

7091: Anzahl der gesamten Kalibrierläufe

7092: Anzahl der gemittelten Kalibrierläufe 7093: Startzeit der automatischen Kalibrierung

7094 (Stream Sequence Select): Lese-/Schreibregister. Wenn das Register gelesen wird, gibt es die aktuell ausgewählte Stromsequenz wieder. Schreiben Sie die Sequenznummer, um die Stromsequenz zu ändern.

Wert	Stromsequenz
1	Default Stream Sequence (Voreingestellte
2	Aux Stream Sequence 1 (Zusätzliche Stromsequenz 1)
3	Aux Stream Sequence 2 (Zusätzliche Stromsequenz 2)

7095..7110 (Last Analysis Response Factors): Response-Faktor für die Komponenten 1..16, der beim letzten Lauf verwendet wurde.

7111..7121: Ergebnisse der letzten Kalibrierung.

7122: Kalibrierstromnummer.

7123..7125: GS(M)R-Ergebnisse der letzten Analyse

7126..7161: Aktueller laufender Durchschnitt für die Averages (Durchschnitte) 1 bis 36

7162..7197: Max. Probenwert während des aktuellen Mittelungszeitraums für die Averages (Durchschnitte) 1 bis 36

7198..7233: Min. Probenwert während des aktuellen Mittelungszeitraums für die Averages (Durchschnitte) 1 bis 36

7234..7269: Letzter archivierter Durchschnitt für die Averages (Durchschnitte) 1 bis 36

7270..7305: Max. Probenwert im letzten archivierten Durchschnitt für die Averages (Durchschnitte) 1 bis 36.

7306..7341: Min. Probenwert im letzten archivierten Durchschnitt für die Averages (Durchschnitte) 1 bis 36.

7342..7377: Zweitletzter archivierter Durchschnitt für die Averages (Durchschnitte) 1 bis 36

7378..7413: Max. Probenwert im zweitletzten archivierten Durchschnitt für die Averages (Durchschnitte) 1 bis 36.

7414..7449: Min. Probenwert im zweitletzten archivierten Durchschnitt für die Averages (Durchschnitte) 1 bis 36.

7450..7485: Drittletzter archivierter Durchschnitt für die Averages (Durchschnitte) 1 bis 36

7486..7521: Max. Probenwert im drittletzten archivierten Durchschnitt für die Averages (Durchschnitte) 1 bis 36.

7521..7557: Min. Probenwert im drittletzten archivierten Durchschnitt für die Averages (Durchschnitte) 1 bis 36.

7558..7573: Multi-Level-Kalibrierkoeffizient 'a' Komponenten 1..16

7572..7589: Multi-Level-Kalibrierkoeffizient 'b' Komponenten 1..16

7590..7605: Multi-Level-Kalibrierkoeffizient 'c' Komponenten 1..16

7606..7621: Multi-Level-Kalibrierkoeffizient 'd' Komponenten 1..16

7622..7637: Indirekte Kalibrierung - Relativer Response-Faktor für die Kompontenten 1..16.

7638..7717: Wiederholung der vorstehenden Register 7558..7637 für die Komponententabelle 2

7718..7845: Aktuell laufender Durchschnitt für die Averages (Durchschnitte) 1 bis 128 7846..7973: Letzter archivierter Durchschnitt für die Averages (Durchschnitte)1 bis 128 7974..8053: Aktuelle Response-Faktoren

8054..8133: Aktuelle Retentionszeiten

8134..8213: Response-Faktoren der vorherigen Kalibrierung

8214..8293: Retentionszeiten der vorherigen Kalibrierung

8963 (Clear All Alarms): Schreiben Sie "1" in dieses Register, um alle aktiven Alarme zu löschen.

8964 (Acknowledge All Alarms): Schreiben Sie "1" in dieses Register, um alle Alarme zu bestätigen.

9006..9011: Datum/Uhrzeit des GC-Systems. Lese-/Schreibregister.

9013 (Modbus Id[Port 0]): Modbus-ID für den seriellen Port 0.

9014 (Site ID): GC Site-ID. Lese-/Schreibregister.

9022 (Analysis Time): Analysezeit 9024 (Cycle Time): Zykluszeit

9026 (Run Time): Laufzeit

9028 (Current Stream): Stromnummer

9030 (Analyzer Control): GC Remote Control Register. Dies ist ein Lese-/Schreibregister, das für die Steuerung des GC-Betriebs und für das Lesen des aktuellen Betriebsmodus verwendet werden kann.

Die vom Register 9030 GELESENEN Moduswerte sind:

- 0 Leer
- 1 Auto-Sequenzierungs-Modus läuft
- 2 Einzelstrom-Modus läuft
- 3 Kalibrierung läuft
- 4 Warmstart, Zuversichtstests laufen
- 5 Validierung läuft [wurde der Firmware-Version 2.1.0 und höher hinzugefügt]

Die Befehle, die in das Register 9030 GESCHRIEBEN werden können, sind:

- 0 Am Ende der aktuellen Analyse anhalten.
- 1 Auto-Sequenzierungs-Modus starten.
- 2 Normale Kalibrierung beim ersten Kalibrierstrom starten.
- 3 Eine einzelne Analyse an Strom 1 durchführen und anschließend anhalten.
- 4 Kontinuierlich an Strom 1 durchführen.
- 5 Eine einzelne Analyse an Strom 2 durchführen und anschließend anhalten.
- 6 Kontinuierlich an Strom 2 durchführen.
- 7 Eine einzelne Analyse an Strom 3 durchführen und anschließend anhalten.
- 8 Kontinuierlich an Strom 3 durchführen.
- 9 Eine einzelne Analyse an Strom 4 durchführen und anschließend anhalten.
- 10 Kontinuierlich an Strom 4 durchführen.
- 11 Eine einzelne Analyse an Strom 5 durchführen und anschließend anhalten.
- 12 Kontinuierlich an Strom 5 durchführen.
- 13 Eine einzelne Analyse an Strom 6 durchführen und anschließend anhalten.
- 14 Kontinuierlich an Strom 6 durchführen.
- 15 Eine einzelne Analyse an Strom 7 durchführen und anschließend anhalten.

- 16 Kontinuierlich an Strom 7 durchführen.
- 17 Eine einzelne Analyse an Strom 8 durchführen und anschließend anhalten.
- 18 Kontinuierlich an Strom 8 durchführen.
- 19 Validierung am ersten Validierungsstrom durchführen [wurde der Firmware-Version 2.1.0 und höher hinzugefügt]
- 41 Normale Kalibrierung an Strom 1 durchführen [wurde der Firmware-Version 2.1.0 und höher hinzugefügt]
- 42 Normale Kalibrierung an Strom 2 durchführen [wurde der Firmware-Version 2.1.0 und höher hinzugefügt]
- ..
- 60 Normale Kalibrierung an Strom 20 durchführen [wurde der Firmware-Version 2.1.0 und höher hinzugefügt]
- 81 Validierung an Strom 1 durchführen [wurde der Firmware-Version 2.1.0 und höher hinzugefügt]
- 82 Validierung an Strom 2 durchführen [wurde der Firmware-Version 2.1.0 und höher hinzugefügt]
- ..
- 100 Validierung an Strom 20 durchführen [wurde der Firmware-Version 2.1.0 und höher hinzugefügt]

Die obigen Befehle 1..19, 41..60 und 81..100 schließen eine Spülung von 60 Sekunden ein. Wenn einem Befehl "20" hinzugefügt wird, bedeutet dies, dass keine Spülung durchgeführt wird (falls relevant). Diese Einträge werden mit den Modbus-Funktionen 6 oder 16 durchgeführt. Mit Ausnahme der Befehle 0 und 2 muss sich der GC im Leerlauf befinden. Es wird die Modbus-Ausnahme "illegal data value" ausgegeben, wenn die Eingabe eines Befehls fehlschlägt, weil sich der GC nicht im Leerlauf befindet, der Code ungültig ist oder der Strom nicht verwendet wird. All diese Befehle können ohne Kennwort angewendet werden und der Sicherheitsschalter muss sich nicht in der entriegelten Position befinden. Diese Befehle sind für User Modbus-Ports und SIM_2251 Modbus-Ports verfügbar.

9032 (GC Calibrating): Teilt Ihnen mit, ob der GC gerade kalibriert. "1" bedeutet, dass der GC kalibriert; andernfalls "0".

9034 (Active Alarm Flag): Teilt Ihnen mit, ob aktive Alarme auf dem GC vorliegen. Ein Wert von "1" weist darauf hin, dass es aktive Alarme gibt; andernfalls "0".

9035 (UnAck Alarm Flag): Teilt Ihnen mit, ob auf dem GC unbestätigte Alarme vorliegen. Ein Wert von "1" weist darauf hin, dass es unbestätigte Alarme gibt; andernfalls "0".

9036..9040 (Hourly Average Reset Time): Das Datum/die Uhrzeit, wann die stündlichen Durchschnittsergebnisse archiviert wurden.

9041..9045 (Daily Average Reset Time): Das Datum/die Uhrzeit, wann die täglichen Durchschnittsergebnisse archiviert wurden.

9046..9047 (Weekly Average Reset Time): Das Datum/die Uhrzeit, wann die wöchentlichen Durchschnittsergebnisse archiviert wurden.

9051..9055 (Monthly Average Reset Time): Das Datum/die Uhrzeit, wann die monatlichen Durchschnittsergebnisse archiviert wurden.

9056..9060 (Variable Average Reset Time): Das Datum/die Uhrzeit, wann die variablen Durchschnittsergebnisse archiviert wurden.

D.8.3 User Modbus-Mapping – Vorlage

Die folgende Vorlage für das User Modbus-Mapping wird als Ausgangspunkt für Endbenutzer zur Verfügung gestellt, sodass sie ihr eigenes, individuell angepasstes Modbus-Mapping erstellen können. Dieses Mapping muss verwendet werden, wenn der Endbenutzer nicht das vordefinierte SIM_2251-Mapping verwenden möchte.

Register- Nr.	Datentyp	Variable	Eintrags- Nr.:	Zugriff	Forma t
1	BOOLEAN	Nicht belegt		RD_ONLY	
2	BOOLEAN	Nicht belegt		RD_ONLY	
3	BOOLEAN	Nicht belegt		RD_ONLY	
4	BOOLEAN	Nicht belegt		RD_ONLY	
5	BOOLEAN	Nicht belegt		RD_ONLY	
6	BOOLEAN	Nicht belegt		RD_ONLY	
7	BOOLEAN	Nicht belegt		RD_ONLY	
8	BOOLEAN	Nicht belegt		RD_ONLY	
9	BOOLEAN	Nicht belegt		RD_ONLY	
10	BOOLEAN	System Alarm_Alarm On - Current Analysis_ Heater 1 Out Of Range		RD_ONLY	
11	BOOLEAN	System Alarm_Alarm On - Current Analysis_ Heater 2 Out Of Range		RD_ONLY	
12	BOOLEAN	System Alarm_Alarm On - Current Analysis_ Heater 3 Out Of Range		RD_ONLY	
13	BOOLEAN	System Alarm_Alarm On - Current Analysis_ Heater 4 Out Of Range		RD_ONLY	
14	BOOLEAN	Nicht belegt		RD_ONLY	
15	BOOLEAN	Nicht belegt		RD_ONLY	
16	BOOLEAN	System Alarm_Alarm On - Current Analysis_ Flame Out		RD_ONLY	
17	BOOLEAN	System Alarm_Alarm On - Current Analysis_ Warm Start Failed		RD_ONLY	
18	BOOLEAN	Nicht belegt		RD_ONLY	
19	BOOLEAN	Calibration Failed		RD_ONLY	
20	BOOLEAN	System Alarm_Alarm On - Current Analysis_Low Carrier Pressure 1		RD_ONLY	
21	BOOLEAN	System Alarm_Alarm On - Current Analysis_Low Carrier Pressure 2		RD_ONLY	
22	BOOLEAN	System Alarm_Alarm On - Current Analysis_No Sample Flow 1		RD_ONLY	
23	BOOLEAN	System Alarm_Alarm On - Current Analysis_No Sample Flow 2		RD_ONLY	
25	BOOLEAN	Calibration Failed		RD_ONLY	
26	BOOLEAN	Nicht belegt		RD_ONLY	
27	BOOLEAN	Nicht belegt		RD_ONLY	
28	BOOLEAN	Nicht belegt		RD_ONLY	

29	BOOLEAN	Nicht belegt	RD_ONLY
30	BOOLEAN	Nicht belegt	RD_ONLY
31	BOOLEAN	System Alarm_Alarm On - Current Analysis_De- tector 1 Scaling Factor Failure	RD_ONLY
32	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 1 High Signal	RD_ONLY
33	BOOLEAN	System Alarm_Alarm On - Current Analysis Ana- log Output 2 High Signal	RD_ONLY
34	BOOLEAN	System Alarm_Alarm On - Current Analysis Ana- log Output 3 High Signal	RD_ONLY
35	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 4 High Signal	RD_ONLY
36	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 5 High Signal	RD_ONLY
37	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 6 High Signal	RD_ONLY
38	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 7 High Signal	RD_ONLY
39	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 8 High Signal	RD_ONLY
40	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 9 High Signal	RD_ONLY
41	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 10 High Signal	RD_ONLY
42	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 11 High Signal	RD_ONLY
43	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 12 High Signal	RD_ONLY
44	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 13 High Signal	RD_ONLY
45	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 14 High Signal	RD_ONLY
46	BOOLEAN	Nicht belegt	RD_ONLY
47	BOOLEAN	Nicht belegt	RD_ONLY
48	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 1 Low Signal	RD_ONLY
49	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 2 Low Signal	RD_ONLY
50	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 3 Low Signal	RD_ONLY
51	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 4 Low Signal	RD_ONLY
52	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 5 Low Signal	RD_ONLY
53	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 6 Low Signal	RD_ONLY
54	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 7 Low Signal	RD_ONLY
55	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 8 Low Signal	RD_ONLY

56	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 9 Low Signal	RD_ONLY
57	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 10 Low Signal	RD_ONLY
58	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 11 Low Signal	RD_ONLY
59	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 12 Low Signal	RD_ONLY
60	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 13 Low Signal	RD_ONLY
61	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Output 14 Low Signal	RD_ONLY
62	BOOLEAN	Nicht belegt	RD_ONLY
63	BOOLEAN	Nicht belegt	RD_ONLY
64	BOOLEAN	Analyzer Failure	RD_ONLY
65	BOOLEAN	System Alarm_Alarm On - Current Analysis_ Power Failure	RD_ONLY
66	BOOLEAN	Nicht belegt	RD_ONLY
67	BOOLEAN	System Alarm_Alarm On - Current Analysis_Low Battery Voltage	RD_ONLY
68	BOOLEAN	System Alarm_Alarm On - Current Analysis_GC Idle	RD_ONLY
69	BOOLEAN	Nicht belegt	RD_ONLY
70	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Input 1 High Signal	RD_ONLY
71	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Input 2 High Signal	RD_ONLY
72	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Input 3 High Signal	RD_ONLY
73	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Input 4 High Signal	RD_ONLY
74	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Input 1 Low Signal	RD_ONLY
75	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Input 2 Low Signal	RD_ONLY
76	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Input 3 Low Signal	RD_ONLY
77	BOOLEAN	System Alarm_Alarm On - Current Analysis_Ana- log Input 4 Low Signal	RD_ONLY
78	BOOLEAN	Nicht belegt	RD_ONLY
79	BOOLEAN	Nicht belegt	RD_ONLY
80	BOOLEAN	Nicht belegt	RD_ONLY
81	BOOLEAN	Nicht belegt	RD_ONLY
82	BOOLEAN	Nicht belegt	RD_ONLY
83	BOOLEAN	Nicht belegt	RD_ONLY
84	BOOLEAN	Nicht belegt	RD_ONLY
85	BOOLEAN	Alarm On[1 - Alarm 1]	RD_ONLY

86	BOOLEAN	Alarm On[2 - Alarm 2]	RD_ONLY
87	BOOLEAN	Alarm On[3 - Alarm 3]	RD_ONLY
88	BOOLEAN	Alarm On[4 - Alarm 4]	RD_ONLY
89	BOOLEAN	Alarm On[5 - Alarm 5]	RD_ONLY
90	BOOLEAN	Alarm On[6 - Alarm 6]	RD_ONLY
91	BOOLEAN	Alarm On[7 - Alarm 7]	RD_ONLY
92	BOOLEAN	Alarm On[8 - Alarm 8]	RD_ONLY
93	BOOLEAN	Alarm On[9 - Alarm 9]	RD_ONLY
94	BOOLEAN	Alarm On[10 - Alarm 10]	RD_ONLY
95	BOOLEAN	Alarm On[11 - Alarm 11]	RD_ONLY
96	BOOLEAN	Alarm On[12 - Alarm 12]	RD_ONLY
97	BOOLEAN	Alarm On[13 - Alarm 13]	RD_ONLY
98	BOOLEAN	Alarm On[14 - Alarm 14]	RD_ONLY
99	BOOLEAN	Alarm On[15 - Alarm 15]	RD_ONLY
100	BOOLEAN	Alarm On[16 - Alarm 16]	RD_ONLY
101	BOOLEAN	Alarm On[17 - Alarm 17]	RD_ONLY
102	BOOLEAN	Alarm On[18 - Alarm 18]	RD_ONLY
103	BOOLEAN	Alarm On[19 - Alarm 19]	RD_ONLY
104	BOOLEAN	Alarm On[20 - Alarm 20]	RD_ONLY
105	BOOLEAN	1 - Stream 1_Stream Toggle	RD_ONLY
106	BOOLEAN	2 - Stream 2_Stream Toggle	RD_ONLY
107	BOOLEAN	3 - Stream 3_Stream Toggle	RD_ONLY
108	BOOLEAN	4 - Stream 4_Stream Toggle	RD_ONLY
109	BOOLEAN	5 - Stream 5_Stream Toggle	RD_ONLY
110	BOOLEAN	6 - Stream 6_Stream Toggle	RD_ONLY
111	BOOLEAN	7 - Stream 7_Stream Toggle	RD_ONLY
112	BOOLEAN	8 - Stream 8_Stream Toggle	RD_ONLY
113	BOOLEAN	Current Value[1 - Discrete Output 1]	RD_ONLY
114	BOOLEAN	Current Value[2 - Discrete Output 2]	RD_ONLY
115	BOOLEAN	Current Value[3 - Discrete Output 3]	RD_ONLY
116	BOOLEAN	Current Value[4 - Discrete Output 4]	RD_ONLY
117	BOOLEAN	Current Value[5 - Discrete Output 5]	RD_ONLY
118	BOOLEAN	Switch[1 - Discrete Output 1]	RD_WR
119	BOOLEAN	Switch[2 - Discrete Output 2]	RD_WR
120	BOOLEAN	Switch[3 - Discrete Output 3]	RD_WR
121	BOOLEAN	Switch[4 - Discrete Output 4]	RD_WR
122	BOOLEAN	Switch[5 - Discrete Output 5]	RD_WR
123	INT	Switch[1 - Discrete Output 1]	RD_WR
124	INT	Switch[2 - Discrete Output 2]	RD_WR

125	INT	Switch[3 - Discrete Output 3]	RD_WR	
126	INT	Switch[4 - Discrete Output 4]	RD_WR	
127	INT	Switch[5 - Discrete Output 5]	RD_WR	
9006	INT	Current Time(time_t)	RD_WR	MM
9007	INT	Current Time(time_t)	RD_WR	тт
9008	INT	Current Time(time_t)	RD_WR	1111
9009	INT	Current Time(time_t)	RD_WR	hh
9010	INT	Current Time(time_t)	RD_WR	mm
9011	INT	Current Time(time_t)	RD_WR	SS
9012	INT	Nicht belegt	RD_ONLY	
9013	INT	Modbus ld[1 - Port 0]	RD_ONLY	
9014	INT	Site Id	RD_WR	
9022	INT	Analysis Time	RD_ONLY	
9023	INT	Nicht belegt	RD_ONLY	
9024	INT	Cycle Time	RD_ONLY	
9025	INT	Nicht belegt	RD_ONLY	
9026	INT	Run Time	RD_ONLY	
9027	INT	Nicht belegt	RD_ONLY	
9028	INT	Aktueller Strom	RD_ONLY	
9029	INT	Nicht belegt	RD_ONLY	
9030	INT	GC Control_Analyser Control (Write Reg 9030)	RD_WR	
9031	INT	Nicht belegt	RD_ONLY	
9032	INT	GC Calibrating	RD_ONLY	
9033	INT	Nicht belegt	RD_ONLY	
9034	INT	Active Alarm Flag	RD_ONLY	
9035	INT	UnAck Alarm Flag	RD_ONLY	
9036	INT	Hourly Average Reset time	RD_ONLY	11
9037	INT	Hourly Average Reset time	RD_ONLY	MM
9038	INT	Hourly Average Reset time	RD_ONLY	TT
9039	INT	Hourly Average Reset time	RD_ONLY	hh
9040	INT	Hourly Average Reset time	RD_ONLY	mm
9041	INT	Daily Average Reset time	RD_ONLY	11
9042	INT	Daily Average Reset time	RD_ONLY	MM
9043	INT	Daily Average Reset time	RD_ONLY	TT
9044	INT	Daily Average Reset time	RD_ONLY	hh
9045	INT	Daily Average Reset time	RD_ONLY	mm
9046	INT	Weekly Average Reset time	RD_ONLY	JJ
9047	INT	Weekly Average Reset time	RD_ONLY	ММ

9048	INT	Weekly Average Reset time	RD_ONLY	TT
9049	INT	Weekly Average Reset time	RD_ONLY	hh
9050	INT	Weekly Average Reset time	RD_ONLY	mm
9051	INT	Monthly Average Reset time	RD_ONLY	11
9052	INT	Monthly Average Reset time	RD_ONLY	MM
9053	INT	Monthly Average Reset time	RD_ONLY	TT
9054	INT	Monthly Average Reset time	RD_ONLY	hh
9055	INT	Monthly Average Reset time	RD_ONLY	mm
9056	INT	Variable Average Reset time	RD_ONLY	11
9057	INT	Variable Average Reset time	RD_ONLY	MM
9058	INT	Variable Average Reset time	RD_ONLY	TT
9059	INT	Variable Average Reset time	RD_ONLY	hh
9060	INT	Variable Average Reset time	RD_ONLY	mm

10...13 (Heater 1..4 Out of Range): "1", wenn sich die Heizung außerhalb des Bereichs befindet; andernfalls "0".

16 (FID Flame Out): "1", wenn die FID-Flamme erloschen ist; andernfalls "0"

17 (Warmstart Failed): "1", wenn der GC-Warmstart nicht in der Lage war, die Temperatur/den Druck im analytischen Ofen innerhalb der vordefinierten Warmstartdauer zu stabilisieren; andernfalls "0".

19 (Calibration Failed): "1", wenn die letzte Kalibriersequenz fehlgeschlagen ist; andernfalls "0"

20..21 (Low Carrier Pressure 1..2): "1", wenn der Trägerdruck niedrig ist; andernfalls "0"

22..23 (No Sample Flow 1..2): "1", wenn es keinen Probendurchfluss im Probenaufbereitungssystem gibt; andernfalls "0".

24 (Maintenance Mode): "1", wenn ein Techniker den GC in den Wartungsmodusversetzt hat, um Reparaturen durchzuführen; andernfalls "0".

25 (Calibration Failed): "1", wenn die letzte Kalibriersequenz fehlgeschlagen ist; andernfalls "0"

31 (Preamp Scaling Factor): "1", wenn ein Elektronikfehler auf der Vorverstärkerplatine vorliegt; andernfalls "0".

32...45 (Analog Output High Signal 1..14): "1", wenn die Variable, die mit dem Analogausgang assoziiert ist, einen Wert hat, der größer ist als der Skalenendwert, der dem Analogausgang zugewiesen ist; andernfalls "0".

48...61 (Analog Output Low Signal 1..14): "1", wenn die Variable, die mit dem Analogausgang assoziiert ist, einen Wert hat, der kleiner ist als der Skalennullwert, der dem Analogausgang zugewiesen ist; andernfalls "0".

64 (Analyzer Failure): "1" weist darauf hin, dass der Trägerdruck entweder zu gering ist, oder der GC den Trägerdruck nicht auf den gewünschten Sollwert steuern kann; andernfalls "0".

65 (Power Failure): "1" weist darauf hin, dass der GC stromlos war und gegenwärtig die Warmstartsequenz ausführt; andernfalls "0".

67 (Low Battery Voltage): "1" weist darauf hin, dass die Batterie auf der CPU-Platine, die für die Sicherungskopie der Konfiguration und die Echtzeit-Uhr verwendet wird, schwach ist; andernfalls "0".

68 (GC Idle): "1" weist darauf hin, dass der GC keine Analyse durchführt; andernfalls "0".

Anmerkung

- 1. Wenn der GC durch den Benutzer mittels MON2020 angehalten wird, dann wird der Alarm "Idle" nicht ausgelöst. Der Alarm wird nur ausgelöst, wenn sich der GC aufgrund eines Alarmzustandes, der das Flag "Halt on Alarm" aktiviert hat, in den Leerlauf-Zustand geht.
- Wenn der GC durch den Benutzer mittels MON2020 angehalten und die Verbindung zum GC getrennt wird, ohne den normalen Betrieb wieder aufzunehmen, dann wird der Alarm "GC Idle" ausgelöst.

70...77 (Analog Input Low Signal 1..8): "1" weist darauf hin, dass der Analogeingang einen Strom wahrnimmt, der niedriger als 4 mA ist; andernfalls "0".

85...104 (User Limit Alarm 1..20): "1" weist darauf hin, dass der User Limit Alarm aktiv ist; andernfalls "0".

105...112 (Stream Toggle 1..5): Dieses Flag wird jedes Mal umgeschaltet, wenn neue Ergebnisse für einen bestimmten Strom verfügbar sind.

113...117 (Discrete Output 1..5 Current Value): Aktueller Zustand des Binärausgangs;

",1" weist darauf hin, dass der Ausgang "On" (Ein) ist, "O" weist darauf hin, dass der Ausgang "Off" (Aus) ist.

118...122 (Switch Discrete Output 1..5): Lese-/Schreibregister, um den Zustand des Binärausgangs zu ändern. Schreiben Sie "1" in dieses Register, um den Ausgangszustandauf "On" (Ein) zu setzen, und "0", um den Ausgangszustand auf "Off" (Aus) zu setzen.

123..127 (Switch Discrete Output 1..5): Lese-/Schreibregister, um den Zustand des Binärausgangs zu ändern. Schreiben Sie in dieses Register "1", um den Ausgangszustand auf "On" (Ein), "0", um den Ausgangszustand auf "Off" und "2", um das Register in den "Auto"-Modus zu setzen.

9006...9011: Datum/Uhrzeit des GC-Systems. Lese-/Schreibregister.

9013 (Modbus Id[Port 0]): Modbus-ID für den seriellen Port 0.

9014 (Site ID): GC Site-ID. Lese-/Schreibregister.

9022 (Analysis Time): Analysezeit 9024 (Cycle Time): Zykluszeit 9026 (Run Time): Laufzeit

9028 (Current Stream): Stromnummer

9030 (Analyzer Control): GC Remote Control Register. Siehe Register 9030 im vorangegangenen *Abschnitt D.8.3* bzgl. Einzelheiten.

9032 (GC Calibrating): Teilt Ihnen mit, ob der GC gerade kalibriert. "1" bedeutet, dass der GC kalibriert; andernfalls "0".

9034 (Active Alarm Flag): Teilt Ihnen mit, ob aktive Alarme auf dem GC vorliegen. Ein Wert von "1" weist darauf hin, dass es aktive Alarme gibt; andernfalls "0".

9035 (UnAck Alarm Flag): Teilt Ihnen mit, ob auf dem GC unbestätigte Alarme vorliegen. Ein Wert von "1" weist darauf hin, dass es unbestätigte Alarme gibt; andernfalls "0".

9036..9040 (Hourly Average Reset Time): Das Datum/die Uhrzeit, wann die stündlichen Durchschnittsergebnisse archiviert wurden.

9041..9045 (Daily Average Reset Time): Das Datum/die Uhrzeit, wann die täglichen Durchschnittsergebnisse archiviert wurden.

9046..9047 (Weekly Average Reset Time): Das Datum/die Uhrzeit, wann die wöchentlichen Durchschnittsergebnisse archiviert wurden.

9051..9055 (Monthly Average Reset Time): Das Datum/die Uhrzeit, wann die monatlichen Durchschnittsergebnisse archiviert wurden.

9056..9060 (Variable Average Reset Time): Das Datum/die Uhrzeit, wann die variablen Durchschnittsergebnisse archiviert wurden.

D.8.4 Beschreibbare Modbus-Register

Die folgende Liste enthält alle Modbus-Register des GC, die beschrieben werden können, wenn sich der GC im Modus für das gesetzliche Messwesen (mit Sicherheitsschalter in verriegelter Position) befindet. Bitte beachten Sie, dass nicht alle in dieser Tabelle aufgeführten Register im SIM_2251-Mapping verfügbar sind.

Modbus-Register	Anmerkungen
GC Status -> Current Month	GC-Uhr einstellen. Alle fünf Register können mit einer einzigen Anfrage bes- chrieben oder es können individuelle Register beschrieben werden. Das neue Datum/die neue Uhrzeit wird geprüft, bevor die System-Uhr des GC geändert wird.
GC Status -> Current Day	
GC Status -> Current Year	
GC Status -> Current Hour	
GC Status -> Current Minute	
GC Status -> New Data Flag	Flags für die Synchronisierung von Master und Slave. Der Slave (GC) aktualisiert seine Ergebnisregister und setzt das Flag anschließend auf "1". Der Master (SPS/Flow Computer) liest die Daten und setzt das Flag auf "0" zurück.
GC Status -> Hourly Avg Updated	
GC Status -> Weekly Avg Updated	
GC Status -> Daily Avg Updated	
GC Status -> Monthly Avg Updated	
GC Status -> Last Run Data Valid 1	
GC Status -> Last Run Data Valid 2	
GC Status -> Last Run Data Valid 3	
GC Status -> Last Run Data Valid 4	
GC Status -> Last Run Data Valid 5	
GC Status -> Last Run Data Valid 6	
GC Status -> Last Run Data Valid 7	
GC Status -> Last Run Data Valid 8	
GC Status -> Last Run Data Valid 9	
GC Status -> Last Run Data Valid 10	
Stream 1 -> New Data Available	
Stream 2 -> New Data Available	
Stream 3 -> New Data Available	
Stream 4 -> New Data Available	
Stream 5 -> New Data Available	
Stream 6 -> New Data Available	

Stream 7 -> New Data Available	
Stream 8 -> New Data Available	
Stream 9 -> New Data Available	
Stream 10 -> New Data Available	
Stream 11 -> New Data Available	
Stream 12 -> New Data Available	
Stream 13 -> New Data Available	
Stream 14 -> New Data Available	
Stream 15 -> New Data Available	
Stream 16 -> New Data Available	
Stream 17 -> New Data Available	
Stream 18 -> New Data Available	
Stream 19 -> New Data Available	
Stream 20 -> New Data Available	
Discrete Output 1 -> Switch	Der Master kann folgende Werte in dieses Register schreiben:
	"O" – Setzt den Binärausgang auf "OFF" (AUS)
	"1" – Setzt den Binärausgang auf "ON" (EIN)
	"2" – Setzt den Binärausgang auf "Automatic" (Automatisch - DO wird durch die zeitgesteuerten Freignisse des GC gesteuert)
Discrete Output 2 -> Switch	
Discrete Output 3 -> Switch	
Discrete Output 4 -> Switch	
Discrete Output 5 -> Switch	
Dewpoint Configuration 1 -> Pressure 1	Der Druck, bei dem Hydrocarbon Dewpoint Results (Ergebnisse des Kohlenwasserstoff-Taupunkts) berechnet werden. Wird nur für GC mit Dual-Detektor C9+ Kohlenwasserstoff-Taupunkt verwendet. Diese Register werden nicht in C6+ Anwendungen für den eichgenauen Verkehr verwendet.
Dewpoint Configuration 1 ->	
Pressure 2	
Pressure 3	
Dewpoint Configuration 1 ->	
Pressure 4	
Dewpoint Configuration 2 -> Pressure 1	
Dewpoint Configuration 2 ->	
Pressure 2	
Pressure 3	
Dewpoint Configuration 2 ->	
Pressure 4	
Dewpoint Configuration 3 -> Pressure 1	
Dewpoint Configuration 3 -> Pressure 2	

Dewpoint Configuration 3 ->			
Dewnoint Configuration 3 ->			
Pressure 4			
Dewpoint Configuration 4 -> Pressure 1			
Dewpoint Configuration 4 -> Pressure 2			
Dewpoint Configuration 4 -> Pressure 3			
Dewpoint Configuration 4 -> Pressure 4			
GC Control_Auto Sequence	Auto-Sequenzierung des	GC starten.	
	Normalerweise 0.0 - der	Benutzer schreibt einen Wert ungleich Null, um	
	die Sequenzierung einzu	leiten.	
	1. 1.0 – mit Spülung sta	rten	
	2. 2.0 – ohne Spülung s	tarten	
GC Control_Halt	Chromatograph-Sequena	zierung anhalten -	
	Normalerweise 0.0 - der auszuführen.	Benutzer schreibt 1.0, um das Anhalten	
GC Control_Single Stream	Einzelstrom-Durchlauf st	arten - Normalerweise 0.0.	
	Kontinuierlicher Einzelstrom-Modus:		
	Der Benutzer schreibt di	e Strom-Nr. (Fließkommawert) für einen Strom,	
	der mit Spülung starten soll, und das Negativ der Strom-Nr. für einen Strom, der ohne Spülung starten soll.		
	Einzel-Analyse - diskontinuierlicher Einzelstrom-Modus:		
	Der Benutzer schreibt 12	28.0 + die Strom-Nr. (Fließkommawert) für einen	
	Strom, der mit Spülung s Strom-Nr. für einen Stro	tarten soll, und das Negativ von 128.0 + die m, der ohne Spülung starten soll.	
GC Control_Calibration	Kalibriervorgang starten	- Normalerweise 0.0.	
	Für normale Kalibrierung		
	Der Benutzer schreibt die Strom-Nr. des Kalibrierstroms als		
	Fließkommawert, um den Kalibriervorgang mit einer Spülung zu starten,		
	oder er schreibt das Negativ der Strom-Nr., um den Kalibriervorgang ohne Spülung zu starten.		
GC Control_Validation	Validierungsvorgang star	rten - Normalerweise 0.0.	
	Für Validierung:		
	Der Benutzer schreibt di	e Strom-Nr. des Validierungsstroms als	
	Fließkommawert, um den Validierungsvorgang mit einer Spülung		
	Validierungsvorgang ohne Spülung zu starten.		
GC Control Stream Sequence	Lese-/Schreibregister, Wenn es gelesen wird, gibt es die aktuell		
Select	ausgewählte Stromsequenz wieder. Schreiben Sie die Sequenznummer,		
um die Stromsequenz zu ändern.		ändern.	
	Wert - Stromsequenz		
	Wert	Stromsequenz	
	1	Default Stream Sequence (Voreingestellte	
		Stromsequenz)	
	2	Aux Stream Sequence 1 (Zusätzliche	
		Stromsequenz 1)	
	3	Aux Stream Sequence 2 (Zusätzliche	

	Stromsequenz 2)
GC Control_Analyser Control (Write Reg 9030)	GC Remote Control Register. Siehe "Register 9030" im vorherigen Abschnitt. bzgl. Einzelheiten.
Acknowledge All Alarms	Normalerweise 0.0. Schreiben Sie "1", um alle Alarme zu bestätigen.
Component Data 1_Calib Conc[Component 120]	Kalibrierkonzentration von der SPS aktualisieren, bevor mit der Kalibrierung begonnen wird.
Component Data 1_Resp Fact % [Component 120]	Response-Faktoren von der SPS aktualisieren.
Stream Sequence - Default Stream Sequence	Liest die Sequenz der Ströme. Zum Beispiel: Wenn die aktuelle Sequenz "1, 2" ist, dann liest dieses Register einen Wert von "12".
	So ändern Sie die Sequenz der Ströme:
	Schreiben Sie zum Beispiel "23" in dieses Register, um die Sequenz auf "2,3" zu ändern.

D.9 Verwendete TCP-Ports

D.9.1 TCP Port 502 – Modbus TCP-Schnittstelle

Der Modbus TCP/IP-Kommunikations-Task akzeptiert bis zu max. 10 eingehende Verbindungen von Modbus-Mastergeräten. Nur gültige Modbus TCP-Anfragen werden akzeptiert und behandelt.

- 1. Wenn die "Lese"-Anfrage gültig ist und auf ein gültiges Register hinweist, liest der Modbus TCP/IP Task die Daten aus der GC-Datenbank aus und sendet sie zum Mastergerät.
- 2. Wenn der Task eine "Schreib"-Anfrage erhält, prüft er, (1) ob das Register im Modbus-Mapping mit dem Zugriff "RD_WR" (Lese-/Schreibrechte) konfiguriert ist, (2) ob das Register beschreibbar ist und (3) ob der zu schreibende Wert für das Register akzeptabel ist. Bei einer erfolgreichen Prüfung wird das Register mit dem neuen Wert aktualisiert.
- 3. Wenn die Anfrage ungültig ist (falsche Registeradresse, ungültiger Datenwert, fehlerhafter Zugriff), wird die Anfrage abgelehnt und der GC sendet eine Modbus Exception Response (Ausnahmeantwort) zum Mastergerät.

D.9.2 TCP-Port 10.000 – Externer Proxy Daemon

Der externe Proxy Daemon akzeptiert vom Bedieninterface (LOI) eingehende Verbindungen am TCP-Port 10.000. Das Bedieninterface verwendet an diesem Port ein durch Emerson urheberrechtlich geschütztes Kommunikationsprotokoll, um die GC- Konfiguration anzeigen/bearbeiten sowie die Ergebnisse anzeigen zu können.

D.9.3 TCP-Port 11.000 – Chromatogramm-Server

Der Chromatogramm-Server akzeptiert vom Bedieninterface (LOI) eingehende Verbindungen am TCP-Port 11.000. Dieses Bedieninterface verwendet an diesem Port ein von Emerson urheberrechtlich geschütztes Kommunikationsprotokoll für das Streaming von Live-Chromatogrammen.

D.9.4 TCP-Port 21, 20 – FTP-Befehl/Daten, TCP-Ports 12.100 .. 12.600 - Passives FTP

Ein FTP (Datenübertragungsprotokoll) wird für die Übertragung von Berichten und archivierten

Chromatogrammen vom Hauptprozessor (CPU) zum Bedieninterface verwendet. Der Hauptprozessor (CPU) unterstützt sowohl aktive als auch passive Datenübertragungsprotokolle (FTP). Für aktive FTP-Verbindungen verwendet der FTP- Server den Port 21 für Befehle und den Port 20 für Daten. Für passive FTP-Verbindungen verwendet der FTP-Server den Port 21 für Befehle und einen zufälligen Port im Bereich von 12.100 bis 12.600 für die Datenübertragung zum Client.

D.10 Backdoors

Für die Ersteinrichtung ab Werk und die Administration vor Ort sind die folgenden Backdoors auf dem GC verfügbar.

Hinweis

Bitte beachten Sie, dass:

- 3. NACHSTEHEND EINE VOLLSTÄNDIGE UND GRÜNDLICHE AUFFÜHRUNG ALLER "BACKDOORS" IM GC AUFGELISTET IST.
- 4. ALLE DIESE BACKDOORS WERDEN DEAKTIVIERT, WENN SICH DER SICHERHEITSSCHALTER IN DER VERRIEGELTEN POSITION BEFINDET, UM DEN GC IN DEN MODUS "LEGAL METROLOGY CONTROL" (STEUERUNG FÜR GESETZLICHES MESSWESEN) ZU VERSETZEN.

D.10.1 Firmware-Aktualisierung

Der Firmware Upgrade Task (Firmware-Aktualisierungsfunktion) sucht nach einer Firmware-Aktualisierungsdatei, um diese in einen temporären FTP-Ordner im flüchtigen Arbeitsspeicher (RAM) auf der CPU-Platine zu laden. Das Firmware Upgrade Utility (Firmware-Aktualisierungsprogramm) kann nur mittels des MON2020 Administrator-Programms aufgerufen werden. Das Aktualisierungsprotokoll ist von Emerson urheberrechtlich geschützt und wird nicht veröffentlicht.

Wenn sich der Sicherheitsschalter in der verriegelten Position befindet, wird der Firmware Upgrade Task deaktiviert, um den GC in den Modus "Legal Metrology Control" (Steuerung für gesetzliches Messwesen) zu versetzen. Das MON2020 Windows-Programm erkennt automatisch, wenn der Sicherheitsschalter gesetzt wurde und deaktiviert dann das Firmware-Aktualisierungsprogramm. Falls der FTP-Server gehackt und das Aktualisierungsprotokoll dekodiert wird, stellt die Abwesenheit des Firmware Upgrade Tasks auf dem GC sicher, dass die Firmware auf dem GC nicht geändert werden kann.

Zusätzlich verfügt das Firmware-Modul über eine Prüfsumme und jeder Versuch, die Firmware zu ändern, verursacht eine Änderung der Prüfsumme, die einfach über Modbus oder über das Bedieninterface beobachtet werden kann. Weitere Informationen zum Schutz der Firmware vor bösartigen Angriffen finden Sie in *Anhang B*.

D.10.2 Secure Shell (SSH)

Secure Shell wird werkseitig für Hardware-Tests zur Erstprüfung von Platinen verwendet. Wenn sich der Sicherheitsschalter in der verriegelten Position befindet, wird der Secure Shell Server deaktiviert, um den GC in den Modus "Legal Metrology Control" (Steuerung für gesetzliches Messwesen) zu versetzen.

D.10.3 Zurücksetzen des Administrator-Kennworts

Es existiert ein vom Werk unterstützter Prozess, um das Administrator-Kennwort auf dem GC

zurückzusetzen (falls der Endnutzer das Kennwort für den GC vergisst). Der externe Proxy Daemon, der diese Funktionalität implementiert, überprüft den Zustand des Sicherheitsschalters und lehnt Anfragen bezüglich der Kennwortänderung ab, wenn der Sicherheitsschalter sich in der verriegelten Position befindet.

D.11 Bedieninterface

Dieser Abschnitt beschreibt die verschiedenen Bildschirme, die auf dem Bedieninterface (LOI) verfügbar sind, sowie deren Verhalten, wenn sich der Sicherheitsschalter in der verriegelten Position befindet.

Bildschirmname	Zweck und Verhalten bei entriegeltem Sicher- heitsschalter	Zweck und Verhaltensänderung (falls zu- treffend) bei verriegeltem Sicherheits- schalter
PTB-approved Values (PTB- zugelassene Werte)	 Dieser Bildschirm ist schreibgeschützt. Er stellt die folgenden Informationen bereit: Aktueller GC-Modus und Analysestatus PTB-zugelassene Ergebnisse (Molprozent aller Komponenten, normale Dichte, Brennwert) 	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Dieser Bildschirm bleibt schreibgeschützt.
Chromatogram - > View (Anzeige)	 Dieser Bildschirm ist schreibgeschützt. Er bietet folgende Funktionalitäten: Live-Chromatogramme anzeigen Archivierte Chromatogramme anzeigen 	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Dieser Bildschirm bleibt schreibgeschützt.
Hardware -> Heaters (Heizungen)	 Anzeige des Ofentemperatur-Sollwerts und der aktuellen Temperatur Ofentemperatur-Sollwert ändern 	Dieser Bildschirm wird "schreibgeschützt". Es können keine Änderungen vorgenommen werden.
Hardware -> Valves (Ventile)	 Ventilstatus (EIN/AUS) anzeigen Ventilstatus (EIN/AUS/AUTO) ändern 	Dieser Bildschirm wird "schreibgeschützt". Es können keine Änderungen vorgenommen werden.
Hardware -> Discrete Inputs (Binäreingänge)	 Konfiguration und Status der Binäreingänge (EIN/AUS) anzeigen Konfiguration und Status der Binäreingänge (EIN/AUS/AUTO) ändern 	Dieser Bildschirm wird "schreibgeschützt". Es können keine Änderungen vorgenommen werden.
Hardware -> Discrete Outputs (Binärausgänge)	 Konfiguration und Status der Binärausgänge (EIN/AUS) anzeigen Konfiguration und Status der Binärausgänge (EIN/AUS/AUTO) ändern 	Dieser Bildschirm wird "schreibgeschützt". Es können keine Änderungen vorgenommen werden.
Hardware -> Analog Inputs (Analog- eingänge)	 Konfiguration und Wert der Analogeingänge anzeigen Konfiguration und Wert der Analogeingänge ändern 	Dieser Bildschirm wird "schreibgeschützt". Es können keine Änderungen vorgenommen werden.
Hardware -> Analog Outputs (Analog- ausgänge)	 Konfiguration und Wert der Analogausgänge anzeigen Konfiguration und Wert der Analogausgänge ändern 	Dieser Bildschirm wird "schreibgeschützt". Es können keine Änderungen vorgenommen werden.
Hardware -> Installed Hardware (Installierte Hardware)	 Dieser Bildschirm ist schreibgeschützt Listet Hardware-Komponenten auf, die auf der E/A-Platine verfügbar sind. 	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Dieser Bildschirm bleibt schreibgeschützt.

Application -> System	 Systemkonfiguration anzeigen – wie z. B. Firmware-Version/-Datum, Firmware- Prüfsumme, Konfigurations-Prüfsumme Dar Benutzer kann systemweite Barameter 	Dieser Bildschirm wird "schreibgeschützt". Es können keine Änderungen vorgenommen werden. Die Scheltfläche zur Erzeugung der
	 (wie z. B. GC-Name, Site-ID usw.) konfigurieren Schaltfläche für die Berechnung der 	Konfigurations-Prüfsumme kann verwendet werden, um zu prüfen, ob sich die Konfiguration des GC geändert hat.
	Konfigura- tions-Prüfsumme des GC.	
Application -> Component Data (Komponenten- daten)	 1. Komponenten, Retentionszeiten, Response-Faktoren, Kalibrierkonzentrationen und andere Eigenschaften der Komponenten anzeigen 2. Retentionszeiten, Response-Faktoren, Kalibrierkonzentrationen und andere Eigenschaften der Komponenten bearbeiten 	Dieser Bildschirm wird "schreibgeschützt". Es können keine Änderungen vorgenommen werden.
Application -> Timed Events (Zeitgesteuerte Ereignisse)	 Zeitgesteuerte Ereignisse anzeigen Zeitgesteuerte Ereignisse bearbeiten 	Dieser Bildschirm wird "schreibgeschützt". Es können keine Änderungen vorgenommen werden.
Application -> Streams (Ströme)	 Stromzuweisungen und -einstellungen anzeigen. 	Dieser Bildschirm wird "schreibgeschützt". Es können keine Änderungen
	 Stromzuweisungen und -einstellungen bearbeiten. 	vorgenommen werden.
Application -> Status	 Dieser Bildschirm ist schreibgeschützt Er stellt die folgenden Informationen bereit: Aktueller GC-Modus und Analysestatus PTB-zugelassene Ergebnisse (Molprozent aller Komponenten, normale Dichte, Brennwert) 	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Dieser Bildschirm bleibt schreibgeschützt.
Application -> Ethernet Ports	 IP-Adresse/Subnetzmaske und Gateway-IP- Adresse für Ethernet-Port 1 und 2 anzeigen. IP-Adresse/Subnetzmaske und Gateway-IP- Adresse für Ethernet-Port 1 und 2 ändern. 	Dieser Bildschirm wird "schreibgeschützt". Es können keine Änderungen vorgenommen werden.
Logs/Reports -> Maintenance Log (Wartungs- protokoll)	 Einträge des Wartungsprotokolls anzeigen Einträge des Wartungsprotokolls bearbeiten 	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Dieser Bildschirm kann während der Sicherheitsschalter-Sperrung bearbeitet werden.
Logs/Reports -> Event Log (Ereignis- protokoll)	 Dieser Bildschirm ist schreibgeschützt Alle Einträge im Audit-Protokoll des GC anzeigen 	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Dieser Bildschirm bleibt schreibgeschützt.
Logs/Reports -> Alarm Log (Alarm- protokoll)	 Dieser Bildschirm ist schreibgeschützt Alle Einträge im Alarmprotokoll des GC anzeigen 	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Dieser Bildschirm bleibt schreibgeschützt.
Logs/Reports -> Unack Alarms (Unbestätigte Alarme)	 Zeigt die Liste der unbestätigten Alarme Lässt das Bestätigen von Alarmen durch den Benutzer zu 	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Benutzer können Alarme bestätigen.
Logs/Reports -> Active Alarms (Aktive Alarme)	 Zeigt die Liste der aktiven Alarme Lässt das Löschen und Bestätigen aller Alarme durch den Benutzer zu 	Dieser Bildschirm wird "schreibgeschützt". Es können keine Änderungen vorgenommen werden. Benutzern wird das Löschen von aktiven Alarmen nicht erlaubt.
--	---	--
Logs/Reports -> Report Display (Berichtsanzeige)	 Dieser Bildschirm ist schreibgeschützt Benutzer können Berichte anzeigen lassen 	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Benutzer können Berichte anzeigen lassen.
Logs/Reports -> Hs Archive (Brutto- Brennwert- Archiv)	Benutzer können den Verlauf der Brutto- Brennwert-Ergebnisse ansehen.	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Benutzer können die Ergebnisse anzeigen lassen.
Control -> Auto Sequence (Auto- Sequenzierung)	Der Benutzer kann den GC in den Modus "Auto-Sequenzierung" setzen.	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Benutzer können die Auto-Sequenzierung starten.
Control -> Single Stream (Einzelstrom)	Der Benutzer kann den GC in den Modus "Einzelstrom-Analyse" setzen.	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Benutzer können die Einzelstrom-Analyse starten.
Control -> Halt (Anhalten)	Hält den GC an.	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Benutzer können den GC anhalten.
Control -> Calibration (Kalibrierung)	Der Benutzer kann entweder eine normale oder eine erzwungene Kalibrierung durchführen.	Der Benutzer kann nur eine normale Kalibrierung durchführen. Die erzwungene Kalibrierung wird nicht zugelassen, wenn sich der Sicherheitsschalter in der verriegelten Position befindet.
Control -> Validation (Validierung)	Der Benutzer kann einen Validierungslauf starten (wenn Validierungsströme im GC verfügbar sind)	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Benutzer können Validierungen starten.
Control -> Stop Now (Jetzt stoppen)	Der Benutzer kann das sofortige Stoppen von Analysen veranlassen.	Die Funktion des sofortigen Stoppens wird nicht zugelassen, wenn sich der Sicherheitsschalter in der verriegelten Position befindet.
Manage -> LOI Settings (LOI- Einstellungen)	Der Benutzer kann die Helligkeit und den Kontrast des Bildschirms anpassen.	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Benutzer können die Helligkeit und den Kontrast anpassen, wenn sich der Sicherheits- schalter in der verriegelten Position befindet.

Manage -> Change PIN (PIN ändern)	Der Benutzer kann sein Kennwort ändern.	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Benutzer können ihr Kennwort ändern, wenn sich der Sicherheitsschalter in der verriegelten Position befindet.
Manage -> Diagnostic (Diagnose)	Diagnoseinformationen der E/A-Platine anzeigen.	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet. Der Benutzer kann die Diagnoseinformationen der E/A-Platine anzeigen lassen, wenn sich der Sicherheitsschalter in der verriegelten Position befindet.
Manage -> Logout (Abmelden)	Nach vorgenommenen Änderungen abmelden.	Es macht keinen Unterschied, ob sich der Sicherheitsschalter in der verriegelten oder entriegelten Position befindet.

E Anhang E: Trägergas – Installation und Wartung

E.1 Trägergas

In diesem Anhang finden Sie eine Beschreibung des optionalen Verteilers für das Trägergas (Teile-Nr.: 2-3-5000-050), über den zwei Trägergasflaschen oder -zylinder an das System eines Gaschromatographen (GC) angeschlossen werden können. Der Verteiler bietet folgende Vorteile:

Anmerkung

Die Darstellung und Information in diesem Anhang wurden der Zeichnung AE-10098 entnommen.

- Wenn eine Flasche fast leer ist (d. h. bei einem Rest von 100 psig), übernimmt die zweite Flasche die Primärversorgung.
- Jede Flasche kann zum Befüllen abgenommen werden, ohne dass der GC-Betrieb unterbrochen werden muss.

Abbildung E-1: Verteiler für den Anschluss von zwei Trägergasflaschen an das GC- System

V-1	Trägergaszylinder 1	Ablassventil
V-2	Trägergaszylinder 1	Absperrventil
V-3	Trägergaszylinder 2	Absperrventil
V-4	Trägergaszylinder 2	Ablassventil

E.2 Installation und Leitungsspülung

So installieren und spülen Sie den Verteiler für Trägergas mit zwei Flaschen:

- 1. Installieren Sie den Verteiler wie in *Abbildung E-1* dargestellt. Schließen Sie alle Ventile und ziehen Sie alle Verschraubungen an. Verlegen Sie die Rohre bis zum GC, aber schließen Sie sie noch nicht an.
- 2. Drehen Sie den Druckregler (gegen den Uhrzeigersinn) voll zurück.
- 3. Öffnen Sie das Zylinderventil des Trägergaszylinders 1. Der Druckanzeiger ermittelt den Zylinderdruck.
- 4. Öffnen Sie das Absperrventil am Regler für das Trägergas.
- 5. Regeln Sie den vom Zylinder ausgehenden Druck auf ca. 1,4 bar (20 psig) und schließen Sie dann das Zylinderventil.
- 6. Öffnen Sie V-1 (Ablassventil) und lassen Sie das Trägergas in die Umgebungsluft entweichen, bis beide Druckmesser ca. 0 bar (0 psig) anzeigen; anschließend schließen Sie V-1.
- 7. Wiederholen Sie die *Schritt* 4 und *Schritt* 5 zweimal, um die Leitung zu V-2 zu spülen.
- 8. Spülen Sie die Leitung zu V-3, indem Sie die *Schritt 2* bis *Schritt 6* wiederholen; benutzen Sie jedoch diesmal das Ablassventil V-4 und den Trägergaszylinder 2.
- 9. Während die Ventile 1–4 geschlossen sind, öffnen Sie beide Zylinderventile und regeln den Druck von beiden Flaschen auf etwa 0,7 bar (10 psig).
- 10. Öffnen Sie gleichzeitig V-2 und V-3, drehen Sie dann beide Zylinderventile zu und lassen Sie die Trägergase durch die Leitung zum GC entweichen, bis beide Druckmesser ca. 0 bar (0 psig) anzeigen.
- 11. Wiederholen Sie die Schritt 8 und Schritt 9 zweimal, um die Leitung zu V-2 zu spülen.
- 12. Schließen Sie V-3, lassen Sie V-2 geöffnet.
- 13. Öffnen Sie das Zylinderventil von Trägergaszylinder 1 und verbinden Sie die Trägergasleitung mit dem GC, während das Trägergas mit einem Druck von max. ca. 0,7 bar (10 psig) durchströmt.
- 14. Erhöhen Sie den Druck von Trägergaszylinder 1 langsam auf ca. 7,5 bar (110 psig).
- 15. Öffnen Sie V-3 und erhöhen Sie den Druck von Trägergaszylinder 2 langsam auf ca. 7 bar (100 psig).

Hierdurch wird das Trägergas von Trägergaszylinder 1 solange genutzt, bis der Inhalt auf ca. 45 kg (100 Pfund) abfällt, erst dann wird das Gas von Trägergaszylinder 2 verwendet. Füllen Sie den Trägergaszylinder 1 wieder auf, sobald der Inhalt auf diesen Wert abfällt.

- 16. Überprüfen Sie alle Verschraubungen sorgfältig auf ihre Dichtigkeit.
- 17. Lassen Sie den GC über Nacht laufen, bevor Sie die Kalibrierung vornehmen.

E.3 Austauschen des Trägergaszylinders

So tauschen Sie einen Trägergaszylinder ohne Unterbrechung des GC-Betriebs aus:

- 1. Schließen Sie das Zylinderventil.
- 2. Drehen Sie den Druckregler des Zylinders zurück, bis sich der Griff frei bewegt.
- 3. Entfernen Sie den Zylinder.
- 4. Schließen Sie einen neuen Zylinder an den Regler an und wiederholen Sie die Schritte 3 bis 7 im *Abschnitt E.2* mithilfe eines geeigneten Entlüftungsventils zum Spülen.
- 5. Überprüfen Sie die Anschlüsse auf Leckagen.
- 6. Öffnen Sie das entsprechende Absperrventil zum Analysator (V-2 oder V-3) und regeln Sie den Ausgangsdruck auf den entsprechenden Wert. (Siehe Schritte 14 und 15 im *Abschnitt E.2.*)

E.4 Kalibriergas

Das verwendete Kalibriergas muss, wie es im Dokument für PTB-Zulassungen verlangt wird, ein Gasgemisch enthalten.

Das Probenentnahmesystem sollte sorgfältig geplant werden, um beste chromatographische Analyseergebnisse zu erzielen.

Anhang F: Empfohlene Ersatzteile

In der folgende Tabelle sind die empfohlenen Ersatzteile aufgeführt, die Sie für die Wartung benötigen.

F.1

F

Empfohlene Ersatzteile für 770XA-14K-Analysatoren

Anzahl		Beschreibung	Teilenummer
1–5 Gas- Chromato- graphen	6 oder mehr Gaschromatographen oder kritische Installationen		
1	1	SATZ, SICHERUNG, XA	2-3-0710-074
1	2	4-WEGE-MAGNETVENTIL, MAC, 24 VDC	2-4-0710-224
Anmerkung 1	Anmerkung 1	3-WEGE-MAGNETVENTIL, 24 VDC	2-4-0700-124
1	1	THERMISTORDICHTUNGEN, 10er-Packung	2-3-0500-391
1 pro Ventil	1 pro Ventil	MEMBRANSATZ für VENTIL MIT 10 PORTS, XA	2-4-0710-171
1 pro Ventil	1 pro Ventil	MEMBRANSATZ für VENTIL MIT 6 PORTS, XA	2-4-0710-248
1	1	SÄULENSATZ	Anmerkung 2
1 pro Strom	1 pro Strom	FILTEREINSATZ 2 MIKRON	2-4-5000-113
1 pro Strom	1 pro Strom	MEMBRANSATZ 120 FILTER	2-4-5000-938
0	1	PCA-DETEKTOR VORVERSTÄRKER	2-3-0710-001
0	1	PCA MAGNETVENTIL/HEIZUNGSSTEUERGERÄT	2-3-0710-002
0	1	PCA E/A-GRUNDPLATTE	2-3-0710-003
0	1	PCA RÜCKWANDPLATINE	2-3-0710-005
0	1	PCA HAUPT-CPU	2-3-0710-007
0	Anmerkung 3	EINHEIT, SPANNUNGSVERSORGUNG (AC)	2-3-0710-053
0	Anmerkung 4	DRUCKSCHALTER, TRÄGER	2-4-0710-266
0	1 pro Detektor	THERMISTORSATZ (TCD)	Anmerkung 2
0	1 pro Trägergas	TRÄGERGASTROCKNER	2-3-0500-180

Anmerkungen

- 1. Besitzt der GC einen internen Strömungsschalter, wird ein Ersatzteil empfohlen.
- 2. Anwendungsabhängig. Kontaktieren Sie bitte Ihren Vertreter von Rosemount und halten Sie die Auftragsnummer bereit, um die empfohlene Teilenummer und Beschreibung zu erhalten.
- 3. Wird der GC mit einer Wechselstrom Phasenleitung betrieben, wird ein Ersatzteil empfohlen.
- 4. Verfügen die Gaschromatographen über einen Druckschalter, wird ein Ersatzteil empfohlen.

G

Anhang G: Empfehlungen für Versand und Langzeitlagerung

Die folgenden Empfehlungen sollten beachtet werden:

- Der Gaschromatograph ist für den Transport auf einer Holzpalette zu sichern und dabei in aufrechter Position in einer Holzstruktur mit Pappwänden zu halten.
- Zusatzausstattungen, wie Probenentnehmer, können in der Transportverpackung aufbewahrt werden. Wenn das Verpackungsmaterial nicht mehr verfügbar ist, sichern Sie die Geräte so, dass übermäßiges Schütteln vermieden wird und die Zubehörteile vor Nässe geschützt sind.
- Der Gaschromatograph sollte in einer überdachten Umgebung bei einer steten Temperatur zwischen -30 °C (-22 °F) und 70 °C (158 °F) aufbewahrt werden, um die Schutzschichten vor Abnutzung und Beschädigung durch Regen oder ätzende bzw. korrosive Umgebungen zu bewahren. Eventuelle Feuchtigkeit in der überdachten Umgebung sollte nicht kondensierend sein.
- Das Programm in der Fernsteuerung und im integrierten Steuerteil kann durch einen Batterie-Backup mindestens zwei Jahre erhalten bleiben. Falls es dennoch verloren geht, ist ein kundenspezifisches Programm für die jeweilige GC-Anwendung über eine CD, die mit der Systemdokumentation geliefert wurde, per Download verfügbar.
- Wenn der Gaschromatograph betrieben wurde, sollte er mit Trägergas gespült werden, bevor er außer Betrieb gesetzt wird. Das System kann auch auf geeignete Weise gespült/entleert werden, indem mithilfe des Gashromatographen einige Analysezyklen ohne Probegas durchgeführt werden. Dabei sollten die Ergebnisse überwacht werden. Nachdem die Werte auf "0" fallen oder Spitzenwerte deutlich gesunken sind, ist eine Abschaltung möglich.
- Wenn Sie den GC von der Spannungszufuhr trennen, ist das Spülgas zu trennen und alle Einlässe und Öffnungen sollten sofort verschlossen werden, inklusive des Trägergastrockners. Alle Öffnungen und Einlässe müssen mit den Verschraubungen, die bei der Lieferung des GC verwendet wurden, bzw. mit Swagelok-Kappen (nicht im Lieferumfang enthalten) verschlossen werden. So werden die Säulen und Filter geschützt und können bei Wiederaufnahme des Betriebs problemlos eingesetzt werden.
- Die Öffnungen und Einlässe des Probenkonditionierungssystems sind ebenfalls mit Verschraubungen wie bei der Lieferung ab Werk zu verschließen. Zusätzlich sind alle Öffnungen auf "geschlossen" zu stellen.
- Alle verbleibenden Öffnungen wie zum Beispiel Leitungseingänge sollten ebenfalls mit entsprechenden Stopfen verschlossen werden, damit keine Fremdkörper wie Staub oder Wasser in das System eindringen können.

H Anhang H: Technische Zeichnungen

H.1 Auflistung der technischen Zeichnungen

Dieser Anhang enthält die folgenden technischen Zeichnungen:

- BE-22175, Kennzeichnungen Feldverkabelungskarte 1 (Blätter 1, 2 und 3)
- DE-22050, Maßzeichnungen, Wand- und Bodenmontage, Modell 770XA (Blatt 4)
- CE-22260 Baugruppe, XA-Ventil mit 6 Ports, Modell 770XA (Blatt 5)
- 99501-X-10P Baugruppe, XA-Ventil mit 10 Ports, Modell 770XA (Blatt 6)
- 99501-X-PTB-LBL 770XA-14K PTB Schild (Blatt 7)
- 7342/208/3 Gasflussplan 770XA-14K Trägergase Helium, Stickstoff (Blatt 8)
- 99501-X-PTB-PL Ersatzteilliste 770XA-14K (Blätter 9 und 10)

.

<u>NOTES:</u>
THIS PROCEDUI AREA. ALL PA NITROGEN BEF
10 PO

- 1. A р
- 2. In tha wi
- 3. In lo
- 4. P 0
- 5. P d
- 6. Pl re
- 7. Lo
- 8. P lo
- 9. P r
- 10.
- 11.
- 12.
- 13.

TES: THIS PI AREA	ROCE . ALL	DURE TO B	E PERFO	ORMED IN A CLEAN AND DR WN CLEAN AND DRY WITH	!Y	
NITRC Assembly position u	IGEN 10 is to b sing pr	PORT XA PORT XA e accomplis oduction fixt	VALVE hed by b ure.	Y. ASSEMBLY INSTRUCTIONS uilding the valve in the upside do	wn	
nspect the nat the se vith the se	e prima aling s aling s	ury plate, Iter urface has n surface facing	m #1, to lo scratc g up.	insure that the tubing ports are cle hes or pits. Then place it in the fi	∍an a xture	nd
nsert .125 locating h	Dia. g oles in	uide pin, Iter the plate.	m #11, a	nd .093 Dia. guide pin, Item #10,	in the	Э
Place the over the g	amber uide p	sealing diap ins and align	ohragm (1.	has no holes in the actuating pla	ne)	
Place the diaphragn	white on in ste	cushion diap p 4) over the	hragm (ł e sealing	nas same hole pattern as sealing diaphragm and align.		
Place the u ecess hole	upper p es faci	piston plate, ng up.	ltem #2,	over the guide pins with the pisto	'n	
oad 5 ead	ch of th	ne short pisto	ons, Item	#6, into the recess holes of the p	olate.	
Place 2 ar	nber u ns to fe	pper actuato eed through)	or diaphra over the	agms (has 5 large holes for guide pins and align.		
Place the recess ho	lower les fac	piston plate, ing up.	Item #3,	over the guide pins with the pisto	n	
Load 5 e	ach of	the long pis	tons, Iter	m #5, into the recess holes of the	plate	
Place 2 a	amber	lower actuat	or diaph	ragms over the guide pins and ali	ign.	
Place ba	co pla	to itom #1 o	vor tho o		0	
Place wa up throug from fixtu	' sher, gh the ire and	ltem #9, ove valve assem I Install into	r bolt, Ite ıbly, tigh Unit.	em #8, and insert the bolt from the ten bolt Item #8 to 30 Ft. LBS. Re	emov	om 'e
ITEM	NO.	PART NU	MBER	DESCRIPTION	QT	Y.
1		2-4-0710	0-058	PRIMARY PLATE CE-22013	1	
2		2-4-0710	0-250	UPPER PISTON PLATE	1	
3		2-4-0710	0-251	LOWER PISTON PLATE	1	
4		2-4-0710	0-059	BASE PLATE CE-22014	1	
5	i	2-4-0710	0-246	LONG PISTONS BE-22298	5	
6	,	2-4-0710	0-247	SHORT PISTONS BE-22299	5	
7	,	2-4-0710	0-171	DIAPHRAHM KIT	1	
8		2-4-921	6-177	BOLT, 5/16-24X13/4" LG.	1	
9		2-4-9550	0-154	WASHER, FLAT STEEL L9	1	
10)	2-4-0710	0-169	Ø.093 GUIDE PIN	1	
1	1	2-4-0710	0-170	Ø.125 GUIDE PIN	1	
				EEPT IN CONNECTION WITH OUR WORK.		
	EREIGRI		TITLE	2 Enclosed Ale Roma Are Reserved.		
	2			ACCEAADIV		
	7	24.			/F	
ME	RS	ON.		770XA-10K	-	
MANCH		12/14/10	DWG NO.			REV
GM	DATE	12/10/17		99501-X-10P		А
DJP	DAT	E	SCALE]	:7 P/N 5	SHT]	OF 1

SI METRIC							THIS DRAWING IN DESIC IT SHALL NOT BE REPR	GN AND I	DETAIL IS OUR PR	OPERTY AND MU ETURNED TO US
THIRD ANGLE PROJECTION							GEOMETRIC TOLERANCES &			
\bigcirc							DIMENSIONS PER ANSI Y14.5			
							LATEST REVISION			
MATERIAL;							UNLESS OTHERWISE NOTED		EMERSON	
SEE ORDER							XXX ±010 XXX ±005		IVIEN	SOF
FINISH	A		HM	RELEASED-PTB 14K	GM	DJP	ANGULAR ±0° 30' FINISH 200 RA MAX			
N/A		DATE	DRN	DESCRIPTION	СНКС	APPD		DRN	MANCHA	DATE 12/16
							.003015 RADIUS AND REMOVE CHKD GM DATE			DATE
PROJ. FILE NO NONE	FILE	NAME: 9950	01-X-10P-A.	SLDDRW, DATE: 12-16-19, TIN	ME: 10:37	٩.M.	ALL BURRS	ENG	DJP	DATE

770XA-14K Chromatograph PTB Label

Part No. 2-4-0710-389

Notes :

- 1. Material : Stainless Steel Grade 316 Per BS1449, 1.6 Thick (16 SWG)
- 2. Finish : Light brush polish (Semi matt finish) On front, Clean on rear.
 "Emerson Process Management" To be engraved & infilled red to pantone 187.
 All other text to be engraved & infilled black.
 Label to be laquered.
- 3. Tolerance : ± 0.3 unless otherwise stated.
- 4. These markings must be min 5mm height.

SI METRIC						THIS DRAWING IN DESIGN AND IT SHALL NOT BE REPRODUCED	THIS DRAWING IN DESIGN AND DETAIL IS OUR PROPERTY AND MUST NOT BE USED EXCEPT IN CONNECTION WITH OUR WORK. IT SHALL NOT BE REPRODUCED AND SHALL BE RETURNED TO US ON DEMAND. © 2017 EMERSON. ALL RIGHTS ARE RESERVED.					
THIRD ANGLE PROJECTION										TITLE		
=							DIMENSIONS PER ANSI Y14.5 LATEST REVISION		à		77OXA-14K PTB LABEL	
MATERIAL							UNLESS OTHERWISE NOTED	EME	DEON			
SEE ORDER	В	01/05/20	HM	REV. MESSBER. & GASBES.	GM	DJP	ALL DIMENSIONS IN INCHES X-XX ±.015	LIVIL	KSUN.			
FINISH	Α		HM	RELEASED-PTB 14K	GM	DJP	X.XXX ±.005 ANGULAR ±0° 30° FINISH 200 RA MAX					
SEE ORDER	REV	DATE	DRN	DESCRIPTION	CHKD	APPD	BREAK ALL SHARP CORNERS TO	DRN MANCHA CHKD GM	DATE 12/16/19 DATE	99501	-X-PTB-LBL	B
PROJ. FILE NO NONE	FILE	NAME: 99501	I-X-PTB- LB	L-A1.DWG, DATE: 01-05-21, TI	E FILENAME: 99501-X-PTB- LBL-A1.DWG, DATE: 01-05-21, TIME: 8:07 A.M							SHT 1 OF 1

THIS DRAWING IN DESIGN AN WORK. IT SHALL NOT BE R	D DETAIL IS OU	R PROPERTY AND SHALL BE RETUR	MUST NOT BE USED EXCEPT IN NED TO US ON DEMAND. ALL F	CONNECTION WITH OUR	R
GEONETRIC TO LEFANCES & DIMENSIONS PER ANSI Y14,5 LATEST REVISION UNLESS OTHERWISE NOTED ALL DIMENSIONS IN INCHES 2005 ±0105 ANGULAR ±0'30' FINISH 200 FA MAX	EMEI Process Ma	RSON.	TITLE FLOW CONFIGUR/ TRAIN 1A: S/BFM-DC TRAIN 1B: S/BFV-T TRAIN 2: S/BFV-TCI D4-3S	ATION 700XA V-TCD1M HELIUM CD1R HELIUM ()2 NITROGEN (PC) -3R	(PC) (PC))
	drn NH	date 22/3/17	DWG NO.	/7	REV
3015 RADIUS AND REMOVE	CHKD DG	date 22/3/17	/342/208	/3	0
ALL DONAS	APPD NH	DATE 22/3/17	SCALE NTS P/N	SHT1 OF	1

ITEM #	PART NUMBER	DESCRIPTION	QTY	ITEM #	PART NUMBER	DESCRIPTION	QTY
1	2-3-0710-001	PCA DUAL TCD PRE AMP	1	15	2-4-0710-159	SOLENOID, 3-WAY NO, 24 Vdc	3
2	2-3-0710-002	PCA SOLENOID/HEATER DRIVER	1	16	2-3-0500-180	CARRIER DRIER	3
3	7A00055G02	PCA MAIN CPU	1	17	7A00148G01	ASSY, LOI COMPLETE	1
4	2-3-0710-003	PCA BASE I/O	1	18	2-3-0520-101	COLUMN SET, BTU, C6+	1
5	2-3-0710-005	PCA BACKPLANE	1	19	2-4-0710-159	SOLENOID, 3-WAY, NO, ASCO 24 Vdc	4
6	2-3-0710-055	POWER SUPPLY 90-264 Vac, 24 Vdc	1	20	2-4-0710-160	SOLENOID, 3-WAY, NC, ASCO 24 Vdc	4
7	2-4-5000-122	ROTAMETER 10-100 CC/MIN	3	21	2-4-5001-995	GAUGE, 0-100 PSI	3
8	2-3-0710-012	PCA LOWER WIRE TERMINAL BOARD	1	22	2-4-5001-977	CARRIER REGULATOR, 10-100 PSI	3
9	2-4-0710-224	SOLENOID, 4-WAY, MAC 24 Vdc	3	23	2-4-5000-112	STREAM PLATE FILTER, 2 MICRON, ¹ / ₈ "	4
10	2-3-0710-013	PCA ULTEM TERMINATION BOARD	1	24	2-4-5000-113	2 MICRON FILTER ELEMENT	4
11	2-5-1611-083	THERMISTOR MATCHED PAIR 9K	1	25	7C00131-001	VALVE, NEEDLE, $\frac{1}{8}$ " TUBE, SWAGELOK ORS-2	4
12	2-3-0710-100	ASSEMBLY, 6 PORT, 700XA	1	26	2-3-0710-101	ASSEMBLY, 10-PORT 700XA	3
13	2-4-9500-041	METERING VALVE, 16 ANGLED	3	27	2-7-770XA-XXX	770XA GAS CHROMATOGRAPH	1
14	2-4-0710-145	BASE, SOLENOID (NO) SSOV, 700XA	3	28	2-1-7119-XXX	770XA 4N SHS PLATE	1

4 STREAM DBB ASSY

SI METRIC						
THIRD ANGLE PROJECTION						
$\Psi \Box$						
ATERIAL						
SEE ORDER						
NISH	Α		HM	RELEASED-PTB 14K	GM	DJP
SEE ORDER	REV	DATE	DRN	DESCRIPTION	CHKD	APP
	FILE	NAME: 995)1-X-PTB-A	1.DWG, DATE: 12-16-19, TIN	ИЕ: 2:3 [,]	0 P.N

NOTE:

LABEL 7P00366H01 TO BE PERMANENTLY AFFIXED TO REGULATOR PANEL PART.

DJP	UNLESS OTHERWISE NOTED ALL DIMENSIONS IN INCHES XXX ±.015 XXX ±.005 ANGULAR ±0°.30'	E	ME	RS	ON.				
PPD	FINISH 200 RA MAX	DRN	MANCHA	DATE	12/16/19	DWG NO.			REV
	BREAK ALL SHARP CORNERS TO .003015 RADIUS AND REMOVE	CHKD	GM	DATE		99	501-X-PIB-PL		A
P.M	ALL BURRS	ENG.	DJP	DATE		SCALE NTS	P/N	SHT 1 OF	2

DRN FILE NAME: 99501-X-PTB-PL-A2.SLDDRW, DATE: 01-08-21, TIME: 9:14 A.M. PROJ. FILE NO. - NONE

HM RELEASED

DESCRIPTION

EM EM

CHKD APPD

N/A

N/A

Α

REV DATE

North America Regional Office

Emerson Automation Solutions 10241 West Little York, Suite 200 Houston, TX 77040, USA

+1 866 422 3683 or +1 713 396 8880 +1 713 466 8175 GC.CSC@Emerson.com

Europe Regional Office

Emerson Automation Solutions Europe GmbH Neuhofstrasse 19a P.O. Box 1046 CH 6340 Baar Switzerland + 1 954 846 5030 + 1 952846 5121 RFQ.RMD-RCC@Emerson.com

Asia Pacific Regional Office

Emerson Automation Solutions Asia Pacific Pte LTD 1 Pandan Crescent Singapore 128461 +65 6777 8211 +65 6777 0947 Enquiries@AP.Emerson.com

Middle East and Africa Regional Office Emerson Automation Solutions

Emerson FZE P.O. Box 17033 Jebel Ali Free Zone - South 2 +971 4 8118100 +971 4 88665465 RFQ.RMTMEA@Emerson.com

Linkedin.com/company/Emerson-Automation-Solutions

Twitter.com/Rosemount_News

and the second se

Google.com/+RosemountMeasurement

Youtube.com/user/RosemountMeasurement

The Emerson logo is a trademark and service mark of Emerson Electric Co. Rosemount and Rosemount logotype are trademarks of Emerson. All other marks are the property of their respective owners. © 2017 Emerson. All rights reserved

ROSEMOUNT