Betriebsanleitung 00809-0105-4803, Rev DA April 2013

Rosemount 3051S MultiVariable[™] Messumformer

ROSEMOUNT[®]

Rosemount 3051S MultiVariable Messumformer

A WARNUNG

Lesen Sie diese Betriebsanleitung, bevor Sie mit dem Produkt arbeiten. Bevor Sie das Produkt installieren, in Betrieb nehmen oder warten, sollten Sie über ein entsprechendes Produktwissen verfügen und mit dem Inhalt dieser Anleitung vertraut sein, um somit eine optimale Produktleistung zu erzielen sowie die Sicherheit von Personen und Anlagen zu gewährleisten.

Technische Unterstützung erhalten Sie unter:

Kundendienst

Technischer Kundendienst, Angebote und Fragen zu Aufträgen.

USA - 1-800-999-9307 (7 bis 19 Uhr CST)

Asien-Pazifik – +65 777 8211

Europa/Naher Osten/Afrika - +49 (0) 8153 9390

Response Center Nordamerika Geräteservice.

1-800-654-7768 (24 Stunden – inkl. Kanada)

Außerhalb dieser Regionen wenden Sie sich bitte an Emerson Process Management.

A VORSICHT

Die in diesem Dokument beschriebenen Produkte sind NICHT für nukleare Anwendungen qualifiziert und konstruiert. Werden Produkte oder Hardware, die nicht für nukleare Anwendungen qualifiziert sind, im nuklearen Bereich eingesetzt, kann das zu ungenauen Messungen führen.

Informationen zu nuklear-qualifizierten Rosemount Produkten erhalten Sie von Emerson Process Management.

Inhalt

Abschnitt 1: Einführung

1.1 Verwendung dieser Betriebsanleitung1
1.2 Modellpalette
1.3 Service und Support

Abschnitt 2: Installation

2.1	Übersic	.ht9
2.2	Sicherh	eitshinweise9
	2.2.1 V	Varnungen
2.3	Informa	ationen zur Installation
	2.3.1 A	Allgemeine Anforderungen11
	2.3.2 N	Леchanik
	2.3.3 A	Anforderungen an die Messstellenumgebung
2.4	Installat	tionsverfahren
	2.4.1 K	Konfigurieren der Sicherheits- und Alarmfunktion
	2.4.2 N	Aontageanforderungen12
	2.4.3 N	Nontieren des Messumformers
	2.4.4 P	Prozessanschlüsse
	2.4.5 E	elektrischer Anschluss und Spannungsversorgung21
	2.4.6 V	/erdrahtung des Kabelschutzrohr-Steckverbinders Option GE oder GM)
	2.4.7 E	rdung
2.5	Rosemo	ount 305 und 304 Ventilblöcke27
	2.5.1 Ir	nstallation des integrierten Rosemount 305 Ventilblocks27
	2.5.2 Ir	nstallation des Rosemount 304 Ventilblocks mit Anpassungsflansch28
	2.5.3 F C	unktionsweise der Ventilblöcke zum Nullpunktabgleich des Differenzdrucksensors

Abschnitt 3: Konfiguration

3.1	Übersicht9
3.2	Sicherheitshinweise
	3.2.1 Warnungen10
3.3	Installation des Engineering Assistant11
	3.3.1 Engineering Assistant Version 6.1 oder höher11
	3.3.2 Installation und Ersteinrichtung11

3.4 Durcl	nflusskonfiguration13
3.4.1	3051SMV Engineering Assistant 6.1 oder höher13
3.4.2	Überblick über die grundlegende Navigation14
3.4.3	Starten des Engineering Assistant15
3.4.4	Voreinstellungen16
3.4.5	Auswahl des Mediums aus der Datenbank mit Flüssigkeiten/Gasen17
3.4.6	Eigenschaften des Mediums
3.4.7	Auswahl des Wirkdruckgebers
3.4.8	Speichern/Senden23
3.4.9	Konfiguration anderer Medien
3.5 Grun	dkonfiguration des Messumformers
3.6 Kom	olette Konfiguration des Messumformers
3.6.1	Modellidentifikation
3.6.2	Alarm- und Sättigungswerte
3.6.3	Variablen-Zuordnung
3.6.4	Digitalanzeiger
3.6.5	Kommunikationseinstellungen
3.6.6	Werkstoffe
3.6.7	Parameter der Durchflusskonfiguration
3.7 Konfi	guration der Variablen43
3.7.1	Durchfluss
3.7.2	Energiedurchfluss
3.7.3	Zähler
3.7.4	Differenzdruck
3.7.5	Statischer Druck
3.7.6	Prozesstemperatur
3.7.7	Modultemperatur61
3.7.8	Analogausgang
3.8 Meni	istrukturen und Funktionstastenfolgen für das Handterminal 475 64
3.8.1	Menüstruktur für voll kompensierten Masse- und Energiedurchfluss (Seite 1)65
3.8.2	Menüstruktur für voll kompensierten Masse- und Energiedurchfluss (Seite 2)
3.8.3	Menüstruktur für direkten Ausgang der Prozessvariable (Seite 1)67
3.8.4	Menüstruktur für direkten Ausgang der Prozessvariable (Seite 2)68
3.8.5	Funktionstastenfolgen für das Handterminal 47569

Abschnitt 4: Betrieb und Wartung

4.1 Ubersicht
4.2 Sicherheitshinweise10
4.2.1 Warnungen10
4.3 Einstellung des Messumformers11
4.3.1 Übersicht über die Einstellungsmöglichkeiten
4.3.2 Übersicht über den Sensorabgleich12
4.3.3 Kalibrierung des Differenzdrucksensors13
4.3.4 Kalibrierung des statischen Drucksensors14
4.3.5 Kalibrierung des Prozesstemperaturfühlers16
4.3.6 Kalibrierung des Analogausgangs18
4.4 Funktionsprüfungen des Messumformers20
4.4.1 Überprüfung der Durchfluss-/Energieflussberechnung (Testberechnung)
4.4.2 Konfiguration fester Prozessvariablen
4.4.3 Messkreistest des Analogausgangs21
4.5 Prozessvariablen
4.5.1 Registerkarte "Process Variables" (Prozessvariablen)
4.5.2 Registerkarte "All Variables" (Alle Variablen)
4.6 Feld Upgrades und Austauschverfahren23
4.6.1 Demontageverfahren23
4.6.2 Gehäuse mit Funktionsplatine23
4.6.3 Anschlussklemmenblock26
4.6.4 Digitalanzeiger27
4.6.5 Prozessflansch und Ablass-/Entlüftungsventil27
4.6.6 SuperModule

Abschnitt 5: Störungsanalyse und -beseitigung

5.1	Übersicht	.9
5.2	Gerätediagnose	.9
	5.2.1 Diagnosemeldungen auf dem HART Hostsystem	.9
	5.2.2 Diagnosemeldungen des Digitalanzeigers	.9
5.3	Messqualität und Beschränkungsstatus	13
5.4	Störungssuche und -beseitigung der Engineering Assistant Kommunikation	14
5.5	Störungssuche und -beseitigung von Messproblemen	15

Anhang A: Technische Daten und Bestellinformationen

A.1 Technische Daten	9
A.1.1 Leistungsdaten	9
A.1.2 Funktionsdaten	15
A.1.3 Geräteausführung	
A.2 Maßzeichnungen	23
A.3 Bestellinformationen	27
A.3.1 Rosemount 3051S MultiVariable Messumformer	27
A.3.2 Rosemount 300SMV Gehäusesatz	
A.4 Zubehör	
A.4.1 Rosemount Engineering Assistant (EA) Softwarepakete	
A.5 Explosionsdarstellung	
A.6 Ersatzteile	

Anhang B: Produkt-Zulassungen

	B.1.1	Zugelassene Herstellungsstandorte	.9
	B.2.1	Standardbescheinigung gemäß Factory Mutual	.9
	B.3.1	Informationen zu EU-Richtlinien	.9
	B.4.1	Ex-Zulassungen	10
B.5	Einba	uzeichnungen	15
	B.5.1	Factory Mutual (FM)	15
	B.5.2	Canadian Standards Association (CSA)	20
	B.5.3	GE/GM Option NEMA 4X	25

Abschnitt 1 Einführung

Verwendung dieser Betriebsanleitung	beite 1
Service und Support	beite 2

1.1 Verwendung dieser Betriebsanleitung

Die einzelnen Abschnitte in dieser Betriebsanleitung liefern Ihnen die Informationen, die Sie für Installation, Betrieb und Wartung des Rosemount 3051S MultiVariable Messumformers benötigen. Die Abschnitte sind folgendermaßen untergliedert:

- Abschnitt 2: Installation enthält Anweisungen zur mechanischen und elektrischen Installation.
- Abschnitt 3: Konfiguration enthält Anweisungen für Inbetriebnahme und Betrieb der 3051S MultiVariable Messumformer. Informationen über Softwarefunktionen, Konfigurationsparameter und Online-Variablen sind ebenfalls in diesem Abschnitt enthalten.
- Abschnitt 4: Betrieb und Wartung enthält Verfahrensweisen für Betrieb und Wartung.
- Abschnitt 5: Störungsanalyse und -beseitigung enthält Verfahrensweisen für Störungsanalyse und -beseitigung für die am häufigsten auftretenden Betriebsprobleme.
- Anhang A: Technische Daten und Bestellinformationen enthält technische Daten und Spezifikationen sowie Bestellinformationen.
- Anhang B: Produkt-Zulassungen enthält Informationen über eigensichere Zulassungen, die europäische ATEX-Richtlinie und Zulassungszeichnungen.

1.2 Modellpalette

In dieser Betriebsanleitung werden die folgenden MultiVariable Messumformer 3051S beschrieben.

Rosemount 3051S MultiVariable Messumformer für voll kompensierten Masse- und Energiedurchfluss

Messart	MultiVariable Typ – M
1	Differenzdruck, statischer Druck, Temperatur
2	Differenzdruck und statischer Druck
3	Differenzdruck und Temperatur
4	Differenzdruck

Rosemount 3051S MultiVariable Messumformer für direkten Ausgang der Prozessvariable

Messart	MultiVariable Typ – P
1	Differenzdruck, statischer Druck, Temperatur
2	Differenzdruck und statischer Druck
3	Differenzdruck und Temperatur

1.3 Service und Support

Innerhalb Deutschlands setzen Sie sich bezüglich Service Unterstützung sowie Reparatur bitte mit folgender Nummer oder Adresse in Verbindung: Emerson Process Management GmbH & Co. OHG, Argelsrieder Feld 3, 82234 Weßling, Tel.: +49 (0) 8153 939-0 Fax: +49 (0) 8153 939-172 (siehe Rückseite).

Innerhalb der USA wenden Sie sich bitte an das Rosemount National Response Center unter der gebührenfreien Telefonnummer 1-800-654-RSMT (7768). Dieses Zentrum steht Ihnen rund um die Uhr mit Informationen oder Materialien zur Verfügung.

Sie müssen die Modell- und Seriennummern des Produktes bereithalten, und es wird Ihnen eine Rücksendegenehmigungsnummer für das Produkt (Return Material Authorization [RMA]) zugeteilt. Sie werden auch nach dem Prozessmedium gefragt, dem das Produkt zuletzt ausgesetzt war.

A VORSICHT

Personen, die Produkte handhaben, die gefährlichen Substanzen ausgesetzt sind, können Verletzungen vermeiden, wenn Sie über die Gefahren beim Umgang mit solchen Produkten informiert und sich dieser Gefahren bewusst sind. Wenn das zurückgesandte Produkt gefährlichen Substanzen ausgesetzt war, muss bei dessen Rücksendung für jede gefährliche Substanz eine Kopie des Sicherheitsdatenblattes (MSDS) beigefügt werden.

Die Mitarbeiter des Emerson Process Management Instrument and Valves Response Center können Ihnen die zusätzlichen Informationen und Verfahren erläutern, die bei der Rücksendung von Produkten, die gefährlichen Substanzen ausgesetzt wurden, zu beachten sind.

Abschnitt 2 Installation

Übersicht	Seite 9
Sicherheitshinweise	Seite 9
nformationen zur Installation	Seite 11
nstallationsverfahren	Seite 11
Rosemount 305 und 304 Ventilblöcke	Seite 27

2.1 Übersicht

Dieser Abschnitt enthält Informationen zur Installation des 3051S MultiVariable Messumformers. Im Lieferumfang jedes Messumformers ist eine Kurzanleitung (Dok.-Nr. 00825-0105-4803) enthalten, die die grundlegende Installation, Verdrahtung, Konfiguration und Inbetriebnahme beschreibt. Maßzeichnungen für jede Variante und Montageart des Rosemount 3051S MultiVariable Messumformers sind in Abschnitt "Technische Daten und Bestellinformationen" auf Seite 9 zu finden.

2.2 Sicherheitshinweise

Die in diesem Abschnitt beschriebenen Anleitungen und Verfahren können besondere Vorsichtsmaßnahmen erforderlich machen, um die Sicherheit des Bedienpersonals zu gewährleisten. Informationen, die eine erhöhte Sicherheit erfordern, sind mit einem Warnsymbol (\triangle) markiert. Lesen Sie die folgenden Sicherheitshinweise, bevor ein durch dieses Symbol gekennzeichnetes Verfahren durchgeführt wird.

2.2.1 Warnungen

A WARNUNG

Nichtbeachtung dieser Richtlinien zur Installation kann zu schweren oder tödlichen Verletzungen führen.

Die Installation darf nur von Fachpersonal durchgeführt werden.

Explosionen können zu schweren oder tödlichen Verletzungen führen.

- In explosionsgefährdeten Umgebungen den Deckel des Messumformers nicht abnehmen, wenn der Stromkreis unter Spannung steht.
- Vor dem Anschluss eines Handterminals 375 in einer explosionsgefährdeten Atmosphäre sicherstellen, dass die Geräte im Messkreis in Übereinstimmung mit den Vorschriften für eigensichere oder keine Funken erzeugende Feldverdrahtung installiert sind.
- Beide Messumformerdeckel müssen vollständig geschlossen sein, um den Anforderungen für druckfeste Kapselung und Ex-Schutz zu entsprechen.
- Sicherstellen, dass die Prozessatmosphäre des Messumformers den entsprechenden Ex-Zulassungen entspricht.

Elektrische Schläge können zu schweren oder tödlichen Verletzungen führen. Wenn der Sensor in einer Umgebung mit hoher Spannung installiert ist und eine Störbedingung oder ein Installationsfehler auftritt, kann eine hohe Spannung an den Anschlussklemmen des Messumformers anliegen.

Bei Kontakt mit Leitungen und Anschlüssen äußerst vorsichtig vorgehen.

Prozessleckage kann zu schweren oder tödlichen Verletzungen führen.

- Alle vier Flanschschrauben vor der Druckbeaufschlagung installieren und festziehen.
- Nicht versuchen, die Flanschschrauben zu lösen oder zu entfernen, während der Messumformer in Betrieb ist.
- Austausch- oder Ersatzteile, die nicht durch Emerson Process Management zugelassen sind, können die Druckfestigkeit des Messumformers reduzieren, sodass das Gerät ein Gefahrenpotenzial darstellt.
- Ausschließlich Schrauben verwenden, die von Emerson Process Management geliefert oder als Ersatzteile verkauft werden.

Unsachgemäße Montage von Ventilblöcken an Anpassungsflansche kann den Messumformer beschädigen.

 Für eine sichere Montage von Ventilblöcken an Anpassungsflansche müssen die Schrauben über das Gehäuse des Moduls (d. h. die Schraubenbohrung) hinausragen, dürfen aber das Sensormodul nicht berühren.

Die unsachgemäße Installation oder Reparatur des SuperModule[™] mit Hochdruckoption (P0) kann zu schweren oder tödlichen Verletzungen führen.

 Um die sichere Montage zu gewährleisten, muss das Hochdruck SuperModule mit Schrauben gemäß ASTM A-193 Class 2, Grade B8M installiert und ein integrierter 305 Ventilblock oder ein DIN Anpassungsflansch verwendet werden.

Empfindliche Komponenten können durch statische Elektrizität beschädigt werden.

Die entsprechenden Handhabungsvorschriften für statisch empfindliche Komponenten befolgen.

2.3 Informationen zur Installation

2.3.1 Allgemeine Anforderungen

Die Messgenauigkeit hängt von der korrekten Installation des Messumformers, der Impulsleitung und dem Temperatursensor ab. Den Messumformer nahe zum Prozess montieren und die Impulsleitungen möglichst kurz halten, um so eine hohe Genauigkeit zu erreichen. Ebenso einen leichten Zugang, die Sicherheit für Personen, eine entsprechende Feldkalibrierung und eine geeignete Umgebung für den Messumformer berücksichtigen. Den Messumformer so montieren, dass er möglichst geringen Vibrations- und Stoßeinflüssen sowie Temperaturschwankungen ausgesetzt ist.

🕂 Hinweis

Wenn der optionale Prozesstemperatureingang nicht verwendet wird, den beiliegenden Verschlussstopfen (siehe Verpackung) in die unbenutzte Leitungseinführung einschrauben. Anforderungen für den ordnungsgemäßen Eingriff gerader und kegeliger Gewinde finden Sie in den Zulassungszeichnungen in Abschnitt "Produkt-Zulassungen" auf Seite 9.

Hinweise zur Kompatibilität von Werkstoffen finden Sie in der Technischen Mitteilung 00816-0100-3045 auf der Website www.rosemount.com.

2.3.2 Mechanik

Bei Dampfmessung oder Anwendungen mit Prozesstemperaturen, die über den Grenzwerten des Messumformers liegen, die Impulsleitungen nicht über den Messumformer ausblasen. Die Impulsleitungen bei geschlossenen Absperrventilen spülen und die Leitungen vor der Wiederaufnahme der Messung mit Wasser befüllen.

Den Messumformer mit Coplanar Flansch zur besseren Entlüftung und Entwässerung seitlich zur Prozessleitung montieren. Den Flansch wie in Abbildung 2-5 auf Seite 17 dargestellt montieren. Bei Anwendungen mit Gas die Ablass-/Entlüftungsventile nach unten anordnen, bei Anwendungen mit Flüssigkeiten nach oben.

2.3.3 Anforderungen an die Messstellenumgebung

Die Einhaltung der Installationshinweise und der Anweisungen zur "Montage des Gehäusedeckels" auf Seite 2-13 können dazu beitragen, die Genauigkeit des Messumformers zu optimieren. Den Messumformer so montieren, dass er möglichst geringen Vibrations- und Stoßeinflüssen sowie Temperaturschwankungen ausgesetzt ist; äußerlich den Kontakt mit korrosiven Werkstoffen vermeiden. Betriebstemperaturgrenzen der Messzelle siehe "Technische Daten und Bestellinformationen" auf Seite 9.

2.4 A Installationsverfahren

2.4.1 Konfigurieren der Sicherheits- und Alarmfunktion

Sicherheitseinstellung (Schreibschutz) konfigurieren

Änderungen an den Konfigurationsdaten des Messumformers können durch den Schreibschutzschalter auf der Funktionsplatine verhindert werden. Die Anordnung des Schalters ist; in Abbildung 2-1 dargestellt. Den Schalter in die Position ON (EIN) setzen, um unbeabsichtigte oder vorsätzliche Änderungen der Konfigurationsdaten zu verhindern. Befindet sich die Steckbrücke Schreibschutz auf ON, akzeptiert der Messumformer keinen Schreibvorgang auf den Speicher. Konfigurationsänderungen wie digitaler Abgleich und Messbereichsänderungen können nicht ausgeführt werden, wenn die Messumformersicherheit auf ON gesetzt ist.

Die Steckbrückenposition wie folgt ändern:

- 1. In explosionsgefährdeten Bereichen dürfen Messumformer nur im spannungslosen Zustand geöffnet werden. Wenn der Messumformer in einem Messkreis installiert ist, den Messkreis auf Handbetrieb einstellen und die Spannungsversorgung trennen.
 - 2. Den Gehäusedeckel auf der Seite entfernen, die der Seite mit den Feldanschlussklemmen gegenüber liegt.
 - 3. Den Schalter mit einem kleinen Schraubendreher in die gewünschte Position schieben. Siehe Abbildung 2-1.

Abbildung 2-1. Schalterkonfiguration

4. Den Gehäusedeckel des Messumformers wieder anbringen. Gehäusedeckel des Messumformers müssen vollständig geschlossen sein (bis Metall an Metall anliegt), um den Anforderungen für druckfeste Kapselung und Ex-Schutz zu entsprechen.

Alarmrichtung konfigurieren

Die Alarmrichtung des Messumformers wird durch Setzen des Alarmschalters eingestellt. Den Schalter für Hochalarm auf die Position "HI" und für Niedrigalarm auf die Position "LO" einstellen. Weitere Informationen über Alarm- und Sättigungswerte finden Sie unter "Alarmund Sättigungswerte" auf Seite 2-34.

2.4.2 Montageanforderungen

Maßzeichnungen siehe "Technische Daten und Bestellinformationen" auf Seite 2-9.

Drehen des Gehäuses

Zum Verbessern des Zugangs zur Feldverdrahtung sowie der Ablesbarkeit des optionalen Digitalanzeigers kann das Gehäuse gedreht werden. So drehen Sie das Gehäuse:

- 1. Die Gehäusesicherungsschraube lösen.
- 2. Das Gehäuse von seiner ursprünglichen (gelieferten) Position aus um 180 Grad nach links oder rechts drehen.

Hinweis

Das Gehäuse nicht um mehr als 180 Grad in jede Richtung drehen, ohne den Messumformer zunächst zu zerlegen (siehe "Gehäuse mit Funktionsplatine" auf Seite 2-23). Ein Überdrehen kann die elektrische Verbindung zwischen Sensormodul und Funktionsplatine beschädigen.

3. Die Gehäusesicherungsschraube wieder festziehen.

Abbildung 2-2. Gehäuse

Drehen des Digitalanzeigers

Der Digitalanzeiger kann zusätzlich zum Gehäuse des Messumformers in Schritten von 90° gedreht werden. Hierfür die beiden Clips zusammendrücken, den Digitalanzeiger herausziehen, in die gewünschte Richtung drehen und wieder einrasten lasten.

Hinweis

Wenn die Pins des Digitalanzeigers versehentlich aus der Funktionsplatine herausgezogen werden, die Pins wieder einsetzen, bevor der Digitalanzeiger eingerastet wird.

Gehäuseseite mit den Feldanschlussklemmen

Den Messumformer so montieren, dass die Seite mit dem Anschlussklemmenblock zugänglich ist. Zum Entfernen des Gehäusedeckels wird ein Freiraum von 19 mm (0,75 in.) benötigt. Wenn der optionale Prozesstemperatureingang nicht verwendet wird, den Verschlussstopfen in die unbenutzte Leitungseinführung einschrauben.

Gehäuseseite mit der Funktionsplatine

Bei einem Messumformer ohne Digitalanzeiger wird zum Öffnen des Gehäusedeckels ein Freiraum von 19 mm (0,75 in.) benötigt. Ein Freiraum von 76 mm (3 in.) wird benötigt, wenn ein Digitalanzeiger installiert ist.

Montage des Gehäusedeckels

Bei Installation der Gehäusedeckel stets darauf achten, dass diese vollständig geschlossen sind (Metall/Metall-Kontakt), um die Beeinträchtigung der Genauigkeit des Messumformers aufgrund von Umgebungseinflüssen zu verhindern. Beim Austausch von Deckel O-Ringen ausschließlich Rosemount O-Ringe (Teilenummer 03151-9040-0001) verwenden.

Leitungseinführungsgewinde

Für NEMA 4X, IP66 und IP68 Dichtband (PTFE) oder Gewindedichtungsmittel auf das Außengewinde auftragen, um die wasserdichte Abdichtung zu gewährleisten.

Gehäusedeckel-Sicherungsschraube

Bei Messumformergehäusen, die mit einer Gehäusedeckel-Sicherungsschraube geliefert wurden (siehe Abbildung 2-3), muss die Schraube korrekt installiert werden, nachdem der Messumformer komplett verdrahtet und die Spannungsversorgung angeschlossen wurde. Die Gehäusedeckel-Sicherungsschraube dient der Sicherung, damit der Messumformer-Gehäusedeckel in Umgebungen für druckfeste Kapselung nicht ohne Hilfsmittel entfernt werden kann. So montieren Sie die Gehäusedeckel-Sicherungsschraube:

- 1. Sicherstellen, dass die Gehäusedeckel-Sicherungsschraube vollständig in das Gehäuse eingeschraubt ist.
- 2. Den Messumformer-Gehäusedeckel installieren und prüfen, ob Metall an Metall anliegt, um den Anforderungen für druckfeste Kapselung und Ex-Schutz zu entsprechen.
- 3. Die Sicherungsschraube mit einem M4 Sechskantschlüssel gegen den Uhrzeigersinn drehen, bis sie den Messumformer-Gehäusedeckel berührt.
- 4. Die Sicherungsschraube zusätzlich noch eine 1/2 Umdrehung gegen den Uhrzeigersinn drehen, um den Gehäusedeckel zu sichern. Ein zu hohes Anzugsmoment kann zum Ausreißen des Gewindes führen.
- 5. Sicherstellen, dass die Gehäusedeckel nicht entfernt werden können.

Abbildung 2-3. Gehäusedeckel-Sicherungsschraube

Ausrichten der Prozessflansche

▲ Die Prozessflansche mit ausreichend Freiraum für die Prozessanschlüsse montieren. Die Ablass-/Entlüftungsventile aus Sicherheitsgründen so montieren, dass das Prozessmedium nicht mit Menschen in Kontakt kommen kann, wenn die Ventile geöffnet werden. Außerdem an einen Prüf- oder Kalibrieranschluss denken.

2.4.3 Montieren des Messumformers

Abbildung 2-4 zeigt eine typische Installation eines 3051S MultiVariable Messumformers zur Messung von Trockengas mit einer Messblende.

Montagehalter

Mit einem optionalen Montagehalter kann der 3051S MultiVariable Messumformer an ein 50 mm (2 in.) Rohr oder eine Wand montiert werden. Der Montagehalter, Option B4 (Edelstahl), ist für den Coplanar Flansch Prozessanschluss bestimmt. "Montageart mit Coplanar Flansch" auf Seite 2-24 zeigt die Maßzeichnungen und Montageart für die Option B4. Andere Optionen für den Montagehalter sind in Tabelle 2-1 aufgelistet.

Bei Installation des Messumformers an einem Montagehalter die Schrauben auf ein Drehmoment von 0,9 Nm (125 in-lb.) festziehen.

Optio- nen	Beschreibung	Montageart	Halterwerkstoff	Schrauben- werkstoff
B4	Halter für Coplanar Flansch	50 mm (2 in.) Rohr/Wand	Edelstahl	Edelstahl
B1	Halter für Anpassungsflansch	50 mm (2 in.) Rohr	lackierter Kohlenstoffstahl	Kohlenstoffstahl
B2	Halter für Anpassungsflansch	Schalttafel	lackierter Kohlenstoffstahl	Kohlenstoffstahl
B3	Montageplatte für Anpassungsflansch	50 mm (2 in.) Rohr	lackierter Kohlenstoffstahl	Kohlenstoffstahl
B7	Halter für Anpassungsflansch	50 mm (2 in.) Rohr	lackierter Kohlenstoffstahl	Edelstahl
B8	Halter für Anpassungsflansch	Schalttafel	lackierter Kohlenstoffstahl	Edelstahl
B9	Montageplatte für Anpassungsflansch	50 mm (2 in.) Rohr	lackierter Kohlenstoffstahl	Edelstahl
BA	Halter für Anpassungsflansch	50 mm (2 in.) Rohr	Edelstahl	Edelstahl
BC	Montageplatte für Anpassungsflansch	50 mm (2 in.) Rohr	Edelstahl	Edelstahl

Tabelle 2-1. Montagehalter

Flanschschrauben

Der 3051S MultiVariable Messumformer kann mit einem Coplanar Flansch oder einem Anpassungsflansch, montiert mit vier 44 mm (1,75 in.) Schrauben, geliefert werden. Befestigungsschrauben und Schraubenkonfigurationen für Coplanar und Anpassungsflansche finden Sie in Abbildung 2-5 auf Seite 17. Von Emerson Process Management gelieferte Edelstahlschrauben sind zur besseren Montage mit einem Schmiermittel versehen. Schrauben aus Kohlenstoffstahl erfordern keine Schmierung. Kein zusätzliches Schmiermittel verwenden, wenn einer dieser Schraubentypen montiert wird. Von Emerson Process Management gelieferte Schrauben können durch ihre Markierung am Schraubenkopf identifiziert werden:

Schraubenmontage

- Ausschließlich Schrauben verwenden, die mit dem 3051S MultiVariable Messumformer geliefert oder von Emerson Process Management als Ersatzteile verkauft werden. So montieren Sie die Schrauben:
 - 1. Schrauben handfest anziehen.
 - 2. Schrauben kreuzweise mit dem Anfangsdrehmoment anziehen. Die Anfangsdrehmomente sind in Tabelle 2-2 angegeben.
 - 3. Schrauben kreuzweise (wie vorher) mit dem Drehmoment-Endwert anziehen. Die Enddrehmomente sind in Tabelle 2-2 angegeben.

Drehmomentwerte für die Flansch- und Ventilblockschrauben:

Tabelle 2-2. Drehmomentwerte für die Montage der Schrauben

Schraubenwerkstoff	Optionscode	Anfangsdrehmoment	Enddrehmoment
CS-ASTM-A-449	Standard	34 Nm (300 in-lb.)	73 Nm (650 in-lb.)
Edelstahl 316	Option L4	17 Nm (150 in-lb.)	34 Nm (300 in-lb.)
ASTM-A-193-B7M	Option L5	34 Nm (300 in-lb.)	73 Nm (650 in-lb.)
Alloy K-500	Option L6	34 Nm (300 in-lb.)	73 Nm (650 in-lb.)
ASTM-A-453-660	Option L7	17 Nm (150 in-lb.)	34 Nm (300 in-lb.)
ASTM-A-193-B8M	Option L8	17 Nm (150 in-lb.)	34 Nm (300 in-lb.)

Abbildung 2-5. Gebräuchliche Messumformerbaugruppen

Montageanforderungen

Die Konfiguration der Impulsleitungen ist von den speziellen Messbedingungen abhängig. Siehe Abbildung 2-6 auf Seite 18 als Beispiele für die folgenden Anordnungen:

Durchflussmessung von Flüssigkeiten

- Die Entnahmestutzen seitlich an der Prozessleitung platzieren, um Ablagerungen an den Trennmembranen vorzubeugen.
- Den Messumformer auf gleichem Niveau oder unterhalb der Entnahmestutzen montieren, sodass Gase in die Prozessleitung zurückströmen können.
- Das Ablass-/Entlüftungsventil oben anbringen, damit Gase entweichen können.

Durchflussmessung von Gasen

- Die Entnahmestutzen oberhalb oder seitlich an der Prozessleitung platzieren.
- Den Messumformer auf gleichem Niveau oder oberhalb der Entnahmestutzen platzieren, sodass Flüssigkeit in die Prozessleitung abfließen kann.

Durchflussmessung von Dampf

- Die Entnahmestutzen seitlich an der Prozessleitung platzieren.
- Den Messumformer unterhalb der Entnahmestutzen platzieren, sodass die Impulsleitungen mit Kondensat gefüllt bleiben.
- Bei Betrieb mit Dampf über 121 °C (250 °F) die Impulsleitungen mit Wasser füllen, um so zu verhindern, dass Dampf direkt an den Messumformer gelangt, und um zu gewährleisten, dass eine korrekte Messung von der Inbetriebnahme an erfolgen kann.

Hinweis

Bei Dampf oder anderen Anwendungen mit ebenso hohen Temperaturen ist es wichtig, dass die Temperaturen am Prozessanschluss des Messumformers nicht die Betriebstemperaturgrenzen des Messumformers überschreiten.

2.4.4 Prozessanschlüsse

Der 3051S MultiVariable Messumformer verfügt über einen 1/4-18 NPT Prozessanschluss. Ovaladapter mit 1/4-18 NPT bis 1/2-14 NPT Anschlüssen sind unter Option D2 erhältlich. Für die Prozessanschlüsse Schmier- oder Dichtmittel verwenden, die für die Anlage zugelassen sind. Die Anschlüsse am Prozessflansch haben einen Bohrungsabstand von 54 mm ($2^{1}/8$ in.) für die Direktmontage an einen 3-fach oder 5-fach Ventilblock. Um einen Bohrungsabstand von 51 mm (2 in.), 54 mm ($2^{1}/8$ in.) oder 57 mm ($2^{1}/4$ in.) zu erhalten, einen oder beide Ovaladapter drehen.

① Um Leckagen zu verhindern, alle vier Flanschschrauben montieren und anziehen, bevor das Gerät mit Druck beaufschlagt wird. Bei richtiger Installation stehen die Flanschschrauben über die Trennplatte des SuperModule hinaus. Siehe Abbildung 2-7. Nicht versuchen, die Flanschschrauben während des Betriebs zu lösen oder zu entfernen.

So installieren Sie Ovaladapter an einen Coplanar Flansch:

- 1. Die Prozessflanschschrauben entfernen.
- 2. Den Coplanar Flansch belassen und die Ovaladapter einschließlich der O-Ringe positionieren.
- 3. Die Ovaladapter und den Coplanar Flansch mit den mitgelieferten längeren Schrauben am Messumformersensormodul befestigen.
- 4. Die Schrauben festziehen. Siehe Drehmomentwerte in Tabelle 2-2 auf Seite 2-17.

Die Teilenummern der Ovaladapter und O-Ringe, die für den 3051S MultiVariable Messumformer verwendet werden müssen, sind unter "Ersatzteile" auf Seite 2-37 angegeben.

Hinweis

Die beiden Ausführungen der Rosemount Ovaladapter (Rosemount 3051S/3051/2051) erfordern einen unterschiedlichen O-Ring (siehe Abbildung 2-8). Ausschließlich den O-Ring verwenden, der für den jeweiligen Ovaladapter konstruiert wurde.

Abbildung 2-8. O-Ringe

A WARNUNG

Bei der Demontage von Flanschen oder Ovaladaptern müssen die PTFE O-Ringe jedes Mal einer Sichtprüfung unterzogen werden. Die O-Ringe austauschen, wenn diese Anzeichen von Beschädigung wie Kerben oder Risse aufweisen. Nach dem Austauschen der O-Ringe müssen die Flanschschrauben nach erfolgter Montage nochmals nachgezogen werden, um die Kaltflusseigenschaft der PTFE O-Ringe auszugleichen. Siehe "Prozessflansch und Ablass-/Entlüftungsventil" auf Seite 2-27.

Impulsleitungen

Um genaue Messungen zu erreichen, müssen die Leitungen zwischen der Prozessleitung und dem Messumformer den Druck exakt übertragen. Es gibt zahlreiche Störungsursachen: Druckübertragung, Leckagen, Reibungsverluste (speziell beim Ausblasen), Gaseinschlüsse bei Flüssigkeiten, Flüssigkeit in Gasen, Dichteabweichungen zwischen den Impulsleitungen und verstopfte Impulsleitungen.

Die beste Anordnung des Messumformers zur Prozessleitung ist abhängig vom Prozess selbst. Nachfolgende Richtlinien verwenden, um Messumformer und Impulsleitungen richtig anzuordnen:

- Die Impulsleitungen so kurz wie möglich halten.
- Bei Flüssigkeitsanwendungen die Impulsleitungen vom Messumformer aus mit einer Steigung von mindestens 8 cm pro m (1 in./ft.) nach oben zum Prozessanschluss verlegen.
- Bei Gasanwendungen die Impulsleitungen vom Messumformer aus mit einer Steigung von mindestens 8 cm pro m (1 in./ft.) nach unten zum Prozessanschluss verlegen.
- Hoch liegende Punkte bei Flüssigkeitsleitungen und niedrig liegende bei Gasleitungen vermeiden.
- Sicherstellen, dass beide Impulsleitungen die gleiche Temperatur haben.
- Impulsleitungen verwenden, die groß genug sind, um Verstopfen sowie Einfrieren zu verhindern.
- Gas vollständig aus den mit Flüssigkeit gefüllten Impulsleitungen entlüften.
- Bei Verwendung einer Sperrflüssigkeit beide Impulsleitungen auf das gleiche Niveau befüllen.
- Zum Ausblasen die Ausblasanschlüsse möglichst nahe an die Prozessentnahmestutzen setzen und mittels gleich langen Rohren mit gleichem Rohrdurchmesser ausblasen. Das Ausblasen über den Messumformer vermeiden.
- Direkten Kontakt von korrosiven oder heißen Prozessmedien (über 121 °C [250 °F]) mit dem SuperModule Prozessanschluss und den Flanschen vermeiden.
- Ablagerungen in den Impulsleitungen verhindern.
- Den Flüssigkeitsspiegel in beiden Impulsleitungen auf gleichem Niveau halten.

Hinweis

Entsprechende Vorkehrungen treffen, um das Einfrieren der Prozessflüssigkeit innerhalb der Prozessflansche zu verhindern. Andernfalls kann der Messumformer beschädigt werden.

Hinweis

Nach der Installation den Nullpunkt des Messumformers prüfen. Zum Abgleichen des Nullpunkts siehe "Übersicht über den Sensorabgleich" auf Seite 2-12.

2.4.5 Elektrischer Anschluss und Spannungsversorgung

Für eine gute Kommunikation paarweise verdrillte Leitungen und Kabel mit einem. Leitungsquerschnitt zwischen 0,2 mm² und 2,0 mm² (AWG 24 und 14) verwenden. Eine Leitungslänge von 1500 m (5000 ft.) sollte nicht überschritten werden.

Hinweis

Eine ordnungsgemäße elektrische Installation ist erforderlich, damit Fehler durch unsachgemäße Erdung und elektrisches Rauschen vermieden werden. In Umgebungen mit hochfrequenten Störungen und EMV Belastung sollte abgeschirmtes Kabel verwendet werden. Für Anwendungen gemäß NAMUR sind abgeschirmte Leitungen vorgeschrieben.

So stellen Sie die elektrischen Anschlüsse her:

- 1. Den Gehäusedeckel auf der Seite mit den Feldanschlussklemmen entfernen.
- 2. Die Plusader an die Klemme "PWR/COMM +" und die Minusader an die Klemme "PWR/COMM –" anschließen.

Hinweis

Die Spannungsversorgung nicht an den Testklemmen anschließen. Dadurch kann die Diode im Testanschluss beschädigt werden.

- 3. Wenn der optionale Prozesstemperatureingang nicht installiert ist, die unbenutzte Leitungseinführung verschließen und abdichten. Bei Verwendung des optionalen Prozesstemperatureingangs siehe Abschnitt "Installation des optionalen Prozesstemperatureingangs (Pt100 Widerstandsthermometer)" auf Seite 2-22.
- Wenn der beiliegende Verschlussstopfen verwendet wird, den Stopfen mit mindestens fünf Gewindegängen in die unbenutzte Leitungseinführung einschrauben, um den Anforderungen für druckfeste Kapselung und Ex-Schutz zu entsprechen.
 - 4. Die Verdrahtung, sofern erforderlich, so mit einer Abtropfschlaufe installieren, dass das unterste Niveau tiefer als die Leitungseinführungen und das Messumformergehäuse liegt.
- 5. Den Gehäusedeckel wieder anbringen und festziehen, bis Metall an Metall anliegt, um die Anforderungen für druckfeste Kapselung und Ex-Schutz zu erfüllen.

Abbildung 2-10 zeigt die erforderliche Verdrahtung zur Spannungsversorgung des 3051S MultiVariable Messumformers und zur Kommunikation des 3051S mit einem Handterminal 375.

Abbildung 2-10. Anschlussschema des Messumformers

Hinweis

Die Installation eines Anschlussklemmenblocks mit integriertem Überspannungsschutz gewährleistet nur dann Schutz vor Spannungsspitzen, wenn das Gehäuse des 3051S MultiVariable Messumformers ordnungsgemäß geerdet ist. Weitere Informationen siehe "Erdung" auf Seite 2-25.

Installation des optionalen Prozesstemperatureingangs (Pt100 Widerstandsthermometer)

A Hinweis

Um die Zulassung für druckfeste Kapselung nach ATEX/IECEx zu gewährleisten, dürfen nur Kabel verwendet werden, die gemäß ATEX/IECEx Druckfeste Kapselung zertifiziert sind (Temperatureingangscode C30, C32, C33, C34 oder ein vom Kunden beigestelltes äquivalentes Kabel).

1. Das Pt100 Widerstandsthermometer am gewünschten Einbauort montieren.

Hinweis

Für den Prozesstemperaturanschluss abgeschirmtes 4-Leiter Kabel verwenden.

- 2. Das Kabel des Widerstandsthermometers an den 3051S MultiVariable Messumformer anschließen; hierfür die Adern durch die unbenutzte Leitungseinführung in das Gehäuse einführen und an die vier Schrauben des Anschlussklemmenblocks anschließen. Eine geeignete Kabelverschraubung verwenden, um die Leitungseinführung um das Kabel abzudichten. Siehe Abbildung 2-11 auf Seite 23.
- 3. Den Kabelschirm des Widerstandsthermometerkabels an den Erdungsanschluss im Gehäuse anschließen.

Abbildung 2-11. Verdrahtung des Widerstandsthermometers für den 3051S MultiVariable Messumformer

3-Leiter Widerstandsthermometer

Um die Übereinstimmung mit den spezifizierten technischen Daten zu gewährleisten, muss ein 4-Leiter Widerstandsthermometer verwendet werden. Ein 3-Leiter Widerstandsthermometer kann verwendet werden; in diesem Fall werden die Leistungsspezifikationen herabgesetzt. Bei Verwendung eines 3-Leiter Widerstandsthermometers den Anschlussklemmenblock des 3051S MultiVariable Messumformers unter Verwendung eines 4-adrigen Kabels mit dem Anschlusskopf des Widerstandsthermometers verbinden. Im Anschlusskopf des Widerstandsthermometers zwei der gleichfarbigen Adern vom 3051S MultiVariable Messumformer an die einfarbige Ader des Widerstandsthermometers anschließen.

Spannungsspitzen/Überspannungen

Der Messumformer widersteht gewöhnlich elektrischen Überspannungen, die dem Energieniveau von statischen Entladungen bzw. induktiven Schaltüberspannungen entsprechen. Energiereiche Überspannungen, die z. B. von Blitzschlägen in der Verdrahtung induziert werden, können jedoch den Messumformer beschädigen.

Optionaler Anschlussklemmenblock mit Überspannungsschutz

Der Anschlussklemmenblock mit integriertem Überspannungsschutz kann als installierte Option (Optionscode T1 in der Modellnummer des Messumformers) oder als ein an installierten 3051S MultiVariable Messumformern nachrüstbares Ersatzteil bestellt werden. Eine komplette Liste der Ersatzteilnummern für die Anschlussklemmenblöcke mit integriertem Überspannungsschutz ist unter "Ersatzteile" auf Seite 2-37 zu finden. Ein Blitzsymbol auf dem Anschlussklemmenblock gibt an, dass dieser über einen Überspannungsschutz verfügt.

Hinweis

Die Erdung des Messumformergehäuses am Leitungseinführungsgewinde gewährleistet ggf. keinen ausreichenden Schutz. Der Anschlussklemmenblock mit Überspannungsschutz (Optionscode T1) bietet nur dann Überspannungsschutz, wenn das Messumformergehäuse ordnungsgemäß geerdet ist. Anweisungen zur Erdung des Messumformergehäuses sind unter "Erdung" auf Seite 2-25 zu finden. Das Erdungskabel des Überspannungsschutzes nicht zusammen mit Signalkabeln verlegen, da das Erdungskabel im Falle eines Blitzschlags übermäßig hohen Strom führen kann.

Erdung der Signalleitungen

Signalleitungen nicht zusammen mit Spannungsversorgungsleitungen in einer offenen Kabeltraverse oder einem Schutzrohr verlegen und nicht nahe an Starkstromgeräten vorbei führen. Die Abschirmung der Signalleitungen an einem beliebigen Punkt im Messkreis erden. Siehe Abbildung 2-12. Die Minusklemme der Spannungsversorgung wird als Erdungspunkt empfohlen.

Spannungsversorgung des 4–20 mA Messumformers

Die Welligkeit der Gleichspannungsversorgung muss unter 2 % liegen. Die Gesamtbürde ist die Summe des Widerstands der Signalleitungen und der einzelnen Widerstände von Regler, Anzeiger oder ähnlichen Geräten. Bei Verwendung eigensicherer Sicherheitsbarrieren muss der Widerstand der Barrieren mit einbezogen werden.

Siehe "Bürdengrenzen" auf Seite 2-17.

Hinweis

Für die Kommunikation mit dem Handterminal 375 ist eine Bürde von mindestens. 250 Ohm erforderlich. Wird eine einzelne Spannungsquelle zur Versorgung mehrerer 3051S MultiVariable Messumformer verwendet, darf die verwendete Spannungsquelle und der gesamte Messkreis nicht mehr als 20 Ohm Impedanz bei 1200 Hz aufweisen.

2.4.6 Verdrahtung des Kabelschutzrohr-Steckverbinders (Option GE oder GM)

Einzelheiten zur Verdrahtung des 3051S MultiVariable Messumformers mit Kabelschutzrohr-Steckverbinder (Option GE oder GM) sind den Einbauanweisungen des Kabelsatz-Herstellers zu entnehmen. Die Installation für FM Eigensicherheit, keine Funken erzeugend, gemäß Rosemount Zeichnung 03151-1009 vornehmen, um die Gehäuseschutzart (NEMA 4X und IP66) zu erhalten. Weitere Informationen sind in Anhang B auf Seite B-9 zu finden.

2.4.7 Erdung

Messumformergehäuse

Das Messumformergehäuse stets gemäß nationalen und lokalen Vorschriften für die Elektroinstallation erden. Die beste Erdung des Messumformergehäuses wird durch einen direkten Erdungsanschluss mit minimaler Impedanz erreicht (< 1 Ω). Methoden zur Erdung des Messumformergehäuses:

Innenliegender Erdungsanschluss

Der innenliegende Erdungsanschluss befindet sich auf der Seite des Anschlussklemmenblocks im Inneren des Elektronikgehäuses. Die Schraube ist mit dem Erdungssymbol (④) gekennzeichnet und ist Standard bei allen 3051S MultiVariable Messumformern.

Abbildung 2-13. Innenliegender Erdungsanschluss

Außenliegender Erdungsanschluss

Der außenliegende Erdungsanschluss ist außen am SuperModule Gehäuse zu finden. Der Anschluss ist mit dem Erdungssymbol () gekennzeichnet. Der außenliegende Erdungsanschluss ist bei den in Tabelle 2-3 auf Seite 2-26 angegebenen Optionscodes enthalten und kann außerdem als Ersatzteil (03151-9060-0001) bestellt werden.

Tabelle 2-3. Optionscodes für die Zulassung des außenliegenden Erdungsanschlusses

Optionscode	Beschreibung
E1	ATEX Druckfeste Kapselung
1	ATEX Eigensicherheit
N1	ATEX Typ n
ND	ATEX Staub
E4	TIIS Druckfeste Kapselung
К1	ATEX Druckfeste Kapselung, Eigensicherheit, Typ n, Staub (Kombination von E1, I1, N1 und ND)
E7	IECEx Druckfeste Kapselung, Staub Ex-Schutz
N7	IECEx Typ n
К7	IECEx Druckfeste Kapselung, Staub Ex-Schutz, Eigensicherheit und Typ n (Kombination von E7, I7 und N7)
KA	ATEX und CSA Ex-Schutz, Eigensicherheit, Division 2 (Kombination von E1, E6, I1 und I6)
КС	FM und ATEX Ex-Schutz, Eigensicherheit, Division 2 (Kombination von E5, E1, I5 und I1)
T1	Anschlussklemmenblock mit Überspannungsschutz
D4	Außenliegender Erdungsanschluss

2.5 Rosemount 305 und 304 Ventilblöcke

Der integrierte Rosemount 305 Ventilblock ist in zwei Ausführungen erhältlich: mit Anpassungsund Coplanar Flansch. Mit den Ovaladaptern kann der integrierte Ventilblock 305 mit Anpassungsflansch an die meisten auf dem Markt befindlichen Wirkdruckgeber montiert werden.

Der Rosemount 304 ist in zwei Basisausführungen erhältlich: Anpassungsflansch (Flansch x Flansch und Flansch x Rohr) und Sandwich-Bauweise. Der 304 Ventilblock mit Anpassungsflansch ist in Konfigurationen mit 2-, 3- und 5-fach Ventilblock erhältlich. Der 304 Ventilblock in Sandwich-Bauweise ist in Konfigurationen mit 3- und 5-fach Ventilblock erhältlich.

2.5.1 Installation des integrierten Rosemount 305 Ventilblocks

So installieren Sie einen integrierten 305 Ventilblock an einem 3051S MultiVariable Messumformer:

1. Die PTFE O-Ringe des SuperModule überprüfen. Unbeschädigte O-Ringe können erneut verwendet werden. Weisen die O-Ringe Beschädigungen wie z. B. Risse oder Kerben auf, müssen sie erneuert werden.

Hinweis

Darauf achten, dass die O-Ring-Nuten und die Trennmembran beim Austausch defekter O-Ringe nicht verkratzt oder beschädigt werden.

- 2. Den integrierten Ventilblock an den Prozessanschluss des SuperModule montieren. Die vier Ventilblockschrauben zur Zentrierung verwenden. Die Schrauben handfest anziehen, dann schrittweise über Kreuz, bis sie das endgültige Anzugsmoment erreicht haben. Weitere Informationen und Drehmomentwerte finden Sie unter "Flanschschrauben" auf Seite 2-16. Nach dem vollständigen Anziehen müssen die Schrauben durch die Oberseite des SuperModule Gehäuses hinausragen.
- 3. Sollten Sie die PTFE O-Ringe des SuperModule ausgetauscht haben, müssen die Flanschschrauben nach erfolgter Montage nochmals nachgezogen werden, um die Kaltflusseigenschaften der O-Ringe auszugleichen.
- 4. Sofern erforderlich, Ovaladapter mit den mitgelieferten 1,75 in. Flanschschrauben an der Prozessseite des Ventilblocks installieren.

2.5.2 Installation des Rosemount 304 Ventilblocks mit Anpassungsflansch

So installieren sie einen konventionellen Ventilblock 304 an einen 3051S MultiVariable Messumformer:

- 1. Den konventionellen Ventilblock auf den Flansch des Messumformers ausrichten. Die vier Ventilblockschrauben zur Zentrierung verwenden.
- 2. Die Schrauben handfest anziehen, dann schrittweise über Kreuz, bis sie das endgültige Anzugsmoment erreicht haben. Weitere Informationen und Drehmomentwerte finden Sie unter "Flanschschrauben" auf Seite 2-16. Im ganz festgezogenen Zustand müssen die Schrauben über das SuperModule Gehäuse hinausragen, dürfen aber das SuperModule Gehäuse nicht berühren.
- 3. Sofern erforderlich, Ovaladapter mit den mitgelieferten 1,75 in. Flanschschrauben an der Prozessseite des Ventilblocks installieren.

2.5.3 Funktionsweise der Ventilblöcke zum Nullpunktabgleich des Differenzdrucksensors

Die unsachgemäße Installation oder der unsachgemäße Betrieb von Ventilblöcken kann zu Prozessleckagen führen und somit ernsthafte oder tödliche Verletzungen verursachen.

Um Abweichungen/Shift aufgrund von Einflüssen der Einbaulage zu vermeiden, nach der Installation stets einen Nullpunktabgleich an der Messumformer/Ventilblock-Einheit durchführen. Siehe Abschnitt 4: Betrieb und Wartung, "Übersicht über den Sensorabgleich" auf Seite 2-12.

Konfigurationen mit 3-fach und 5-fach Ventilblock abgebildet:

Konfiguration für Erdgas mit 5-fach Ventilblock abgebildet:

Hinweis

Das Ausgleichsventil auf der Niederdruckseite nicht vor dem Ausgleichsventil auf der Hochdruckseite öffnen. Andernfalls wird der Messumformer mit zu hohem Druck beaufschlagt.

2. Nach dem Nullpunktabgleich des Differenzdrucksensors das Ausgleichsventil auf der Niederdruckseite (Auslassseite) des Messumformers schließen.

3. Das Ausgleichsventil auf der Hochdruckseite (Einlassseite) schließen.

4. Zum Abschluss das Absperrventil auf der Niederdruckseite öffnen, um den Messumformer wieder in Betrieb zu nehmen.

Abschnitt 3 Konfiguration

Übersicht	Seite 9
Sicherheitshinweise	Seite 10
Installation des Engineering Assistant	Seite 11
Durchflusskonfiguration	Seite 13
Grundkonfiguration des Messumformers	Seite 31
Komplette Konfiguration des Messumformers	Seite 34
Konfiguration der Variablen	Seite 43
Menüstrukturen und Funktionstastenfolgen für das Handterminal 475	Seite 64

3.1 Übersicht

Dieser Abschnitt enthält Anweisungen zur Durchfluss- und Gerätekonfiguration des 3051S MultiVariable Messumformers. Anweisungen für die Installation des Engineering Assistant und die Durchflusskonfiguration gelten für Engineering Assistant Version 6.1 oder höher. Grundkonfiguration des Messumformers, Komplette Konfiguration des Messumformers und Konfiguration der Variablen sind für die AMS Version 9.0 oder höher beschrieben, enthalten jedoch auch Funktionstastenfolgen für das Handterminal 475 ab Version 2.0. Die Bildschirme des Engineering Assistant und des AMS Systems sind ähnlich aufgebaut und folgen den gleichen Anweisungen für Verwendung und Navigation. Zur Erleichterung ist die Funktionstastenfolge für das Handterminal 475, bezeichnet als Funktionstastenfolge, bei jeder Softwarefunktion mit angegeben. Die Funktionalität der einzelnen Hostsysteme ist in Tabelle 3-1 dargestellt.

Tabelle 3-1. Host-Funktionalität

		 Verfügbar 	– Nicht v	erfügbar
MultiVariable Typ	Funktionalität	3051SMV Engineering Assistant	AMS	475
Voll kompensierter Masse- und Energiedurchfluss (M)	Durchflusskonfiguration	•	-	-
	Gerätekonfiguration	•	•	•
	Testberechnung	•	•	•
	Kalibrierung	•	•	•
	Diagnose	•	٠	•
Direkter Ausgang der Prozessvariable (P)	Gerätekonfiguration	-	•	•
	Kalibrierung	_	•	•
	Diagnose	-	•	•

3.2 Sicherheitshinweise

3.2.1 Warnungen

A WARNUNG

Nichtbeachtung dieser Richtlinien zur Installation kann zu schweren oder tödlichen Verletzungen führen.

Die Installation darf nur von Fachpersonal durchgeführt werden.

Explosionen können zu schweren oder tödlichen Verletzungen führen.

- In explosionsgefährdeten Umgebungen den Deckel des Messumformers nicht abnehmen, wenn der Stromkreis unter Spannung steht.
- Vor dem Anschluss eines Handterminals 475 in einer explosionsgefährdeten Atmosphäre sicherstellen, dass die Geräte im Messkreis in Übereinstimmung mit den Vorschriften für eigensichere oder keine Funken erzeugende Feldverdrahtung installiert sind.
- Beide Messumformerdeckel müssen vollständig geschlossen sein, um den Anforderungen für druckfeste Kapselung und Ex-Schutz zu entsprechen.
- Sicherstellen, dass die Prozessatmosphäre des Messumformers den entsprechenden Ex-Zulassungen entspricht.

Elektrische Schläge können zu schweren oder tödlichen Verletzungen führen. Wenn der Sensor in einer Umgebung mit hoher Spannung installiert ist und eine Störbedingung oder ein Installationsfehler auftritt, kann eine hohe Spannung an den Anschlussklemmen des Messumformers anliegen.

Bei Kontakt mit Leitungen und Anschlüssen äußerst vorsichtig vorgehen.

Prozessleckage kann zu schweren oder tödlichen Verletzungen führen.

- Alle vier Flanschschrauben vor der Druckbeaufschlagung installieren und festziehen.
- Nicht versuchen, die Flanschschrauben zu lösen oder zu entfernen, während der Messumformer in Betrieb ist.
- Austausch- oder Ersatzteile, die nicht durch Emerson Process Management zugelassen sind, können die Druckfestigkeit des Messumformers reduzieren, so dass das Gerät ein Gefahrenpotenzial darstellt.
- Ausschließlich Schrauben verwenden, die von Emerson Process Management geliefert oder als Ersatzteile verkauft werden.

Unsachgemäße Montage von Ventilblöcken an Anpassungsflansche kann den Messumformer beschädigen.

• Für eine sichere Montage von Ventilblöcken an Anpassungsflansche müssen die Schrauben über das Gehäuse des Moduls (d. h. die Schraubenbohrung) hinausragen, dürfen aber das Sensormodul nicht berühren.

Die unsachgemäße Installation oder Reparatur des SuperModule[™] mit Hochdruckoption (P0) kann zu schweren oder tödlichen Verletzungen führen.

 Um die sichere Montage zu gewährleisten, muss das Hochdruck SuperModule mit Schrauben gemäß ASTM A-193 Class 2, Grade B8M installiert und ein integrierter 305 Ventilblock oder ein DIN Anpassungsflansch verwendet werden.

Empfindliche Komponenten können durch statische Elektrizität beschädigt werden.

Die entsprechenden Handhabungsvorschriften für statisch empfindliche Komponenten befolgen.
3.3 Installation des Engineering Assistant

3.3.1 Engineering Assistant Version 6.1 oder höher

Der 3051SMV Engineering Assistant 6.1 oder höher ist eine PC-basierte Software, die Konfigurations-, Wartungs- und Diagnosefunktionen ausführt und als primäre Kommunikationsschnittstelle für den 3051S MultiVariable Messumformer mit Funktionsplatine für voll kompensierten Masse- und Energiedurchfluss dient.

Die 3051SMV Engineering Assistant Software ist erforderlich, um die Durchflusskonfiguration ausführen zu können.

3.3.2 Installation und Ersteinrichtung

Systemanforderungen für die Installation der 3051SMV Engineering Assistant Software:

- Pentium-Prozessor: 500 MHz oder schneller
- Betriebssystem: Windows 2000 (32 Bit), Windows XP Professional (32 Bit), Windows 7 (32 Bit) oder Windows 7 (64 Bit)
- 256 MB RAM
- 100 MB freier Festplattenspeicher
- Serielle RS232-Schnittstelle oder USB-Anschluss (für das HART Modem)
- CD-ROM-Laufwerk

Installation des 3051SMV Engineering Assistant ab Version 6.1

Die Engineering Assistant Software ist mit oder ohne HART Modem und Anschlusskabel lieferbar. Das Engineering Assistant Komplettpaket enthält die Software-CD und ein HART Modem mit Kabeln für den Anschluss des Computers an den 3051S MultiVariable Messumformer (siehe "Bestellinformationen" auf Seite 27).

- 1. Derzeit auf dem PC installierte Versionen von Engineering Assistant 6 deinstallieren.
- 2. Die Engineering Assistant-CD in das CD-ROM-Laufwerk einlegen.
- 3. Windows sollte die CD erkennen und das Installationsprogramm automatisch starten. Den Menüanweisungen folgen, um die Installation abzuschließen. Wenn Windows die CD nicht erkennt, mit Windows Explorer zum CD-ROM-Laufwerk navigieren und auf das Programm **SETUP.EXE** doppelklicken.
- 4. Das Installationsverfahren wird durch eine Reihe von Bildschirmen (Installationsassistent) unterstützt. Den Bildschirmanweisungen folgen. Es wird empfohlen, die standardmäßigen Installationseinstellungen zu verwenden.

Hinweis

Die Engineering Assistant Versionen ab 6.1 erfordern die Verwendung von Microsoft[®] .NET Framework ab Version 2.0. Wenn die .NET-Version 2.0 derzeit nicht installiert ist, wird die Software während der Installation des Engineering Assistant automatisch installiert. Microsoft .NET Version 2.0 erfordert zusätzliche 200 MB freien Festplattenspeicher.

Anschluss an einen PC

Abbildung 3-1 zeigt, wie ein Computer an den 3051S MultiVariable Messumformer angeschlossen wird.

Abbildung 3-1. Anschluss eines PC an den 3051S MultiVariable Messumformer

- 1. Den Gehäusedeckel von der Seite mit den Feldanschlussklemmen entfernen.
- 2. Das Gerät entsprechend den Anweisungen unter "Elektrischer Anschluss und Spannungsversorgung" auf Seite 21 verdrahten.
- 3. Das Kabel des HART Modems an den PC anschließen.
- 4. Auf der mit "Field Terminals" (Feldanschlussklemmen) gekennzeichneten Seite die Minigrabber des Modems an die beiden mit "PWR/COMM" gekennzeichneten Klemmen anschließen.
- 5. Den 3051SMV Engineering Assistant starten. Weitere Informationen zum Starten des Engineering Assistant sind unter "Starten des Engineering Assistant" auf Seite 15 zu finden.
- A. Nach Abschluss der Konfiguration den Gehäusedeckel wieder anbringen und festziehen, bis Metall an Metall anliegt, um die Anforderungen für druckfeste Kapselung und Ex-Schutz zu erfüllen. Weitere Informationen siehe "Montage des Gehäusedeckels" auf Seite 13.

3.4 Durchflusskonfiguration

3.4.1 3051SMV Engineering Assistant 6.1 oder höher

Der 3051SMV Engineering Assistant führt den Anwender durch die Erstellung der Durchflusskonfiguration eines 3051S MultiVariable Messumformers. Die Durchflusskonfigurations-Bildschirme ermöglichen dem Anwender die Angabe des Prozessmediums, der Betriebsbedingungen und der Informationen zum Wirkdruckgeber, einschließlich des Rohrinnendurchmessers. Diese Informationen werden vom 3051SMV Engineering Assistant verwendet, um die Parameter für die Durchflusskonfiguration zu erstellen, die an den Messumformer gesendet oder für zukünftige Verwendung gespeichert werden können.

Abbildung 3-2 zeigt das Flussdiagramm des 3051SMV Engineering Assistant, das den Anwender durch die Erstellung der Durchflusskonfiguration führt. Bei Anwendungen mit Erdgas, kundenspezifischen Flüssigkeiten oder kundenspezifischen Gasen erscheint ein zusätzlicher Bildschirm für die Eingabe der Gaszusammensetzung oder der Eigenschaften des Mediums.

Online- und Offline-Modus

Die Engineering Assistant Software kann in zwei Betriebsarten verwendet werden: Online und Offline. Im Online-Modus kann der Anwender die Konfiguration vom Messumformer abrufen, die Parameter bearbeiten, die geänderte Konfiguration an den Messumformer zurücksenden oder die Konfiguration in einer Datei speichern. Im Offline-Modus kann der Anwender eine neue Durchflusskonfiguration erstellen und die Konfiguration in einer Datei speichern oder eine bestehende Datei öffnen und ändern.

3.4.2 Überblick über die grundlegende Navigation

Fluid Selection *Solution ison ration (Sand *Nonand - 1-Vectore - 220rentybulane - 24Metyh 1-Vectore - Acetic Acid
Setup e i i i i i i i i i i i i
e
les les les ston theore ston theore th
les I - 1-Heptene stion - 1-Heptene stion - 1-Heptene Send - 1-Heptene - 1-Normal - 1-Normal - 1-Normal - 1-Normal - 1-Octane - 1-Octane - 1-Octane - 1-Octane - 1-Octane - 1-Octane - 1-Octane - 1-Pertene - 1-Pertene - 1-Pertene - 1-Pertene - 2-Distributare - 2-Distributare - Acetic Acid - Acetional - Aceti
bion I Headecand Headecand I Headecand Send I Headecand I Headecand Headecand I Headecand Headecan
doon - 1-Hearne Bend - 1-Nonanal 1-Nonanal - 1-Octanol 1-Octanol - 2-Octanol 1-Octanol - 2-Octanol/blance - Acetono - Acetonol - Acetone - Acetone - Acetone - Acetone <t< td=""></t<>
Send - 1Nonand - 1Nonand - 1Octanol - 1Octanol - 1Octanol - 1Octanol - 1Pertadocanol - 1Pertado - 1Pertado - 1Pertado - 1Pertado - 1Pertado - 220isethybotane - 2.20isethybotane - 2.20isethybotane - 2.20isethybotane - 2.20isethybotane - Acetonale -
Tallocanol T
I Octanol I Octanol I Octanol I Octanol I Perstanol I Perstanol I Perstanol I Perstanol Z 20methybularen Zaketyb I Perstene Acetorabi Acetorabi Acetorabi Acetorabi Acetorabi Acoloniale Acoloniale Acoloniale Acoloniale Acetorabi Faid Nome
- 10 clene - 20 methylutane - 20
I - I Perstanol I Perstanol I Perstanol I Perstanol I Perstanol Zohonstrybulare Zelonstrybulare
I-Pertene I-undecand I-undecand I-undecand Z-Dimethybulane Z-Abitehybulane Z-Abitehybulane Acetion Acetion Acet Acetion Acetion Acetion Acetion Aceti
Iurdecand - Lurdecand - Zohnethybulane - Zohnethybulane - Zohnethybulane - Acetorate
2.2.0methybutane 2.2.0methybutane 2.4.0methybutane 2.4.0methybutane Acetologic Acetone
Z-Metige/Pertenee Acetonae Acetonalie Acetonalie Acolytiene
Aceto Acid Acetoria Acetoria Acetorialia Acetorialia Acetorialia Acytorialia
Acetoniale A
Acetonitie Acetonitie Acolonitie A
Activitiene Activitene Activitiene Activitien
Acytomite 68.00 %
Fluid Name
Ehuid Name
a surve i numero,
Air
Coperating Conditions
Operating ranges for fluid property calculations:
Nonical councilies management 100,000, pc/ (doubling) 12,000, pc. (doubling)
gure / Setup roominal operating pressure: 100,000 ps (absoluce) 12,000 co 3626,000 ps (absoluce)
Nominal operating temperature: 75.00 °F 0.00 to 400.00 °F
e Diagnostics

Abbildung 3-3. Grundlegender Überblick über die Navigation des Engineering Assistant

Es stehen verschiedene Möglichkeiten zur Navigation der Engineering Assistant Software zur Verfügung. Die nachfolgende Nummerierung entspricht den Ziffern in Abbildung 3-3.

- 1. Die Navigationsregister enthalten Informationen zur Durchflusskonfiguration. Im Offline-Modus werden die einzelnen Registerkarten erst dann aktiv, wenn die Pflichtfelder auf der vorherigen Registerkarte vollständig ausgefüllt wurden. Im Online-Modus sind diese Registerkarten aktiviert, es sei denn, es wurde eine Änderung bei einer vorhergehenden Registerkarte vorgenommen.
- Mit der Schaltfläche Reset (Rücksetzen) können alle Felder auf allen Durchflusskonfigurations-Registerkarten (*Fluid Selection* [Auswahl des Mediums], *Fluid Properties* [Eigenschaften des Mediums] und *Primary Element Selection* [Auswahl des Wirkdruckgebers]) auf die Werte zurückgesetzt werden, die vor Beginn der Konfiguration eingestellt waren.
 - a. Mit der Schaltfläche **Reset** können alle Felder auf allen Durchflusskonfigurations-Registerkarten (*Fluid Selection* [Auswahl des Mediums], *Fluid Properties* [Eigenschaften des Mediums] und *Primary Element Selection* [Auswahl des Wirkdruckgebers]) auf die Werte zurückgesetzt werden, die vor Beginn der Konfiguration eingestellt waren.

- b. Bei Bearbeitung einer zuvor gespeicherten Durchflusskonfiguration werden diese Einstellungen auf die Werte zurückgesetzt, die zuletzt gespeichert wurden. Beim Starten einer neuen Durchflusskonfiguration werden alle eingegebenen Werte gelöscht.
- 3. Die Schaltfläche **Back** (Zurück) dient dem Rückwärtsblättern durch die Durchflusskonfigurations-Registerkarten.
- 4. Die Schaltfläche **Next** (Weiter) dient dem Vorwärtsblättern durch die Durchflusskonfigurations-Registerkarten. Die Schaltfläche Weiter wird erst dann aktiv, wenn alle Pflichtfelder auf der aktuellen Seite vollständig ausgefüllt wurden.
- 5. Die Schaltfläche **Help** (Hilfe) kann jederzeit verwendet werden, um eine detaillierte Erläuterung der auf der aktuellen Konfigurations-Registerkarte erforderlichen Informationen anzuzeigen.
- 6. Jegliche Konfigurationsinformationen, die eingegeben oder geprüft werden müssen, werden in diesem Teil des Bildschirms angezeigt.
- Diese Menüs dienen der Navigation der Registerkarten Configure Flow, Basic Setup, Device, Variables, Calibration und Save/Send (Durchfluss konfigurieren, Grundeinstellung, Gerät, Variablen, Kalibrierung und Speichern/Senden).
- Diese Schaltflächen dienen der Navigation zu den Abschnitten Config/Setup, Device Diagnostics oder Process Variables (Konfiguration/Einstellung, Gerätediagnose oder Prozessvariablen).

3.4.3 Starten des Engineering Assistant

Die Durchflusskonfiguration des 3051S MultiVariable Messumformers wird durch Starten der Engineering Assistant Software vom Windows Menü *START* begonnen. Die folgenden Schritte erläutern, wie die Engineering Assistant Software geöffnet und mit einem Gerät verbunden wird.

- 1. **Start > Alle Programme > Engineering Assistant** wählen. Der Engineering Assistant wird geöffnet und zeigt den in Abbildung 3-4 auf Seite 16 dargestellten Bildschirm an.
- 2. Zur Arbeit im Offline-Modus auf dem in Abbildung 3-4 dargestellten Bildschirm rechts unten auf die Schaltfläche **Offline** klicken.

Zur Arbeit im Online-Modus auf dem in Abbildung 3-4 dargestellten Bildschirm rechts unten auf die Schaltfläche **Search** (Suchen) klicken. Der Engineering Assistant beginnt mit der Suche nach Geräten, die online sind. Nach Abschluss der Suche das Gerät, mit dem kommuniziert werden soll, auswählen und auf **Receive Configuration** (Konfiguration empfangen) klicken. Siehe Abbildung 3-4.

Der HART Master Level kann entweder auf "Primär" oder "Sekundär" eingestellt werden. "Sekundär" ist die Standardeinstellung, die verwendet werden sollte, wenn der Messumformer sich auf dem gleichen Segment wie ein anderes HART Kommunikationsgerät befindet. Der COM Port und die Geräteadresse können ebenfalls, sofern erforderlich, bearbeitet werden.

	Communications Protocol
HARI I	HART 🗸
	HART Master Level
	Secondary 💌
	COM Port
	COM1 💌
	Device Address
	0 💌
	Search Receive Configuration Offline
	Search Receive Configuratio Offline

Abbildung 3-4. Bildschirm "Device Connection" (Angeschlossene Geräte) des Engineering Assistant

3.4.4 Voreinstellungen

Die in Abbildung 3-5 dargestellte Registerkarte *Preferences* (Voreinstellungen) ermöglicht dem Anwender die Auswahl der bevorzugten physikalischen Einheiten für die Anzeige und die Eingabe der für die Durchflusskonfiguration erforderlichen Informationen.

- Die bevorzugten Maßeinheiten auswählen. Die Einstellung "Custom Units" (Kundenspezifische Einheiten) für Einheiten verwenden, die keine standardmäßigen US- oder SI-Einheiten sind. Bei Auswahl von *Custom Units* die Werte im Bereich *Individual Parameters* (Einzelne Parameter) mithilfe der Dropdown-Menüs konfigurieren.
- Die ausgewählten Voreinstellungen für Einheiten werden vom Engineering Assistant für zukünftige Sitzungen gespeichert. Das Kontrollkästchen markieren, um zu verhindern, dass die Registerkarte *Preferences* (Voreinstellungen) in zukünftigen Sitzungen automatisch angezeigt wird. Die Voreinstellungen können stets durch Klicken auf die Registerkarte *Voreinstellungen* aufgerufen werden.

Rosemount Engineerin	ng Assistant			
jle Utilities Help				
Configure / Setup	Preferences Fluid Selection Fluid Properties Prin	nary Element Selection		mar h
Configure Flow	Flow Configuration			
Basic Setup				
Device	Units	Individual Parameter	ers	
Variables	⊙ U. S. Units	Pressure:	Pounds per Square Inch (psi)	Y
Calbration	O.S. I. Units	Temperature:	Degrees Fahrenheit (°F)	Y
Save/Send	Custom Units	Length:	Inches (in)	¥
	Patain these preference selections	Density:	Pounds per Cubic Foot (lb/ft3)	Y
	For future use and do not display this tab unless it is selected	Viscosity:	Centipoise (cP)	~
		Energy:	BTUs (BTU)	¥
Configure / Setup Device Diagnostics				

3.4.5 Auswahl des Mediums aus der Datenbank mit Flüssigkeiten/Gasen

Die in Abbildung 3-6 dargestellte Registerkarte *Fluid Selection* (Auswahl des Mediums) ermöglicht die Auswahl des Prozessmediums.

Das folgende Beispiel zeigt eine Durchflusskonfiguration für eine Anwendung mit der Datenbank "Gas-Luft" als Prozessmedium und mit einer 405C Kompaktmessblende als Wirkdruckgeber. Das Verfahren zum Einrichten einer Anwendung mit anderen Medien und einem anderen Wirkdruckgeber ist ähnlich. Erdgas, kundenspezifische Flüssigkeiten und kundenspezifische Gase erfordern zusätzliche Konfigurationsschritte. Weitere Informationen siehe "Konfiguration anderer Medien" auf Seite 26.

- 1. Wenn beim Start des Engineering Assistant die Registerkarte *Preferences* (Voreinstellungen) geöffnet wird, mithilfe der Registerkarten am oberen Bildschirmrand zur Registerkarte *Auswahl des Mediums* wechseln.
- 2. Die Kategorie **Gas** erweitern (auf das Symbol + klicken).
- 3. Die Kategorie **Database Gas** erweitern.
- 4. Das entsprechende Medium (in diesem Beispiel **Air**) aus der Liste der Datenbank-Prozessmedien auswählen.

Abbildung 3-7. Registerkarte "Fluid Selection" (Auswahl des Mediums) – Datenbank "Gas-Luft"

flow Flow	Configuration:		Fluid Selection / Op	erating Conditions
Flo	uid Selection			
n, zerup Ace Jables Brakkin re/Send	10 Odecand 10 Odecand 10 Odecane 14 Heptine 14 Heptine 14 Heptine 14 Hendecand 14 Hendecand 14 Hendecand 10 Odene 10		Reference Conditions Reference pressure: Reference temperature:	14.6% psi (absolute 68.00 °F
Flu	aid Name			
A	r			
	Operating Conditions	Opera	ting ranges for fluid property calculati	ons:
nfigure / Setup	Nominal operating pressure: Nominal operating temperature:	100.000 psi (absolute) 75.00 °F	12.000 to 3626.000 p 0.00 to 400.00 9	si (absolute) :

5. Den Wert für *Nominal Operating Pressure* (Nominaler Betriebsdruck) eingeben und die **Eingabetaste** oder die **Tabulatortaste** drücken.

Hinweis

Der nominale Betriebsdruck muss in Absolutdruck-Einheiten eingegeben werden.

6. Den Wert für *Nominal Operating Temperature* (Nominale Betriebstemperatur) eingeben und die **Eingabetaste** oder die **Tabulatortaste** drücken. Der Engineering Assistant trägt automatisch empfohlene Werte für die Betriebsbereiche ein (siehe Abbildung 3-7). Diese Werte können je nach Anwendung vom Benutzer geändert werden. 7. Sicherstellen, dass die Werte unter *Reference Conditions* (Referenzbedingungen) den Anwendungsanforderungen entsprechen. Diese Werte können ebenfalls je nach Anwendung geändert werden.

Hinweis

Die Werte für Referenzdruck und -temperatur werden vom Engineering Assistant verwendet, um den Durchfluss umzurechnen (von Masseeinheiten in als Standard- bzw. normale volumetrische Einheiten ausgedrückte Masseeinheiten).

8. Auf **Next >** (Weiter) klicken, um mit der Registerkarte *Fluid Properties* (Eigenschaften des Mediums) fortzufahren.

Tabelle 3-2. Datenbank der Flüssigkeiten und Gase des 3051S MultiVariable Messumformers

1,1,2,2–Tetrafluoroethan	2,2–Dimethylbutan	Distickstoffoxid	Melamin	Phenol
1,1,2–Trichloroethan	2-Methyl-1-Penten	Divenylether	Methan	Propadien
1,2,4–Trichlorbenzen	Acetic Acid	Essigsäure	Methanol	Propan
1,2–Butadien	Aceton	Ethan	Methylacrylat	Propylen
1,2–Propylenglykol	Acetonitril	Ethanol	Methylethylketon	Pyren
1,3–Propylenglykol	Acetylen	Ethylamin	Methylvinylether	Salpetersäure
1,3,5–Trichlorobenzol	Acrylonitril	Ethylbenzen	n-Heptan	Sauerstoff
1,3–Butadien	Allylalkohol	Ethylen	n-Nonan	Schwefeldioxid
1,4–Dioxan	Ameisensäure	Ethylenglykol	n–Butan	Schwefelwasserstoff
1,4–Hexadien	Ammoniak	Ethylenoxid	n–Butanal	Sorbitol
1–Buten	Anilin	Fluoren	n–Butanol	Stickstoff
1–Decanol	Argon	Formaldehyd	n–Butyronitril	Stickstoffmonoxid
1–Decylen	Benzaldehyd	Furan	n-Decan	Stickstofftrifluorid
1–Dodecanol	Benzen	Helium–4	n–Dodecan	Styrol
1–Dodeczen	Benzylalkohol	Hydrazin	n–Heptadecan	Tetrachlormethan
1–Heptanol	Biphenyl	Isobutan	n–Hexan	Toluol
1–Hepten	Blausäure	Isobutylbenzen	n–Oktan	Trichlorethylen
1–Hexadecanol	Bromin	Isohexan	n–Pentan	Vinylacetat
1–Hexen	Chlor	Isopren	Neon	Vinylacetylen
1–Octanol	Chloropren	Isopropanol	Nitrobenzen	Vinylchlorid
1–Okten	Chlortrifluorethylen	Kohlendioxid	Nitroethan	Vinylcyclohexan
1–Nonanol	Cyclohexan	Kohlenmonoxid	Nitromethan	Wasser
1–Pentadecanol	Cyclopentan	Luft	Nonanal	Wasserstoff
1–Pentanol	Cyclopenten	m–Chloronitrobenzol	p-Nitroanilin	Wasserstoffchlorid
1–Penten	Cyclopropan	m–Dichlorobenzol	Pentafluorethan	Wasserstoffperoxid
1–Undecanol	Decanal			Zykloheptan

3.4.6 Eigenschaften des Mediums

Hinweis

Das Ausfüllen der Registerkarte *Fluid Properties* (Eigenschaften des Mediums) ist ein optionaler Schritt, der für die Durchführung einer Durchflusskonfiguration nicht zwingend erforderlich ist.

Die Registerkarte *Eigenschaften des Mediums* für die Gas-Luft-Datenbank ist in Abbildung 3-8 dargestellt. Der Anwender kann die Eigenschaften des gewählten Mediums anzeigen. Die Eigenschaften des Mediums werden zunächst bei Normbedingungen angezeigt. Zum Anzeigen der Dichte, Kompressibilität und Viskosität des ausgewählten Mediums bei anderen Druck- und Temperaturwerten einen Wert für "Pressure" (Druck) und "Temperature" (Temperatur) eingeben und auf **Calculate** (Berechnen) klicken.

Zum Wechseln zwischen *Density* (Dichte) und *Compressibility* (Kompressibilität) die Dropdown-Menüs verwenden.

Hinweis

Die Änderung der Druck- und Temperaturwerte auf der Registerkarte *Eigenschaften des Mediums* hat keinen Einfluss auf die Durchflusskonfiguration.

Rosemount Engineerin	g Assistant		
ile Utilities Help			
onfigure / Setup	Preferences Fluid Selection Fluid Properties Primar	y Element Selection	
Configure Flow	Flow Configuration:		Fluid Properties
Basic Setup Device Variables Calbration Save/Send	Fluid Properties for Database Gas - Air P and T Values Pressure: 100.000 psi Temperature: 75.00 9F Calculate	Density and Viscosity Values – Pressure Temperatur 100.000 psi 75.00 % Temperatur 75.00 %	e Density/Compressibility 0.5508076 bit% Density ¥ e ¥iscosity 0.0194 c ⁹
	Other Fluid Properties Reference Density 14.696 pci 0.0751975 bjft> and 68.00 % Isonopce Isonopce Molecular weight 1.40142 28.9649	/ Densky 💌	To view fluid properties at other process conditions within the specified operating range, edit the pressure and/or temperature fields above.
Configure / Setup Device Diagnostics Process Variables			Reset < Back Next > Help
igure / Setup - Configure Fi	ow - Fluid Properties		OFFLINE

Abbildung 3-8. Registerkarte "Fluid Properties" (Eigenschaften des Mediums)

3.4.7 Auswahl des Wirkdruckgebers

Die in Abbildung 3-9 dargestellte Registerkarte *Primary Element Selection* (Auswahl des Wirkdruckgebers) ermöglicht dem Anwender die Auswahl des Wirkdruckgebers, der mit dem 3051S MultiVariable Messumformer verwendet werden soll. Diese Datenbank mit Wirkdruckgebern enthält:

- Von Rosemount entwickelte Wirkdruckgeber wie den Annubar[™] und die Kompaktmessblende
- Standardisierte Wirkdruckgeber nach ASME, ISO und AGA
- Andere spezielle Wirkdruckgeber

• Uklies Bdo > Configure / Setup > Configure / Setup > Darks Soluo > Darks Soluo > Darks Soluo > Configure / Setup * Device Diagnostics > Process Variables		lement Selection	Primary Element Selection	Ð
Infigure / Setup Preferences / Fluid Selection / Fluid Properties / Primary Element Selection	Professor Print Selection Plud Selection Plud Selection Plud Selection Plud Selection Configure Flow Flow Configuration: Primary Plumary Series Setup Primary element selection Plumary Device Primary element selection Variables Primary of Plut Conditioning Online Primary element selection Series Setup Primary element selection	Internet Selection	Primary Element Selection	9
Configure flow Point Configuration: Primary Element Selection Device Arnubar® Configure / Setup Other Configure / Setup Device Nations Point Configure / Setup Device Nations	Configure Now Flow Configuration: Basic Setup Primary element selection Device Annubrilly Conditioning Orfice Conditioning Orfice Conditioning Orfice SeverStend 		Primary Element Selection	
Basi: Setup Device Variables Calibration Saver/Send Image: Nazade Ima	Basi: Setup Device Primary element selection Device Caltration Caltration Werkun Save/Send Caltration Caltrati			
Device Image: Arrubaring Image: Arru	Device II: Annubar® Variables II: Conditioning Office Variables II: Conditioning Office II: Calibration II: Venturi II: Nozzle Save/Send II: Other			
SavegSand	Save/Send It: Nozae			
Configure / Setup Device Diagnostics Process Variables				
Configure / Setup Device Diagnostics Process Variables				
Configure / Setup Device Diagnostics Process Variables				
Configure / Setup Device Diagnostics Process Variables				
Configure / Setup Device Diagnostics Process Variables				_
Configure / Setup Device Diagnostics Process Variables				
Configure / Setup Device Diagnostics Process Variables				
Configure / Setup Device Diagnostics Process Variables				
Configure / Setup Device Diagnostics Process Variables				
Configure / Setup Device Diagnostics Process Variables				
Device Diagnostics Process Variables	Configure / Setup			
Process Variables	Device Diagnostics			
Reset C Back Hext > Hep	Process Variables	Rest	et <back next=""> Help</back>	1

Fortsetzung der Beispielkonfiguration:

1. Die Kategorie **Conditioning Orifice Plate** (Kompaktmessblende) erweitern.

Configure Flow Flow Configuration: Primary Element Selection Basi: Setup Primary element selection Primary Element Selection Device	igure / Setup	Preferences Fluid Selection Fluid Properties Primary Element Selection	
Configure / Setup Device Viriales Calibration Save/Send Primary Element selection Primary Selement selection Primary Selement selection Primary Selement selection Primary Element Selection Primary Element Statig Prim	antiques Flour	Flow Configuration:	Primary Element Selection
Primary Element Soing Nominal pipe size: Pipe schedule: Calibration Nominal pipe size: Pipe schedule: Calibration I.0000 Meter tube dameter (pipe Dir): 4.0260 in at 68.00 rp Meter tube material: Catoon Sizel Por best results exter actual pipe/inter tube ID For best results exter actual Line Size: 4 in Beta: 0.4 Material: [316 Stainless Steel V	asic Setup evice ariables albration ave/Send	Primary element selection	
Line Stee: 4 in Beta: 0.4 Im Configure / Setup Material: 316 Stainless Steel Im Im			
		Primary Element Sking Nominal pipe site: Meter tube diameter (oppe ID): Meter tube material: Problem results enter actual problem tube ID Problem results enter actual populmeter tube ID	Calibration Factor: 1.0000

Abbildung 3-10. Registerkarte "Primary Element Selection" (Auswahl des Wirkdruckgebers) – 405C/3051SFC

- 2. Die Option **405C/3051SFC** auswählen.
- 3. Den Wert für *Measured Meter Tube Diameter (pipe ID)* (Gemessener Durchmesser des Messrohrs [Rohrinnendurchmesser]) bei einer *Reference Temperature* (Referenztemperatur) eingeben. Wenn der Durchmesser des Messrohrs nicht gemessen werden kann, einen Wert für *Nominal Pipe Size* (Rohrnennweite) und *Pipe Schedule* (Rohrklasse) auswählen, um einen Schätzwert für den Durchmesser des Messrohrs zu verwenden (nur US-Einheiten).
- 4. Falls erforderlich, die Auswahl unter *Meter Tube Material* (Werkstoff des Messrohrs) ändern.
- 5. *Line Size* (Nennweite) eingeben und den Wert *Beta* für die Kompaktmessblende auswählen. Die für einen Wirkdruckgeber erforderlichen Auslegungsparameter sind abhängig vom gewählten Wirkdruckgeber unterschiedlich.
- 6. Falls erforderlich, das *Primary Element Material* (Werkstoff des Wirkdruckgebers) aus dem Dropdown-Menü auswählen.
- 7. In das Feld Calibration Factor kann ein Kalibrierfaktor eingegeben werden, wenn ein kalibrierter Wirkdruckgeber verwendet wird.

Hinweis

Ein Joule-Thomson Coefficient (Joule-Thomson Koeffizient) kann aktiviert werden, um den Unterschied in der Prozesstemperatur zwischen der Position der Messblende und der Messstelle für die Prozesstemperatur zu kompensieren. Der Joule-Thomson Koeffizient ist mit ASME MFC-3M-2 (2004) oder ISO 5167-2.2003 (E) Messblenden zur Verwendung mit den Datenbank-Gasen, überhitztem Dampf oder der molaren Zusammensetzung von Erdgas gemäß AGA DCM/ISO verfügbar. Weitere Informationen über den Joule-Thomson Koeffizienten sind dem entsprechenden Standard der Messblende zu entnehmen.

8. Auf **Next >** (Weiter) klicken, um mit der Registerkarte *Save/Send Configuration* (Konfiguration speichern/senden) fortzufahren.

Beta-Verhältnisse und Durchmesser von Differenzdruckgebern müssen innerhalb der Grenzwerte einschlägiger Normen liegen, um die Einhaltung zutreffender nationaler oder internationaler Normen zu gewährleisten. Die Engineering Assistant Software weist den Anwender darauf hin, wenn ein für einen Wirkdruckgeber eingegebener Wert diese Grenzwerte überschreitet, erlaubt dem Anwender jedoch, mit der Durchflusskonfiguration fortzufahren.

3.4.8 Speichern/Senden

Mithilfe der in Abbildung 3-11 dargestellten Registerkarte *Save/Send Configuration* (Konfiguration speichern/senden) kann der Anwender die Konfigurationsinformationen prüfen, speichern und an den 3051S MultiVariable Messumformer mit Funktionsplatine für voll kompensierten Masse- und Energiedurchfluss senden.

1. Die Informationen unter den Überschriften "Flow Configuration" (Durchflusskonfiguration) und "Device Configuration" (Gerätekonfiguration) überprüfen.

Hinweis

Weitere Informationen zur Gerätekonfiguration sind unter "Grundkonfiguration des Messumformers" auf Seite 31 zu finden.

Rosemount Engineering As	sistant		-	
Ele Utilities Help				
Configure / Setup	Save / Send Configuration			
Configure Flow	Configure / Setup		Save/Send	
Basic Setup Device Variables Calbration Save/Send	Flow Configuration Fluid Selection/Operating Conditions Fluid: Air Nomial Pressure: 100.000 psi(absolute) Nomial Temperature: 75.00 °F Pressure Range: 12:000 to 3656.000 pc(absolute) Temperature Range: 10:000 to 3656.000 pcf	Primary Element Selection		
(y,	Reference Temperature: 68:00 %	Ppe navena: Caruon Sketi	Fluid Properties Molecular Weight: 28.965 Isentropic Exponent: 1.4021 Reference Density: 0.0751974 b)ft ³	<u>4</u>
	Send Flow Data Flow Config	guration Changes Have Not Yet Been Sent or We	re Sent Unsuccessfully	
	Device Configuration			
	Analog Output	Identification	Flow	
	4 mA = 20 mA = Variable Mapping	Tag: Long Tag: Date: 1/1/1900 Descriptor: Messane:	Flow Calc Type: Mass Flow Flow LSL: 0 Ib/s Flow USL: 65.2522 Ib/s Flow Damping: 0.40 sec DP Low Elow: Cutoff: 0.05 ist420	
	Primary Variable: Second Variable: Third Variable: Fourth Variable:	Process Temperature	Totalizer Totalizer Mode:	0
Configure / Setup	Comm Setup		Totaized Parameter: How Output	
Device Diagnostics	1			
Process Variables	Send Device Data		Save Send To Help	
Configure / Setup - Save/Send - Save	e / Send Configuration		OFF	LINE

- 2. Auf das Symbol über dem jeweiligen Fenster klicken, um den entsprechenden Bildschirm aufzurufen und die Konfigurationsinformationen zu bearbeiten. Zum Zurückkehren zur Registerkarte *Save/Send* im linken Menü auf **Save/Send** klicken.
- 3. Wenn alle Informationen korrekt sind, mit "Senden einer Konfiguration im Offline-Modus" auf Seite 24 oder "Senden einer Konfiguration im Online-Modus" auf Seite 25 fortfahren.

Der Anwender wird darauf aufmerksam gemacht, wenn die Konfiguration geändert wurde, seit sie das letzte Mal an den Messumformer gesendet wurde. Die Warnmeldung erscheint rechts neben den Kontrollkästchen *Send Flow Data* (Durchflussdaten senden) und/oder *Send Device Data* (Messumformerdaten senden).

Senden einer Konfiguration im Offline-Modus

1. Auf die Schaltfläche **Send To** (Senden an) klicken, um die Konfiguration zu senden.

Hinweis

Die Kontrollkästchen *Send Flow Data* (Durchflussdaten senden) und/oder *Send Device Data* (Gerätedaten senden) können verwendet werden, um festzulegen, welche Konfigurationsdaten an den Messumformer gesendet werden sollen. Wenn das Kontrollkästchen nicht markiert wird, werden die entsprechenden Daten nicht gesendet.

Abbildung 3-12. Bildschirm "Device Connection" (Angeschlossene Geräte) des Engineering Assistant

© Rosemount Engineering Assistant		- • ×
	Communications	Protocol
HART JOS1SMV with Fully Companyated Mass and Energy Flow @0	HART	~
door only want any compensated mass and chargy now (20,	HART Master Lev	/el
	Secondary	~
	COM Port	
	COM1	~
	Device Address	
	0	~
	Search Send Configur Help	ation
Search is complete		

- 3. In der rechten unteren Ecke des Bildschirms auf die Schaltfläche **Search** (Suchen) klicken. Der Engineering Assistant beginnt mit der Suche nach angeschlossenen Geräten.
- 4. Nach Abschluss der Suche das Gerät, mit dem kommuniziert werden soll, auswählen und auf **Send Configuration** (Konfiguration senden) klicken.
- 5. Der Benutzer wird durch ein Popup-Dialogfeld informiert, wenn die Konfiguration vollständig an das Gerät gesendet wurde.
- 6. Nach Abschluss der Konfiguration kann der Anwender den Engineering Assistant schließen.

^{2.} Der Bildschirm "Device Connection" (Angeschlossene Geräte) des Engineering Assistant wird eingeblendet (siehe Abbildung 3-12).

Nachdem die Konfiguration an das Gerät gesendet wurde, sollte die Konfigurationsdatei gespeichert werden. Weitere Informationen zum Speichern einer Konfigurationsdatei sind unter "Speichern einer Konfiguration" auf Seite 25 zu finden.

Senden einer Konfiguration im Online-Modus

- 1. Auf die Schaltfläche **Send** (Senden an) klicken, um die Konfiguration zu senden. Der Benutzer wird durch ein Popup-Dialogfeld informiert, wenn die Konfiguration vollständig an das Gerät gesendet wurde.
- 2. Nach Abschluss der Konfiguration kann der Anwender den Engineering Assistant schließen.

Hinweis

Nachdem die Konfiguration an das Gerät gesendet wurde, sollte die Konfigurationsdatei gespeichert werden. Weitere Informationen zum Speichern einer Konfigurationsdatei sind unter "Speichern einer Konfiguration" auf Seite 25 zu finden.

Speichern einer Konfiguration

- 1. Auf die Schaltfläche **Save** (Speichern) klicken, um die Konfiguration zu speichern.
- 2. Zum Speicherort der Konfigurationsdatei navigieren, die Datei benennen und auf **Save** klicken. Die Konfigurationsdatei wird mit der Dateierweiterung ".smv" gespeichert.

Senden einer gespeicherten Konfiguration

- 1. Zum Senden einer gespeicherten Konfiguration den Engineering Assistant im Offline-Modus öffnen und **File > Open** (Datei > Öffnen) wählen.
- 2. Zu der gespeicherten .smv Datei navigieren, die gesendet werden soll. Auf Öffnen klicken.
- 3. Der Bildschirm "Device Connection" (Angeschlossene Geräte) des Engineering Assistant wird eingeblendet (siehe Abbildung 3-12 auf Seite 24).
- 4. In der rechten unteren Ecke des Bildschirms auf die Schaltfläche **Search** (Suchen) klicken. Der Engineering Assistant beginnt mit der Suche nach angeschlossenen Geräten.
- 5. Nach Abschluss der Suche das Gerät, mit dem kommuniziert werden soll, auswählen und auf **Send Configuration** (Konfiguration senden) klicken.
- 6. Der Benutzer wird durch ein Popup-Dialogfeld informiert, wenn die Konfiguration vollständig an das Gerät gesendet wurde.
- 7. Nach Abschluss der Konfiguration kann der Anwender den Engineering Assistant schließen.

3.4.9 Konfiguration anderer Medien

Erdgas

Durchflusskonfiguration von Erdgas gemäß AGA No. 8, Detail Characterization oder ISO 12213, Molar Composition

- 1. Die Kategorie **Gas** erweitern.
- 2. Die Kategorie **Natural Gas** (Erdgas) erweitern.
- 3. Die Methode AGA Report No. 8 Detail Characterization (Detail-Charakterisierung) oder ISO 12213, Molar Composition (Molare Zusammensetzung) wählen.
- 4. Auf **Next >** (Weiter) klicken, um mit der Registerkarte *Fluid Composition* (Zusammensetzung des Mediums) fortzufahren. Abbildung 3-13 zeigt ein Beispiel der Registerkarte *Fluid Composition* für die Methode "AGA Report No. 8 Detail Characterization". Die Registerkarte *Fluid Composition* für die Methode "ISO 12213, Molar Composition" erfordert die Eingabe der gleichen Informationen.

the Unitation Main	e Assistant				66
rie ukikies Help	B				
onfigure / Setup	Preferences Fluid Selection Fluid Composition Fluid Properties	Primary Element Sel	ection		
D	Flow Configuration:				AGA DCM
Configure Flow Basic Setup Device Variables Calibration Save/Send	How Configuration: — AGA Report No. 8 Composition Data Available Components Morogen Carbon Dioxide Ehane Propane Water Hydrogen Safide Hydrogen Carbon Monoxide Oxygen Babutane nelbatane nebutane nebutane	Selected C Component	omponents	Mole %	
	n-Nonane		Clear Normalize	Total mole %:	0.0000
	n-Decane Heldum Argon			Molecular weight: Heating value:	0.0000 0.0000 BTU/ft ³
	n-Decare Helum Argon	-	Oneration canner for B	Molecular weight: Heating value:	0.0000 0.0000 BTU/ft ³
	n-Decane Helum Argon - Operating Conditions	psi (aber	Operating ranges for fk	Molecular weight:	0.0000 0.0000 BTU/R
	n-Decane Helum Argon — Operating Conditions 	psi (abso	Operating ranges for fit lute) to	Molecular weight: Heating value: id property calculations: psi (absolut	0.0000 0.0000 BTU/ft'
onfigure / Setup	n-Oecane Helum Argon — Operating Conditions — Nominal operating pressure: Nominal operating temperature:	psi (abso ep	Operating ranges for flute) b	Molecular weight: Heating value: id property calculations: property calcu	0.0000 0.0000 BTU/ft ³ :e)
onfigure / Setup evice Diagnostics	n-Oceane Helum Argon —Operating Conditions — 	psi (abso epi ven finished entering	Operating ranges for flu Aute) b b c r editing a value press Enter	Molecular weight: Heating value: id property calculations: pi (absolut pi (absolut pi (absolut pi (absolut pi (absolut)	0.0000 0.0000 BTU/ft ² :e)

Abbildung 3-13. Registerkarte "Fluid Composition" (Zusammensetzung des Mediums)

- 5. Im Fenster Available Components (Verfügbare Komponenten) die erforderlichen Komponenten auswählen und mithilfe der Schaltfläche >> in das Fenster Selected Components (Ausgewählte Komponenten) verschieben. Mithilfe der Schaltfläche << können die Komponenten wieder in das Fenster Available Components zurück verschoben werden. Mithilfe der Schaltfläche Clear (Löschen) werden alle Komponenten wieder in das Fenster Available Components zurück verschoben.
- 6. Nachdem alle erforderlichen Komponenten in das Fenster *Ausgewählte Komponenten* verschoben wurden, mit dem Zuweisen der prozentualen Zusammensetzung jeder Komponente in der Spalte *Mole* % (Mol %) beginnen.

Die Summe der prozentualen Zusammensetzung muss 100 % ergeben. Andernfalls auf die Schaltfläche **Normalize** (Normalisieren) klicken, um die Molprozentwerte proportional auf eine Summe von 100 % einzustellen.

7. Den Wert für *Nominal Operating Pressure* (Nominaler Betriebsdruck) und anschließend, nachdem die Eingabefelder verfügbar werden, den Wert für *Nominal Operating Temperature* (Nominale Betriebstemperatur) eingeben. Der Engineering Assistant füllt die empfohlenen Betriebsbereiche automatisch aus, die Werte können jedoch vom Benutzer geändert werden.

Hinweis

Die AGA-Vorschriften erfordern, dass die Berechnungsgenauigkeit innerhalb von ±50 ppm (±0,005 %) liegt. Dies ist im AGA-Report Nr. 3, Teil 4, Abschnitt 4.3.1, angegeben. Die Betriebsbereiche für Druck und Temperatur werden automatisch gemäß dieser Vorschrift ausgefüllt.

- 8. Auf **Weiter >** klicken, um die Registerkarte *Fluid Properties* (Eigenschaften des Mediums) aufzurufen.
- 9. Mit den Schritten unter "Eigenschaften des Mediums" auf Seite 20 fortfahren.

Durchflusskonfiguration von Erdgas gemäß AGA No. 8, Gross Characterization Methode 1, Methode 2 und ISO 12213, Physical Properties (SGERG 88)

- 1. Die Kategorie **Gas** erweitern.
- 2. AGA No. 8 Gross Characterization Method 1, AGA No. 8 Gross Characterization Methode 2 oder ISO 12213, Physical Properties (SGERG 88) wählen.
- 3. Auf **Next** (Weiter) klicken, um mit der Registerkarte *Fluid Composition* (*Zusammensetzung des Mediums*) fortzufahren.
- 4. Die erforderlichen Daten für die Erdgas-Charakterisierungsmethode eingeben, die in Schritt 2 ausgewählt wurde. Die für die jeweilige Methode erforderlichen Daten sind in Tabelle 3-3 aufgelistet.

Charakterisierungsmethode	Erforderliche Daten	Optionale Daten
AGA Report No. 8 Gross Characterization Method 1	Relative Dichte ⁽¹⁾ Molprozent CO ₂ Volumetrischer Bruttobrennwert ⁽²⁾	Molprozent CO Molprozent Wasserstoff
AGA Report No. 8 Gross Characterization Method 2	Relative Dichte ⁽¹⁾ Molprozent CO ₂ Molprozent Stickstoff	Molprozent CO Molprozent Wasserstoff
ISO 12213, Physical Properties (SGERG 88)	Relative Dichte ⁽¹⁾ Molprozent CO ₂ Volumetrischer Bruttobrennwert ⁽²⁾	Molprozent CO Molprozent Wasserstoff

Tabelle 3-3. Erforderliche und optionale Daten für die Erdgas-Charakterisierungsmethoden

(1) Referenzbedingungen für die relative Dichte sind 15,56 °C (60 °F) und 101,56 kPa (14,73 psia).

 (2) Referenzbedingungen für den molaren Bruttobrennwert sind 15,56 °C (60 °F) und 101,56 kPa (14,73 psia) und für die molare Dichte sind 15,56 °C (60 °F) und 101,56 kPa (14,73 psia).

- 5. Falls erforderlich die optionalen Daten für die Erdgas-Charakterisierungsmethode eingeben, die in Schritt 2 ausgewählt wurde. Die für jede Methode optionalen Daten sind in Tabelle 3-3 aufgelistet.
- 6. Den Wert für *Nominal Operating Pressure* (Nominaler Betriebsdruck) und anschließend, nachdem die Eingabefelder verfügbar werden, den Wert für *Nominal Operating Temperature* (Nominale Betriebstemperatur) eingeben. Der Engineering Assistant füllt die empfohlenen Betriebsbereiche automatisch aus, die Werte können jedoch vom Benutzer geändert werden.
- 7. Auf **Weiter** klicken, um die Registerkarte *Fluid Properties* (Eigenschaften des Mediums) zu öffnen.
- 8. Mit den Schritten unter "Eigenschaften des Mediums" auf Seite 20 fortfahren.

Kundenspezifisches Gas

Die Option "Custom Gas" (Kundenspezifisches Gas) sollte für Medien verwendet werden, die nicht in der Datenbank enthalten sind. Dazu gehören spezielle Flüssigkeits- und Gasgemische. Um die Medieneigenschaften ordnungsgemäß berechnen zu können, muss der Kompressibilitätsfaktor oder die Dichte bei bestimmten Druck- und Temperaturwerten eingegeben werden, die von den vom Anwender eingegebenen Betriebsbereichen abhängig sind. Die Druck- und Temperaturwerte können je nach Anwendung geändert werden. Werte, die geändert werden können, erscheinen in Feldern mit weißem Hintergrund. Für optimale Ergebnisse sollten die Kompressibilitäts- oder Dichtewerte möglichst bei den vorgegebenen Druck- und Temperaturwerten eingegeben werden.

Um die Eingabe der Kompressibilitäts-/Dichte- oder Viskositätswerte zu erleichtern, können diese Daten aus einem Spreadsheet in die Tabelle kopiert werden. Es wird empfohlen, die Druckund Temperaturwerte aus der Tabelle auf den Engineering Assistant Bildschirm zu kopieren, um die Berechnung der Dichte- oder Kompressibilitätswerte zu erleichtern. Nachdem diese Werte berechnet wurden, können sie aus dem Spreadsheet in die Tabelle auf der Registerkarte *Custom Gas Fluid Properties* (Medieneigenschaften des kundenspezifischen Gases) kopiert werden.

- 1. Die Kategorie **Gas** erweitern.
- 2. Die Option **Custom Gas** (Kundenspezifisches Gas) wählen.
- 3. Die Werte für *Nominal* und *Operating Pressure Range* (Nenn- und Betriebsdruckbereiche) sowie *Temperature Ranges* (Temperaturbereich) eingeben. Der Engineering Assistant verwendet diese Bereiche zur Bestimmung der Druck- und Temperaturwerte, bei denen die Eigenschaften des Mediums eingegeben werden müssen.
- 4. Auf **Next** (Weiter) klicken, um mit der Registerkarte *Medieneigenschaften des kundenspezifischen Gases* fortzufahren.
- 5. Das *Molecular Weight* (Molekulargewicht) des kundenspezifischen Gases eingeben. Nach Eingabe des Molekulargewichts werden die anderen Dateneingabefelder auf der Registerkarte verfügbar (siehe Abbildung 3-14).
- 6. Entweder *Density* (Dichte) oder *Compressibility* (Kompressibilität) auswählen und die Daten eingeben. Dabei beachten, dass alle Druck- und Temperaturwerte mit Ausnahme der Mindest- und Höchstwerte geändert werden können. Die Mindest- und Höchstwerte werden auf der Registerkarte *Fluid Selection* (Auswahl des Mediums) festgelegt.
- 7. Die *Dichte* oder *Kompressibilität* bei Referenzbedingungen eingeben.
- 8. Die *Custom Gas Viscosity* (Viskosität des kundenspezifischen Gases) bei den vorgegebenen Temperaturen eingeben. Dabei beachten, dass alle Temperaturwerte mit Ausnahme der Mindest- und Höchsttemperatur geändert werden können.
- 9. Den *Custom Gas Isentropic Exponent* (Isentropenexponenten des kundenspezifischen Gases) eingeben.

- 10. Auf **Weiter** klicken, um mit der Durchflusskonfiguration auf der Registerkarte *Primary Element Selection* (Auswahl des Wirkdruckgebers) fortzufahren.
- 11. Mit den Schritten unter "Auswahl des Wirkdruckgebers" auf Seite 21 fortfahren.

Abbildung 3-14. Registerkarte "Custom Gas Fluid Properties" (Medieneigenschaften des kundenspezifischen Gases)

Libits High Crifigure / Setup Preferences / Hidd Selection Flaid Properties Primary Element Selection Flaid Properties Basic Setup Dockes Ever Configure Allow Element Selection Flaid Properties Variables Custom Gas Density/Compressibility 20.9600 Enter density/Compressibility Molecular weight: 20.9600 Savel/Send Molecular weight: 20.9600 Enter density/Compressibility Molecular weight: 20.9600 Savel/Send Molecular weight: 20.9600 Enter density/Compressibility 20.9600 Enter density/Compressibility Molecular weight: 20.9600 Enter viscosity data in units of Centipoide. 2 86 70 0.0000 0.0000 0 0 0 3 90 70 0.0000 0.0000 0.0000 0	Rosemount Engineering	Assistant						-
Preferences Fluid Selection Fluid Properties Preserve (sel) Configure Flow Basic Setup Custom Gas Density/Compressibility Custom Gas Density/Compressibility Custom Gas Viscosity Device Variables Custom Gas Density/Compressibility Custom Gas Viscosity Enter viscosity data in units of Centipoise. Pressure (psi) Pressure (psi) Temperature ('P) Compressibility Enter viscosity data in units of Centipoise. Pressure (psi) Temperature ('P) Density (b)(1?) Image: Compressibility Enter viscosity data in units of Centipoise. Pressure (psi) Temperature ('P) Density (b)(1?) Image: Compressibility Enter viscosity data in units of Centipoise. 1 80 70 0.0000 0.0000 Image: Compressibility	Utilities Help							
Configure Flow How Configuration Haid Properties Device Variables Custom Gas Density/Compressibility 28.9600 Variables Custom Gas Density/Compressibility data as: © Compressibility © Configure (ps) Temperature (Pf) Enter viscosity data in units of Centipoise. 2 cafe ation 1 80 70 0.0000 0.0000 0.0000 3 90 70 0.0000 0.0000 0.0000 115 10 7 110 70 0.0000 0.0000 0.0000 130 115 10 10 0 0 0.0000 0.0000 0.0000 130 115 10 <td>nfigure / Setup</td> <td>Preferences</td> <td>Fluid Selection</td> <td>luid Properties Prim</td> <td>ary Element Selection</td> <td>n</td> <td></td> <td></td>	nfigure / Setup	Preferences	Fluid Selection	luid Properties Prim	ary Element Selection	n		
Compare how Basic Setup Device Variables Calibration Save/Send <u>Contropendation (contropendation (contropendati</u>	A current of the	Flow Config	guration					Fluid Properties
Basic Situp Custom Gas Density/Compressibility 20 9000 Variables Calaration Sove/Send Enter density/Compressibility O compressibility Image: Compressibility <u>1 00 </u>	Configure How							(
Device Ustom Las Density/Longressibility 20 9600 Viriables Coloration Enter density/conpressibility data as: O Compressibility O Compressibility Image: Compressibili	Basic Setup	e	6 D				for the for the second	
Main Mode 28.9600 Variables Calaration SavejSend Enter density(congressibility data as: Congressibility (b/R*) Congressibility (b/R*) Congressibility (b/R*) Image: Congre: Congre: Congressibility (b/R*) Image: Congre	Device	custon	i Gas Densicy/Co	mpressionicy			Cuscom Gas viscosicy	
Viriables Enter density/compressibility data as: © Compressibility Image: Compressibility <thimage: compressibility<="" th=""> <thimage: compressibility<="" th=""></thimage:></thimage:>			Mole	cular weight:	28.9600		Enter viscosity data in units of	Centipoise.
Calibration O Densty (b/ft ⁺) (b/ft ⁺) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b)	Variables	Enter	densitylcompressit	ility data as:	Compressibility			Hannaha
Save/Send Pressure (ps) Temperature ("P) Density (b/ft*) Compressibility Image: compressibility <thimage: compressibility<="" th=""> <thimage: compressibility<="" td="" tht<=""><td>Calibration</td><td></td><td></td><td>0</td><td>Density (lb/ft3)</td><td>0</td><td>1emperature 20</td><td>viscosity</td></thimage:></thimage:>	Calibration			0	Density (lb/ft3)	0	1emperature 20	viscosity
Size/Send Pressure (ps) Temperature (**) Derive (biggnostics Pressure (ps) Temperature (**) Dentry (b)(h*) Compressibility (**) (**)						0		0
Image: construction of the second o	Save/Send		Pressure (nsi)	Temperature (%F)	Deosity (bift?)	Compressibility	100	0
2 65 70 0.0000 0.0000 3 90 70 0.0000 0.0000 3 90 70 0.0000 0.0000 5 100 70 0.0000 0.0000 5 100 70 0.0000 0.0000 6 106 70 0.0000 0.0000 9 120 70 0.0000 0.0000 10 80 80 0.0000 0.0000 12 90 80 0.0000 0.0000 13 95 60 0.0000 0.0000 14 100 80 0.0000 0.0000 15 106 60 0.0000 0.0000 17 115 80 0.0000 0.0000 10 80 0.0000 0.0000 0.0000 11 120 00 0.0000 0.0000 0.0000 12 90 0 0.0000 0.0000		1	80	70	0.0000	0.0000	115	0
3 90 70 0.0000 0.0000 4 95 70 0.0000 0.0000 4 95 70 0.0000 0.0000 6 105 70 0.0000 0.0000 6 105 70 0.0000 0.0000 9 120 70 0.0000 0.0000 10 80 0.0000 0.0000 10 11 85 80 0.0000 0.0000 12 90 60 0.0000 0.0000 13 95 80 0.0000 0.0000 15 106 80 0.0000 0.0000 16 110 80 0.0000 0.0000 16 100 80 0.0000 0.0000 18 120 80 0.0000 0.0000 0.0000 19 80 90 0.0000 0.0000 0.0000 0.0000 apropriste proces conditions. <p< td=""><td></td><td>2</td><td>85</td><td>70</td><td>0.0000</td><td>0.0000</td><td>130</td><td>0</td></p<>		2	85	70	0.0000	0.0000	130	0
4 96 70 0.0000 0.0000 5 100 70 0.0000 0.0000 5 100 70 0.0000 0.0000 7 110 70 0.0000 0.0000 9 120 70 0.0000 0.0000 10 80 60.0000 0.0000 12 11 85 80 0.0000 0.0000 12 90 80 0.0000 0.0000 13 95 80 0.0000 0.0000 14 100 80 0.0000 0.0000 15 105 80 0.0000 0.0000 16 110 80 0.0000 0.0000 17 115 80 0.0000 0.0000 19 80 0.0000 0.0000 0.0000 19 80 0.0000 0.0000 0.0000 19 80 0.0000 0.0000 0.0000 </td <td></td> <td>3</td> <td>90</td> <td>70</td> <td>0.0000</td> <td>0.0000</td> <td></td> <td></td>		3	90	70	0.0000	0.0000		
5 100 70 0.0000 0.0000 6 106 70 0.0000 0.0000 7 110 70 0.0000 0.0000 8 115 70 0.0000 0.0000 10 80 60 0.0000 0.0000 11 85 80 0.0000 0.0000 12 99 60 0.0000 0.0000 13 95 80 0.0000 0.0000 15 106 80 0.0000 0.0000 16 100 80 0.0000 0.0000 17 115 80 0.0000 0.0000 18 120 80 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000		4	95	70	0.0000	0.0000		
6 105 70 0.0000 0.0000 7 110 70 0.0000 0.0000 8 115 70 0.0000 0.0000 9 120 70 0.0000 0.0000 10 80 0.0000 0.0000 15 10 12 90 80 0.0000 0.0000 15 10 80 0.0000 0.0000 13 95 80 0.0000 0.0000 0.0000 15 105 80 0.0000 0.0000 15 105 80 0.0000 0.0000 0.0000 16 111 80 0.0000 0.0000 0.0000 16 111 80 0.0000 0.0000 0.0000 0.0000 16 111 18 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000		5	100	70	0.0000	0.0000		
7 110 70 0.0000 0.0000 8 115 70 0.0000 0.0000 9 120 70 0.0000 0.0000 10 80 60 0.0000 0.0000 12 90 80 0.0000 0.0000 13 95 80 0.0000 0.0000 14 100 80 0.0000 0.0000 15 105 80 0.0000 0.0000 16 110 80 0.0000 0.0000 17 115 80 0.0000 0.0000 18 120 80 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 <tr< td=""><td></td><td>6</td><td>105</td><td>70</td><td>0.0000</td><td>0.0000</td><td></td><td></td></tr<>		6	105	70	0.0000	0.0000		
0 115 70 0.0000 0.0000 9 120 70 0.0000 0.0000 10 80 00 0.0000 0.0000 11 85 80 0.0000 0.0000 12 90 00 0.0000 0.0000 13 95 80 0.0000 0.0000 14 100 80 0.0000 0.0000 15 105 80 0.0000 0.0000 16 110 60 0.0000 0.0000 18 120 90 0.0000 0.0000 19 90 0.0000 0.0000 0.0000 19 90 0.0000 0.0000 0.0000 19 90 0.0000 0.0000 0.0000 19 90 0.0000 0.0000 0.0000 19 80 0.0000 0.0000 0.0000 10 15 100 0.0000 0.0000 <td></td> <td>7</td> <td>110</td> <td>70</td> <td>0.0000</td> <td>0.0000</td> <td></td> <td></td>		7	110	70	0.0000	0.0000		
9 120 70 0.0000 0.0000 10 80 80 0.0000 0.0000 11 85 80 0.0000 0.0000 12 90 80 0.0000 0.0000 14 100 80 0.0000 0.0000 15 105 60 0.0000 0.0000 16 110 80 0.0000 0.0000 17 115 80 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000		8	115	70	0.0000	0.0000		
10 00 00 0.0000 0.0000 11 85 80 0.0000 0.0000 12 90 80 0.0000 0.0000 13 95 80 0.0000 0.0000 14 100 80 0.0000 0.0000 15 105 80 0.0000 0.0000 16 110 80 0.0000 0.0000 17 115 80 0.0000 0.0000 18 120 80 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 10 7 115 0.0000 0.0000 0.0000 10 120 0 0.0000 0.0000 0.0000 10 10 0 0.0000 0.0000 0.0000 0.0000 10 <t< td=""><td></td><td>9</td><td>120</td><td>70</td><td>0.0000</td><td>0.0000</td><td></td><td></td></t<>		9	120	70	0.0000	0.0000		
Interpretation Interpretation Interpretation Interpretation Interpretation		10	80	80	0.0000	0.0000	Custom Gas Isentropic Expo	nent
Image: Configure / Setup Image: Configure / Setup Image: Configure (**) Densize (bit) Temperature (**) Densize (bit) Compressibility Temperature (**) Temperature (**) Densize (bit) Compressibility Temperature (**) Temperature (**) Densize (bit) Compressibility Temperature (**)		11	85	80	0.0000	0.0000	Teachania company	
13 95 80 0.0000 0.0000 14 100 80 0.0000 0.0000 15 105 80 0.0000 0.0000 16 110 80 0.0000 0.0000 16 110 80 0.0000 0.0000 18 120 80 0.0000 0.0000 19 80 90 0.0000 0.0000 10 10 0.0000 0.0000 0.0000 19 80 90 0.0000 0.0000 10 10 100000 0.0000 0.0000 10 10 115 0.0000 0.0000 0.0000 10 10 0 0.0000 0.0000 0.0000 0.0000 10 10 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10 10 10000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 <td></td> <td>12</td> <td>90</td> <td>80</td> <td>0.0000</td> <td>0.0000</td> <td>Isencropic exponent:</td> <td></td>		12	90	80	0.0000	0.0000	Isencropic exponent:	
Image: Interpretation of the system of the syste		13	95	80	0.0000	0.0000		
15 105 80 0.0000 0.0000 16 110 80 0.0000 felds may be capped dute x and that the felds may be capped dute x and that the felds may be capped dute x and that the felds may be capped dute x and that the felds may be capped dute x and that the felds may be capped dute x and that the felds may be capped dute x and that the felds may be capped dute x and that the felds may be capped dute x and that the felds may be capped dute x and that the felds may be capped dute x and that the felds may be capped dute x and that the felds may be capped dute x and that the felds may be capped dute x and that the felds may be capped dute x and that the felds may be capped dute x and that the felds may be capped dute x and the felds may be ca		14	100	80	0.0000	0.0000	Description of the second second	and the sub-like
16 110 80 0.0000 0.0000 17 115 80 0.0000 0.0000 18 120 80 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 19 80 90 0.0000 0.0000 10 90 0.0000 0.0000 0.0000		15	105	80	0.0000	0.0000	fields may be edited. Please er	ues in white isure that the
Interface Interface <t< td=""><td></td><td>16</td><td>110</td><td>80</td><td>0.0000</td><td>0.0000</td><td>density/compressibility and vi</td><td>scosity values</td></t<>		16	110	80	0.0000	0.0000	density/compressibility and vi	scosity values
Image: Configure / Setup Image:		17	115	80	0.0000	0.0000	appropriate process condition	ten the S
Configure / Setup 19 80 90 0.0000 Reset < Back Next > He		18	120	80	0.0000	0.0000		
Device Diagnostics Reference properties: Process Variables Pressure (pri) Temperature ('7') Density (bj(h')) Compressbility 14.696 660 0.0000 0.0000 Reset < Back	Configure / Setup	19	80	90	0.0000	0.0000		
Process Variables Pressure (ps) Temperature (%) Density (b)(h1) Compressbility 14.696 68 0.0000 0.0000 Reset < Back	Device Diagnostics	Refere	ence properties:		0.00001	A AAAA		
14.696 68 0.0000 0.0000 Reset < Back Next > He	Process Variables		Pressure (psi)	Temperature (°F)	Density (lb/ft ³)	Compressibility		
reset CBDK (1987.2 M	Frocess tariables		14.696	68	0.000	0.0000	Darat Red	Next > Links
							Neser < Back	new Plep
	10.0							

Kundenspezifische Flüssigkeit (Dichte [T])

Die Option "Custom Liquid" (Kundenspezifische Flüssigkeit) sollte für Medien verwendet werden, die nicht in der Datenbank enthalten sind. Dazu gehören firmenspezifische Medien.

- 1. Die Kategorie Liquid (Flüssigkeit) erweitern.
- 2. Die Kategorie **Custom Liquid** (Kundenspezifische Flüssigkeit) erweitern.
- 3. Die Option **Custom Liquid (Density [T])** (Kundenspezifische Flüssigkeit (Dichte [T]) auswählen.
- 4. Die Werte für *Nominal* und *Operating Temperature Range* (Nenn- und Betriebstemperaturbereich) eingeben. Der Engineering Assistant verwendet diesen Bereich zur Bestimmung der Temperaturwerte, bei denen die Eigenschaften des Mediums eingegeben werden müssen.
- 5. Auf **Next** (Weiter) klicken, um mit der Durchflusskonfiguration auf der Registerkarte *Fluid Properties* (Eigenschaften des Mediums) fortzufahren.
- 6. Die Dichte der kundenspezifischen Flüssigkeit bei den vorgegebenen Temperaturen eingeben. Dabei beachten, dass alle Temperaturwerte mit Ausnahme der Mindestund Höchsttemperatur geändert werden können.
- 7. Die *Reference Density* (Referenzdichte) bei der Referenztemperatur eingeben.

- 8. Die *Custom Liquid Visvosity* (Viskosität der kundenspezifischen Flüssigkeit) bei den vorgegebenen Temperaturen eingeben. Dabei beachten, dass alle Temperaturwerte mit Ausnahme der Mindest- und Höchsttemperatur geändert werden können. Die Mindest- und Höchstwerte werden auf der Registerkarte *Fluid Selection* (Auswahl des Mediums) festgelegt.
- 9. Mit den Schritten unter "Auswahl des Wirkdruckgebers" auf Seite 21 fortfahren.

Abbildung 3-15. Registerkarte "Custom Liquid [Density (T)] Fluid Properties" (Medieneigenschaften der kundenspezifischen Flüssigkeit (Dichte [T])

💿 Rosemount Engineering .	Assistant								- C X
Ele Utilities Help									
Configure / Setup	Preferences Fluid Selection	Fluid Properties Prim	ary Element Selection						
Configure Flow	Flow Configuration							Fluid Prope	erties
Basic Setup Device	Custom Liquid [Densit	y(T)] Density Lbm/CuFt			Custom I Enter vis	iquid [Dens cosity data in	ity(T)] Viscosil units of Centipoi	se	-
Variables				_		Tempe	erature (°F)	Viscosity (cP)	
Calbration	Tempe	rature (°F)	Density (Ib/ft ³)	0		1	100	0	
D Save/Send	2	105		0		3	107.5	0	
40	3	110		0		4	122.5	0	
	4	115		0		5	130	0	
	5	120		0					
	6	125		0					
	7	130		0					
Configure / Setup	Reference density:	sture (°F) 0 68	ensity (b)ft*) 0						
Device Diagnostics Process Variables						Reset	< Back	Next >	Help
Configure / Setup - Configure Flow	- Custom Liquid (T)								OFFLINE

3.5 Grundkonfiguration des Messumformers

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 3
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1,3

Dieser Abschnitt enthält die Verfahren zur Grundkonfiguration, die für die Inbetriebnahme des 3051S MultiVariable Messumformers erforderlich sind. Alle Parameter, die für die Konfiguration des Messumformers erforderlich sind, können auf der Registerkarte *Basic Setup* (Grundeinstellung) eingestellt werden (siehe Abbildung 3-16). Eine komplette Liste der Funktionstastenfolgen des Handterminals 475 für die Grundeinstellung ist in Tabelle 3-13 auf Seite 69 und Tabelle 3-14 auf Seite 71 zu finden.

Abhängig von der bestellten Konfiguration sind bestimmte Messungen (z. B. statischer Druck, Prozesstemperatur) und/oder Berechnungen (z. B. Masse-, volumetrischer und Energiedurchfluss) ggf. nicht für alle Medienarten verfügbar. Die verfügbaren Messungen und/oder Berechnungen werden durch die bestellten Optionscodes für MultiVariable Typ und Messart bestimmt. Weitere Informationen siehe "Bestellinformationen" auf Seite 27.

Alle in diesem Abschnitt enthaltenen Bildschirme gelten für MultiVariable Typ M (voll kompensierter Masse- und Energiedurchfluss) mit Messart 1 (Differenzdruck, statischer Druck und Prozesstemperatur). Die Funktionstastenfolgen des Handterminals 475 sind sowohl für MultiVariable Typ M als auch P (Direkter Ausgang der Prozessvariable) mit Messart 1 aufgeführt. Die Funktionstastenfolgen des Handterminals 475 und die Bildschirme für andere MultiVariable Typen und Messarten können davon abweichen.

Hinweis

Alle Bildschirme in diesem Abschnitt zeigen das AMS System. Die Bildschirme des Engineering Assistant sind ähnlich, und die angegebenen Anweisungen gelten sowohl für das AMS System als auch den Engineering Assistant.

Bei Verwendung des Engineering Assistant erscheint eine Schaltfläche **Reset Page** (Seite rücksetzen). Im Online-Modus werden mit der Schaltfläche **Reset Page** alle Werte auf der Registerkarte auf die Werte zurückgesetzt, die vor Beginn der Konfiguration vom Gerät empfangen wurden. Beim Bearbeiten einer gespeicherten Konfiguration werden mit der Schaltfläche **Reset Page** alle Werte auf der Registerkarte auf die zuletzt gespeicherten Werte zurückgesetzt. Beim Starten einer neuen Durchflusskonfiguration werden alle eingegebenen Werte auf der Registerkarte gelöscht.

Wenn Informationen auf einer AMS Registerkarte geändert werden, erscheinen diese Daten in gelber Farbe. Bearbeitete Informationen werden erst dann an den Messumformer gesendet, wenn sie mit der Schaltfläche **Apply** (Ausführen) oder **OK** bestätigt wurden.

Maßeinheiten

Nachdem eine Maßeinheit geändert und auf die Schaltfläche **Apply** (Ausführen) geklickt wurde, wird die Maßeinheit im Speicher des Messumformers und auf dem Bildschirm geändert. Es kann jedoch bis zu 30 Sekunden dauern, bis der AMS Bildschirm aktualisiert wird.

Abbildung 3-16. Registerkarte "Basic Setup" (Grundeinstellung)

- 1. Die Informationen unter *Device Tag* (Messstellenkennung) prüfen. Diese Kennung dient der Identifizierung bestimmter Messumformer im 4–20 mA Messkreis und kann geändert werden.
- 2. Unter der Überschrift *Flow Rate* (Durchfluss) (nur Funktionsplatine für voll kompensierten Masse- und Energiedurchfluss) wird die Art der Durchflussberechnung (Masse oder volumetrisch) auf der rechten Seite des Bereichs durch Häkchen angezeigt. Die *Flow Calculation Type* (Art der Durchflussberechnung) kann durch Klicken auf die Schaltfläche **Configure Flow Calculation Type** (Art der Durchflussberechnung konfigurieren) geändert werden. Die *Damping* (Dämpfung) und die *Units* (Einheit) des *Flow Rate* (Durchflusses) können ebenfalls unter dieser Überschrift geändert werden.

Hinweis

Die geräteinterne Durchflussberechnung erfolgt mittels ungedämpfter Prozessvariablen. Die Dämpfung des Durchflusses wird unabhängig von den gemessenen Prozessvariablen eingestellt.

 Unter der Überschrift Energy Rate (Energiedurchfluss) (nur Funktionsplatine für voll kompensierten Masse- und Energiedurchfluss) können die Einheit und die Dämpfung des Energiedurchflusses geändert werden.

Hinweis

Der Energiedurchfluss kann nur für Dampf und Erdgas berechnet werden.

Die geräteinterne Berechnung des Energiedurchflusses erfolgt mittels ungedämpfter Prozessvariablen. Die Dämpfung des Energiedurchflusses wird unabhängig von der Dämpfung des Durchflusses bzw. den gemessenen Prozessvariablen eingestellt.

- 4. Unter der Überschrift *Differential Pressure* (Differenzdruck) können die *Einheit* und die *Dämpfung* des *Differenzdrucks* geändert werden.
- 5. Unter der Überschrift *Static Pressure* (Statischer Druck) können die *Einheiten* sowohl für Absolut- als auch Überdruck sowie die *Dämpfung* des statischen Drucks geändert werden.

Sowohl Absolut- als auch Überdruck sind als Variablen verfügbar. Der Typ des bestellten Messumformers bestimmt, welche Variable gemessen und welche Variable basierend auf dem anwenderdefinierten Atmosphärendruck berechnet wird. Weitere Informationen zum Konfigurieren des Atmosphärendrucks sind unter "Statischer Druck" auf Seite 59 zu finden. Da nur einer der statischen Drücke gemessen wird, muss für beide Variablen nur eine einzige Dämpfungseinstellung vorgenommen werden, die unter der Überschrift *Statischer Druck* geändert werden kann.

- 6. Unter der Überschrift *Process Temperature* (Prozesstemperatur) können die *Einheit* und die *Dämpfung* der *Prozesstemperatur* geändert werden.
- 7. Unter der Überschrift *Module Temperature* (Modultemperatur) kann die *Einheit* der Temperatur des Sensormoduls eingestellt werden. Die Messung der Temperatur des Sensormoduls erfolgt im Inneren des Moduls in der Nähe des Differenzdrucksensors und/oder des statischen Drucksensors. Der gemessene Temperaturwert kann verwendet werden, um Begleitheizungen zu regeln oder eine Überhitzung des Geräts zu diagnostizieren.
- 8. Unter der Überschrift *Analog Output* (Analogausgang) können die Primärvariable aus dem Dropdown-Menü ausgewählt und der Messanfang sowie das Messende (4 und 20 mA Punkte) für die Primärvariable geändert werden.
- 9. Unter der Überschrift *Totalizer* (Zähler) (nur Funktionsplatine für voll kompensierten Masse- und Energiedurchfluss) kann der Zähler durch Klicken auf die Schaltfläche **Configure Totalizer** (Zähler konfigurieren) konfiguriert werden. Mithilfe dieser Schaltfläche kann der Anwender die Variable auswählen, für die Zählwerte erfasst werden sollen. Die *Einheit* des Zählers kann ebenfalls unter dieser Überschrift geändert werden.

3.6 Komplette Konfiguration des Messumformers

3.6.1 Modellidentifikation

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 3, 5
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 3, 5

Die Registerkarte *Identification* (Identifikation) stellt alle Informationen zur Geräteidentifikation auf einem einzelnen Bildschirm dar. Die Felder mit weißem Hintergrund können vom Anwender geändert werden.

3.6.2 Alarm- und Sättigungswerte

Der 3051S MultiVariable Messumformer führt automatisch und fortlaufend Selbstdiagnose-Routinen durch. Wenn die Selbstdiagnose eine Störung entdeckt, wird der Ausgang vom Messumformer auf einen konfigurierten Alarmwert gesetzt. Der Messumformer setzt das Ausgangsignal außerdem auf konfigurierte Sättigungswerte, wenn die Primärvariable außerhalb des Messbereichs von 4–20 mA liegt.

Die Alarm- und Sättigungswerte können mittels Engineering Assistant, AMS oder Handterminal 475 konfiguriert werden. Weitere Informationen finden Sie unter "Konfiguration der Alarm- und Sättigungswerte" auf Seite 35. Die Alarmrichtung kann durch Setzen des Alarmschalters auf der Funktionsplatine eingestellt werden. Weitere Informationen zum Alarmschalter sind unter "Konfigurieren der Sicherheits- und Alarmfunktion" auf Seite 11 zu finden.

Der 3051S MultiVariable Messumformer verfügt über drei Optionen für die bei einer Störung gesetzten Alarm- und Sättigungswerte:

- Rosemount (Standard), siehe Tabelle 3-4
- NAMUR, siehe Tabelle 3-5
- Kundenspezifisch, siehe Tabelle 3-6

Tabelle 3-4.	Rosemount	(Standard)	Alarm- und	Sättigungswerte
		· · · · · · · · · · · · · · · · · · ·		

Wert	Sättigung	Alarm
Niedrig	3,9 mA	≤ 3,75 mA
Hoch	20,8 mA	≥ 21,75 mA

Tabelle 3-5. NAMUR Alarm- und Sättigungswerte

Wert	Sättigung	Alarm
Niedrig	3,8 mA	≤ 3,6 mA
Hoch	20,5 mA	≥ 22,5 mA

Tabelle 3-6. Kundenspezifische Alarm- und Sättigungswerte

Wert	Sättigung	Alarm
Niedrig	3,7–3,9 mA	3,6–3,8 mA
Hoch	20,1–22,9 mA	20,2–23,0 mA

Für kundenspezifische Werte bestehen die folgenden Einschränkungen:

- Der Wert für Niedrigalarm muss unter dem Wert für niedrige Sättigung liegen.
- Der Wert f
 ür Hochalarm muss
 über dem Wert f
 ür hohe S
 ättigung liegen.
- Die Alarm- und Sättigungswerte müssen um mindestens 0,1 mA voneinander abweichen.

Konfiguration der Alarm- und Sättigungswerte

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 4, 2, 6, 6
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 4, 2, 6, 6

Die Alarm- und Sättigungswerte können auf der Registerkarte *Alarm/Sat Levels* (Alarm-/Sättigungswerte) konfiguriert werden. Zum Ändern der Alarm-/Sättigungswerte auf die Schaltfläche **Config Alarm/Sat Levels** (Alarm-/Sättigungswerte konfigurieren) klicken.

Abbildung 3-18. Registerkarte "Device – Alarm/Sat Levels" (Gerät – Alarm-/Sättigungswerte)

S 08/21/2008 10:18:37.370 [305	SMV with Fully Compensated Mass and Energy Flow Rev. 1]	
<u>e</u>		
Configure/Setup Basic Setup P basic Setup P variables Calibration	Identification Alarm/Sat Levels Yariable Mapping Comm Setup Materials of Construction Plow Config Parameters Device Tag 30515M4/ Image: Comm Setup Device Tag Device Tag Long Tag 30515M4/ Mass Flow Image: Comm Setup Device Tag GOOD Alarm/Saturation Levels Alarm Direction Hi Image: Comfig Alarm/ Sat Levels High Alarm 21750 mA Config Alarm/ Sat Levels Low Alarm 3750 mA Config Alarm/ Sat Levels	
Configure/Setup		
	Time: Current OK Cancel Apply Print	Help
last synchronized: Device Parameters not Sy	chronized.	10

\land Alarmwerte überprüfen

Wenn Alarm- und Sättigungswerte geändert wurden, sollte der Alarmwert des Messumformers überprüft werden, bevor der Messumformer wieder in Betrieb genommen wird.

Dies ist auch hilfreich, um das Verhalten des Leitsystems zu überprüfen, wenn sich ein Messumformer im Alarmzustand befindet. Um die Alarmwerte des Messumformers zu überprüfen, einen Messkreistest durchführen und dabei den Messumformerausgang auf die Alarmwerte setzen (siehe Tabelle 3-4, Tabelle 3-5 und Tabelle 3-6 auf Siehe Seite 35 sowie "Messkreistest des Analogausgangs" auf Seite 19).

Sättigungsverhalten der Variable

Der Analogausgang des 3051S MultiVariable Messumformers kann abhängig von der Messart, die die Sensorgrenzwerte überschreitet, unterschiedlich reagieren. Diese Reaktion ist außerdem von der Gerätekonfiguration abhängig. Tabelle 3-7 zeigt das Verhalten des Analogausgangs unter verschiedenen Bedingungen.

Primärvariable	Ereignis	Verhalten des Analogausgangs
Durchfluss oder Energiedurchfluss	Differenzdruck außerhalb der Sensorgrenzwerte	Analogausgang wird auf hohe oder niedrige Sättigung gesetzt.
Durchfluss oder Energiedurchfluss	Absolut- oder Überdruck außerhalb der Sensorgrenzwerte	Analogausgang wird nicht auf einen Sättigungswert gesetzt.
Durchfluss oder Energiedurchfluss	Prozesstemperatur außerhalb der vom Anwender definierten Sensorgrenzwerte	Temperaturmodus ist "Normal": Analogausgang wird auf den hohen oder niedrigen Alarmwert gesetzt. Temperaturmodus ist "Backup": Prozesstemperatur wird auf Backup-Modus gesetzt und auf dem anwenderdefinierten Wert fixiert. Analogausgang wird nicht auf einen Sättigungs- oder Alarmwert gesetzt.
DP	Differenzdruck außerhalb der Sensorgrenzwerte	Analogausgang wird auf hohe oder niedrige Sättigung gesetzt.
AP oder GP	Absolut- oder Überdruck außerhalb der Sensorgrenzwerte	Analogausgang wird auf hohe oder niedrige Sättigung gesetzt.
Prozesstemperatur	Prozesstemperatur außerhalb der vom Anwender definierten Sensorgrenzwerte	Direkter Ausgang der Prozessvariable: Analogausgang wird auf hohe oder niedrige Sättigung gesetzt. Masse- und Energiedurchfluss: Analogausgang wird auf den hohen oder niedrigen Alarmwert gesetzt.

Tabelle 3-7. Sättigungsverhalten der Variable

3.6.3 Variablen-Zuordnung

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 4, 3, 4
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 4, 3, 4

Auf der Registerkarte Variable Mapping (Variablen-Zuordnung) wird definiert, welche Prozessvariable jeder HART Variable zugeordnet wird. Die Primärvariable stellt das Signal des 4–20 mA Analogausgangs dar, während es sich bei der 2., 3. und 4. Variablen um Digitalsignale handelt. Zum Ändern der Variablen-Zuordnung die entsprechenden Prozessvariablen in den Dropdown-Menüs auswählen und auf **Apply** (Ausführen) klicken.

2008 15:18:29.077 [305	51SMV with Fully Compensated Mass and Energy Flow	Rev. 1]	
x 1 1 1 2			
Configure[Setup Basic Setup Derice Variables Calibration	Identification Alarm/Sat Levels Variable Mapping LCD Tag 30515MV Long Tag 30515MV Mass Flow	Comm Setup Materials of Construction Flow Config Para	GOOD
Configure/Setup Device Diagnostics Process Variables			
	Time: Current	OK Cancel Apply	Print Help

Abbildung 3-19. Registerkarte "Device – Variable Mapping" (Gerät – Variablen-Zuordnung)

3.6.4 Digitalanzeiger

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 3, 8
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 3, 8

Der Digitalanzeiger verfügt über ein 4-zeiliges Display und eine 0–100 % Balkengrafik. Die erste Zeile mit fünf Zeichen zeigt die Ausgangsbeschreibung an, die zweite Zeile mit sieben Zeichen zeigt den tatsächlichen Wert an und die dritte Zeile mit sechs Zeichen zeigt Einheiten an. Die vierte Zeile zeigt "Error" (Störung) an, wenn ein Problem mit dem Messumformer erkannt wird. Auf dem Digitalanzeiger können außerdem Diagnosemeldungen angezeigt werden. Diese Diagnosemeldungen sind in Tabelle 5-1 auf Seite 10 aufgelistet.

Auf der Registerkarte *LCD* (Digitalanzeiger) kann der Anwender konfigurieren, welche Variablen auf dem Digitalanzeiger erscheinen sollen. In das Kontrollkästchen neben jeder Variable klicken, um die anzuzeigenden Variablen auszuwählen. Der Messumformer zeigt die ausgewählten Variablen nacheinander an, wobei jede Variable drei Sekunden lang erscheint.

ctions Help	o share with a dif compensated mass and there y have never if	
Donfigure/Setup Configure/Setup Basic Setup Consider Variables	Identification Alarm/Sat Levels Variable Mapping LCD Comm Setup Material Device Tag Tag 30515MV	Is of Construction Plow Config Parameters Device GOOD
{₽ [®] Calbration	Long Tag 3051SMV Mass Flow LCD Setup C Differential Pressure G Absolute Pressure Gage Pressure Process Temperature Module Temperature	
Configure/Setup Device Diagnostics Process Variables 88	Image: Prove Rate Image	
	Time: Current V	Cancel Accily Print Help

Abbildung 3-20. Registerkarte "Device – LCD" (Gerät – Digitalanzeiger)

3.6.5 Kommunikationseinstellungen

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 4, 3, 3
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 4, 3, 3

Auf der Registerkarte *Comm Setup* (Kommunikationseinstellungen) können die Einstellungen für die Burst-Betriebsart und die Multidrop-Kommunikation konfiguriert werden.

Abbildung 3-21. Registerkarte "Device – Comm Setup" (Gerät – Kommunikationseinstellungen)

01/16/2008 15:18:29.077 [3051	ISMV with Fully Compensated Mass and Energy Flow Rev. 1]	
File Actions Help		
Configure/Setup	Identification Alarm/Sat Levels Variable Mapping LCD Comm Setup Materials of Construction Plow Config Parameters Device Tag Tag 30515MV Encode Status GOOD Long Tag 30515MV Mass Flow Encode Encode Status GOOD Communication Settings 0 Encode Eurit Variable Sixt Definition Burst Mode Tag Eurit Variable Sixt Definition	Contraction of the second
	Enable juin in statu provi	
	Burst Option PV 💌 Slot 1 DP 💌	
Configure/Setup	Slot 2 AP	
Device Diagnostics	Slot 3 Process Temp	
Process Variables		
	Time: Current OK Cancel Apply Brint	Help
last synchronized: Device Parameters not Syn	ichronized.	11

Burst-Betriebsart

Wenn *Burst Mode Enable* (Burst-Betriebsart aktivieren) auf On (Ein) eingestellt ist, sendet der 3051S MultiVariable Messumformer bis zu vier HART Variablen an das Leitsystem, ohne dass das Leitsystem Informationen vom Messumformer abfragt.

Bei Betrieb mit *Burst Mode Enable* auf ON (Ein) sendet der Messumformer weiterhin ein 4–20 mA Analogsignal. Das HART Protokoll kann gleichzeitig digitale und analoge Daten übertragen; somit kann das Analogsignal ein Gerät im Messkreis steuern, während das digitale Signal vom Leitsystem verarbeitet wird. Die Burst-Betriebsart kann nur für die Übertragung dynamischer Daten verwendet werden (Prozessvariablen in Maßeinheiten, Primärvariable in Prozent vom Messbereich und/der Analogausgang) und sie beeinflusst nicht den Datenfluss anderer angeschlossener Messumformer.

Zugriff auf andere Informationen, die nicht in der Burst-Betriebsart gesendet werden, steht durch die normale Abfrage/Antwort-Art der HART Kommunikation zur Verfügung. Eine Abfrage von normal verfügbaren Daten über das Handterminal 475, das AMS System, den Engineering Assistant oder das Leitsystem ist möglich.

Burst-Betriebsart aktivieren

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 4, 3, 3, 3
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 4, 3, 3, 3

Zum Aktivieren der Burst-Betriebsart im Dropdown-Menü *Burst Mode Enable* (Burst-Betriebsart aktivieren) unter der Überschrift *Burst Mode* (Burst-Betriebsart) die Option **On** (Ein) wählen.

Burst-Option auswählen

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 4, 3, 3, 4
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 4, 3, 3, 4

Mit diesem Parameter werden die in der Burst-Betriebsart gesendeten Informationen ausgewählt. Unter der Überschrift *Burst Mode* (Burst-Betriebsart) eine Auswahl im Dropdown-Menü *Burst Option* treffen. Die Option *Dyn vars/current* (Dynamische Variablen/Strom) wird am häufigsten gewählt, da sie für die Kommunikation mit dem 333 HART Tri-Loop verwendet wird.

Tabelle 3-8. Burst-Optionen

HART Befehl	Burst-Option	Beschreibung
1	PV	Primärvariable
2	% range/current	Prozent des Messbereichs und mA-Ausgang
3	Dyn vars/current	Alle Prozessvariablen und mA-Ausgang
9	Device vars w/ status	Burst-Variablen und Statusinformationen
33	Device variables	Burst-Variablen

Slot-Definition der Burst-Variablen auswählen

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 4, 3, 3, 5
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 4, 3, 3, 5

Wenn die Burst-Option *Device vars w/ status* (Gerätevariablen und Statusinformationen) oder *Device variables* (Gerätevariablen) ausgewählt wird, kann der Anwender die vier Variablen wählen, die in der Burst-Betriebsart gesendet werden. Diese Variablen werden in den Slots 1–4 unter der Überschrift *Burst Variable Slot Definitions* (Slot-Definitionen der Burst-Variablen) definiert. Die in den Slots 1–4 definierten Variablen müssen nicht mit den Variablen übereinstimmen, die den Ausgängen der Primärvariable und der 2., 3. und 4. Variable zugeordnet wurden.

Multidrop-Kommunikation

Multidrop bedeutet, dass mehrere Messumformer an die gleiche Datenübertragungsleitung angeschlossen sind.

Hinweis

Abbildung 3-22 zeigt eine typische Multidrop-Installation (kein Installationsdiagramm).

Die Kommunikation zwischen dem Hostsystem und den Messumformern erfolgt digital, d. h. der Analogausgang ist deaktiviert.

Hinweis

Wenn ein Messumformer mit Multidrop-Kommunikation betrieben wird und die Option *Loop Current Mode* (Messkreis-Strommodus) deaktiviert ist, ist der Analogausgang auf 4 mA fixiert.

Multidrop-Kommunikation aktivieren

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 4, 3, 3, 1
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 4, 3, 3, 1

Der 3051S MultiVariable Messumformer ist werkseitig auf die Adresse Null (0) eingestellt, die für eine standardmäßige Einzelinstallation mit 4–20 mA Ausgangssignal benötigt wird. Um die Multidrop-Kommunikation zu aktivieren, muss die Messumformeradresse für HART 5 Hostsysteme auf eine Zahl von 1–15 oder für HART 6 Hostsysteme auf eine Zahl von 1–63 geändert werden. Diese Änderung deaktiviert den 4–20 mA Analogausgang und setzt ihn auf den festen Wert von 4 mA. Ebenso wird der Diagnosealarm, der durch den HI/LO-Alarmschalter auf der Funktionsplatine eingestellt wird, außer Funktion gesetzt. Störmeldungen von Messumformern in einer Multidrop-Installation werden über HART Nachrichten kommuniziert.

Messkreis-Strommodus

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 4, 3, 3, 2
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 4, 3, 3, 2

Bei Betrieb mit Multidrop-Kommunikation wird das Verhalten des 4–20 mA Analogausgangs durch das Dropdown-Menü "Loop Current Mode" (Messkreis-Strommodus) definiert. Wenn der Messkreis-Strommodus deaktiviert ist, ist der Analogausgang auf 4 mA fixiert. Wenn der Messkreis-Strommodus aktiviert ist, folgt der Analogausgang der Primärvariable.

3.6.6 Werkstoffe

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 4, 4, 2
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 4, 4, 2

Auf der Registerkarte *Materials of Construction* (Werkstoffe) können die Angaben zu Werkstoffen, zum Druckmittler und zum angeschlossenen Sensor eingesehen werden. Die in Feldern mit weißem Hintergrund angezeigten Parameter können vom Anwender geändert werden, haben jedoch keinen Einfluss auf den Betrieb des Messumformers.

Abbildung 3-23. Registerkarte "Device – Materials of Construction" (Gerät – Werkstoffe)

figure/Setup	Identification Alarm	/Sat Levels Variable Mapping	Comm Setup Mater	rials of Construction	low Config Parameters		1
Conjure/Secup Basic Setup Device Variables Calibration	Device Tag Tag Long Tag	30515MV 30515MV Mass Flow			Device Status	GOOD	Smr 1
	Materials of Co	nstruction			Remote Diaphr	agm Seals	
	Sensor Module Type	DP with GP High s_	Process Connector	Coplanar	Number	None	-
	Module Config Type	Standard coplanar_	Process Conn Mat	Carbon Steel	Туре	None	
	Isolator Materia	Hastelloy C	O-Ring Material	PTFE (TeflonR)	Diaphragm Material	None	•
	Fill Fluid	Silicone 🚬	Drain Vent Matl	Carbon Steel	Seal Fill Fluid	None	•
	Equipped Sens	xs					
	Differential	Pressure Sensor	Absolute Press	sure Sensor	🗹 Gage Pres	ure Sensor	
Configure/Setup			Process Temp	erature Sensor			
Device Diagnostics							
Process Variables							
BB							
	Time: Current	-		OK Ca	ncel Apply	Print	Help

3.6.7 Parameter der Durchflusskonfiguration

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 4, 4, 3
---	------------

(Nur Funktionsplatine für voll kompensierten Masse- und Energiedurchfluss):

Auf der Registerkarte *Flow Config Parameters* (Parameter der Durchflusskonfiguration) können das Process Fluid (Prozessmedium), der *Primary Element* (Wirkdruckgeber) und der *Pipe Diameter* (Rohrinnendurchmesser) eingesehen werden, die für die Durchflusskonfiguration verwendet werden. Diese Werte können nur mittels Engineering Assistant ab Version 6.1 geändert werden.

Abbildung 3-24. Registerkarte "Device – Flow Config Parameters" (Gerät – Parameter der Durchflusskonfiguration)

Section 2012 States (2012) Section 2013 S		rith Fully Comp	ensated Mass and Ene	rgy Flow Rev. 1]					×
File Actions Help									
<u>s</u>									
Configure/Setup Basis Setup Variables Caltration		thication Alarm(S Device Tag Tag Long Tag Flow Configuratio Fluid Primary Element Pipe Diameter	At Levels Variable Mapping 50515MV 30515MV Mass Flow In Parameters Air 405C 7 30515FC 4.025 In	Comm Setup Mai	tenials of Constru	ction Flow Co	rfig Parameters Device Status	GOOD	148 M
Configure/Setup									
Device Diagnostics									
Process Variables									
BB									
	Time:	Current	•		OK	Cancel	Apply	Print	Help
last synchronized: Device Parameters not Synch	ronize	d.							10

3.7 Konfiguration der Variablen

3.7.1 Durchfluss

· · · · · · · · · · · · · · · · · · ·

(Nur Funktionsplatine für voll kompensierten Masse- und Energiedurchfluss):

Auf der Registerkarte *Flow* (Durchfluss) werden die mit der Durchflussvariable zusammenhängenden Einstellungen konfiguriert. Angaben zum Medium und Wirkdruckgeber, die die Durchflussberechnung definieren, werden mit dem Engineering Assistant konfiguriert.

03/11/2009 08:01:50.213 [30	51SMV with Fully Compensated Mass and I	inergy Flow Rev. 1]	• 6 - 5
Actions Help			
onfigure/Setup	Flow Energy Totalizer Differential Pressu	re Static Pressure Process Temperature Mode	le Temperature Analog Output
Configure/setup Device Variables Calibration	Device Tag Tag 30515MV Long Tag 30515MV Mass Flow		Device GOOD
	Flow Rate Setup Flow Rate 0 KG/H Damping 0.40 Sec	Mass Flow Calculation Volumetric Flow Calculation	Flow Rate Unit KG/H 💌 Configure Flow Calculation Type
	Custom Units Setup Custom Unit KG/H	Low Flow Cutoff	Flow Rate Sensor Limits
	Base Unit g/h 💌 Base per Custom 1000		Lower Sensor Limit 0 KG/H Minimum Span 1.63293e-0 KG/H
Configure/Setup	Status Flow Rate Status Good - Not Limitec		
Process Variables			
	Time: Current	OK Ca	ncel Anchi Print Halo

- 1. Unter der Überschrift *Flow Rate Setup* (Durchfluss einstellen) wird die Art der Durchflussberechnung durch das Kontrollkästchen neben *Mass Flow Calculation* (Massedurchflussberechnung) oder *Volumetric Flow Calculation* (Volumetrische Durchflussberechnung) angezeigt. Zum Ändern der Art der Durchflussberechnung auf die Schaltfläche **Configure Flow Calculation Type** (Art der Durchflussberechnung konfigurieren) klicken.
- 2. Die *Flow Rate Units* (Einheit des Durchflusses) und den *Damping* (Dämpfungswert) ggf. je nach Anwendung ändern. Die geräteinterne Durchflussberechnung erfolgt mittels ungedämpfter Prozessvariablen. Die Dämpfung des Durchflusses wird unabhängig von den gemessenen Prozessvariablen eingestellt.

Hinweis

Bei Änderung der Art der Durchflussberechnung wird der Zähler gestoppt und automatisch rückgesetzt.

3. Unter der Überschrift *Low Flow Cutoff* (Schleichmengenabschaltung) kann der aktuelle *Minimum DP Value* (DP-Mindestwert) je nach Anwendung geändert werden. Die Einheit für diesen Wert ist die vom Anwender gewählte DP-Einheit. Wenn der gemessene DP-Wert unter dem DP-Mindestwert liegt, gibt der Messumformer den Wert für *Flow Rate* (Durchfluss) als Null aus. 4. Die *Sensor Limits* (Sensorgrenzwerte) und die *Minimum Span* (Min. Messspanne) können unter der Überschrift *Flow Rate Sensor Limits* (Sensorgrenzwerte für den Durchfluss) eingesehen werden.

Hinweis

Wenn der Durchfluss als Primärvariable konfiguriert und über das 4–20 mA Signal ausgegeben wird, muss der 4–20 mA Bereich (LRV und URV) nach Abschluss der Konfiguration der kundenspezifischen Einheit überprüft werden. Weitere Informationen zur Überprüfung des 4–20 mA Bereichs siehe "Grundkonfiguration des Messumformers" auf Seite 31.

Die folgenden Schritte zur Konfiguration einer kundenspezifischen Einheit befolgen:

a. **Custom Unit** (Kundenspezifische Einheit): Die Bezeichnung der gewünschten kundenspezifischen Einheit, die für den Durchfluss angezeigt werden soll, eingeben. In das Feld für die kundenspezifische Einheit können bis zu fünf Zeichen einschl. Buchstaben, Zahlen und Symbole eingegeben werden.

Hinweis

Es wird empfohlen, die kundenspezifische Einheit in Großbuchstaben einzugeben. Wenn Einheiten als Kleinbuchstaben eingegeben wurden, werden diese auf dem Digitalanzeiger in Großbuchstaben ausgegeben. Darüber hinaus werden die folgenden Sonderzeichen vom Digitalanzeiger erkannt: Bindestrich ("–"), Prozent-Symbol ("%"), Asterisk ("*"), Schrägstrich ("/") und Leerstellen. Alle anderen für die kundenspezifische Einheit eingegebenen Zeichen werden als Asterisk ("*") auf dem Digitalanzeiger ausgegeben. Die folgende Warnung wird angezeigt, um auf diese Änderungen hinzuweisen: "Custom Unit contains characters that will display in upper case or asterisks on LCD. The DCS will display as entered." (Die kundenspezifischen Einheiten enthalten Zeichen, die als Großbuchstaben oder als Asteriske auf dem Digitalanzeiger angezeigt werden. Das Leitsystem zeigt die Einheiten wie eingegeben an.)

- b. **Base Unit** (Basiseinheit): Aus dem Dropdown-Menü eine Basiseinheit wählen, die für die kundenspezifische Einheit verwendet werden soll.
- c. **Base per Custom** (Basiseinheit gem. Angaben): Einen numerischen Wert eingeben, der die Anzahl der Basiseinheiten pro kundenspezifischer Einheit festlegt. Der 3051 MultiVariable Messumformer verwendet die folgenden Konvention:

Basiseinheit gem. Angaben = Anzahl der Basiseinheiten 1 Kundenspezifische Einheit

Beispiel:

Kundenspezifische Einheit: kg Basiseinheit: g

Wobei 1 kg (Kilogramm) = 1000 g (Gramm)

Basiseinheit gem. Angaben = $\frac{\text{Anzahl der Basiseinheiten}}{1 \text{ Kundenspezifische Einheit}} = \frac{1000 \cdot \text{g}}{1 \cdot \text{kg}} = 1000$

Die Werte der Basiseinheit gemäß Angaben für die gebräuchlichsten Durchflusseinheiten sind in Tabelle 3-9 aufgeführt.

- d. Auf Apply (Ausführen) klicken.
- e. **Flow Rate Unit** (Durchflusseinheit): Aus dem Dropdown-Menü die kundenspezifische Einheit wählen, die in Schritt b. erstellt wurde.

Die kundenspezifische Einheit ist u. U. erst im Dropdown-Menü *Durchflusseinheit* verfügbar, nachdem dieses Menü aktualisiert wurde. Zum Aktualisieren des Dropdown-Menüs zur Registerkarte *Basic Setup* (Grundeinstellung) navigieren und dann zur Registerkarte *Variables – Flow* (Variablen – Durchfluss) zurückkehren.

Tabelle 3-9. Häufig verwendete kundenspezifische Einheiten – Durchfluss

Kundenspezifische Einheit	Basiseinheit	Basiseinheit gem. Angaben
Barrel pro Minute (BBL/M)	bbl/h	60
Kubikmeter pro Tag (CUM/D)	Cum/h	0,041667
Millionen Kubikmeter pro Tag (MMCMD)	Cum/h	41.666,7
Millionen Gallonen pro Tag (MGD)	gal/d	1.000.000
Millionen Liter pro Tag (MML/D)	L/h	41.666,7
Millionen Standard-Kubikfuß pro Tag (MMCFD)	StdCuft/min	694,444
Normkubikmeter pro Tag (NCM/D)	NmlCum/h	0,041667
Normkubikmeter pro Minute (NCM/M)	NmlCum/h	60
US-Tonnen pro Tag (STOND)	lb/d	2000
US-Tonnen pro Stunde (STONH)	lb/h	2000
Standard-Kubikfuß pro Tag (SCF/D)	StdCuft/min	0,000694
Standard-Kubikfuß pro Stunde (SCF/H)	StdCuft/min	0,016667
Standard-Kubikfuß pro Sekunde (SCF/S)	StdCuft/min	60
Standard-Kubikmeter pro Tag (SCM/D)	StdCum/h	0,041667
Tausend Gallonen pro Tag (KGD)	gal/d	1000
Tausend Pfund pro Stunde (KLB/H)	lb/h	1000
Tausend Standard-Kubikfuß pro Tag (KSCFD)	StdCuft/min	0,694444
Tausend Standard-Kubikfuß pro Stunde (KSCFH)	StdCuft/min	16,6666

Wenn Umrechnungsfaktor-Tabellen oder Internet-Suchmaschinen verwendet werden, um den Wert "Basiseinheit gemäß Angaben" zu bestimmen, muss darauf geachtet werden, dass die kundenspezifische Einheit im Feld "Von" und die Basiseinheit im Feld "Auf" eingegeben wird. Ein Beispiel hierfür ist nachfolgend angegeben.

Um den Wert für "Basiseinheit gemäß Angaben" für eine kundenspezifische Einheit zu berechnen, die nicht in Tabelle 3-9 aufgeführt ist, eines des folgenden Beispiele anwenden:

- Beispiel f
 ür die Umrechnung Masse/Volumen: Siehe Seite 46
- Beispiel f
 ür die Umrechnung der Zeiteinheit: Siehe Seite 47
- Beispiel f
 ür die Umrechnung Masse/Volumen und Zeit: Siehe Seite 48

Beispiel für die Umrechnung Masse/Volumen:

Um das Verhältnis der "Basiseinheit gemäß Angaben" für eine kundenspezifische Einheit von Kilogramm pro Stunde (kg/h) und einer Basiseinheit von Gramm pro Stunde (g/h) zu ermitteln, die folgenden Daten eingeben:

Kundenspezifische Einheit = kg/h Basiseinheit = g/h

Wobei: 1 kg (Kilogramm) = 1000 g (Gramm)

Dann ist:

 $1 \text{ kg/h} = \frac{1 \cdot \text{kg}}{1 \cdot \text{h}} \times \frac{1000 \cdot \text{g}}{1 \cdot \text{kg}} = 1000 \text{ g/h}$

1 kg/h = 1000 g/h

Ergebnis:

Basiseinheit gem. Angaben = $\frac{\text{Anzahl der Basiseinheiten}}{1 \text{ Kundenspezifische Einheit}} = \frac{1000 \cdot \text{g/h}}{1 \cdot \text{kg/h}} = 1000$

Abbildung 3-26. Beispiel: Kundenspezifische Durchflusseinheit – Umrechnung von Masse/Volumen

nfigure/Setup	Flow Energy Totalizer Differential Pressu	e Static Pressure Process Temperature Modu	le Temperature Analog Output
Configure/Setup Basic Setup C Device Variables Calibration	Tag 3051SMV Long Tag 3051SMV Mass Flow		Device GOOD
	Flow Rate Setup Flow Rate KG/H Damping 0.40 Sec	Mass Flow Calculation Volumetric Flow Calculation	Flow Rate Unit KG/H Configure Flow Calculation Type
	Custom Units Setup Custom Unit KG/H Base Unit g/h 💌	Low Flow Cutoff Minimum DP 0.01 kPa	Flow Rate Sensor Limits Upper Sensor Limit 46542.2 KG/H Lower Sensor Limit 0 KG/H
Configure /Setun	Base per Custom 1000		Minimum Span 1.63293e-0 KG/H
Device Diagnostics Process Variables	Status Flow Rate Status Good - Not Limitec		
Beispiel für die Umrechnung der Zeiteinheit:

Um das Verhältnis der "Basiseinheit gemäß Angaben" für eine kundenspezifische Einheit von Standard-Kubikfuß pro Stunde (scf/h) und einer Basiseinheit von Standard-Kubikfuß pro Minute (StdCuft/min) zu ermitteln, die folgenden Daten eingeben:

Kundenspezifische Einheit = scf/h Basiseinheit = StdCuft/min

Wobei: 1 h (Stunde) = 60 min (Minuten)

Dann ist: $1 \operatorname{scf}/h = \frac{1 \cdot \operatorname{scf}}{1 \cdot h} \times \frac{1 \cdot h}{60 \cdot \min} = 0,016667 \operatorname{StdCuft/min}$

1 scf/h = 0,016667 StdCuft/min

Ergebnis:

Basiseinheit gem. Angaben = $\frac{\text{Anzahl der Basiseinheiten}}{1 \text{ Kundenspezifische Einheit}} = \frac{0.016667 \cdot \text{StdCuft/min}}{1 \cdot \text{scf/h}} = 0.016667$

Abbildung 3-27. Beispiel: Kundenspezifische Durchflusseinheit – Umrechnung der Zeiteinheit

S 03/11/2009 08:01:50.213 [3051	1SMV with Fully Compensated Mass and Ener	rgy Flow Rev. 1]	• 6 - 0 ×
ACCONS Hep			
Configure/Setup Basic Setup Device Variablesi Calbration	Flow Energy Totalizer Differential Pressure Device Tag 30515MV Long Tag 30515MV Plow Rate Setup 30515MV Mass Flow Plow Rate Setup 0 SCF/H 0.40 Custom Units Setup Custom Units	Static Pressure Process Temperature Module Te	Pow Rate Unit SCF/H Configure Flow Cakulation Type Flow Rate Sensor Limits Upper Sensor Limit 2000 SCF/H
	Base Unit StdCult/min		Lower Sensor Limit 0 SCF/H
	Base per Custom 0.016667		Minimum Span 0.00073080 SCF/H
Configure/Setup	Status		
Device Diagnostics	Flow Rate Status Good - Not Limitec -		
Process Variables			
	Time: Current	OK Cancel	Apply Print Help
last synchronized: Device Parameters not Syn	chronized.		10

Beispiel für die Umrechnung Masse/Volumen und Zeit:

Um das Verhältnis der "Basiseinheit gemäß Angaben" für eine kundenspezifische Einheit von Millionen Standard-Kubikfuß pro Tag (mmcfd) und einer Basiseinheit von Standard-Kubikfuß pro Minute (StdCuft/min) zu ermitteln, die folgenden Daten eingeben:

Kundenspezifische Einheit = mmcfd Basiseinheit = StdCuft/min

Wobei:

1 mmcf (Millionen Standard-Kubikfuß) = 1.000.000 StdCuft (Standard-Kubikfuß) und

1 d (Tag) = 1440 min (Minuten)

Dann ist:

 $1 \text{ mmcfd} = \frac{1 \cdot \text{mmcf}}{1 \cdot \text{d}} \times \frac{1.000.000 \cdot \text{StdCuft}}{1 \cdot \text{mmcf}} \times \frac{1 \text{ d}}{1440 \cdot \text{min}} = 694,444 \text{ StdCuft/min}$

1 mmcfd = 694,444 StdCuft/min

Ergebnis:

Basiseinheit gem. Angaben = $\frac{\text{Anzahl der Basiseinheiten}}{1 \text{ Kundenspezifische Einheit}} = \frac{694,444 \cdot \text{StdCuft/min}}{1 \cdot \text{mmcfd}} = 694,444$

Abbildung 3-28. Beispiel: Kundenspezifische Durchflusseinheit – Umrechnung von Masse/Volumen und Zeit

03/11/2009 08:01:50.213 [3	051SMV with Fully Compensated Mass and E	nergy Flow Rev. 1]	• G _ D
B [] [] []			
Configure/Setup Configure/Setup Paski: Setup Device Variables Calbration	Flow Energy Totalzer Differential Pressure Device Tag Tag 30515MV Long Tag 30515MV Mass Flow	e Static Pressure Process Temperature Module	Temperature Analog Output Device GOOD Status
	Flow Rate Setup Flow Rate 0 MMCED Damping 0.40 Sec	Mass Flow Calculation	Flow Rate Unit MMCFD Configure Flow Calculation Type
	Custom Units Setup	Low Flow Cutoff Minimum DP 0.05 inH20	Flow Rate Sensor Limits Upper Sensor Limit 2082390.00 MMCFD
	Base Unit StdCult/min 💽 Base per Custom 634.444		Lower Sensor Limit 0 MMCFD Minimum Span 0.00073060 MMCFD
Configure/Setup	Status Flow Rate Status Good - Not Limitec -		
g Process variables	Time: Current	0K Cano	el Apoly Print Helo
synchronized: Device Parameters not	Synchronized.		

Unter der Überschrift *Custom Units Setup* (Kundenspezifische Einheit einstellen) kann der Anwender eine kundenspezifische Einheit für die Durchflussmessung konfigurieren. Kundenspezifische Einheiten ermöglichen die Anzeige des Durchflusses in Maßeinheiten, die keine Standardeinheiten für den 3051S MultiVariable sind.

3.7.2 Energiedurchfluss

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 4, 1, 2
---	------------

(Nur Funktionsplatine für voll kompensierten Masse- und Energiedurchfluss):

Hinweis

Berechnungen des Energiedurchflusses sind nur für bestimmte Medienarten verfügbar.

Auf der Registerkarte *Energy* (Energie) kann der Anwender die mit dem Energiedurchfluss zusammenhängenden Einstellungen konfigurieren.

- 1. Unter der Überschrift *Energy Rate Setup* (Energiedurchfluss einstellen) die *Unit* (Einheit) und *Damping* (Dämpfung) der Energierate je nach Anwendung ändern. Die geräteinterne Berechnung des Energiedurchflusses erfolgt mittels ungedämpfter Prozessvariablen. Die Dämpfung des Energiedurchflusses wird unabhängig von der Dämpfung des Durchflusses und den gemessenen Prozessvariablen eingestellt.
- 2. Unter der Überschrift *Custom Units Setup* (Kundenspezifische Einheit einstellen) kann der Anwender eine kundenspezifische Einheit für die Messung des Energiedurchflusses konfigurieren. Kundenspezifische Einheiten ermöglichen die Anzeige des Energiedurchflusses in Maßeinheiten, die keine Standardeinheiten für den 3051S MultiVariable sind.

Hinweis

Wenn der Energiedurchfluss als Primärvariable konfiguriert und über das 4–20 mA Signal ausgegeben wird, muss der 4–20 mA Bereich (LRV und URV) nach Abschluss der Konfiguration der kundenspezifischen Einheit überprüft werden. Weitere Informationen zur Überprüfung des 4–20 mA Bereichs siehe "Grundkonfiguration des Messumformers" auf Seite 31.

Die folgenden Schritte zur Konfiguration einer kundenspezifischen Einheit befolgen:

a. **Custom Unit** (Kundenspezifische Einheit): Die Bezeichnung der gewünschten kundenspezifischen Einheit, die für der Energiedurchfluss angezeigt werden soll, eingeben. In das Feld für die kundenspezifische Einheit können bis zu fünf Zeichen einschl. Buchstaben, Zahlen und Symbole eingegeben werden.

Hinweis

Es wird empfohlen, die kundenspezifische Einheit in Großbuchstaben einzugeben. Wenn Einheiten als Kleinbuchstaben eingegeben wurden, werden diese auf dem Digitalanzeiger in Großbuchstaben ausgegeben. Darüber hinaus werden die folgenden Sonderzeichen vom Digitalanzeiger erkannt: Bindestrich ("–"), Prozent-Symbol ("%"), Asterisk ("*"), Schrägstrich ("/") und Leerstellen. Alle anderen für die kundenspezifische Einheit eingegebenen Zeichen werden als Asterisk ("*") auf dem Digitalanzeiger ausgegeben. Die folgende Warnung wird angezeigt, um auf diese Änderungen hinzuweisen: "Custom Unit contains characters that will display in upper case or asterisks on LCD. The DCS will display as entered." (Die kundenspezifischen Einheiten enthalten Zeichen, die als Großbuchstaben oder als Asteriske auf dem Digitalanzeiger angezeigt werden. Das Leitsystem zeigt die Einheiten wie eingegeben an.)

- b. **Base Unit** (Basiseinheit): Aus dem Dropdown-Menü eine Basiseinheit wählen, die für die kundenspezifische Einheit verwendet werden soll.
- c. **Base per Custom** (Basiseinheit gem. Angaben): Einen numerischen Wert eingeben, der die Anzahl der Basiseinheiten pro kundenspezifischer Einheit festlegt. Der 3051 MultiVariable Messumformer verwendet die folgenden Konvention:

Basiseinheit gem. Angaben = Anzahl der Basiseinheiten 1 Kundenspezifische Einheit Beispiel:

Kundenspezifische Einheit: kg Basiseinheit: g Wobei 1 kg (Kilogramm) = 1000 g (Gramm) Basiseinheit gem. Angaben = $\frac{\text{Anzahl der Basiseinheiten}}{1 \text{ Kundenspezifische Einheit}} = \frac{1000 \cdot \text{g}}{1 \cdot \text{kg}} = 1000$

Die Werte der Basiseinheit gemäß Angaben für die gebräuchlichsten Energieeinheiten sind in Tabelle 3-10 aufgeführt.

- d. Auf **Apply** (Ausführen) klicken.
- e. **Energy Rate Unit** (Energieeinheit): Aus dem Dropdown-Menü die kundenspezifische Einheit wählen, die in Schritt b. erstellt wurde.

Hinweis

Die kundenspezifische Einheit ist u. U. erst im Dropdown-Menü *Energieeinheit* verfügbar, nachdem dieses Menü aktualisiert wurde. Zum Aktualisieren des Dropdown-Menüs zur Registerkarte *Basic Setup* (Grundeinstellung) navigieren und dann zur Registerkarte *Variables – Energy* (Variablen – Energie) zurückkehren.

Kundenspezifische Einheit	Basiseinheit	Basiseinheit gem. Angaben
BTU pro Tag (BTU/D)	Btu/h	0,041667
BTU pro Minute (BTU/M)	Btu/h	60
Megajoule pro Tag (MJ/D)	MJ/h	0,041667
Megajoule pro Minute (MJ/M)	MJ/h	60
Tausend BTU pro Tag (KBTUD)	Btu/h	41,6667
Tausend BTU pro Stunde (KBTUH)	Btu/h	1000

Tabelle 3-10. Häufig verwendete kundenspezifizierte Einheiten – Energiedurchfluss

Wenn Umrechnungsfaktor-Tabellen oder Internet-Suchmaschinen verwendet werden, um den Wert "Basiseinheit gemäß Angaben" zu bestimmen, muss darauf geachtet werden, dass die kundenspezifische Einheit im Feld "Von" und die Basiseinheit im Feld "Auf" eingegeben wird. Ein Beispiel hierfür ist nachfolgend angegeben.

Convert what quantity? 1	
From: megaelectronvolt megacalorie [I.T.] megacalorie [15° C] megajoule/day megalerg megavatthour meter kilogram-force microjoule millijoule	To: megaelectronvolt megacalorie [I.T.] megacalorie [15° C] megajoule/hour megalerg megavatthour meter kilogram-force millioule
Result:	

Um den Wert für "Basiseinheit gemäß Angaben" für eine kundenspezifische Einheit zu berechnen, die nicht in Tabelle 3-10 aufgeführt ist, eines des folgenden Beispiele anwenden:

- Beispiel für die Umrechnung der Energieeinheit: Siehe Seite 51
- Beispiel f
 ür die Umrechnung der Zeiteinheit: Siehe Seite 52
- Beispiel f
 ür die Umrechnung von Energie- und Zeiteinheit: Siehe Seite 54

Beispiel für die Umrechnung der Energieeinheit:

Um das Verhältnis der "Basiseinheit gemäß Angaben" für eine kundenspezifische Einheit von Tausend BTU pro Stunde (kBtuh) und einer Basiseinheit von BTU pro Stunde (Btu/h) zu ermitteln, die folgenden Daten eingeben:

Kundenspezifische Einheit = kBtuh

1 megajoule/day = 0.041667 megajoule/hour

Basiseinheit = Btu/h Wobei: 1 kBtu (Tausend BTU) = 1000 Btu

Dann ist:

1 kBtuh = $\frac{1 \cdot kBtu}{1 \cdot h} \times \frac{1000 \cdot Btu}{1 \cdot h}$ = 1000 Btu/h

1 kBtuh = 1000 Btu/h

Ergebnis:

Basiseinheit gem. Angaben = $\frac{\text{Anzahl der Basiseinheiten}}{1 \text{ Kundenspezifische Einheit}} = \frac{1000 \cdot \text{Btu/h}}{1 \cdot \text{kBtuh}} = 1000$

Actions Help		
Configure/Setup Configure/Setup Basis Setup Device Visiobles Calbration	Flow Energy Totalizer Differential Pressure Ratic Pressure Process Temperature Device Tag 30515MV Ing Ing Ing Ing Tag 30515MV Mass Flow Ing Ing Ing Energy Rate 0 KBTUH Ing Ing Ing Unit FLBTUH Ing Ing Ing Ing Damping 0.40 Sec Ing Ing Status Energy Rate Good - Not Limitec Ing	Module Temperature Analog Output
Configure/Setup		
Process Variables		
da B		

Abbildung 3-29. Beispiel: Kundenspezifische Energieeinheit – Umrechnung der Energieeinheit

Beispiel für die Umrechnung der Zeiteinheit:

Um das Verhältnis der "Basiseinheit gemäß Angaben" für eine kundenspezifische Einheit von BTU pro Tag (Btu/d) und einer Basiseinheit von BTU pro Stunde (Btu/h) zu ermitteln, die folgenden Daten eingeben:

Kundenspezifische Einheit = Btu/d Basiseinheit = Btu/h

Wobei: 1 d (Tag) = 24 h (Stunden)

Dann ist:

 $1 \text{ Btu/d} = \frac{1 \cdot \text{Btu}}{1 \cdot \text{d}} \times \frac{1 \cdot \text{d}}{24 \cdot \text{h}} = 0,041667 \text{ Btu/h}$

1 Btu/d = 0,041667 Btu/h

Ergebnis:

Basiseinheit gem. Angaben = $\frac{\text{Anzahl der Basiseinheiten}}{1 \text{ Kundenspezifische Einheit}} = \frac{0,041667 \cdot \text{Btu/h}}{1 \cdot \text{Btu/d}} = 0,041667$

S 03/11/2009 08:01:50.213 [3051	SMV with Fully Compensated Mass and I	Energy Flow Rev. 1]	• • • • •
Configure/Setup Configure/Setup Configure/Setup Configure/Setup Configure/Setup Configure/Setup Configure/Setup Configure/Setup	Flow Energy Totalzer Differential Pressu Device Tag 30515MV Long Tag 30515MV Mass Flow Energy Rate 0 BTU/D Unit BTU/D Damping 0.40 Status Good - Not Linkec	Custom Units Setup Custom Units Setup Custom Unit BTU/D Base Unit Btu/h Base per Custom 0.041667	e Temperature Analog Output Device GOOD Status GOOD Energy Rate Sensor Links Upper Sensor Link 127259 BTU/D Lower Sensor Link 0 BTU/D Minimum Span 3.6e000 BTU/D
Configure/Setup	Time: Current	OKCan	cel <u>Accely</u> Binx <u>H</u> elp
ast synchronized: Device Parameters not Sync	chronized.		
and a second portion of an annual 3 TRA 37TR			

Beispiel für die Umrechnung von Energie- und Zeiteinheit:

Um das Verhältnis der "Basiseinheit gemäß Angaben" für eine kundenspezifische Einheit von Tausend BTU pro Tag (kBtud) und einer Basiseinheit von BTU pro Stunde (Btu/h) zu ermitteln, die folgenden Daten eingeben:

Kundenspezifische Einheit = kBtud Basiseinheit = Btu/h

Wobei: 1 kBtu (Tausend BTU) = 1000 Btu und

1 d (Tag) = 24 h (Stunden) Dann ist: 1 kBtud = $\frac{1 \cdot \text{kBtu}}{1 \cdot \text{d}} \times \frac{1000 \cdot \text{Btu}}{1 \cdot \text{kBtu}} \times \frac{1 \cdot \text{d}}{24 \cdot \text{h}} = 41,6667 \text{ Btu/h}$ 1 kBtud = 41,6667 Btu/h Ergebnis: Basiseinheit gem. Angaben = $\frac{\text{Anzahl der Basiseinheiten}}{1 \text{ Kundenspezifische Einheit}} = \frac{41,6667 \cdot \text{Btu/h}}{1 \cdot \text{kBtud}} = 41,6667$

Abbildung 3-31. Beispiel: Kundenspezifische Energieeinheit – Umrechnung von Energieund Zeiteinheit

S 03/11/2009 08:01:50.213 [3051	SMV with Fully Compensated Mass and Energy Flow Rev. 1]	• • • ×
File Actions Help		
Configure/Setup Basic Setup Device Variablesi Calbration	Flow Energy Totalizer Differential Pressure Static Pressure Process Temperature Module T Device Tag 30515MV	emperature Analog Output Device GOOD Second Energy Rate Sensor Links Upper Sensor Link (3054139+0) Lower Sensor Link (7000065399) KBTUD Minimum Span (7000065399) KBTUD
Configure/Setup		
Device Diagnostics		
Process Variables		
÷.	Time: Current V OK Cannel	Andu Pint Halp
last synchronized: Device Parameters not Sync	hronized.	

- 3. Unter der Überschrift *Low Flow Cutoff* (Schleichmengenabschaltung) kann der aktuelle *Minimum DP Value* (DP-Mindestwert) je nach Anwendung geändert werden. Die Einheit für diesen Wert ist die vom Anwender gewählte DP-Einheit. Wenn der gemessene DP-Wert unter dem DP-Mindestwert liegt, gibt der Messumformer den Energiewert als Null aus.
- 4. Die Sensor Limits (Sensorgrenzwerte) und die Minimum Span (Min. Messspanne) können unter der Überschrift Energy Rate Sensor Limits (Sensorgrenzwerte für den Energiedurchfluss) eingesehen werden.

3.7.3 Zähler

(Nur Funktionsplatine für voll kompensierten Masse- und Energiedurchfluss):

Auf der Registerkarte *Totalizer* (Zähler) werden die mit der Zählerfunktion des Messumformers zusammenhängenden Einstellungen konfiguriert.

03/11/2009 08:01:50.213 [30 Actions Help	ISMV with Fully Compensated Mass and Energy Flow Rev. 1] 🕐 🖪 🖃
) <u>}</u>	
onfigure/Setup	Flow Energy Totalizer Differential Pressure Static Pressure Process Temperature Module Temperature Analog Cutput
Basic Setup Device Variables Calibration	Tag 30515MV Long Tag 30515MV Mass Flow
	Totalized Reading 757.19 StdCuft Mode Start Maximum Value 870654197 StdCuft Unit StdCuft Flow Output Parameter Flow Output
	Custom Units Setup Custom Unit MMSCF
	Base Unit StdCut Configure Totalizer Base per Custom 1000000 Set Totalizer Maximum
Configure/Setup	Status Reset Totalizer
Device Diagnostics Process Variables	Totalizer Status Good - Not Limitec
B	
	Time: Current OK Cancel Apply Print E

- 1. Zum Ein- oder Ausschalten der Zählerfunktion im Dropdown-Menü *Mode* (Betriebsart) unter der Überschrift *Totalizer Setup* (Zähler einstellen) die Option **Start** oder **Stop** auswählen. Die *Units* (Einheit) des Zählers kann ebenfalls unter dieser Überschrift geändert werden.
- 2. Die Werte für *Totalized Parameter* (Zählparameter) und *Totalizer Maximum* (Höchstwert) prüfen. Zum Ändern des Werts *Totalized Parameter* auf die Schaltfläche **Configure Totalizer** (Zähler konfigurieren) unter der Überschrift *Totalizer Control* (Zählersteuerung) klicken.

Hinweis

Wenn der Zähler den Höchstwert erreicht, wird er automatisch auf Null rückgesetzt und fährt mit dem Zählvorgang fort. Der standardmäßige Höchstwert entspricht dem Äquivalent von 4,29 Mrd. lbs, den tatsächlichen Kubikfuß oder BTU. Zum Ändern des Höchstwerts *Totalizer Maximum* auf die Schaltfläche **Set Totalizer Maximum** (Höchstwert des Zählers einstellen) unter der Überschrift Zählersteuerung klicken.

- 3. Zum Nullstellen des Werts *Totalized Reading* (Zählersumme) auf die Schaltfläche **Reset Totalizer** (Zähler rücksetzen) unter der Überschrift *Totalizer Control* (Zählersteuerung) klicken.
- Unter der Überschrift Custom Units Setup (Kundenspezifische Einheit einstellen) kann der Anwender eine kundenspezifische Einheit für Zählersumme konfigurieren.
 Kundenspezifische Einheiten ermöglichen die Anzeige der Zählerrate in Maßeinheiten, die keine Standardeinheiten für den 3051S MultiVariable sind.

Hinweis

Wenn die Zählerrate als Primärvariable konfiguriert und über das 4–20 mA Signal ausgegeben wird, muss der 4–20 mA Bereich (LRV und URV) nach Abschluss der Konfiguration der kundenspezifischen Einheit überprüft werden. Weitere Informationen zur Überprüfung des 4–20 mA Bereichs siehe "Grundkonfiguration des Messumformers" auf Seite 31.

Die folgenden Schritte zur Konfiguration einer kundenspezifischen Einheit befolgen:

a. **Custom Unit** (Kundenspezifische Einheit): Die Bezeichnung der gewünschten kundenspezifischen Einheit, die für die Option *Totalized Reading* (Zählersumme) angezeigt werden soll, eingeben. In das Feld für die kundenspezifische Einheit können bis zu fünf Zeichen einschl. Buchstaben, Zahlen und Symbole eingegeben werden.

Hinweis

Es wird empfohlen, die kundenspezifische Einheit in Großbuchstaben einzugeben. Wenn Einheiten als Kleinbuchstaben eingegeben wurden, werden diese auf dem Digitalanzeiger in Großbuchstaben ausgegeben. Darüber hinaus werden die folgenden Sonderzeichen vom Digitalanzeiger erkannt: Bindestrich ("–"), Prozent-Symbol ("%"), Asterisk ("*"), Schrägstrich ("/") und Leerstellen. Alle anderen für die kundenspezifische Einheit eingegebenen Zeichen werden als Asterisk ("*") auf dem Digitalanzeiger ausgegeben. Die folgende Warnung wird angezeigt, um auf diese Änderungen hinzuweisen: "Custom Unit contains characters that will display in upper case or asterisks on LCD. The DCS will display as entered." (Die kundenspezifischen Einheiten enthalten Zeichen, die als Großbuchstaben oder als Asteriske auf dem Digitalanzeiger angezeigt werden. Das Leitsystem zeigt die Einheiten wie eingegeben an.)

- b. **Base Unit** (Basiseinheit): Aus dem Dropdown-Menü eine Basiseinheit wählen, die für die kundenspezifische Einheit verwendet werden soll.
- c. **Base per Custom** (Basiseinheit gem. Angaben): Einen numerischen Wert eingeben, der die Anzahl der Basiseinheiten pro kundenspezifischer Einheit festlegt. Der 3051 MultiVariable Messumformer verwendet die folgenden Konvention:

Basiseinheit gem. Angaben = Anzahl der Basiseinheiten 1 Kundenspezifische Einheit

Beispiel:

Kundenspezifische Einheit: kg Basiseinheit: g

Wobei 1 kg (Kilogramm) = 1000 g (Gramm)

Basiseinheit gem. Angaben = $\frac{\text{Anzahl der Basiseinheiten}}{1 \text{ Kundenspezifische Einheit}} = \frac{1000 \cdot \text{g}}{1 \cdot \text{kg}} = 1000$

Die Werte der Basiseinheit gemäß Angaben für die gebräuchlichsten Zählereinheiten sind in Tabelle 3-11 aufgeführt.

- d. Auf Apply (Ausführen) klicken.
- e. **Totalizer Unit** (Zählereinheit): Aus dem Dropdown-Menü die kundenspezifische Einheit wählen, die in Schritt b. erstellt wurde.

Hinweis

Die kundenspezifische Einheit ist u. U. erst im Dropdown-Menü Zählereinheit verfügbar, nachdem dieses Dropdown-Menü aktualisiert wurde. Zum Aktualisieren des Dropdown-Menüs zur Registerkarte *Basic Setup* (Grundeinstellung) navigieren und dann zur Registerkarte *Variables* – *Totalizer* (Variablen – Zähler) zurückkehren.

Kundenspezifische Einheit	Basiseinheit	Basiseinheit gem. Angaben
Millionen Normkubikmeter (MMNCM)	NmlCum	1.000.000
Millionen Standard-Kubikfuß (MMSCF)	StdCuft	1.000.000
Millionen Standard-Kubikmeter (MMSCM)	StdCum	1.000.000
Tausend metrische Tonnen (KMTON)	MetTon	1000
Tausend Normkubikmeter (KNCM)	NmlCum	1000
Tausend US-Tonnen (KSTON)	STon	1000
Tausend Standard-Kubikfuß (KSCF)	StdCuft	1000
Tausend Standard-Kubikmeter (KSCM)	StdCum	1000

Tabelle 3-11. Häufig verwendete kundenspezifizierte Einheiten – Zähler

Wenn Umrechnungsfaktor-Tabellen oder Internet-Suchmaschinen verwendet werden, um den Wert "Basiseinheit gemäß Angaben" zu bestimmen, muss darauf geachtet werden, dass die kundenspezifische Einheit im Feld "Von" und die Basiseinheit im Feld "Auf" eingegeben wird.

Um den Wert für "Basiseinheit gemäß Angaben" für eine kundenspezifische Einheit zu berechnen, die nicht in Tabelle 3-9 aufgeführt ist, das folgende Beispiel anwenden:

Beispiel für die Umrechnung der Zählereinheit: Siehe Seite 57

Beispiel für die Umrechnung der Zählereinheit:

Um das Verhältnis der "Basiseinheit gemäß Angaben" für eine kundenspezifische Einheit von Millionen Standard-Kubikfuß (mmscf) und einer Basiseinheit von Standard-Kubikfuß (StdCuft) zu ermitteln, die folgenden Daten eingeben:

Kundenspezifische Einheit = mmscf

Basiseinheit = StdCuft

Wobei: 1 mmscf (Millionen Standard-Kubikfuß) = 1.000.000 StdCuft (Standard-Kubikfuß)

Ergebnis:

Basiseinheit gem. Angaben = $\frac{\text{Anzahl der Basiseinheiten}}{1 \text{ Kundenspezifische Einheit}} = \frac{1.000.000 \cdot \text{StdCuft}}{1 \cdot \text{mmscf}} = 1.000.000$

1000000.00

Custom Units Setup

Base per Custom

Custom Unit

Base Unit

Status

Time: Current

5

ers not Synchr

MMSCF

StdCuft

Totalizer Status Good - Not Limitec -

•

3.7.4	Differenzdruck

Configure/Setup

Device Diagnostics

Process Variables

ed: Device Par

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 4, 1, 4
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 4, 1, 1

Totalizer Control

Configure Totalizer

Set Totalizer Maximum

Reset Totalizer

OK Cancel Apply Print

Help

Hinweis

Die Kalibrierung des Differenzdrucksensors ist auf Siehe Seite 13 beschrieben.

N KS			
IlgUre/Setup Confore/Setup Device ♥ Yariabësi ♥ Yariabësi ♥ Calibration	Plow Totalzer Differential Pressure Static Pressure Process Device Tag 30515MV	Temperature Module Temperature Analog Output Device Status Pressure Sensor Limits	GOOD
Configure/Setup Device Diagnostics Process Variables			

- 1. Unter der Überschrift *Differential Pressure Setup* (Differenzdruck einstellen) die *DP Units* (Einheit) und *Damping* (Dämpfung) des Differenzdrucks je nach Anwendung ändern.
- 2. Die Sensor Limits (Sensorgrenzwerte) und die Minimum Span (Min. Messspanne) können unter der Überschrift Differential Pressure Sensor Limits (Sensorgrenzwerte für den Differenzdruck) eingesehen werden.

3.7.5 Statischer Druck

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 4, 1, 5
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 4, 1, 2

Hinweis

Der Sensorabgleich ist eine Zweipunkt-Sensorkalibrierung, bei der die beiden Druck-Endwerte eingestellt und alle zwischen diesen beiden Werten liegenden Ausgangswerte linearisiert werden. Immer zuerst den unteren Sensorabgleichwert einstellen, um den korrekten Offset festzulegen. Durch die Einstellung des oberen Sensorabgleichwertes wird die Steigung der Kennlinie basierend auf dem unteren Sensorabgleichwert korrigiert. Durch Festlegung der Werte für den Abgleich kann der Anwender die Genauigkeit des Messumformers über einen angegebenen Messbereich bei der eingestellten Temperatur optimieren. Siehe Seite 12.

1. Unter der Überschrift *Static Pressure Setup* (Statischen Druck einstellen) die *Absolute Pressure Units* (Einheit des Absolutdrucks) und die *Gage Pressure Units* (Einheit des Überdrucks) je nach Anwendung ändern. Die *Damping* (Dämpfung) des statischen Drucks kann ebenfalls geändert werden.

Hinweis

Der Messumformer kann je nach spezifiziertem Modellcode mit einem statischen Absolutdruckoder Überdrucksensor ausgestattet sein. Der Typ des statischen Drucksensors, mit dem der Messumformer ausgestattet ist, kann durch Einsehen der Angaben unter der Überschrift *Static Pressure Sensor Type* (Typ des statischen Drucksensors) bestimmt werden. Die nicht gemessene Art des statischen Drucks wird mittels des Atmosphärendrucks berechnet, der unter der Überschrift *User-Defined Atmospheric Pressure* (Anwenderdefinierter Atmosphärendruck) angegeben wurde.

2. Die Sensor Limits (Sensorgrenzwerte) und die Minimum Span (Min. Messspanne) für den statischen Absolut- und Überdruck können unter den entsprechenden Überschriften Sensorgrenzwerte eingesehen werden.

3.7.6 Prozesstemperatur

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 4, 1, 6
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 4, 1, 3

Hinweis

Die Kalibrierung des Prozesstemperaturfühlers ist auf Siehe Seite 16 beschrieben.

Wenn ein Messumformer mit der Option "Nur feste Prozesstemperatur" bestellt wurde, können die feste Temperatur und die Einheit auf der Registerkarte *Fixed Temperature* (Feste Temperatur) geändert werden.

Abbildung 3-36. Registerkarte "Variables – Process Temperature" (Variablen – Prozesstemperatur)

- 1. Unter der Überschrift *Process Temperature Setup* (Prozesstemperatur einstellen) die *Unit* (*Einheit*) und *Damping* (Dämpfung) dieses Werts je nach Anwendung ändern.
- 2. Unter der Überschrift *Prozesstemperatur einstellen* die Option *Temperature Mode* (Temperaturmodus) auswählen. Siehe Tabelle 3-12.

Temperaturmodi	Beschreibung
Normal	Der Messumformer verwendet nur den Wert für die tatsächlich gemessene <i>Prozesstemperatur</i> . Wenn der Temperaturfühler ausfällt, wird das Analogsignal auf den Alarmwert gesetzt.
Backup	Der Messumformer verwendet den Wert für die tatsächlich gemessene Prozesstemperatur. Wenn der Temperaturfühler ausfällt, verwendet der Messumformer den Wert, der im Feld <i>Fixed/Backup Temperature</i> (Feste/Backup-Temperatur) angegeben ist.
Fixed (Fester Wert)	Der Messumformer verwendet stets den Temperaturwert, der im Feld Fixed / Backup Temperature angegeben ist.

Tabelle 3-12. Temperaturmodi

Hinweis

Process Temperature Mode Setup (Modus der Prozesstemperatur einstellen) gilt nur für Messumformer mit Funktionsplatine für voll kompensierten Masse- und Energiedurchfluss.

3. Die Sensor Limits (Sensorgrenzwerte) und die Minimum Span (Min. Messspanne) können unter der Überschrift Process Temperature Sensor Limits (Sensorgrenzwerte für die Prozesstemperatur) eingesehen werden. Der obere und untere Sensorgrenzwert kann je nach Anwendung geändert werden.

Der 3051S MultiVariable Messumformer akzeptiert Callendar-van Dusen Konstanten von einem kalibrierten Widerstandsthermometer und generiert eine Anwenderkurve, die zu jeder speziellen Sensorkurve (Widerstand – Temperatur) passt. Die Anpassung der sensorspezifischen Kurve auf die Konfiguration des Messumformers verbessert die Genauigkeit der Temperaturmessung.

4. Unter der Überschrift Sensor Matching (Sensor-Anpassung) können die Callendar-Van Dusen Konstanten R₀, A, B und C eingesehen werden. Wenn die Callendar-Van Dusen Konstanten für das anwendungsspezifische Pt100 Widerstandsthermometer bekannt sind, können die Konstanten R₀, A, B und C geändert werden. Hierfür auf die Schaltfläche Callendar-Van Dusen Setup (Callendar-Van Dusen Konstanten einstellen) klicken und den Menüanweisungen folgen.

Der Anwender kann außerdem die Koeffizienten α , ß und δ durch Klicken auf die Schaltfläche **View Alpha, Beta, Delta** (Alpha, Beta, Delta anzeigen) anzeigen. Die Konstanten R₀, α , ß und δ können geändert werden. Hierfür auf die Schaltfläche Callendar-Van Dusen Konstanten einstellen klicken und den Menüanweisungen folgen. Zum Rücksetzen des Messumformers auf die Standardeinstellungen gemäß IEC 751 auf die Schaltfläche **Reset to IEC 751 Defaults** (Auf IEC 751 Standardeinstellungen rücksetzen) klicken.

3.7.7 Modultemperatur

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 4, 1, 7
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 4, 1, 4

Die Temperaturvariable des Sensormoduls gibt die gemessene Temperatur des Sensors und der Elektronik im SuperModule aus. Die Modultemperatur kann verwendet werden, um Begleitheizungen zu regeln oder eine Überhitzung des Geräts zu diagnostizieren.

Abbildung 3-37. Registerkarte "Variables – Module Temperature" (Variablen – Modultemperatur)

Process Variables Process Variables Process Variables Process Variables					
Configure/Setup Device Diagnostics Process Variables 875	Onfigure/Setup Configure/Setup Besic Setup Versite Variables Caltration	Flow Totalzer Differential Pressure Device Tag Tag 30515MV Long Tag 30515MV Module Temperature Setup Module Temperature Setup Module Temperature Setup Status Status Module Temp Status	Static Pressure Process Temperature Modul Flow Prove	e Temperature Analog Outp Device Status dogf dogf	c GOOD
	Configure/Setup				

- 1. Unter der Überschrift *Module Temperature Setup* (Modultemperatur einstellen) die *Units* (Einheit) dieses Werts je nach Anwendung ändern.
- 2. Die Sensor Limits (Sensorgrenzwerte) können unter der Überschrift Module Temperature Sensor Limits (Sensorgrenzwerte für die Modultemperatur) eingesehen werden.

3.7.8 Analogausgang

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 4, 3, 2
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 4, 3, 2

Hinweis

Die Kalibrierung des Analogausgangs ist auf Siehe Seite 18 beschrieben.

B₁ ₩?			
onfigure/Setup Configure/Setup Passis Setup Device Variables	Plow Totalizer Differential Pressure Static Pr Device Tag Tag 00515MV	essure Process Temperature Module Temperature	Analog Output Device GOOD
	Long Tag 30515MV Mass Flow Analog Output Setup Primary Variable Flow Upper Range Value (20 mA) Unever Range Value (4 mA) Differ Value (4 mA) Primary Variable Sensor Limbs Upper Range (57227 b/s) Upper Range (4 mA) Primary Variable Sensor Limbs	Analog Output Information Analog Dutput 4.000 mA Percent of Range 0.000 %	Diagnostics mA Dutput Fixed mA Dutput Saturated
^b Configure/Setup	Lower Sensor Limit 0 ib/s Minimum Span 1e-008 ib/s		
Process Variables	Time: Current		Constant Print Halo

Abbildung 3-38. Registerkarte "Variables – Analog Output" (Variablen – Analogausgang)

- 1. Unter der Überschrift Analog Output Setup (Analogausgang einstellen) die Option Primary Variable (Primärvariable) auswählen. Upper Range Value (Messende) und Lower Range Value (Messanfang) können ebenfalls unter dieser Überschrift geändert werden.
- 2. Die Upper Sensor Limit (Obere Sensorgrenze) und Lower Sensor Limit (Untere Sensorgrenze) und die min. Messspanne unter der Überschrift Primary Variable Sensor Limits (Sensorgrenzwerte der Primärvariable) überprüfen.

Übertragungsfunktion (nur Funktionsplatine für direkten Ausgang der Prozessvariable)

Der 3051S MultiVariable Messumformer mit Funktionsplatine für direkten Ausgang der Prozessvariable verfügt über zwei Einstellmöglichkeiten für den Analogausgang: linear und radiziert. Die Radizierung wird verwendet, um ein durchflussproportionales (analoges) Ausgangssignal zu erhalten. Wenn der Eingang sich dem Wert Null nähert, schaltet der 3051S MultiVariable Messumformer automatisch auf "linear", um somit ein besseres und stabileres Ausgangssignal im Bereich von Null zu erhalten (siehe Abbildung 3-39 auf Seite 64).

Von 0 bis 0,6 % der eingestellten Druck-Messspanne ist die Steigung gleich 1:1 (y = x). Dies ermöglicht eine präzise Kalibrierung im Nullpunkt-Bereich. Bei kleinen Änderungen im Eingang haben größere Steigungen stärkere Auswirkungen auf den Ausgang. Um einen kontinuierlichen Übergang von "linear" zu "radiziert" zu erreichen, ist die Kurvensteigung im Bereich von 0,6 bis 0,8 Prozent 1:41,72 (y = 41,72x).

A Hinweis

Nicht sowohl den Analogausgang des Geräts als auch das Leitsystem auf "radiziert" setzen.

Abbildung 3-39 gilt nur für den radizierten Ausgang des 3051S MultiVariable Messumformers mit Funktionsplatine für direkten Ausgang der Prozessvariable.

A Hinweis

Bei einem Durchfluss-Messspannenverhältnis größer als 10:1 ist es nicht empfehlenswert, eine radizierte Übertragungsfunktion im Messumformer durchzuführen. Führen Sie die radizierte Übertragungsfunktion stattdessen im Leitsystem durch.

3.8

Menüstrukturen und Funktionstastenfolgen für das Handterminal 475

Abhängig von der bestellten Konfiguration sind bestimmte Messungen (z. B. statischer Druck, Prozesstemperatur) und/oder Berechnungen (z. B. Masse-, volumetrischer und Energiedurchfluss) ggf. nicht für alle Medienarten verfügbar. Die verfügbaren Messungen und/oder Berechnungen werden durch die bestellten Optionscodes für MultiVariable Typ und Messart bestimmt. Weitere Informationen siehe "Bestellinformationen" auf Seite 27.

Die Menüstrukturen und Funktionstastenfolgen für das Handterminal 475 in diesem Abschnitt gelten für die folgenden Modellcodes:

- MultiVariable Typ M (voll kompensierter Masse- und Energiedurchfluss) mit Messart 1 (Differenzdruck, statischer Druck und Prozesstemperatur)
- MultiVariable Typ P (Direkter Ausgang der Prozessvariable) mit Messart 1 (Differenzdruck, statischer Druck und Prozesstemperatur).

Die Menüstrukturen und Funktionstastenfolgen für das Handterminal 475 für andere Modellcodes weichen davon ab.

3.8.1 Menüstruktur für voll kompensierten Masse- und Energiedurchfluss (Seite 1)

Menüstruktur für voll kompensierten Masse- und 3.8.2 Energiedurchfluss (Seite 2)

Geräteeinstellung 2. PV 3. Analogausgang 4. PV Messanfang 5. PV Messende 1

4. 5. 6. 7.

8. Obere Sensorgrenze 9. Untere Sensorgrenze 10. Min. Messspanne

3.8.3 Menüstruktur für direkten Ausgang der Prozessvariable (Seite 1)

3.8.4 Menüstruktur für direkten Ausgang der Prozessvariable (Seite 2)

3.8.5 Funktionstastenfolgen für das Handterminal 475

Zur Kommunikation mit dem 3051S MultiVariable Messumformer und zur Prüfung der Konfiguration den 3051SMV Engineering Assistant oder ein HART-fähiges Mastergerät verwenden.

Tabelle 1 zeigt die Funktionstastenfolgen des Handterminals 475 für den voll kompensierten Masse- und Energiedurchfluss. Tabelle 2 zeigt die Funktionstastenfolgen für den direkten Ausgang der Prozessvariable.

Ein Häkchen ($\sqrt{}$) kennzeichnet die Basis-Konfigurationsparameter. Diese Parameter sollten mindestens bei der Konfiguration und bei der Inbetriebnahme geprüft werden.

Tabelle 3-13. Funktionstastenfolgen für den Ausgang mit voll kompensiertem Masse- und Energiedurchfluss

	Funktion	Funktionstastenfolge
	Absolute Pressure Reading and Status (Absolutdruck-Messwert und -Status)	1,4,2,1,5
	Absolute Pressure Sensor Limits (Absolutdruck-Sensorgrenzwerte)	1,4,1,5,8
	Absolute Pressure Units (Absolutdruck-Einheiten)	1,3,3,5
	Alarm and Saturation Level Configuration (Alarm- und Sättigungswerte konfigurieren)	1,4,2,6,6
	Alarm and Saturation Levels (Alarm- und Sättigungswerte)	1,4,2,6
	Analog Output Trim Options (Abgleich Analogausgang)	1,2,5,2
	Burst Mode Setup (Einstellung der Burst-Betriebsart)	1,4,3,3,3
	Burst Mode Options (Optionen der Burst-Betriebsart)	1,4,3,3,4
	Callendar-van Dusen Sensor Matching (Callendar-van-Dusen-Sensoranpassung)	1,2,5,5,4
	Configure Fixed Variables (Feste Variablen konfigurieren)	1,2,4
	Damping (Dämpfung)	1,3,7
	Diaphragm Seals Information (Informationen zu Druckmittlern)	1,4,4,5
\checkmark	Differential Pressure Low Flow Cutoff (Differenzdruck-Schleichmengenabschaltung)	1,4,1,1,6
	Differential Pressure Reading and Status (Differenzdruck-Messwert und -Status)	1,4,2,1,4
	Differential Pressure Sensor Trim Options (Differenzdruck-Sensorabgleichsoptionen)	1,2,5,3
\checkmark	Differential Pressure Zero Trim (Differenzdruck-Nullpunktabgleich)	1,2,5,3,1
	Differential Pressure Units (Differenzdruck-Einheiten)	1,3,3,4
	Energy Rate Units (Energie-Einheiten)	1,3,3,2
	Energy Reading and Status (Energie-Messwert und -Status)	1,4,2,1,2
	Equipped Sensors (Angeschlossene Sensoren)	1,4,4,4
	Field Device Information (Feldgerätinformationen)	1,4,4,1
	Flow Calculation Type (Durchflussberechnungsart)	1,4,1,1,2
\checkmark	Flow Rate Units (Durchflusseinheiten)	1,3,3,1
	Flow Reading and Status (Durchfluss-Messwert und -Status)	1,4,2,1,1
	Gage Pressure Reading and Status (Überdruck-Messwert und -Status)	1,4,2,1,6

	Funktion	Funktionstastenfolge
	Gage Pressure Sensor Limits (Überdruck-Sensorgrenzwerte)	1,4,1,5,9
	Gage Pressure Units (Überdruck-Einheiten)	1,3,3,6
	LCD Configuration (Digitalanzeiger konfigurieren)	1,3,8
	Loop Test (Messkreistest)	1,2,2
	Module Temperature Reading and Status (Modultemperatur-Messwert und -Status)	1,4,2,1,8
	Module Temperature Units (Modultemperatur-Einheiten)	1,3,3,8
	Poll Address (Abfrageadresse)	1,4,3,3,1
	Process Temperature Reading and Status (Prozesstemperatur-Messwert und Status)	1,4,2,1,7
\checkmark	Process Temperature Sensor Mode (Prozesstemperatur-Sensormodus)	1,4,1,6,8
	Process Temperature Sensor Trim Options (Prozesstemperatur-Sensorabgleichsoptionen)	1,2,5,5
	Process Temperature Unit (Prozesstemperatur-Einheiten)	1,3,3,7
\checkmark	Ranging the Analog Output (Analogausgangsbereich einstellen)	1,2,5,1
	Recall Factory Trim Settings (Auf Werksabgleich zurücksetzen)	1,2,5,2,3
	Sensor Information (Sensorinformationen)	1,4,4,2
\checkmark	Static Pressure Sensor Lower Trim (AP Sensor) (Statischer Druck – Unterer Sensorabgleich (AP-Sensor))	1,2,5,4,2
	Static Pressure Sensor Trim Options (Statischer Druck – Sensorabgleichsoptionen)	1,2,5,4
\checkmark	Static Pressure Sensor Zero Trim (GP Sensor) (Statischer Druck – Sensor-Nullpunktabgleich (GP-Sensor))	1,2,5,4,1
\checkmark	Status (Status)	1,2,1
\checkmark	Tag (Messstellenkennung)	1,3,1
	Test Flow Calculation (Durchflussberechnung testen)	1,2,3
	Totalizer Configuration (Zähler konfigurieren)	1,4,1,3
	Totalizer Reading and Status (Zähler-Messwert und -Status)	1,4,2,1,3
	Totalizer Units (Zählereinheiten)	1,3,3,3
	Variable Mapping (Variablen-Zuordnung)	1,4,3,4
	Write Protect (Schreibschutz)	1,3,5,4

Tabelle 3-13. Funktionstastenfolgen für den Ausgang mit voll kompensiertem Masse- und Energiedurchfluss

	Funktion	Funktionstastenfolge
	Absolute Pressure Reading and Status (Absolutdruck-Messwert und -Status)	1,4,2,1,2
	Absolute Pressure Sensor Limits (Absolutdruck-Sensorgrenzwerte)	1,4,1,2,8
\checkmark	Absolute Pressure Units (Absolutdruck-Einheiten)	1,3,3,2
	Alarm and Saturation Level Configuration (Alarm- und Sättigungswerte konfigurieren)	1,4,2,6,6
	Alarm and Saturation Levels (Alarm- und Sättigungswerte)	1,4,2,6
	Analog Output Trim Options (Abgleich Analogausgang)	1,2,4,2
	Burst Mode Setup (Einstellung der Burst-Betriebsart)	1,4,3,3,3
	Burst Mode Options (Optionen der Burst-Betriebsart)	1,4,3,3,4
	Callendar-van Dusen Sensor Matching (Callendar-van-Dusen-Sensoranpassung)	1,2,4,5,4
	Damping (Dämpfung)	1,3,7
	Diaphragm Seals Information (Informationen zu Druckmittlern)	1,4,4,4
	Differential Pressure Reading and Status (Differenzdruck-Messwert und -Status)	1,4,2,1,1
	Differential Pressure Sensor Trim Options (Differenzdruck-Sensorabgleichsoptionen)	1,2,4,3
\checkmark	Differential Pressure Zero Trim (Differenzdruck-Nullpunktabgleich)	1,2,4,3,1
\checkmark	Differential Pressure Units (Differenzdruck-Einheiten)	1,3,3,1
	Equipped Sensors (Angeschlossene Sensoren)	1,4,4,3
	Field Device Information (Feldgerätinformationen)	1,4,4,1
	Gage Pressure Reading and Status (Überdruck-Messwert und -Status)	1,4,2,1,3
	Gage Pressure Sensor Limits (Überdruck-Sensorgrenzwerte)	1,4,1,2,9
\checkmark	Gage Pressure Units (Überdruck-Einheiten)	1,3,3,3
	LCD Configuration (Digitalanzeiger konfigurieren)	1,3,8
	Loop Test (Messkreistest)	1,2,2
	Module Temperature Reading and Status (Modultemperatur-Messwert und -Status)	1,4,2,1,5
	Module Temperature Units (Modultemperatur-Einheiten)	1,3,3,5
	Poll Address (Abfrageadresse)	1,4,3,3,1
	Process Temperature Reading and Status (Prozesstemperatur-Messwert und Status)	1,4,2,1,4
	Process Temperature Sensor Trim Options (Prozesstemperatur-Sensorabgleichsoptionen)	1,2,4,5
\checkmark	Process Temperature Unit (Prozesstemperatur-Einheiten)	1,3,3,4
\checkmark	Ranging the Analog Output (Analogausgangsbereich einstellen)	1,2,4,1
	Recall Factory Trim Settings (Auf Werksabgleich zurücksetzen)	1,2,4,2,3
	Sensor Information (Sensorinformationen)	1,4,4,2

Tabelle 3-14. Funktionstastenfolgen für die direkte Messung der Prozessvariable

	Funktion	Funktionstastenfolge
\checkmark	Static Pressure Sensor Lower Trim (AP Sensor) (Statischer Druck – Unterer Sensorabgleich (AP-Sensor))	1,2,4,4,2
	Static Pressure Sensor Trim Options (Statischer Druck – Sensorabgleichsoptionen)	1,2,4,4
\checkmark	Static Pressure Sensor Zero Trim (GP Sensor) (Statischer Druck – Sensor-Nullpunktabgleich (GP-Sensor))	1,2,4,4,1
\checkmark	Status (Status)	1,2,1
\checkmark	Tag (Messstellenkennung)	1,3,1
\checkmark	Transfer Function (Übertragungsfunktion)	1,3,6
	Variable Mapping (Variablen-Zuordnung)	1,4,3,4
	Write Protect (Schreibschutz)	1,3,5,4

Abschnitt 4 Betrieb und Wartung

Übersicht	Seite 9
Sicherheitshinweise	Seite 10
Einstellung des Messumformers	Seite 11
Funktionsprüfungen des Messumformers	Seite 20
Prozessvariablen	Seite 21
Feld Upgrades und Austauschverfahren	Seite 23

4.1 Übersicht

Dieser Abschnitt enthält Informationen über den Betrieb und die Wartung der 3051S MultiVariable Messumformer. Anweisungen für die Konfigurationsfunktionen und -verfahren sind für das Handterminal 475 ab Version 2.0, das AMS System ab Version 9.0 und den Engineering Assistant ab Version 6.1 angegeben. Die Bildschirme in diesem Abschnitt zeigen das AMS System Version 9.0. Die Bildschirme des Engineering Assistant sind ähnlich aufgebaut und folgen den gleichen Anweisungen für Verwendung und Navigation. Zur Erleichterung ist die Funktionstastenfolge für das Handterminal 475, bezeichnet als Funktionstastenfolge, bei jeder Softwarefunktion mit angegeben.

Abhängig von der bestellten Konfiguration sind bestimmte Messungen (z. B. statischer Druck, Prozesstemperatur) und/oder Berechnungen (z. B. Masse-, volumetrischer und Energiedurchfluss) ggf. nicht für alle Medienarten verfügbar. Die verfügbaren Messungen und/oder Berechnungen werden durch die bestellten Optionscodes für MultiVariable Typ und Messart bestimmt. Weitere Informationen siehe "Bestellinformationen" auf Seite 27.

Alle in diesem Abschnitt enthaltenen Bildschirme gelten für MultiVariable Typ M (voll kompensierter Masse- und Energiedurchfluss) mit Messart 1 (Differenzdruck, statischer Druck und Prozesstemperatur). Die Funktionstastenfolgen des Handterminals 475 sind sowohl für MultiVariable Typ M als auch P (Direkter Ausgang der Prozessvariable) mit Messart 1 aufgeführt. Die Funktionstastenfolgen des Handterminals 475 und die Bildschirme für andere MultiVariable Typen und Messarten können davon abweichen.

4.2 Sicherheitshinweise

4.2.1 Warnungen

A WARNUNG

Nichtbeachtung dieser Richtlinien zur Installation kann zu schweren oder tödlichen Verletzungen führen.

Die Installation darf nur von Fachpersonal durchgeführt werden.

Explosionen können zu schweren oder tödlichen Verletzungen führen.

- In explosionsgefährdeten Umgebungen den Deckel des Messumformers nicht abnehmen, wenn der Stromkreis unter Spannung steht.
- Vor dem Anschluss eines Handterminals 475 in einer explosionsgefährdeten Atmosphäre sicherstellen, dass die Geräte im Messkreis in Übereinstimmung mit den Vorschriften für eigensichere oder keine Funken erzeugende Feldverdrahtung installiert sind.
- Beide Messumformerdeckel müssen vollständig geschlossen sein, um den Anforderungen für druckfeste Kapselung und Ex-Schutz zu entsprechen.
- Sicherstellen, dass die Prozessatmosphäre des Messumformers den entsprechenden Ex-Zulassungen entspricht.

Elektrische Schläge können zu schweren oder tödlichen Verletzungen führen. Wenn der Sensor in einer Umgebung mit hoher Spannung installiert ist und eine Störbedingung oder ein Installationsfehler auftritt, kann eine hohe Spannung an den Anschlussklemmen des Messumformers anliegen.

Bei Kontakt mit Leitungen und Anschlüssen äußerst vorsichtig vorgehen.

Prozessleckage kann zu schweren oder tödlichen Verletzungen führen.

- Alle vier Flanschschrauben vor der Druckbeaufschlagung installieren und festziehen.
- Nicht versuchen, die Flanschschrauben zu lösen oder zu entfernen, während der Messumformer in Betrieb ist.
- Austausch- oder Ersatzteile, die nicht durch Emerson Process Management zugelassen sind, können die Druckfestigkeit des Messumformers reduzieren, so dass das Gerät ein Gefahrenpotenzial darstellt.
- Ausschließlich Schrauben verwenden, die von Emerson Process Management geliefert oder als Ersatzteile verkauft werden.

Unsachgemäße Montage von Ventilblöcken an Anpassungsflansche kann den Messumformer beschädigen.

• Für eine sichere Montage von Ventilblöcken an Anpassungsflansche müssen die Schrauben über das Gehäuse des Moduls (d. h. die Schraubenbohrung) hinausragen, dürfen aber das Sensormodul nicht berühren.

Die unsachgemäße Installation oder Reparatur des SuperModule[™] mit Hochdruckoption (P0) kann zu schweren oder tödlichen Verletzungen führen.

 Um die sichere Montage zu gewährleisten, muss das Hochdruck SuperModule mit Schrauben gemäß ASTM A-193 Class 2, Grade B8M installiert und ein integrierter 305 Ventilblock oder ein DIN Anpassungsflansch verwendet werden.

Empfindliche Komponenten können durch statische Elektrizität beschädigt werden.

Die entsprechenden Handhabungsvorschriften für statisch empfindliche Komponenten befolgen.

A

4.3 Einstellung des Messumformers

4.3.1 Übersicht über die Einstellungsmöglichkeiten

Die komplette Konfiguration und Einstellung des 3051S MultiVariable Messumformers umfasst folgende Punkte:

Ausgangsparameter konfigurieren

- Auf dem Grundeinstellungs-Bildschirm (Seite 32)
- Einheit der Prozessvariablen einstellen
- Primärvariable einstellen
- Neueinstellung
- Übertragungsfunktion einstellen (nur Funktionsplatine f
 ür direkten Ausgang der Prozessvariable)
- Dämpfung einstellen

Sensor (DP, P und/oder T) einstellen

Für jeden Sensor Folgendes durchführen:

- Sensorabgleich (Seite 12)
- Nullpunkt- oder unterer Sensorabgleich (Seite 13)

4–20 mA Ausgang einstellen

- Abgleich des 4–20 mA Analogausgangs (Seite 18) oder
- Abgleich des skalierten 4–20 mA Ausgangs (Seite 18)

Abbildung 4-1 stellt den Datenfluss des 3051S MultiVariable Messumformers dar. Der Datenfluss verläuft von links nach rechts, eine Änderung eines Parameters betrifft alle Werte, die rechts vom geänderten Parameter liegen.

Der Datenfluss kann in vier Hauptschritte zusammengefasst werden:

- 1. Eine Änderung der Prozessvariable (DP, P und/oder T) wird durch eine Änderung des Sensorausgangs (Sensorsignal) dargestellt.
- 2. Das Sensorsignal wird in ein digitales Signal umgewandelt, das der Mikroprozessor versteht (Analog/Digital-Signalumwandlung).
- 3. Korrekturen und Durchflussberechnungen werden im Mikroprozessor durchgeführt, um so eine digitale Darstellung der Variablen des Prozessausgangs zu erhalten.
- 4. Die digitale Primärvariable (PV) wird in einen analogen Wert umgewandelt (Digital/Analog-Signalumwandlung).

4.3.2 Übersicht über den Sensorabgleich

Der Sensorabgleich kann als Sensor- oder Nullpunktabgleich erfolgen. Die Abgleichfunktionen sind unterschiedlich komplex und hängen von der Anwendung ab. Bei beiden Abgleichfunktionen wird die Interpretation des Eingangssignals durch den Messumformer geändert.

Nullpunktabgleich

Der Nullpunktabgleich ist eine Einpunkteinstellung. Diese ist sinnvoll zur Kompensation der Einflüsse der Einbaulage. Sie sollte erst dann durchgeführt werden, wenn der Messumformer in seiner endgültigen Position installiert ist. Da bei dieser Korrektur die Steigung der Kennlinie beibehalten wird, sollte sie nicht anstelle eines Sensorabgleichs über den gesamten Messbereich des Sensors verwendet werden.

Zur Durchführung eines Nullpunktabgleichs mit einem Ventilblock siehe "Rosemount 305 und 304 Ventilblöcke" auf Seite 27.

Hinweis

Der Messumformer muss innerhalb von 5 % oder weniger der maximalen Messspanne des tatsächlichen Nullpunktes (vom Nullpunkt ausgehend) abgeglichen sein, um die Einstellung mit dem Nullpunktabgleich durchführen zu können.

Der Anwender kann keinen Nullpunktabgleich an einem Messumformer durchführen, der mit einem statischen Absolutdrucksensor ausgestattet ist. Zur Korrektur der Einflüsse der Einbaulage auf einen statischen Absolutdrucksensor den unteren Sensorabgleich durchführen. Der Abgleich des unteren Sensorgrenzwertes führt eine Offsetkorrektur ähnlich wie beim Nullpunktabgleich durch, ein Eingang für den Nullpunkt ist jedoch nicht erforderlich.

Oberer und unterer Sensorabgleich

Der Sensorabgleich ist eine Zweipunkt-Sensorkalibrierung, bei der die beiden Druck-Endwerte eingestellt und alle zwischen diesen beiden Werten liegenden Ausgangswerte linearisiert werden. Immer zuerst den unteren Sensorabgleichwert einstellen, um den korrekten Offset festzulegen. Durch die Einstellung des oberen Sensorabgleichwertes wird die Steigung der Kennlinie basierend auf dem unteren Sensorabgleichwert korrigiert. Durch Festlegung der Werte für den Abgleich kann der Anwender die Genauigkeit des Messumformers über einen angegebenen Messbereich bei der eingestellten Temperatur optimieren.

4.3.3 Kalibrierung des Differenzdrucksensors

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 2, 5, 3	
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 2, 4, 3	

Auf der Registerkarte *Differential Pressure Calibration* (Differenzdruck kalibrieren) kann der Anwender einen Nullpunktabgleich oder einen vollen DP-Sensorabgleich durchführen (siehe Abbildung 4-2).

Abbildung 4-2. Registerkarte "Calibration – Differential Pressure Calibration" (Kalibrierung – Differenzdruck kalibrieren)

Nullpunktabgleich

Zur Durchführung des Nullpunktabgleichs eines DP-Sensors unter der Überschrift Differential Pressure Sensor Trim (Differenzdrucksensor abgleichen) auf die Schaltfläche **Zero Trim** (Nullpunktabgleich) klicken und den Menüanweisungen folgen. Der Messumformer muss innerhalb von 5 % oder weniger der maximalen Messspanne des tatsächlichen Nullpunktes (vom Nullpunkt ausgehend) abgeglichen sein, um die Einstellung mit dem Nullpunktabgleich durchführen zu können.

Hinweis

Beim Nullpunktabgleich eines DP-Sensors ist darauf zu achten, dass das Ausgleichsventil geöffnet ist und alle befüllten Impulsleitungen auf den richtigen Füllstand gefüllt sind.

Oberer und unterer Sensorabgleich

Zur Durchführung eines kompletten Sensorabgleichs ist ein Referenzdruckgeber erforderlich. Einen Referenzdruckgeber verwenden, der mindestens dreimal genauer ist als der Messumformer. Vor der Eingabe eines Wertes 10 Sekunden lang warten, damit sich der angelegte Druck stabilisieren kann. Wenn der komplette Sensorabgleich nicht korrekt oder mit ungenauen Kalibriergeräten ausgeführt wird, kann die Messumformerleistung verschlechtert werden. Zur Durchführung eines kompletten DP-Abgleichs zunächst auf die Schaltfläche **Lower Sensor Trim** (Unterer Sensorabgleich) klicken und den Menüanweisungen folgen. Anschließend auf die Schaltfläche **Upper Sensor Trim** (Oberer Sensorabgleich) klicken und den Menüanweisungen folgen.

Hinweis

Die Eingangswerte für die Kalibrierung der Prozessvariable so wählen, dass der untere und obere Wert dem Messanfang bzw. Messende entspricht oder außerhalb des Messbereichs liegt. Nicht versuchen, einen reversen Ausgang zu erzeugen, indem der untere und obere Wert vertauscht werden. Der Messumformer erlaubt nur einen Abgleich des Nullpunktfehlers von bis zu 5 % der oberen Messbereichsgrenze (URL), die mittels der Kennlinie im Werk festgelegt wurde.

Kalibrierart

Mithilfe des Dropdown-Menüs "Calibration Type" (Kalibrierart) kann der Anwender identifizieren, welcher Gerätetyp (Differenz-, Über- oder Absolutdruck) zuletzt verwendet wurde, um den Sensor zu kalibrieren. Dieses Feld hat keinen Einfluss auf die Kalibrierung des Geräts.

Zurücksetzen auf Werksabgleich

Durch Klicken auf die Schaltfläche **Recall Factory Trim** (Auf Werksabgleich zurücksetzen) wird die im Werk eingestellte Kennlinie des Messumformers wiederhergestellt. Die Schaltfläche **Recall Factory Trim** kann verwendet werden, wenn versehentlich ein Nullpunktabgleich durchgeführt oder eine ungenaue Druckquelle verwendet wurde.

Bei Verwendung der Funktion "Auf Werksabgleich zurücksetzen" werden der obere und untere Abgleichwert des Messumformers auf die Werte gesetzt, die ursprünglich im Werk konfiguriert wurden. Wenn bei der Bestellung des Messumformers anwenderspezifische Abgleichwerte spezifiziert wurden, wird das Gerät auf diese Werte zurückgesetzt. Wurden keine anwenderspezifischen Abgleichwerte spezifiziert, wird das Gerät auf den oberen und unteren Sensorgrenzwert zurückgesetzt.

Letzter DP-Sensor-Abgleichpunkt

Der aktuelle obere und untere Abgleichpunkt wird unter der Überschrift *Last DP Sensor Trim Point* (Letzter DP-Sensor-Abgleichpunkt) angezeigt.

4.3.4 Kalibrierung des statischen Drucksensors

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 2, 5, 4
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 2, 4, 4

Auf der Registerkarte *Static Pressure Calibration* (Statischen Druck kalibrieren) kann der Anwender entweder einen Nullpunktabgleich oder einen vollen SP-Sensorabgleich durchführen (siehe Abbildung 4-3).

Abbildung 4-3. Registerkarte "Calibration – static pressure calibration" (Kalibrierung – Statischen Druck kalibrieren)

Nullpunktabgleich und unterer Sensorabgleich

Der Typ des statischen Drucksensors, mit dem der Messumformer ausgestattet ist, kann durch Einsehen der Angaben unter der Überschrift *Static Pressure Sensor Type* bestimmt werden. Dieser Eintrag bestimmt, ob ein Nullpunktabgleich (Überdrucksensor) oder ein unterer Sensorabgleich (Absolutdrucksensor) erforderlich ist, um Einflüsse der Einbaulage zu korrigieren.

Zur Durchführung des Nullpunktabgleichs eines statischen Überdrucksensors unter der Überschrift *Static Pressure Sensor Trim* (Statischen Drucksensor abgleichen) auf die Schaltfläche **Zero Trim** (Nullpunktabgleich) klicken und den Menüanweisungen folgen. Der Messumformer muss innerhalb von 5 % oder weniger der maximalen Messspanne des tatsächlichen Nullpunktes (vom Nullpunkt ausgehend) abgeglichen sein, um die Einstellung mit dem Nullpunktabgleich durchführen zu können.

Zur Korrektur der Einflüsse der Einbaulage auf Messumformer mit statischem Absolutdrucksensor den unteren Sensorabgleich durchführen. Hierfür auf die Schaltfläche **Lower Sensor Trim** (Unterer Sensorabgleich) klicken und den Menüanweisungen folgen. Der Abgleich des unteren Sensorgrenzwertes führt eine Offsetkorrektur ähnlich wie beim Nullpunktabgleich durch, ein Eingang für den Nullpunkt ist jedoch nicht erforderlich.

Oberer und unterer Sensorabgleich

Zur Durchführung eines kompletten Abgleichs des statischen Drucksensors zunächst auf die Schaltfläche Unterer Sensorabgleich klicken und den Menüanweisungen folgen. Anschließend auf die Schaltfläche **Upper Sensor Trim** (Oberer Sensorabgleich) klicken und den Menüanweisungen folgen.

Hinweis

Wenn der komplette Sensorabgleich nicht korrekt oder mit ungenauen Kalibriergeräten ausgeführt wird, kann die Messumformerleistung verschlechtert werden. Einen Eingangsdruck verwenden, der mindestens dreimal genauer ist als der Messumformer. Vor der Eingabe eines Wertes 10 Sekunden lang warten, damit sich der angelegte Druck stabilisieren kann.

Zurücksetzen auf Werksabgleich

Durch Klicken auf die Schaltfläche **Recall Factory Trim** (Auf Werksabgleich zurücksetzen) wird die im Werk eingestellte Kennlinie des Messumformers wiederhergestellt. Die Schaltfläche **Recall Factory Trim** kann verwendet werden, wenn versehentlich ein Nullpunktabgleich durchgeführt oder eine ungenaue Druckquelle verwendet wurde.

Bei Verwendung der Funktion "Auf Werksabgleich zurücksetzen" werden der obere und untere Abgleichwert des Messumformers auf die Werte gesetzt, die ursprünglich im Werk konfiguriert wurden. Wenn bei der Bestellung des Messumformers anwenderspezifische Abgleichwerte spezifiziert wurden, wird das Gerät auf diese Werte zurückgesetzt. Wurden keine anwenderspezifischen Abgleichwerte spezifiziert, wird das Gerät auf den oberen und unteren Sensorgrenzwert zurückgesetzt.

Letzter Abgleich des statischen Drucksensors

Der aktuelle obere und untere Abgleichpunkt wird unter der Überschrift *Last Static Pressure Sensor Trim Points* (Letzte Abgleichpunkte des statischen Drucksensors) angezeigt.

Kalibrierart

Mithilfe des Dropdown-Menüs "Calibration Type" (Kalibrierart) kann der Anwender identifizieren, welcher Gerätetyp (Differenz-, Über- oder Absolutdruck) zuletzt verwendet wurde, um den Sensor zu kalibrieren. Dieses Feld hat keinen Einfluss auf die Kalibrierung des Geräts.

4.3.5 Kalibrierung des Prozesstemperaturfühlers

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 2, 5, 5
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 2, 4, 5

Auf der Registerkarte **Temperature Calibration** (Temperaturkalibrierung) kann der Anwender einen Sensorabgleich durchführen und die Sensoranpassung eines Prozesstemperaturfühlers konfigurieren (siehe Abbildung 4-4).

Abbildung 4-4. Registerkarte "Calibration – temperature calibration" (Kalibrierung – Temperaturkalibrierung)

1/16/2008 15:18:29.077 [30515]	SMV with Fully Compensated Mass and Ene	rgy Flow Rev. 1]	
<u>s</u>			
Configure/Setup Configure/Setup Derke Derke Caltration	Differential Pressure Calbration Static Pressure Co Device Tag Tag 30515MV Long Tag 30515MV Mass Flow Process Temperature Sensor Trim	Ibration Temperature Calibration Analog Calib Last Temp Sensor Trim Points	nation Device GOOD
	Lower Sensor Trim Upper Sensor Trim Recall Factory Trim Process Temperature Setup Process Temperature Setup Process Temperature Temperature Unit degF	Upper Trim Point 1562.00000 degF Lover Trim Point 2328.00000 degF Temperature Sensor Limbs Upper Sensor Limb 1562.00000 degF Lover Sensor Limb 2328.00000 degF	R0 100.000 A 3.90823994E-003 B 5.77499975E-007 C 4.1823997E-012 Calendar Van Dusen Setup Beret to IEC 751 Default Default
Configure/Setup	Damping 5.00 Sec	Minimum Span 82.000000 degF	View Alpha Beta Delta
last synchronized: Device Parameters not Sync	Time: Current	OK Cance	I Apply Print Help

Oberer und unterer Abgleich des Prozesstemperaturfühlers

Den Prozesstemperatureingang wie folgt unter Verwendung des Sensorabgleichs kalibrieren.

- 1. Ein Temperaturkalibriergerät auf Simulation eines Pt100 Widerstandsthermometers (100 Ohm Platin, Alpha 385 RTD) einstellen. Die beiden roten Adern vom Anschlussklemmenblock des 3051S MultiVariable Messumformers mit einem der Anschlüsse und die beiden weißen Adern mit dem anderen Anschluss verbinden. Weitere Informationen siehe "Installation des optionalen Prozesstemperatureingangs (Pt100 Widerstandsthermometer)" auf Seite 22.
- 2. Kalibriergerät/Simulator des Widerstandsthermometers auf einen Testtemperaturwert einstellen, der der niedrigsten Prozesstemperatur entspricht (z. B. 0 °C). Unter der Überschrift *Process Temperature Sensor Trim* (Abgleich des Prozesstemperaturfühlers) auf die Schaltfläche **Lower Sensor Trim** (Unterer Sensorabgleich) klicken und den Menüanweisungen folgen.
- 3. Kalibriergerät/Simulator des Widerstandsthermometers auf einen Testtemperaturwert einstellen, der der höchsten Prozesstemperatur entspricht (z. B. 60 °C). Unter der Überschrift Abgleich des Prozesstemperaturfühlers auf die Schaltfläche **Upper Sensor Trim** (Oberer Sensorabgleich) klicken und den Menüanweisungen folgen.

Zurücksetzen auf Werksabgleich

Durch Klicken auf die Schaltfläche **Recall Factory Trim** (Auf Werksabgleich zurücksetzen) werden die im Werk eingestellten Kalibrierwerte des Messumformers wiederhergestellt.

Bei Verwendung der Funktion "Auf Werksabgleich zurücksetzen" werden der obere und untere Abgleichwert des Messumformers auf die Werte gesetzt, die ursprünglich im Werk konfiguriert wurden. Wenn bei der Bestellung des Messumformers anwenderspezifische Abgleichwerte spezifiziert wurden, wird das Gerät auf diese Werte zurückgesetzt. Wurden keine anwenderspezifischen Abgleichwerte spezifiziert, wird das Gerät auf den oberen und unteren Sensorgrenzwert zurückgesetzt.

Messumformer/Widerstandsthermometer-Anpassung mittels Callendar-Van Dusen Konstanten

Der 3051S MultiVariable Messumformer akzeptiert Callendar-van Dusen Konstanten von einem kalibrierten Widerstandsthermometer und generiert eine Anwenderkurve, die zu jeder speziellen Sensorkurve (Widerstand – Temperatur) passt. Die Anpassung der sensorspezifischen Kurve auf die Konfiguration des Messumformers verbessert die Genauigkeit der Temperaturmessung.

Unter der Überschrift *Sensor Matching* (Sensor-Anpassung) können die Callendar-Van Dusen Konstanten R₀, A, B und C eingesehen werden. Wenn die Callendar-Van Dusen Konstanten für das anwendungsspezifische Pt100 Widerstandsthermometer bekannt sind, können die Konstanten R₀, A, B und C geändert werden. Hierfür auf die Schaltfläche **Callendar-Van Dusen Setup** (Callendar-Van Dusen Konstanten einstellen) klicken und den Menüanweisungen folgen.

Der Anwender kann außerdem die Koeffizienten α , ß und δ durch Klicken auf die Schaltfläche **View Alpha, Beta, Delta** (Alpha, Beta, Delta anzeigen) anzeigen. Die Konstanten R₀, α , ß und δ können geändert werden. Hierfür auf die Schaltfläche Callendar-Van Dusen Konstanten einstellen klicken und den Menüanweisungen folgen. Zum Rücksetzen des Messumformers auf die Standardeinstellungen gemäß IEC 751 auf die Schaltfläche **Reset to IEC 751 Defaults** (Auf IEC 751 Standardeinstellungen rücksetzen) klicken.

4.3.6 Kalibrierung des Analogausgangs

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 2, 5, 2
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 2, 4, 5

Abbildung 4-5. Registerkarte "Calibration – analog calibration" (Kalibrierung – Analogausgang kalibrieren)

Abgleich des Analogausgangs

Der Befehl "Analog Output Trim" (Analogausgang abgleichen) ermöglicht die Einstellung der aktuellen 4 und 20 mA Punkte des Messumformerausgangs auf die Anlagenparameter. Mit diesem Befehl wird die Digital/Analog-Signalumwandlung eingestellt (siehe Abbildung 4-5).

Zur Durchführung eines Abgleichs des Analogausgangs auf die Schaltfläche **Analog Trim** (Analogabgleich) klicken und den Menüanweisungen folgen.

Abgleich des skalierten Analogausgangs

Der Befehl "Scaled Analog Trim" (Abgleich des skalierten Analogausgangs) passt den 4 und 20 mA Punkt auf eine vom Anwender gewählte Referenzskala (nicht 4 und 20 mA) an (z. B. 1 bis 5 V bei der Messung über einen 250 Ohm Widerstand oder 0 bis 100 Prozent bei Messung mit einem Leitsystem). Zur Durchführung eines Abgleichs des skalierten Analogausgangs ein genaues Referenzmessgerät anschließen, auf die Schaltfläche **Scaled Analog Trim** (Abgleich des skalierten Analogausgangs) klicken und den Menüanweisungen folgen.

A Hinweis

Einen Präzisionswiderstand verwenden, um optimale Genauigkeit zu erzielen. Wenn ein Widerstand in den Messkreis eingefügt wird, ist sicherzustellen, dass die Spannungsversorgung ausreicht, um den Messumformer mit dem zusätzlichen Messkreiswiderstand auf 23 mA (maximaler Hochalarm) zu bringen.
Messkreistest des Analogausgangs

Unter der Überschrift *Analog Output Verify* (Analogausgang prüfen) kann ein Messkreistest durchgeführt werden. Hierfür auf die Schaltfläche **Loop Test** (Messkreistest) klicken. Der Befehl "Loop Test" überprüft den Messumformerausgang, die Integrität des Messkreises und die Funktion von Schreibern oder ähnlichen Aufzeichnungsgeräten im Messkreis.

Diagnosewarnungen des Analogausgangs

Unter der Überschrift *Diagnostics* (Diagnose) sind zwei Diagnosewarnungen zu finden.

Die erste Warnung ist *mA Output Fixed* (Fester mA-Ausgang). Damit wird der Anwender darauf aufmerksam gemacht, dass das 4–20 mA Signal des Analogausgangs auf einen festen Wert eingestellt ist und nicht der HART Primärvariable entspricht. Diese Diagnosewarnung kann außerdem ausgelöst werden, wenn Loop Current Mode (Messkreis-Strommodus) deaktiviert ist, wenn sich das Gerät in einem Alarmzustand befindet oder wenn eine Testberechnung läuft.

Die zweite Warnung ist *mA Output Saturated* (Gesättigter mA-Ausgang). Damit wird der Anwender darauf aufmerksam gemacht, dass die gemessene Primärvariable den/das für das 4–20 mA Analogausgangssignal definierte Messanfang und Messende überschritten hat. Der Analogausgang wird dann auf einen vom Anwender definierten hohen oder niedrigen Sättigungswert gesetzt, der nicht der aktuellen HART Primärvariable entspricht.

4.4 Funktionsprüfungen des Messumformers

Abbildung 4-6. Bildschirm "Transmitter Functional Tests" (Funktionsprüfungen des Messumformers)

£ 01/16/2008 15:18:29.077 [30515/	MV with Fully Compensated Mass and En	ergy Flow Rev. 1]	
Ele Actions Help			
Device Diagnostics	Transmitter Functional Tests Device Tag Tag 30515Mr/ Long Tag 20515Mr/Mass Flow Flow/Energy Calculation Verification Enable Test Calculation	Fixed Process Variables Configure Fixed Diff Pressure Configure Fixed Pressure Configure Fixed Process Temp	Device GOOD (1997)
Configure/Setup		OK Care	sel <u>Anoly</u> <u>Binx</u> <u>Heb</u>

4.4.1 Überprüfung der Durchfluss-/Energieflussberechnung (Testberechnung)

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 2, 3
---	---------

(Nur Funktionsplatine für voll kompensierten Masse- und Energiedurchfluss):

Die Überprüfung der Durchfluss- und Energieflussberechnung dient der Bestätigung der Durchflusskonfiguration des 3051S MultiVariable Messumformers. Hierfür gibt der Anwender erwartete Werte für die Differenzdruck-, statischen Druck- und Prozesstemperaturvariablen ein. Die folgenden Schritte unter der Überschrift *Flow/Energy Calculation Verification* (Überprüfung der Durchfluss-/Energieflussberechnung) ausführen:

- 1. Auf die Schaltfläche **Enable Test Calculation** (Testberechnung aktivieren) klicken.
- 2. Die Option Simulate DP (Differenzdruck simulieren) auswählen. Auf Next (Weiter) klicken.
- 3. **DP Units** (Differenzdruck-Einheiten) aus dem Dropdown-Menü auswählen. Auf Weiter klicken.
- 4. Den Differenzdruckwert eingeben, der der zu simulierenden Durchflussrate entspricht. Auf **Next** (Weiter) klicken.
- Die Schritte 1–3, falls erforderlich, für den statischen Druck (Simulate AP/GP [Absolutdruck/Überdruck simulieren]) und die Prozesstemperatur (Simulate PT [Prozesstemperatur simulieren]) wiederholen.
- 6. **View Results** (Ergebnisse anzeigen) auswählen. Auf **Next** (Weiter) klicken. Die simulierte Durchflussrate und die entsprechenden Durchflusseigenschaften werden angezeigt. Auf **Next** (Weiter) klicken.
- 7. **Exit** (Beenden) auswählen. Auf **Next** (Weiter) klicken. Nach dem Schließen des Fensters *Testberechnung aktivieren* werden alle durch die Testberechnung auf einen festen Wert gesetzten Prozessvariablen automatisch entsprechend den tatsächlich gemessenen Prozessdaten aktualisiert.

4.4.2 Konfiguration fester Prozessvariablen

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 2, 4
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 2, 3

Unter der Überschrift Fixed Process Variables (Feste Prozessvariablen) kann der Anwender den Differenzdruck, den statischen Druck oder die Prozesstemperatur zu Testzwecken vorübergehend auf einen selbst definierten festen Wert einstellen. Nach dem Schließen der Methode Configure Fixed Variable (Feste Variable konfigurieren) wird die auf den festen Wert gesetzte Prozessvariable automatisch entsprechend dem tatsächlich gemessenen Prozesswert aktualisiert.

4.4.3 Messkreistest des Analogausgangs

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 2, 2
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 2, 2

Unter der Überschrift *Analog Output Verify* (Analogausgang prüfen) kann ein Messkreistest durchgeführt werden. Hierfür auf die Schaltfläche **Loop Test** (Messkreistest) klicken. Der Befehl "Loop Test" überprüft den Messumformerausgang, die Integrität des Messkreises und die Funktion von Schreibern oder ähnlichen Aufzeichnungsgeräten im Messkreis.

4.5 Prozessvariablen

4.5.1 Registerkarte "Process Variables" (Prozessvariablen)

Funktionstastenfolge für Masse- und Energiedurchfluss	1, 1
Funktionstastenfolge für direkten Ausgang der Prozessvariable	1, 1

Der Bildschirm *Process Variables* (Prozessvariablen) zeigt eine grafische Darstellung der entsprechenden Variable. Ein Beispiel der Registerkarte *Primary Variable* (Primärvariable) ist in Abbildung 4-7 dargestellt. Die Aufzeichnung der Kurven auf den Registerkarten "Process Variables" beginnt, wenn der Anwender diesen Bildschirm aufruft, und wird nur fortgesetzt, solange der Anwender diese Registerkarte geöffnet hat. Der Anwender kann durch Klicken auf die Schaltfläche **Large Chart** (Großes Diagramm) eine vergrößerte Darstellung der Kurve anzeigen.

Jede der vier digitalen Ausgangsvariablen kann auf einem Bildschirm dargestellt werden, der dem in Abbildung 4-7 gezeigten ähnlich ist.

<u></u>	
rocess Variables	Primary Variable 2nd Variable 3nd Variable 4th Variable All Variables Identification Device Tag Tag 30515MV Long Tag 30515MV Mass Row
	Primary Variable
	4 2 1
	2 2.1 2 1.5 2
	21 1.5 25 1.5 26 1.5 2.4 1.5 2.5 1.5 2.6 1.5 Primary Variable Information Range Points Plow Rate 0.989195 B/s/s Upper Range 1.54996 b/s Analog Output Information
	2 1
⁵ Configure/Setup	9 2.1 9 2.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
⁹ Configure/Setup 2 Device Diagnostics Process Variables	

Abbildung 4-7. Registerkarte "Process variables – primary variable" (Prozessvariablen – Primärvariable)

4.5.2 Registerkarte "All Variables" (Alle Variablen)

Die Registerkarte *All Variables* (Alle Variablen) gibt dem Anwender einen Überblick über alle Variablen, die in diesem Gerät verfügbar sind.

Abbildung 4-8. Registerkarte "Process Variables — All Variables" (Prozessvariablen – Alle Variablen)

4.6 Feld Upgrades und Austauschverfahren

4.6.1 Demontageverfahren

- In explosionsgefährdeten Umgebungen den Gehäusedeckel des Geräts nicht abnehmen, wenn der Stromkreis unter Spannung steht. Nichtbeachtung kann zu ernsthaften oder tödlichen Verletzungen führen. Außerdem auf Folgendes achten:
- Alle Richtlinien und Verfahren für die Anlagensicherheit beachten.
- Die Prozessleitungen vom Messumformer trennen und entlüften, bevor der Messumformer außer Betrieb genommen wird.
 - Optionale Leiter und Kabel des Prozesstemperaturfühlers abklemmen.
 - Alle anderen elektrischen Leiter und das Schutzrohr abklemmen.
 - Den Prozessflansch abnehmen. Hierzu die vier Flanschschrauben und die zwei Einstellschrauben entfernen, mit denen der Flansch befestigt ist.
 - Die Trennmembranen nicht verkratzen, durchstechen oder zusammendrücken.
 - Die Trennmembranen mit einem weichen Tuch und einer milden Reinigungslösung reinigen und dann mit sauberem Wasser abspülen.
 - Beim Entfernen von Prozessflanschen bzw. Ovaladaptern stets die PTFE O-Ringe visuell überprüfen. Emerson Process Management empfiehlt, O-Ringe falls möglich wiederzuverwenden. Die O-Ringe austauschen, wenn diese Anzeichen von Beschädigung wie Kerben oder Risse aufweisen.

4.6.2 Gehäuse mit Funktionsplatine

Kennzeichnung des Feldgeräts

Das Kennzeichnungsschild des SuperModule enthält den Ersatzteil-Modellcode für die Neubestellung eines kompletten Messumformers, einschließlich des SuperModule und des PlantWeb Gehäuses. Der Modellcode des 300S MultiVariable Messumformers, der auf dem Typenschild des PlantWeb Gehäuses angegeben ist, kann für die Neubestellung eines PlantWeb Gehäuses verwendet werden.

Upgrade der Funktionsplatine

Der 3051S MultiVariable Messumformer ist so ausgelegt, dass Upgrades der Funktionsplatine einfach durchgeführt werden können. Verschiedene Funktionsplatinen bieten neue Funktionalitäten und können einfach nachgerüstet werden. Zum Austausch oder Upgrade der Funktionsplatine den "Rosemount 300SMV Gehäusesatz" auf Seite 33 verwenden, der außerdem das entsprechende PlantWeb Gehäuse einschließt.

Upgrade oder Austausch des Gehäuses mit Funktionsplatine

Funktionsplatine ausbauen

Die Funktionsplatine des 3051S MultiVariable Messumformers befindet sich gegenüber der Seite des PlantWeb Gehäuses mit den Feldanschlussklemmen. Die Funktionsplatine wie folgt ausbauen:

- 1. Den Gehäusedeckel auf der Seite entfernen, die der Seite mit der Aufschrift FIELD TERMINAL (Feldanschlussklemmen) gegenüberliegt.
- 2. Den Digitalanzeiger abbauen, falls erforderlich. Hierfür die beiden Clips eindrücken und den Anzeiger herausziehen. Dies bietet einen besseren Zugriff auf die beiden Schrauben auf der Funktionsplatine.
- 3. Die beiden unverlierbaren Schrauben an der Funktionsplatine lösen.
- 4. Die Funktionsplatine aus dem Gehäuse herausziehen, um Zugriff auf den Kabelstecker des SuperModule zu erhalten (siehe Abbildung 4-10).
- 5. Die Sicherungsnasen eindrücken und den Kabelstecker des SuperModule nach oben abziehen (nicht an den Kabeln ziehen). Es kann erforderlich sein, das Gehäuse zu drehen, um Zugriff auf die Sicherungsnasen zu erhalten. Weitere Informationen siehe "Drehen des Gehäuses" auf Seite 12.

Abbildung 4-9. Ansicht SuperModule Steckverbinder

SuperModule vom Gehäuse trennen

- 1. Um zu verhindern, dass der SuperModule Kabelstecker beschädigt wird, die Funktionsplatine aus dem SuperModule ausbauen und den Kabelstecker abklemmen, bevor das SuperModule vom Gehäuse getrennt wird.
- 2. Die Gehäusesicherungsschraube mit einem ³/₃₂ Zoll Sechskant-Schraubenschlüssel eine volle Umdrehung lockern.
- 3. Das Gehäuse vom Gewinde des SuperModule abschrauben.

Abbildung 4-10. SuperModule Kabelstecker

Hinweis

Die V-Dichtung (03151-9061-0001) muss an der Unterseite des Gehäuses angebracht werden.

SuperModule am PlantWeb Gehäuse anbringen

- 1. Eine dünne Schicht Silikon-Schmierfett für niedrige Temperaturen auf das Gewinde und den O-Ring des SuperModule auftragen.
- 2. Das Gehäuse vollständig auf das SuperModule aufschrauben. Das Gehäuse so weit aufschrauben, dass es bis auf eine Umdrehung mit dem SuperModule fluchtet, um die Anforderungen für druckfeste Kapselung und Ex-Schutz zu erfüllen.
- 3. Die Gehäusesicherungsschraube mit einem ³/₃₂ Zoll Sechskant-Schraubenschlüssel mit dem empfohlenen Drehmoment von 3,4 Nm (30 in-lbs) anziehen.

Funktionsplatine im PlantWeb Gehäuse installieren

- 1. Eine dünne Schicht Silikon-Schmierfett für niedrige Temperaturen auf den O-Ring des SuperModule Kabelsteckers auftragen.
- 2. Den SuperModule Kabelstecker oben in das SuperModule stecken. Sicherstellen, dass die Sicherungsnasen fest einrasten.
- Die Funktionsplatine vorsichtig in das Gehäuse schieben und darauf achten, dass die Stifte am PlantWeb Gehäuse ordnungsgemäß in die Buchsen an der Funktionsplatine eingreifen.
- 4. Die unverlierbaren Schrauben festziehen.
- 5. Den Gehäusedeckel anbringen und festziehen, bis Metall an Metall anliegt, um die Anforderungen für druckfeste Kapselung und Ex-Schutz zu erfüllen.

4.6.3 Anschlussklemmenblock

Die elektrischen Anschlüsse befinden sich am Anschlussklemmenblock in dem mit FIELD TERMINALS (Feldanschlussklemmen) gekennzeichneten Gehäuseraum. Ein Upgrade oder Austausch des Anschlussklemmenblocks ist möglich, um einen Block mit Überspannungsschutz nachzurüsten. Die Teilenummern sind unter "Ersatzteile" auf Seite 37 zu finden.

Die beiden unverlierbaren Schrauben lockern (siehe Abbildung 4-12 auf Seite 26) und den gesamten Anschlussklemmenblock herausziehen.

Abbildung 4-12. Anschlussklemmenblöcke

- 1. Den Anschlussklemmenblock vorsichtig in das Gehäuse schieben und darauf achten, dass die Stifte am PlantWeb Gehäuse ordnungsgemäß in die Buchsen am Anschlussklemmenblock eingreifen.
- 2. Die unverlierbaren Schrauben am Anschlussklemmenblock anziehen.
- ∴ 3. Den Gehäusedeckel anbringen und festziehen, bis Metall an Metall anliegt, um die Anforderungen für druckfeste Kapselung und Ex-Schutz zu erfüllen.

4.6.4 Digitalanzeiger

Bei Messumformern, die mit dem Digitalanzeiger bestellt wurden, ist der Anzeiger bereits installiert. Zur Installation des Digitalanzeigers an einen vorhandenen 3051S MultiVariable Messumformer ist der Digitalanzeigersatz (Teilenummer 03151-9193-0001 für Aluminiumgehäuse und 03151-9193-0004 für Edelstahlgehäuse) erforderlich.

Den Digitalanzeiger wie folgt und gemäß Abbildung 4-13 installieren:

- 1. Wenn sich der Messumformer in einem Messkreis befindet, den Messkreis absichern und die Spannungsversorgung abklemmen.
- ∴ 2. Den Gehäusedeckel des Messumformers auf der Seite mit der Funktionsplatine (gegenüber der Seite der Feldanschlussklemmen) entfernen. In explosionsgefährdeten Umgebungen die Gerätedeckel nicht entfernen, wenn der Stromkreis unter Spannung steht.
 - 3. Den vierpoligen Steckverbinder in die Funktionsplatine stecken und den Digitalanzeiger einrasten lassen.
- 1. Den Deckel des Anzeigers wieder anbringen und festziehen, bis Metall an Metall anliegt, um die Anforderungen für druckfeste Kapselung und Ex-Schutz zu erfüllen.

4.6.5 Prozessflansch und Ablass-/Entlüftungsventil

Der 3051S MultiVariable Messumformer ist mit vier Befestigungsschrauben und zwei Einstellschrauben am Prozessflansch montiert.

1. Die beiden Einstellschrauben entfernen.

Abbildung 4-14. Einstellschrauben

2. Die vier Befestigungsschrauben entfernen und den Messumformer vom Prozessanschluss abziehen, den Prozessflansch jedoch für den Wiedereinbau angebracht lassen.

Hinweis

Bei Installation mit einem Ventilblock siehe "Funktionsweise der Ventilblöcke zum Nullpunktabgleich des Differenzdrucksensors" auf Seite 28.

1. Die PTFE O-Ringe des SuperModule überprüfen. Unbeschädigte O-Ringe können erneut verwendet werden. Emerson Process Management empfiehlt, O-Ringe falls möglich wiederzuverwenden. Die O-Ringe austauschen, wenn diese Anzeichen von Beschädigung wie Kerben oder Risse aufweisen (Teilenummer 03151-9042-0001 für glasgefülltes PTFE und Teilenummer 03151-9042-0002 für graphitgefülltes PTFE).

Hinweis

Darauf achten, dass die O-Ring-Nuten und die Trennmembran beim Austausch defekter O-Ringe nicht verkratzt oder beschädigt werden.

- 2. Den Prozessflansch an den Prozessanschluss des SuperModule montieren. Den Prozessflansch fixieren, indem zwei Einstellschrauben fingerfest montiert werden (diese Schrauben sind nicht drucktragend). Die Schrauben nicht zu fest anziehen, da sonst die Ausrichtung zwischen Modul und Flansch beeinträchtigt wird.
- 3. Die passenden Flanschschrauben montieren.
 - a. Wenn für die Installation ein ¹/4–18 NPT Gewinde erforderlich ist, vier 1,75 Zoll Flanschschrauben verwenden. Die Schrauben von Hand anziehen. Weiter mit Schritt d.
 - b. Wenn für die Installation ein ¹/₂–14 NPT Gewinde erforderlich ist, Ovaladapter und vier 2,88 in. Flansch-/Adapterschrauben verwenden.
 - c. Die Ovaladapter und die Adapter O-Ringe fixieren und die Schrauben von Hand anziehen.
 - d. Die Schrauben über Kreuz mit dem Anfangsdrehmoment anziehen. Die entsprechenden Drehmomentwerte sind in Tabelle 4-1 zu finden.
 - e. Die Schrauben über Kreuz mit dem endgültigen Drehmoment anziehen. Die entsprechenden Drehmomentwerte sind in Tabelle 4-1 zu finden. Nach dem vollständigen Anziehen müssen die Schrauben durch die Oberseite des Sensormodulgehäuses hinausragen.
 - f. Die Einstellschrauben mit einem Drehmoment von 3,4 Nm (30 in-lbs.) anziehen. Bei Installation mit einem konventionellen Ventilblock die Ovaladapter mit den mitgelieferten 1,75 Zoll Flanschschrauben zur Prozessseite des Ventilblocks montieren.

Schraubenwerkstoff	Anfangsdrehmoment	Enddrehmoment
CS-ASTM-A-449 – Standard	34 Nm (300 in-lb.)	73 Nm (650 in-lb.)
Edelstahl 316 – Option L4	17 Nm (150 in-lb.)	34 Nm (300 in-lb.)
ASTM-A-193-B7M – Option L5	34 Nm (300 in-lb.)	73 Nm (650 in-lb.)
Alloy K-500 – Option L6	34 Nm (300 in-lb.)	73 Nm (650 in-lb.)
ASTM-A-453-660 – Option L7	17 Nm (150 in-lb.)	34 Nm (300 in-lb.)
ASTM-A-193-B8M – Option L8	17 Nm (150 in-lb.)	34 Nm (300 in-lb.)

Tabelle 4-1. Drehmomentwerte für die Montage der Schrauben

4. Wenn die PTFE O-Ringe des SuperModule ausgetauscht wurden, müssen die Flanschund Einstellschrauben nach der Installation nachgezogen werden, um den Kaltfluss des PTFE O-Rings zu kompensieren.

- 5. Ablass-/Entlüftungsventil installieren.
 - a. Dichtungsband am Gewinde des Ventilsitzes anbringen. Am unteren Ende des Ventils beginnend zwei Lagen des Dichtungsbandes im Uhrzeigersinn anbringen, wobei das Gewindeende zum Monteur zeigen muss.
 - b. Die Öffnung am Ventil so ausrichten, dass die Prozessflüssigkeit beim Öffnen des Ventils zum Boden abfließen kann und Kontakt mit Menschen verhindert wird.
 - c. Das Ablass-/Entlüftungsventil mit 28,25 Nm (250 in-lb.) anziehen.
 - d. Die Ventilspindel mit 8 Nm (70 in-lb.) anziehen.

Hinweis

Aufgrund der Empfindlichkeit des DP-Sensors mit Messbereich 1 sind zusätzliche Schritte erforderlich, um die Leistung des Messumformers zu optimieren. Hierfür das folgende Temperaturanpassungsverfahren ausführen.

- 1. Nach dem Auswechseln der O-Ringe an einem Messumformer mit DP-Messbereich 1 und der erneuten Montage des Prozessflansches muss der Messumformer zwei Stunden lang einer Temperatur von 85 °C (185 °F) ausgesetzt werden.
- 2. Die Flanschschrauben erneut über Kreuz anziehen.
- 3. Den Messumformer vor der Kalibrierung erneut zwei Stunden lang einer Temperatur von 85 °C (185 °F) aussetzen.

4.6.6 SuperModule

Zur Nachbestellung für ein Upgrade oder zum Austausch des SuperModule die Bestelltabelle des 3051S MultiVariable Messumformers im Abschnitt "Bestellinformationen" auf Seite 27 zu Rate ziehen und den Optionscode für das Gehäuse durch "00" ersetzen.

- 1. Das Gehäuse gemäß den Anweisungen unter "Upgrade oder Austausch des Gehäuses mit Funktionsplatine" auf Seite 24 ausbauen.
- 2. Das vorhandene SuperModule gemäß den Anweisungen unter "Prozessflansch und Ablass-/Entlüftungsventil" auf Seite 27 vom Prozessflansch entfernen.
- 3. Das Austausch- oder Upgrade-SuperModule gemäß den Anweisungen unter "Prozessflansch und Ablass-/Entlüftungsventil" auf Seite 27 am Prozessflansch anbringen.
- 4. Das Gehäuse gemäß den Anweisungen unter "Upgrade oder Austausch des Gehäuses mit Funktionsplatine" auf Seite 24 einbauen.

Abschnitt 5 Störungsanalyse und -beseitigung

Übersicht	Seite 9
Gerätediagnose	Seite 9
Messqualität und Beschränkungsstatus	Seite 13
Störungssuche und -beseitigung der Engineering Assistant Kommunikation	Seite 14
Störungssuche und -beseitigung von Messproblemen	Seite 15

5.1 Übersicht

Dieser Abschnitt enthält Informationen zur Störungssuche und -beseitigung des 3051S MultiVariable Messumformers. Diagnosemeldungen erscheinen auf dem Digitalanzeiger oder einem HART Hostsystem.

5.2 Gerätediagnose

5.2.1 Diagnosemeldungen auf dem HART Hostsystem

Der 3051S MultiVariable Messumformer gibt zahlreiche Diagnosewarnungen über ein HART Hostsystem aus. Diese Warnungen können mit dem Engineering Assistant ab Version 6.1, dem Handterminal 475 oder dem AMS Device Manager angezeigt werden.

Tabelle 5-1 listet die möglichen Diagnosewarnungen auf, die beim Betrieb des 3051S MultiVariable Messumformers angezeigt werden können. Die Tabellen enthalten außerdem eine kurze Beschreibung der Ursache jeder Warnung und die empfohlenen Abhilfemaßnahmen.

Tabelle 5-2 enthält eine Zusammenfassung von Hinweisen zur Wartung sowie zur Störungsanalyse und -beseitigung der am häufigsten auftretenden Betriebsprobleme. Wird eine Funktionsstörung vermutet und es erscheinen keine Diagnosemeldungen auf dem Handterminal 475 oder Hostsystem, wird empfohlen, die hier angegebenen Anweisungen zu befolgen, um die Messumformer-Hardware und die Prozessanschlüsse auf deren einwandfreien Zustand zu prüfen.

5.2.2 Diagnosemeldungen des Digitalanzeigers

Zusätzlich zum Ausgang werden auf dem Digitalanzeiger Meldungen über Betriebsstörungen sowie Fehler- und Warnmeldungen in abgekürzter Form für die Störungssuche und -beseitigung angezeigt. Die Meldungen erscheinen entsprechend ihrer Priorität nacheinander; normale Betriebsmeldungen werden zuletzt angezeigt. Ein HART Hostsystem verwenden, um den Messumformer abzufragen und die Ursache der Meldung festzustellen. Die einzelnen Diagnosemeldungen, die auf dem Digitalanzeiger erscheinen können, sind nachfolgend beschrieben.

Fehlermeldungen

Eine Fehlermeldung erscheint auf dem Digitalanzeiger, um auf schwere Probleme hinzuweisen, die sich auf den Betrieb des Messumformers auswirken können. Die Fehlermeldung wird angezeigt, bis der Fehlerzustand beseitigt ist; bis dahin erscheint *ERROR* am unteren Rand des Anzeigers.

Warnmeldungen

Warnmeldungen werden auf dem Digitalanzeiger dargestellt, um auf vom Anwender reparierbare Probleme mit dem Messumformer oder mit dem aktuellen Messumformerbetrieb hinzuweisen. Die Warnmeldungen erscheinen abwechselnd mit anderen Messumformerinformationen, bis die Ursache dieser Warnung behoben wurde oder der Messumformer die Funktion ausgeführt hat, die diese Warnmeldung veranlasste.

Meldung auf dem Digitalanzeiger	Meldung auf dem Hostsystem	Mögliche Ursachen	Empfohlene Maßnahmen
AP GP LIMIT	Static Pressure Out of Limits	Der statische Druck überschreitet die Sensorgrenzwerte.	Überprüfen, ob die Prozessbedingungen innerhalb der Sensorgrenzwerte liegen.
BOARD COMM ERROR	Feature Board Communication Error	Kommunikationsprobleme mit der Funktionsplatine. Dieses Problem kann zeitweise auftreten und wird ggf. automatisch behoben.	Den Messumformer aus- und einschalten. Wenn das Problem nicht beseitigt werden kann, die Funktionsplatine des Messumformers austauschen.
CURR SAT	Primary Variable Analog Output Saturated	Die Primärvariable hat den/das für das 4–20 mA Analogausgangssignal definierte(n) Messanfang und Messende überschritten. Der Analogausgang wird dann auf einen hohen oder niedrigen Sättigungswert gesetzt, der nicht den aktuellen Prozessbedingungen entspricht.	Die Prozessbedingungen überprüfen und Messanfang/Messende des Analogausgangs falls erforderlich ändern.
DP LIMIT	Differential Pressure Out of Limits	Der Differenzdruck überschreitet die Sensorgrenzwerte.	Überprüfen, ob die Prozessbedingungen innerhalb der Sensorgrenzwerte liegen.
FAIL BOARD ERROR	Feature Board Error	Die Funktionsplatine hat eine nicht zu behebende Störung erkannt.	Die Funktionsplatine austauschen.
FAIL PT ERROR	Process Temperature Sensor Failure	Der Prozesstemperaturfühler ist ausgefallen oder nicht richtig verdrahtet.	Die Verdrahtung des Fühlers überprüfen und Kurzschlüsse oder Unterbrechungen beheben. Wenn der Sensor richtig verdrahtet ist, den Prozesstemperaturfühler prüfen und falls erforderlich austauschen. Wenn die Probleme nicht beseitigt werden können, die Funktionsplatine des Messumformers austauschen.
FAIL SENSOR ERROR	Sensor Module Failure	Das SuperModule liefert Messwerte, die ggf. nicht mehr gültig sind.	Überprüfen, ob die Temperatur des Sensormoduls innerhalb der Betriebsgrenzen des Messumformers liegt. Das SuperModule falls erforderlich austauschen.
FLOW CONFIG	Updating Flow Configuration – Flow Values Constant	Eine Durchflusskonfiguration wird gerade in den Messumformer heruntergeladen. Während der Download läuft, ist der Durchflussausgang auf den letzten berechneten Wert fixiert. Nach Abschluss des Downloads berechnet der Messumformer den Ausgang wieder in Echtzeit.	Es ist keine Maßnahme erforderlich. Bitte warten, bis die Durchflusskonfiguration vollständig heruntergeladen wurde, bevor andere Konfigurationsschritte durchgeführt werden.
FLOW INCOMP ERROR	Energy Invalid for Flow Configuration	Die Variable "Energiedurchfluss" ist nicht mit der aktuellen Durchflusskonfiguration kompatibel, ist jedoch dem Zähler, einer Prozessvariablen oder einer Burst-Variablen zugeordnet.	 Diese Diskrepanz kann wie folgt beseitigt werden: Überprüfen, ob die Konfiguration der Medienart die Berechnung des Energiedurchflusses unterstützt. Die Variable "Energiedurchfluss" nur dann dem Zähler, einer Prozessvariablen oder einer Burst-Variablen zuordnen, wenn der Messumformer über eine kompatible Durchflusskonfiguration verfügt.
FLOW INCOMP ERROR	Static Pressure Sensor Missing	Für die aktuelle Durchflusskonfiguration wird ein statischer Drucksensor benötigt.	Eine Durchflusskonfiguration herunterladen, die mit den Sensoren im Gerät kompatibel ist, oder das Modul durch eine Ausführung ersetzen, die mit einem statischen Drucksensor ausgestattet ist.
FLOW INCOMP ERROR	Flow Configuration Download Error	Die Durchflusskonfiguration wurde nicht erfolgreich in den Messumformer heruntergeladen.	Die Durchflusskonfiguration erneut mit der Engineering Assistant Software herunterladen.
FLOW LIMIT	Flow Output Out of Limits	Der Durchflussausgang überschreitet die Betriebsgrenzen der Durchflussrate.	Die Prozessbedingungen überprüfen sowie die Parameter und Betriebsgrenzen der Durchflusskonfiguration falls erforderlich ändern.

Tabelle 5-1. Störungssuche und -beseitigung von Diagnosemeldungen

Meldung auf dem Digitalanzeiger	Meldung auf dem Hostsystem	Mögliche Ursachen	Empfohlene Maßnahmen
FLOW LIMIT	Energy Flow Out of Limits	Der Energieflussausgang überschreitet die Betriebsgrenzen der Durchflussrate.	Die Prozessbedingungen überprüfen sowie die Parameter und Betriebsgrenzen der Durchflusskonfiguration falls erforderlich ändern.
LCD UPDATE ERROR	LCD Update Error	Der Digitalanzeiger empfängt keine Updates von der Funktionsplatine.	Den Steckverbinder des Digitalanzeigers überprüfen und den Anzeiger rücksetzen. Wenn das Problem nicht beseitigt werden kann, zunächst den Digitalanzeiger und dann, falls erforderlich, die Funktionsplatine des Messumformers austauschen.
(Keine Anzeige)	LCD Update Error	Der Digitalanzeiger wird nicht mit Spannung versorgt.	Den Steckverbinder des Digitalanzeigers überprüfen und den Anzeiger rücksetzen. Wenn das Problem nicht beseitigt werden kann, zunächst den Digitalanzeiger und dann, falls erforderlich, die Funktionsplatine des Messumformers austauschen.
PT LIMIT	Process Temperature Out of Limits	Der Prozesstemperaturfühler überschreitet die vom Anwender definierten Sensorgrenzwerte.	Die Prozessbedingungen überprüfen und die Grenzwerte falls erforderlich ändern. Den Prozesstemperaturfühler prüfen und falls erforderlich austauschen.
RVRSE FLOW	Reverse Flow Detected	Der Messumformer misst einen negativen Differenzdruck.	Die Prozessbedingungen und die Installation des Messumformers überprüfen.
SNSR COMM ERROR	Module Communication Failure	Kommunikation zwischen Sensormodul und Funktionsplatine ist unterbrochen.	Die Verbindung zwischen Sensormodul und Funktionsplatine überprüfen. Das SuperModule und/oder die Funktionsplatine falls erforderlich austauschen.
SNSR INCOMP ERROR	Sensor Module Incompatibility	Das SuperModule ist nicht mit der Funktionsplatine kompatibel. Das SuperModule ist nicht mit einem Differenzdrucksensor ausgestattet oder verwendet eine ältere Version des Sensormoduls.	Das SuperModule durch ein Modul ersetzen, das mit dem PlantWeb Gehäuse des 30515 MultiVariable Messumformers kompatibel ist.
SNSR MISSING ERROR	Sensor Missing	Der Sensor, der der Primärvariable zugeordnet ist, ist nicht vorhanden.	Die Primärvariable einem Sensor zuordnen, der im Messumformer vorhanden ist.
SNSRT LIMIT	Sensor Temperature Out of Limits	Die Temperatur des Sensormoduls überschreitet die Sensorgrenzwerte.	Überprüfen, ob die Umgebungsbedingungen innerhalb der Sensorgrenzwerte liegen.
XMTR Info	Non-Volatile Memory Warning	Die Messumformerdaten sind unvollständig. Dies hat keinen Einfluss auf den Betrieb des Messumformers.	Die Funktionsplatine bei der nächsten planmäßigen Stilllegung austauschen.
XMTR Info Error	Non-Volatile Memory Error	Daten im nichtflüchtigen Speicher des Geräts sind beschädigt.	Die Funktionsplatine austauschen.
(Andere Meldung) ⁽¹⁾	Maintenance Required	Der Messumformer funktioniert ggf. nicht richtig und muss überprüft werden.	Andere Warnmeldungen prüfen.
(Andere Meldung) ⁽¹⁾	mA Output Fixed	Das Signal des 4–20 mA Analogausgangs ist auf einen festen Wert eingestellt und entspricht nicht der HART Primärvariable.	Die Messkreisstrom-Betriebsart deaktivieren.
(Andere Meldung) ⁽¹⁾	Primary variable out of limits	Die Primärvariable liegt außerhalb der Betriebsgrenzen des Messumformers.	Andere Diagnosemeldungen anzeigen, um zu bestimmen, welche Variable die Grenzwerte überschreitet.
(Andere Meldung) ⁽¹⁾	Non-primary variable out of limits	Eine andere Variable als die Primärvariable liegt außerhalb der Betriebsgrenzen des Messumformers.	Andere Diagnosemeldungen anzeigen, um zu bestimmen, welche Variable die Grenzwerte überschreitet.
(Normale Anzeige)	Configuration changed	Die Gerätekonfiguration wurde von einem anderen Hostsystem als dem AMS System geändert.	Es ist keine Maßnahme erforderlich; die Meldung wird gelöscht, nachdem eine Änderung mit dem AMS System vorgenommen wurde.
(Normale Anzeige)	Cold start	Der Messumformer wurde neu gestartet.	Es ist keine Maßnahme erforderlich; die Meldung wird automatisch gelöscht.

(1) Die auf dem Digitalanzeiger angezeigten Meldungen sind vom jeweiligen Problem abhängig.

Symptom	Abhilfemaßnahmen	
Messumformer mA Ausgang	Überprüfen, ob Spannung an den Signalklemmen anliegt.	
IST NUI	Die Spannungsversorgungsleiter auf richtige Polarität prüfen.	
	Überprüfen, ob die Spannung an den Klemmen 12 bis 42,4 VDC beträgt.	
	Auf eine offene Diode über den Testklemmen am Anschlussklemmenblock des 3051S MultiVariable Messumformers prüfen.	
Messumformer kommuniziert nicht	Überprüfen, ob der Ausgang zwischen 4 und 20 mA oder den Sättigungswerten liegt.	
Engineering Assistant	Auf eine saubere Gleichspannungsversorgung zum Messumformer prüfen (max. AC-Rauschen 0,2 V Spitze zu Spitze).	
	Prüfen, ob die Messkreisbürde zwischen 250 und 1321 Ω liegt. Messkreisbürde = (Versorgungsspannung – Messumformerspannung)/ Messkreisstrom.	
	Prüfen, ob das Gerät auf eine andere HART Adresse eingestellt ist.	
Messumformer mA Ausgang ist	Die angelegten Prozessvariablen überprüfen.	
noch öder niedrig	4 und 20 mA Punkt und Durchflusskonfiguration überprüfen.	
	Sicherstellen, dass der Ausgang keinen Alarm- oder Sättigungszustand aufweist.	
	Überprüfen, ob ein Abgleich des Analogausgangs oder ein Sensorabgleich erforderlich ist.	
Messumformer reagiert nicht auf	Sicherstellen, dass das Ausgleichsventil geschlossen ist.	
Prozessvariablen	Testausrüstung prüfen.	
	Impulsleitungen oder Ventilblock auf Blockierung prüfen.	
	Überprüfen, ob der von der Primärvariablen gemessene Wert zwischen den eingestellten 4 und 20 mA Punkten liegt.	
	Sicherstellen, dass der Ausgang keinen Alarm- oder Sättigungszustand aufweist.	
	Sicherstellen, dass der Messumformer nicht in den Modus Messkreistest, Multidrop, Testberechung oder Feste Variable geschaltet wurde.	
Ausgang der digitalen Variable ist	Testausrüstung prüfen (insbesondere die Genauigkeit).	
noch oder niedrig	Impulsleitungen auf Blockierung oder niedrigen Füllstand der befüllten Leitungen prüfen.	
	Sensorabgleich des Messumformers prüfen.	
	Überprüfen, ob die gemessenen Variablen innerhalb der Betriebsgrenzen des Messumformers liegen.	
Ausgang der digitalen Variable ist	Die Anwendung auf defekte Ausrüstung in der Prozessleitung prüfen.	
Instabli	Überprüfen, ob der Messumformer direkt auf das Ein- und Ausschalten von Geräten reagiert.	
	Überprüfen, ob die Dämpfung für die Anwendung richtig eingestellt ist.	
mA Ausgang ist instabil	Überprüfen, ob die Spannungsversorgung zum Messumformer eine ausreichende Spannung und Stromstärke aufweist.	
	Auf externe elektrische Störungen prüfen.	
	Überprüfen, ob der Messumformer richtig geerdet ist.	
	Sicherstellen, dass die Abschirmung für das verdrillte Adernpaar nur an einem Ende geerdet ist.	
Ausgang des Messumformers ist normal, der Digitalanzeiger ist jedoch ausgeschaltet und die Diagnosemeldungen weisen auf ein Problem mit dem Digitalanzeiger hin	Überprüfen, ob der Digitalanzeiger richtig installiert ist. Digitalanzeiger austauschen.	
Messumformer zeigt einen Durchfluss- und/oder DP-Wert an, wenn kein Durchfluss vorliegt	Nullpunktabgleich des DP-Sensors durchführen. Den für die DP-Schleichmengenabschaltung eingestellten Wert überprüfen.	

Tabelle 5-2. Störungssuche und -beseitigung des Messumformers

5.3

Messqualität und Beschränkungsstatus

Der 3051S MultiVariable Messumformer ist mit dem HART Revision 6 Standard konform. Eine der bemerkenswertesten Verbesserungen des HART 6 Standards besteht darin, dass jede Variable über einen Wert für Messqualität und Beschränkungsstatus verfügt. Dieser Status kann im AMS System, auf einem Handterminal 475 oder mit einem HART 6-kompatiblen Hostsystem angezeigt werden. Im AMS System kann der Variablenstatus durch Auswahl von **Variables** (*Variablen*) im linken oberen Menübaum unter der Überschrift *Configure/Setup* (Konfiguration/Einstellung) angezeigt werden.

onfigure/Setup	Flow Energy Totalzer Differential Pressure	Static Pressure Process Temperature Module	Temperature Analog Output
Configure/Setup Basic Setup Device Variables Calibration	Device Tag Tag 30515MV Long Tag 30515MV Mass Flow		Device GOOD
	Flow Rate Setup		
	Flow Rate 0.000000 lb/s	Mass Flow Calculation	Flow Rate Unit Ib/s 💌
	Damping 0.40 Sec	Volumetric Flow Calculation	Configure Flow Calculation Type
	Custom Units Setup	Low Flow Cutoff	Flow Rate Sensor Limits
	Base Unit	Minimum DP 0.050002 inH20	Upper Sensor Limit 10000.0000 lb/s
	Label 7?????	Configure Low Flow Cutoff	Lower Sensor Limit 0.000000 lb/s
	Conversion Factor NaN Ib/s		Minimum Span 0.000000 lb/s
Configure/Setup	Status		
Device Diagnostics	Flow Rate Status Good - Not Limitec -		
Process Variables			
	Time Current		L . L . L . L

Abbildung 5-1. Qualität und Beschränkungsstatus

Jeder Variablenstatus besteht aus zwei Teilen, die durch einen Bindestrich getrennt sind: Messqualität und Beschränkungsstatus.

Mögliche Messqualität-Anzeigewerte

Good (Gut) – Wird während des normalen Gerätebetriebs anzeigt.

Poor Accuracy (Schlechte Genauigkeit) – Gibt an, dass die Genauigkeit des Variablenwertes beeinträchtigt ist. Beispiel: Der Modultemperaturfühler ist ausgefallen und kompensiert dadurch die Differenzdruck- und statischen Druckmesswerte nicht mehr.

Bad (Schlecht) – Gibt an, dass die Variable nicht verfügbar ist. Beispiel: Ein Differenzdruck- oder statischer Drucksensor bzw. ein Prozesstemperaturfühler ist ausgefallen.

Mögliche Beschränkungsstatus-Anzeigewerte

Not Limited (Nicht beschränkt) – Wird während des normalen Gerätebetriebs anzeigt.

High Limited (Hohe Beschränkung) – Gibt an, dass der aktuelle Wert der Prozessvariablen den größtmöglichen Messwert des Messumformers überschritten hat und den tatsächlich gemessenen Variablenwert nicht mehr repräsentiert.

Low Limited (Niedrige Beschränkung) – Gibt an, dass der aktuelle Wert der Prozessvariablen den kleinstmöglichen Messwert des Messumformers unterschritten hat und den tatsächlich gemessenen Variablenwert nicht mehr repräsentiert.

Constant (Konstant) – Gibt an, dass der Wert der Prozessvariable auf einen festen Wert gesetzt wurde. Beispiel: Der Zähler wurde gestoppt.

5.4 Störungssuche und -beseitigung der Engineering Assistant Kommunikation

Tabelle 5-3 zeigt die am häufigsten auftretenden Kommunikationsprobleme zwischen der Engineering Assistant Software und dem Rosemount 3051S MultiVariable Messumformer.

Symptom	Abhilfemaßnahme	
	 Verdrahtung des Messkreises (HART) Für die Kommunikation mit dem HART Protokoll ist eine Bürde des Messkreises von 250–1321 Ohm (inkl.) erforderlich. Auf ausreichende Spannung zum Messumformer prüfen. Siehe "Bürdengrenzen" auf Seite 17. Auf kurzzeitig vorhandene Kurzschlüsse, unterbrochene Stromkreise und Mehrfacherdung prüfen. Auf Kapazität am Bürdenwiderstand prüfen. Die Kapazität muss weniger als 0,1 μF betragen. 	
Keine Kommunikation zwischen der Engineering Assistant Software und dem Rosemount 3051S MultiVariable Messumformer	 Engineering Assistant Überprüfen, ob der richtige COM-Anschluss ausgewählt wurde. Sicherstellen, dass sich der Laptop nicht im Energiesparmodus befindet (einige Laptops deaktivieren im Energiesparmodus alle COM-Anschlüsse). Überprüfen, ob das HART Modem ordnungsgemäß angeschlossen ist. Prüfen, ob der HART Treiber geladen und installiert wurde. Bei Verwendung eines HART USB-Modems die Treiber von der CD-ROM installieren, die im Lieferumfang des USB-Modems enthalten ist. Prüfen, ob ein anderes HART Konfigurationsprogramm, wie z. B. ein AMS System, geöffnet ist. Es darf jeweils nur ein HART Konfigurationsprogramm geöffnet sein. Sicherstellen, dass der COM-Port-Puffer in den erweiterten COM-Port-Einstellungen auf die niedrigste Einstellung (1) gesetzt ist. Anschließend den Computer neu starten. Die Device Address (Geräteadresse) so einstellen, dass Alle gesucht werden. 	

Tabelle 5-3. Abhilfemaßnahmen für Engineering Assistant Kommunikationsprobleme

5.5 Störungssuche und -beseitigung von Messproblemen

Der Messumformer bietet eine Möglichkeit zur Anzeige der aktuellen Prozessvariablen und Durchflussberechnungen. Wenn der Wert der Prozessvariablen unerwartet ausfällt, kann das Problem mithilfe der Symptome und möglichen Abhilfemaßnahmen in diesem Abschnitten behoben werden.

Tabelle 5-4.	Unerwartete	Werte der	Prozessvariable	(PV)
--------------	-------------	-----------	-----------------	------

Symptom	Abhilfemaßnahme	
Hoher PV-Wert	 Auf Drosselstellen am Wirkdruckgeber prüfen. Installation und Zustand des Wirkdruckgebers prüfen. Auf Änderungen der Eigenschaften des Prozessmediums achten, die den Ausgang beeinflussen können. Impulsleitungen Sicherstellen, dass der Druckanschluss richtig vorgenommen wurde. Auf Leckstellen oder Blockierungen prüfen. Sicherstellen, dass die Trennventile vollständig geöffnet sind. Flüssigkeitsleitungen auf eingeschlossenes Gas bzw. Gasleitungen auf eingeschlossene Flüssigkeit prüfen. Sicherstellen, dass sich die Dichte des Mediums in den Impulsleitungen nicht geändert hat. Den Prozessflansch des Messumformers auf Ablagerungen prüfen. Sicherstellen, dass das Prozessmedium nicht im Prozessflansch eingefroren ist. Spannungsversorgung Die Ausgangsspannung der Spannungsversorgung am Messumformer prüfen. Die HART Kommunikation erfordert eine Spannung an den Anschlussklemmen zwischen 12 und 42,4 VDC ohne Bürde. 	
	Hinweis Zur Prüfung des Messkreises maximal die angegebene Spannung verwenden. Andernfalls kann der Messumformer beschädigt werden.	
	 Funktionsplatine Einen Personalcomputer anschließen und die Sensorgrenzwerte mit dem AMS System, der Engineering Assistant Software oder dem Handterminal 375 prüfen, um zu gewährleisten, dass die Kalibrierwerte innerhalb der Betriebsgrenzen der Sensoren liegen und dass die Kalibrierung für den angelegten Druck geeignet ist. Bestätigen, dass das Elektronikgehäuse ordnungsgemäß gegen Feuchtigkeit abgedichtet ist. Wenn die Funktionsplatine immer noch nicht ordnungsgemäß funktioniert, die Platine austauschen. Durchflusskonfiguration (nur Funktionsplatine für voll kompensierten Masse- und Energiedurchfluss) Sicherstellen, dass die Durchflusskonfiguration für die aktuelle Anwendung geeignet ist. Widerstandsthermometer-Prozesstemperatureingang Alle Kabelanschlüsse prüfen. Sicherstellen, dass es sich bei dem Sensor um ein Pt100 Widerstandsthermometer handelt. Das Pt100 Widerstandsthermometer austauschen. Sensormodul Das Sensormodul kann nicht im Feld repariert werden und muss ausgetauscht werden, wenn es defekt ist. 	
	Auf offensichtliche Defekte wie eine durchstochene Trennmembran oder Verlust des Fullmediums achten und das nächste Emerson Process Management Service Center kontaktieren.	
Instabiler PV-Wert	 Wirkdruckgeber Installation und Zustand des Wirkdruckgebers prüfen. Verdrahtung des Messkreises Auf ausreichende Spannung zum Messumformer prüfen. Die HART Kommunikation erfordert eine Spannung an den Anschlussklemmen zwischen 12 und 42,4 VDC ohne Bürde. Auf kurzzeitig vorhandene Kurzschlüsse, unterbrochene Stromkreise und Mehrfacherdung prüfen. 	
	 Prozessvariationen Die Dämpfung ändern. Funktionsplatine Einen Personalcomputer anschließen und die Sensorgrenzwerte mit dem AMS System, der Engineering Assistant Software oder dem Handterminal 375 prüfen, um zu gewährleisten, dass die Kalibrierwerte innerhalb der Betriebsgrenzen der Sensoren liegen und dass die Kalibrierung für den angelegten Druck geeignet ist. Bestätigen, dass das Elektronikgehäuse ordnungsgemäß gegen Feuchtigkeit abgedichtet ist. Wenn die Funktionsplatine immer noch nicht ordnungsgemäß funktioniert, die Platine austauschen. 	

Symptom	Abhilfemaßnahme
	Impulsleitungen • Flüssigkeitsleitungen auf eingeschlossenes Gas bzw. Gasleitungen auf eingeschlossene Flüssigkeit prüfen. • Sicherstellen, dass das Prozessmedium nicht im Prozessflansch eingefroren ist. • Sicherstellen, dass die Trennventile vollständig geöffnet und die Ausgleichsventile vollständig und fest geschlossen sind. Sensormodul • Das Sensormodul kann nicht im Feld repariert werden und muss ausgetauscht werden, wenn es defekt ist. Auf offserichtliche Defekte wie eine durchsterbene Trennmembran oder Verlut der Füllmediume achten und das
	nächste Emerson Process Management Service Center kontaktieren.
Niedriger oder kein PV-Wert	 Wirkdruckgeber Installation und Zustand des Wirkdruckgebers prüfen. Auf Änderungen der Eigenschaften des Prozessmediums achten, die den Ausgang beeinflussen können. Verdrahtung des Messkreises Auf ausreichende Spannung zum Messumformer prüfen. Die HART Kommunikation erfordert eine Spannung an den Anschlussklemmen zwischen 12 und 42,4 VDC ohne Bürde. Den von der Spannungsversorgung gelieferten Milliampere-Nennstrom gegen die gesamte Stromaufnahme aller gespeisten Messumformer prüfen. Auf Kurzschlüsse und Mehrfacherdung prüfen. Prüfen, ob die Polarität an der Signalklemme korrekt ist. Die Impedanz des Messkreises prüfen. Die Drabtielierung neröfen. um mögliche Erderblüsse zu finden.
	Impulsleitungen
	 Sicherstellen, dass der Druckanschluss richtig vorgenommen wurde. Auf Leckstellen oder Blockierungen prüfen. Sicherstellen, dass die Trennventile vollständig geöffnet und die Bypass-Ventile fest geschlossen sind. Flüssigkeitsleitungen auf eingeschlossenes Gas bzw. Gasleitungen auf eingeschlossene Flüssigkeit prüfen. Den Prozessflansch des Messumformers auf Ablagerungen prüfen. Sicherstellen, dass das Prozessmedium nicht im Prozessflansch eingefroren ist.
	 Funktionsplatine Die Sensorgrenzwerte prüfen, um zu gewährleisten, dass die Kalibrierwerte innerhalb der Betriebsgrenzen der Sensoren liegen und dass die Kalibrierung für den angelegten Druck geeignet ist. Bestätigen, dass das Elektronikgehäuse ordnungsgemäß gegen Feuchtigkeit abgedichtet ist. Wenn die Funktionsplatine immer noch nicht ordnungsgemäß funktioniert, die Platine austauschen. Durchflusskonfiguration (nur Funktionsplatine für voll kompensierten Masse- und Energiedurchfluss) Sicherstellen, dass die Durchflusskonfiguration für die aktuelle Anwendung geeignet ist. Widerstandsthermometer-Prozesstemperatureingang Alle Kabelanschlüsse prüfen. Sicherstellen, dass es sich bei dem Sensor um ein Pt100 Widerstandsthermometer handelt. Das Pt100 Widerstandsthermometer austauschen. Sensormodul Das Sensormodul kann nicht im Feld repariert werden und muss ausgetauscht werden, wenn es defekt ist. Auf offensichtliche Defekte wie eine durchstochene Trennmembran oder Verlust des Füllmediums achten und das nächste Emerson Process Management Service Center kontaktieren.
Träges Ansprechverhalten/ Drift des Ausgangs	 Wirkdruckgeber Auf Drosselstellen am Wirkdruckgeber prüfen. Impulsleitungen Auf Leckstellen oder Blockierungen prüfen. Sicherstellen, dass die Trennventile vollständig geöffnet sind. Den Prozessflansch des Messumformers auf Ablagerungen prüfen. Flüssigkeitsleitungen auf eingeschlossenes Gas bzw. Gasleitungen auf eingeschlossene Flüssigkeit prüfen. Sicherstellen, dass sich die Dichte des Mediums in den Impulsleitungen nicht geändert hat. Sicherstellen, dass das Prozessmedium nicht im Prozessflansch eingefroren ist. Funktionsplatine Bestätigen, dass die Dämpfung richtig eingestellt ist. Bestätigen, dass das Elektronikgehäuse ordnungsgemäß gegen Feuchtigkeit abgedichtet ist. Sensormodul Das Sensormodul kann nicht im Feld repariert werden und muss ausgetauscht werden, wenn es defekt ist. Auf offensichtliche Defekte wie eine durchstochene Trennmembran oder Verlust des Füllmediums achten und das nächste Emerson Process Management Service Center kontaktieren. Bestätigen, dass das Elektronikgehäuse ordnungsgemäß gegen Feuchtigkeit abgedichtet ist.

Tabelle 5-4. Unerwartete Werte der Prozessvariable (PV)

A Hinweis

Die folgenden Leistungsbeschränkungen können den wirtschaftlichen bzw. sicheren Betrieb beeinträchtigen. Bei kritischen Anwendungen müssen entsprechende Diagnose- und Sicherheitssysteme installiert sein.

Druckmessumformer enthalten eine Füllflüssigkeit, die der Übertragung des Prozessdrucks durch die Trennmembranen zum Drucksensormodul dient. In seltenen Fällen können in mit Öl befüllten Druckmessumformern Leckpfade auftreten. Zu den möglichen Ursachen gehören: Schäden an den Trennmembranen, gefrorenes Prozessmedium, Isolator-Korrosion durch unverträgliche Prozessmedien usw.

Ein Messumformer, der das Füllmedium verliert, kann über einen gewissen Zeitraum hinweg normal funktionieren. Anhaltender Ölverlust führt letztendlich dazu, dass einer oder mehrere Betriebsparameter die Spezifikationen überschreiten, während eine Drift des Ausgangs anhält. Symptome für anhaltenden Ölverlust und andere Probleme sind u. a.:

- Anhaltende Driftrate des Nullpunktes und der Messspanne und/oder des Arbeitspunktes
- Träges Ansprechverhalten auf ansteigenden und/oder abfallenden Druck
- Begrenzter Ausgang und/oder stark unlinearer Ausgang
- Änderungen des Ausgangssignals durch Störsignale
- Deutliche Drift des Arbeitspunktes
- Abrupter Anstieg der Driftrate des tatsächlichen Nullpunktes und/oder der Messspanne
- Instabiles Ausgangssignal
- Ausgangssignal im oberen oder unteren Sättigungsbereich

Anhang A Technische Daten und Bestellinformationen

Leistungsdaten	Seite 9
Funktionsdaten	Seite 15
Geräteausführung	Seite 20
Maßzeichnungen	Seite 23
Bestellinformationen	Seite 27
Explosionsdarstellung	Seite 36
Ersatzteile	Seite 37

A.1 Technische Daten

A.1.1 Leistungsdaten

Messspanne mit Nullpunkt zur Basis, Referenzbedingungen, Silikonölfüllung, glasgefüllte PTFE O-Ringe, Edelstahlwerkstoffe, Coplanar Flansch, Messanfang und Messende digital abgeglichen.

Übereinstimmung mit der Spezifikation (±3 σ [Sigma])

Technologieführerschaft, fortschrittliche Fertigungstechniken und statistische Prozesssteuerung garantieren eine Übereinstimmung mit der Messspezifikation von mindestens $\pm 3\sigma$ oder besser.

Referenzgenauigkeit⁽¹⁾

Modelle		Classic MV	Ultra für Durchfluss
3051SMV1: Differ 3051SMV2: Differ	eratur		
Differenzdruck- Messbereiche 2–3		±0,04 % der eingestellten Messspanne. Für Messspannen kleiner als 10:1 gilt: ±0,01 + 0,004 (Messbereichsende) % der eingestellten Messspanne	±0,04 % vom angezeigten Messwert bis zu einem Differenzdruck-Messspannen- verhältnis von 8:1 vom Messbereichsende; ±[0,04 + 0,0023 (URL/RDG ⁽³⁾)] % vom Messwert bis zu einem Differenzdruck-Messspannen- verhältnis von 200:1 vom Messbereichsende ⁽⁴⁾
Differenzdruck- Messbereich 1			_
Absolut- und Überdruck- Messbereiche 3–4		±0,055 % der eingestellten Messspanne. Für Messspannen kleiner als 10:1 gilt: ±[0,0065 (Messbereichsende) % der eingestellten Messspanne	±0,025 % der eingestellten Messspanne. Für Messspannen kleiner als 10:1 gilt: ±[0,004 (<u>Messbereichsende</u>) % der eingestellten Messspanne
Interface für das Prozesstempera- tur-Widerstands- thermometer ⁽²⁾		±0,37 °C (0,67 °F)	±0,37 °C (0,67 °F)

Anhang A: Technische Daten und Bestellinformationen April 2013

Modelle	Ultra	Classic	Ultra für Durchfluss
3051SMV3: Differ 3051SMV4: Differ	renzdruck und Temperatur renzdruck		
Messbereiche 2–4	±0,025 % der eingestellten Messspanne. Für Messspannen kleiner als 10:1 gilt: ±0,005 + 0,0035 (<u>Messbereichsende</u>) ^{% der} eingestellten Messspanne	$\pm 0,055$ % der eingestellten Messspanne. Für Messspannen kleiner als 10:1 gilt: $\pm \left[0,015 \pm 0,005 \left(\frac{\text{Messbereichsende}}{\text{Messspanne}} \right) \right]^{\% \text{ der}}_{\text{Messspanne}}$	±0,04 % vom angezeigten Messwert bis zu einem Differenzdruck-Messspannen- verhältnis von 8:1 vom Messbereichsende; ±[0,04 + 0,0023 (URL/RDG ⁽³⁾)] % vom Messwert bis zu einem Differenzdruck-Messspannen- verhältnis von 200:1 vom Messbereichsende ⁽⁴⁾
Messbereich 5	±0,05 % der eingestellten Messspanne. Für Messspannen kleiner als 10:1 gilt: ±[0,005 + 0,0045 (Messbereichsende)] ^{% der} Messspanne	±0,065 % der eingestellten Messspanne. Für Messspannen kleiner als 10:1 gilt: ±[0,015 + 0,005 (<u>Messsperichsende</u>] ^{% der} eingestellten Messspanne	_
Messbereich 1	±0,09 % der eingestellten Messspanne. Für Messspannen kleiner als 15:1 gilt: ±[0,015 + 0,005 (<u>Messbereichsende</u>) ^{% der} eingestellten Messspanne	$\pm 0,10$ % der eingestellten Messspanne. Für Messspannen kleiner als 15:1 gilt: $\pm \left[0,025 \pm 0,005 \left(\frac{\text{Messbereichsende}}{\text{Messspanne}}\right)^{\% \text{ der}}_{\text{Messspanne}}$	_
Messbereich 0	±0,09 % der eingestellten Messspanne. Für Messspannen kleiner als 2:1, ±0,045 % vom Messbereichsende	±0,10 % der eingestellten Messspanne. Für Messspannen kleiner als 2:1, ±0,05 % vom Messbereichsende	_
Interface für das Prozesstemperatu r-Widerstands- thermometer ⁽²⁾	±0,37 °C (0,67 °F)	±0,37 °C (0,67 °F)	±0,37 °C (0,67 °F)

(1) Die angegebenen Referenzgenauigkeiten beinhalten die Linearität, Hysterese und Reproduzierbarkeit, jedoch nicht die ausschließlich für den Analogausgang geltende (1) Die ungegebenen Repetingsgener beimeinen der under die Unternet, in states eine Representation auf die Prozestemperature gelten nur f
ür den Messumformer. Der Messumformer ist mit jedem Pt100 (100 Ohm Platin)
 (2) Die angegebenen Spezifikationen f
ür die Prozesstemperatur gelten nur f
ür den Messumformer. Der Messumformer ist mit jedem Pt100 (100 Ohm Platin)

Widerstandsthermometer kompatibel. Dazu gehören zum Beispiel die Rosemount Widerstandsthermometer der Serie 68 und 78.

 (3) RDG ist der Differenzdruck-Messwert des Messumformers.
 (4) Ultra für Durchfluss nur für 3051SMV Differenzdruck-Messbereiche 2–3 anwendbar. Für eingestellte Messspannen von 1:1 bis 2:1 des Messbereichsendes sind ±0,005 % der eingestellten Messspanne für den Fehler des Analogausgangs hinzuzufügen.

Gesamtgenauigkeit⁽¹⁾

N	lodelle	Ultra ⁽¹⁾	Classic und Classic MV	Ultra für Durchfluss ⁽²⁾
3051SMV	Differenzdruck- Messbereiche 2–3	±0,1 % der eingestellten Messspanne, bei ±28 °C (50 °F) Temperaturänderung, 0–100 % relative Luftfeuchtigkeit, bis zu 51 bar (740 psi) statischem Druck (nur DP) und einem Messspannenverhältnis von 1:1 bis 5:1	±0,15 % der eingestellten Messspanne, bei ±28 °C (50 °F) Temperaturänderung, O–100 % relative Luftfeuchtigkeit, bis zu 51 bar (740 psi) statischem Druck (nur DP) und einem Messspannenverhältnis von 1:1 bis 5:1	±0,1 % vom angezeigten Messwert, bei ±28 °C (50 °F) Temperaturänderung, 0–100 % relative Luftfeuchtigkeit, bis zu 51 bar (740 psi) statischem Druck und einem Differenzdruck-Mess- spannenverhältnis von 8:1 vom Messbereichsende

Die Gesamtgenauigkeit errechnet sich aus den kombinierten Messgenauigkeiten der Referenzgenauigkeit, der Umgebungstemperatur und dem statischen Druck. Die (1) Spezifikationen gelten nur für Differenzdruckmessungen.
 Ultra für Durchfluss ist nur für 3051SMV Differenzdruck-Messbereiche 2–3 anwendbar.

MultiVariable Durchfluss Leistungsmerkmale⁽¹⁾

Referenzgenauigkeit des Masse-, Energie-, tatsächlichen volumetrischen und Gesamtdurchflusses⁽²⁾

Modelle ⁽¹)(2)	Ultra für Durchfluss	Classic MV
3051SM V	Differenzdruck- Messbereiche 2–3	±0,65 % vom Durchflusswert über einen Durchflussbereich von 14:1 (200:1 Differenzdruck-Messbereich)	±0,70 % vom Durchflusswert über einen Durchflussbereich von 8:1 (64:1 Differenzdruck-Messbereich)
	Differenzdruck- Messbereich 1	_	±0,90 % vom Durchflusswert über einen Durchflussbereich von 8:1 (64:1 Differenzdruck-Messbereich)

(1) Nur für 3051SMV_M MultiVariable Typ anwendbar. Die Spezifikationen für die Durchfluss Leistungsmerkmale setzen voraus, dass das Gerät für die volle Kompensation von statischem Druck, Prozesstemperatur, Dichte, Viskosität, Gasausdehnung, Durchflusskoeffizient und Wärmekorrekturschwankungen über einen spezifizierten Betriebsbereich konfiguriert ist.

(2) Unkalibrierter Differenzdruckgeber (Blende 0,2 < beta < 0,6) installiert gemäß ASME MFC 3M oder ISO 5167-1. Ungenauigkeiten für Durchflusskoeffizient, Wirkdruckgeberbohrung, Rohrdurchmesser und Gasausdehnungsfaktor wie in ASME MFC 3M oder ISO 5167-1 definiert. Die Referenzgenauigkeit beinhaltet nicht die Genauigkeit des Widerstandsthermometers.

Langzeitstabilität

Modelle		Ultra und Ultra für Durchfluss ⁽¹⁾	Classic und Classic MV
3051SMV	Differenzdruck-	±0,20 % des Messbereichsendes auf	±0,125 % des Messbereichsendes auf
	Messbereiche 2–5	10 Jahre, ±28 °C (50 °F)	5 Jahre, ±28 °C (50 °F)
	AP- und	Temperaturänderung, bis zu 68,9 bar	Temperaturänderung, bis zu 68,9 bar
	GP-Messbereiche 3–4	(1000 psi) statischem Druck	(1000 psi) statischem Druck
Interface fü	ir das	Der größere der folgenden Werte: ±0,103 °C (0,185 °F) oder 0,1 % vom	
Prozessten	1peratur-	angezeigten Messwert pro Jahr (schließt die Stabilität des	
Widerstan	dsthermometer ⁽²⁾	Widerstandsthermometers nicht mit ein).	

 Ultra ist nur für 3051SMV__3, 4 anwendbar. Ultra für Durchfluss ist nur für 3051SMV Differenzdruck-Messbereiche 2–3 anwendbar.
 Die angegebene Spezifikation für die Prozesstemperatur gilt nur für den Messumformer. Der Messumformer ist mit jedem Pt100 (100 Ohm Platin) Widerstandsthermometer kompatibel. Dazu gehören zum Beispiel die Rosemount Widerstandsthermometer der Serie 68 und 78.

Garantie⁽¹⁾

Modelle ⁽¹⁾	Ultra und Ultra für Durchfluss	Classic und Classic MV
3051S Skalierbare	12-jährige Garantie gemäß	1-jährige Garantie gemäß
Produkte	gesonderten Bedingungen ⁽²⁾	gesonderten Bedingungen ⁽³⁾

(1) Details zur Garantie finden Sie bei Emerson Process Management in Terms & Conditions of Sale, Dokument 63445, Rev G (10/06).

(2) Rosemount Messumformer Ultra und Ultra f
ür Durchfluss haben eine Garantie gem
äß gesonderten Bedingungen von zw
ölf (12) Jahren ab Versanddatum. Alle anderen Bestimmungen der Emerson Process Management Standardgarantie gem
äß gesonderten Bedingungen bleiben unber
ührt.

(3) Waren verfügen über eine Garantie von zwölf (12) Monaten ab der Erstinstallation oder achtzehn (18) Monaten ab Versanddatum des Lieferanten (es gilt das jeweils frühere Datum).

Dynamisches VerhaltenEinfluss der Umgebungstemperatur

	4–20 mA (HART [®]) ⁽¹⁾	Typische Ansprechzeit des Messumformers
Gesamtansprechzeit (Td + Tc) ⁽²⁾ 3051SMV1: DP, SP und T 3051SMV2: DP und SP: DP Messbereich 1: DP Messbereich 2: DP Messbereich 3: Absolut- und Überdruck: 3051SMV3: DP und T 3051SMV4: Differenzdruck: DP Messbereiche 2–5: DP Messbereich 1: DP Messbereich 0:	310 ms 170 ms 155 ms 240 ms 145 ms 300 ms 745 ms	$Messumformerausgang - Zeit$ Signaländerung $T_d = Totzeit$ $T_c = Zeitkonstante$ 100 % $Ansprechzeit = T_d+T_c$ 36.8 % 0 $Zeit$
Totzeit (Td) Differenzdruck: Absolut- und Überdruck: Interface für das Prozesstemperatur- Widerstandsthermometer:	100 ms 140 ms 1 s	
Aktualisierungsrate Gemessene Variablen: Differenzdruck: Absolut- und Überdruck: Interface für das Prozesstemperatur- Widerstandsthermometer:	22 pro Sekunde 11 pro Sekunde 1 pro Sekunde	
Berechnete Variablen: Masse- oder Volumendurchfluss: Energiedurchfluss: Gesamtdurchfluss:	22 pro Sekunde 22 pro Sekunde 1 pro Sekunde	

Totzeit und Aktualisierungsrate gelten für alle Modelle und Messspannen; jeweils nur für den Analogausgang.
 Die nominale Gesamtansprechzeit gilt für Referenzbedingungen bei 24 °C (75 °F).

Einfluss der Umgebungstemperatur

Modelle	Ultra pro 28 °C (50 °F)	Classic oder Classic MV pro 28 °C (50 °F)	Ultra für Durchfluss ⁽¹⁾ –40 bis 85 °C (–40 bis 185 °F)		
3051SMV1: Differe 3051SMV2: Differe	3051SMV1: Differenzdruck, Statischer Druck und Temperatur 3051SMV2: Differenzdruck und Statischer Druck				
Differenzdruck- Messbereiche 2–3	-	± (0,0125 % vom Messbereichsende + 0,0625 % der eingestellten Messspanne) von 1:1 bis 5:1; ± (0,025 % vom Messbereichsende + 0,125 % der eingestellten Messspanne) für > 5:1	±0,13 % vom angezeigten Messwert bis zu einem Differenzdruck- Messspannenverhältnis von 8:1 vom Messbereichsende, ±[0,13 + 0,0187 (URL/RDG ⁽⁴⁾)] % vom angezeigten Messwert bis zu einem Differenzdruck- Messspannenverhältnis von 100:1 vom Messbereichsende		
Differenzdruck- Messbereich 1	-	± (0,1 % vom Messbereichsende + 0,25 % der eingestellten Messspanne) von 1:1 bis 50:1	-		
Absolut- und Überdruck	-	\pm (0,0125 % vom Messbereichsende + 0,0625 % der eingestellten Messspanne) von 1:1 bis 10:1; \pm (0,025 % vom Messbereichsende + 0,125 % der eingestellten Messspanne) für > 10:1	± (0,009 % vom Messbereichsende + 0,025 % der eingestellten Messspanne) von 1:1 bis 10:1; ± (0,018 % vom Messbereichsende + 0,08 % der eingestellten Messspanne) für > 10:1		

Modelle	Ultra pro 28 °C (50 °F)	Classic oder Classic MV pro 28 °C (50 °F)	Ultra für Durchfluss ⁽²⁾ –40 bis 85 °C (–40 bis 185 °F)
3051SMV3: Differ 3051SMV4: Differ	enzdruck und Temperatur enzdruck		
Messbereiche 2–5 ⁽³⁾	± (0,009 % vom Messbereichsende + 0,025 % der eingestellten Messspanne) von 1:1 bis 10:1; ± (0,018 % vom Messbereichsende + 0,08 % der eingestellten Messspanne) von > 10:1 bis 200:1	± (0,0125 % vom Messbereichsende + 0,0625 % der eingestellten Messspanne) von 1:1 bis 5:1; ± (0,025 % vom Messbereichsende + 0,125 % der eingestellten Messspanne) von > 5:1 bis 100:1	±0,13 % vom angezeigten Messwert bis zu einem Differenzdruck- Messspannenverhältnis von 8:1 vom Messbereichsende, ±[0,13 + 0,0187 (URL/RDG ⁽⁴⁾)] % vom angezeigten Messwert bis zu einem Differenzdruck-Messspannenverhältnis von 100:1 vom Messbereichsende
Messbereich 0	± (0,25 % vom Messbereichsende + 0,05 % der eingestellten Messspanne) von 1:1 bis 30:1	± (0,25 % vom Messbereichsende + 0,05 % der eingestellten Messspanne) von 1:1 bis 30:1	_
Messbereich 1	± (0,1 % vom Messbereichsende + 0,25 % der eingestellten Messspanne) von 1:1 bis 50:1	± (0,1 % vom Messbereichsende + 0,25 % der eingestellten Messspanne) von 1:1 bis 50:1	_
Interface für das Prozesstempera-	-	±0,216 °C (0,39 °F) pro 28 °C (50 °F)	±0,216 °C (0,39 °F) pro 28 °C (50 °F)

Prozesstemperatur-Widerstands-

thermometer⁽⁵⁾

Ultra für Durchfluss ist nur für 3051SMV Differenzdruck-Messbereiche 2–3 anwendbar.
 Ultra für Durchfluss ist nur für 3051SMV Differenzdruck-Messbereiche 2–3 anwendbar.

Für den Differenzdruck-Messbereich 5 der Serie 3051SMV Ultra die Werte für Classic verwenden. (3)

(4) RDG ist der Messwert des Messumformers.

(5) Die angegebene Spezifikation für die Prozesstemperatur gilt nur für den Messumformer. Der Messumformer ist mit jedem Pt100 (100 Ohm Platin) Widerstandsthermometer kompatibel. Dazu gehören zum Beispiel die Rosemount Widerstandsthermometer der Serie 68 und 78.

Einfluss des statischen Drucks⁽¹⁾

Modelle ⁽¹⁾	Ultra und Ultra für Durchfluss	Classic und Classic MV
3051SMV: Nur Differ	enzdruckmessung	
Messbereich 2–3 Messbereich 0 Messbereich 1	Nullpunktfehler ⁽²⁾ ± 0,025 % vom Messbereichsende pro 69 bar (1000 psi) ± 0,125 % vom Messbereichsende pro 6,89 bar (100 psi) ± 0,25 % vom Messbereichsende pro 69 bar (1000 psi)	Nullpunktfehler ⁽²⁾ ± 0,05 % vom Messbereichsende pro 69 bar (1000 psi) ± 0,125 % vom Messbereichsende pro 6,89 bar (100 psi) ± 0,25 % vom Messbereichsende pro 69 bar (1000 psi)
Messbereiche 2–3 Messbereich 0 Messbereich 1	Messspannenfehler ⁽³⁾ ± 0,1 % vom angezeigten Messwert pro 69 bar (1000 psi) ± 0,15 % vom angezeigten Messwert pro 6,89 bar (100 psi) ± 0,4 % vom angezeigten Wert pro 69 bar (1000 psi)	Messspannenfehler ⁽³⁾ ± 0,1 % vom angezeigten Messwert pro 69 bar (1000 psi) ± 0,15 % vom angezeigten Messwert pro 6,89 bar (100 psi) ± 0,4 % vom angezeigten Messwert pro 69 bar (1000 psi)

(1) Spezifikationen für den Nullpunktfehler statischer Drücke über 137,9 bar (2000 psi) und den Einfluss des statischen Drucks für Messbereiche 4–5 sind in der Betriebsanleitung der Serie 3051SMV (Dok.-Nr. 00809-0105-4803) angegeben.

Nullpunktfehler kann vollständig kompensiert werden.

(2) (3) Spezifikationen für Optionscode PO sind doppelt so hoch wie oben angegeben.

Einfluss der Einbaulage

Modelle		Ultra, Ultra für Durchfluss, Classic und Classic MV
3051SMV1, 2	DP: AP/GP:	Nullpunktverschiebung bis zu ±3,11 mbar (1,25 inH ₂ O), kann vollständig kompensiert werden. Kein Einfluss auf die Messspanne. Nullpunktverschiebung bis zu ±6,22 mbar (2,5 inH ₂ O), kann vollständig kompensiert werden. Kein Einfluss auf die Messspanne.
3051SMV3,4		Nullpunktverschiebung bis zu ±3,11 mbar (1,25 inH ₂ O), kann vollständig kompensiert werden. Kein Einfluss auf die Messspanne.

Einfluss von Vibrationen

Geringer als $\pm 0,1$ % vom Messbereichsende bei Prüfung entsprechend den Anforderungen von IEC 60770-1 Feld oder Rohrleitung mit hohen Vibrationen (10–60 Hz 0,21 mm Amplitude/ 60-2000 Hz mit 3 g).

Für Gehäuseausführung Code 1J, 1K und 1L:

Geringer als $\pm 0,1$ % vom Messbereichsende, geprüft nach den IEC 60770-1 Vorschriften im Feld bei normalen Anwendungen oder geringen Rohrleitungsvibrationen (10–60 Hz, 0,15 mm Amplitude und 60.500 Hz mit 2 g).

Einfluss der Spannungsversorgung

Geringer als ±0,005 % der eingestellten Messspanne pro Volt Änderung, in Volt an den Anschlussklemmen des Messumformers

Elektromagnetische Verträglichkeit (EMV)

Entspricht allen zutreffenden Anforderungen von EN 61326 und NAMUR NE-21.⁽¹⁾

Überspannungsschutz (Option T1)

Erfüllt die Anforderungen gemäß IEEE C62.41-2002, Standortkategorie B

6 kV Spannungsspitze (0,5 μs – 100 kHz)

3 kA Impulsspitze (8 × 20 Mikrosekunden)

6 kV Impulsspitze (1,2 × 50 Mikrosekunden)

Entspricht IEEE C37.90.1-2002, Stoßspannungsfestigkeit (SWC)

SWC 2,5 kV Spannungsspitze, 1,0 MHz wellenförmig

⁽¹⁾ Erfordert abgeschirmte Anschlussleitung für die Verdrahtung von Widerstandsthermometer und Messkreis.

Funktionsdaten A.1.2

Messbereichs- und Sensorgrenzen

ч	3051SMV Differenzdruck Messbereichs- und Sensorgrenzen					
Min. Messspanne		Messbereichsgrenzen				
Messb	Ultra und Ultra für Durchfluss	Classic und Classic MV	Obere Messbereichsgrenze (URL)	Untere Messbereichsgrenze (LRL) ⁽¹⁾		
0	0,25 mbar (0,1 inH ₂ O)	0,25 mbar (0,1 inH ₂ O)	7,5 mbar (3,0 inH ₂ O)	–7,5 mbar (–3,0 inH ₂ O)		
1	1,24 mbar (0,5 inH ₂ O)	1,24 mbar (0,5 inH ₂ O)	62,3 mbar (25,0 inH ₂ O)	–62,3 mbar (–25,0 inH ₂ O)		
2	3,11 mbar (1,3 inH ₂ O)	6,23 mbar (2,5 inH ₂ O)	0,62 bar (250,0 inH ₂ O)	–0,62 bar (–250,0 inH ₂ O)		
3	12,4 mbar (5,0 inH ₂ O)	24,9 mbar (10,0 inH ₂ O)	2,49 bar (1000,0 inH ₂ O)	–2,49 bar (–1000,0 inH ₂ O)		
4	103,4 mbar (1,5 psi)	206,8 mbar (3,0 psi)	20,7 bar (300,0 psi)	–20,7 bar (–300,0 psi)		
5	689,5 mbar (10,0 psi)	1,38 bar (20,0 psi)	137,9 bar (2000,0 psi)	–137,9 bar (–2000,0 psi)		
(1)	1) - Untere (IDI) ist 0 mbar (0 in 120) für die Serie Ultre für Durchfluse					

(1) Untere (LRL) ist 0 mbar (0 inH2O) für die Serie Ultra für Durchfluss.

٩	3051SMV Statischer Druck Messbereichs- und Sensorgrenzen				
ereic	Min. Me	essspanne Messbereichsgrenzen			
Messb	Ultra für Durchfluss	Classic MV	Obere Messbereichsgrenze (URL)	Untere Messbereichsgrenze (LRL) (Absolut)	Untere (LRL) (Überdruck) ⁽¹⁾⁽²⁾
3	276 mbar (4,0 psi)	552 mbar (8,0 psi)	55,16 bar (800 psi)	34,5 mbar (0,5 psia)	–0,98 bar (–14,2 psig)
4	1,25 bar (18,13 psi)	2,50 bar (36,26 psi)	250,0 bar (3626 psi) ⁽³⁾	34,5 mbar (0,5 psia)	–0,98 bar (–14,2 psig)

Angenommener Atmosphärendruck von 1 bar (14,7 psig).
 Inerte Füllung: Mindestdruck = 0,10 bar (1,5 psia) oder -0,91 bar (-13,2 psig).
 Für SP Messbereich 4 und DP Messbereich 1 ist die obere Messbereichsgrenze 137,9 bar (2000 psi).

Messbereichsgrenzen des Interface für das Prozesstemperatur-Widerstandsthermometer ⁽¹⁾			
Min. Messspanne	Obere (URL)	Untere (LRL)	
28 °C (50 °F)	850 °C (1562 °F)	–200 °C (–328 °F)	

(1) Ausgelegt zur Verwendung eines Pt100 Widerstandsthermometers. Dazu gehören zum Beispiel die Rosemount Widerstandsthermometer der Serie 68 und 78.

Einsatzbereiche

3051SMV_P (Direkter Ausgang der Prozessvariable):

Flüssigkeiten, Gase und dampfförmige Medien

3051SMV_M (Masse- und Energiedurchfluss Ausgang):

Einige Medienarten werden nur von bestimmten Messarten unterstützt

Medienkompatibilität mit Druck- und Temperaturkompensation • Verfügbar

ar – Nicht verfügbar

		Medienart			
Bestellcode	Messart	Flüssigkeiten	Gesättigter Dampf	Überhitzter Dampf	Gas und Erdgas
1	DP/P/T (volle Kompensation)	•	•	•	•
2	DP/P	•	•	•	•
3	DP/T	•	•	_	_
4	Nur DP	•	•	-	-

4-20 mA/HART

Einstellung von Nullpunkt und Messspanne

Die Werte für Nullpunkt und Messspanne können innerhalb des Messbereiches beliebig gesetzt werden.

Die Messspanne muss größer oder gleich der min. Messspanne sein.

Ausgang

Zweileiter, 4–20 mA Signal, linear oder radiziert, wählbar durch den Anwender. Der Wert der Prozessvariablen ist als digitales Signal dem 4–20 mA Signal überlagert und kann von einem Hostsystem mit HART Protokoll empfangen werden.

Spannungsversorgung

Es ist eine externe Spannungsversorgung notwendig. 3051SMV Messumformer: 12 bis 42,4 VDC ohne Bürde

Bürdengrenzen

Die maximal zulässige Messkreisbürde ist abhängig von der externen Spannungsversorgung und lässt sich wie folgt bestimmen:

Überlastgrenze für den Druck

Der Messumformer hält folgenden Druckwerten ohne Beschädigung stand:

3051SMV__1: Differenzdruck und Statischer Druck, Temperatur 3051SMV__2: Differenzdruck und Statischer Druck

	Differenzdruck		
Statischer Druck	Messbereich 1	Messbereich 2	Messbereich 3
Messbereich 3 Über-/Absolutdruck	110,3 bar (1600 psi)	110,3 bar (1600 psi)	110,3 bar (1600 psi)
Messbereich 4 Über-/Absolutdruck	137,9 bar (2000 psi)	250 bar (3626 psi)	250 bar (3626 psi)

3051SMV__3: Differenzdruck und Temperatur 3051SMV__4: Differenzdruck

Messbereich 0: 51,7 bar (750 psi) Messbereich 1: 137,9 bar (2000 psig) Messbereiche 2–5: 250,0 bar (3626 psig) 310,3 bar (4500 psig) bei Optionscode P9 420 bar (6092 psig) bei Optionscode P0 (nur Classic)

Grenzen des statischen Drucks

3051SMV__1: Differenzdruck und Statischer Druck, Temperatur 3051SMV__2: Differenzdruck und Statischer Druck

Arbeitet innerhalb 0,03 bar (0,5 psia) und der Werte in der nachfolgenden Tabelle:

	Differenzdruck		
Statischer Druck	Messbereich 1	Messbereich 2	Messbereich 3
Messbereich 3 Über-/Absolutdruck	57,91 bar (800 psi)	57,91 bar (800 psi)	57,91 bar (800 psi)
Messbereich 4 Über-/Absolutdruck	137,9 bar (2000 psi)	250 bar (3626 psi)	250 bar (3626 psi)

3051SMV__3: Differenzdruck und Temperatur 3051SMV__4: Differenzdruck

Der Messumformer arbeitet bei einem statischen Druck zwischen 0,03 bar abs. (0,5 psia) und 250 bar (3626 psig) innerhalb der Spezifikation 310,3 bar (4500 psig) bei Optionscode P9 420 bar (6092 psig) bei Optionscode P0 (nur Classic) Messbereich 0: 0,03 bar abs. bis 51,71 bar (0,5 psia bis 750 psig) Messbereich 1: 0,03 bar abs. bis 137,9 bar (0,5 psia bis 2000 psig)

Berstdruckgrenzen

3051SMV mit Coplanar- oder Anpassungsflansch

689,5 bar (10.000 psig)

Temperaturgrenzen

Umgebungstemperatur

-40 bis 85 °C (−40 bis 185 °F) Mit Digitalanzeiger ⁽¹⁾: −40 bis 80 °C (−40 bis 175 °F) Optionscode P0: −29 bis 85 °C (−20 bis 185 °F)

Lagerungstemperatur

-46 bis 85 °C (−50 bis 185 °F) Mit Digitalanzeiger: -40 bis 85 °C (-40 bis 185 °F) Mit Wireless Ausgang: -40 bis 85 °C (-40 bis 185 °F)

Prozesstemperaturgrenzen

Bei atmosphärischem Druck und darüber:

Sensor-Füllmedium Silikonöl ⁽¹⁾⁽²⁾	
mit Coplanar Flansch	–40 bis 121 °C (–40 bis 250 °F) ⁽³⁾
mit Anpassungsflansch	–40 bis 149 °C (–40 bis 300 °F) ⁽³⁾⁽⁴⁾
mit senkrechtem Flansch	–40 bis 149 °C (–40 bis 300 °F) ⁽³⁾
mit integriertem 305 Ventilblock	–40 bis 149 °C (–40 bis 300 °F) ⁽³⁾⁽⁴⁾
Sensor-Füllmedium inert ⁽¹⁾⁽⁵⁾	–40 bis 85 °C (–40 bis 185 °F) ⁽⁶⁾

(1) Prozesstemperaturen über 85 °C (185 °F) erfordern eine Minderung der Umgebungstemperaturgrenzen im Verhältnis 1,5:1. Zum Beispiel: Bei einer Prozesstemperatur von 91 °C (195 °F) ist die neue Umgebungstemperaturgrenze gleich 77 °C (170 °F). Dies kann wie folgt ermittelt werden: (195 °F – 185 °F) x 1,5 = 15 °F,

(2) 100 °C (212 °F) ist die obere Prozesstemperaturgrenze für Differenzdruck-Messbereich 0.

(3) Bei Betrieb im Vakuum beträgt die maximale Temperatur 104 °C (220 °F), unterhalb von 0,5 psia maximal 54 °C (130 °F).

(4) $-29 \,^{\circ}\text{C} (-20 \,^{\circ}\text{F})$ ist die untere Prozesstemperaturgrenze für Optionscode PO.

- (5) 0°C (32°F) ist die untere Prozesstemperaturgrenze für Differenzdruck-Messbereich 0.
- (6) Für 3051SMV__1, 2 beträgt die maximale Temperatur bei Betrieb im Vakuum 60 °C (140 ° F).

Zulässige Feuchte

0–100 % relative Feuchte

Betriebsbereitschaft

Der 3051SMV Messumformer arbeitet maximal 5 Sekunden nach dem Einschalten innerhalb seiner Spezifikation (typisch).

Verdrängungsvolumen

Kleiner als 0,08 cm³ (0,005 in³)

Dämpfung

Die Dämpfung des Analogausgangs kann vom Anwender zwischen 0 und 60 Sekunden als eine Zeitkonstante eingestellt werden. Die Dämpfung jeder Variable ist individuell einstellbar. Diese softwaremäßige Dämpfung ist zur Ansprechzeit des Sensors hinzuzuaddieren.

Alarmverhalten

Wird bei der Selbstüberwachung eine Störung des Messumformers erkannt, so wird das Analogsignal auf einen Wert außerhalb des Messbereichs gesetzt, um den Anwender zu alarmieren. Es sind Rosemount Standard-, NAMUR- sowie kundenspezifische Alarmwerte möglich (siehe Tabelle A-1 unten).

Hoch- oder Niedrigalarm kann über die Software oder über die Hardware, optionaler Schalter (Option D1), gewählt werden.

Tabelle A-1. Einstellung des Alarms

	Hochalarm	Niedrigalarm
Standard	≥ 21,75 mA	≤ 3,75 mA
Gemäß NAMUR ⁽¹⁾	≥ 22,5 mA	≤ 3,6 mA
Kundenspezifisch ⁽²⁾	20,2–23,0 mA	3,6–3,8 mA

(1) Analogausgang gemäß NAMUR-Empfehlung NE 43, siehe Optionscode C4 oder C5.

(2) Der Niedrigalarm muss 0,1 mA unterhalb der niedrigen Sättigung und der Hochalarm muss 0,1 mA oberhalb der hohen Sättigung liegen.

A.1.3 Geräteausführung

Elektrische Anschlüsse

 $^{1}/_{2}$ –14 NPT, G $^{1}/_{2}$ und M20 × 1,5 (CM20) Leitungseinführung. HART Anschlüsse sind fest am Anschlussklemmenblock angebracht.

Prozessanschlüsse

¹/4-18 NPT mit 54,0 mm (2¹/8 in.) Bohrungsabstand

 $^{1}/_{2}$ –14 NPT und RC $^{1}/_{2}$ mit 50,8 mm (2 in.), 54,0 mm (2 $^{1}/_{8}$ in.) oder 57,2 mm (2 $^{1}/_{4}$ in.) Bohrungsabstand der Ovaladapter

Mediumberührte Teile

Prozess-Trennmembran

Edelstahl 316L (UNS S31603) Alloy C-276 (UNS N10276) Alloy 400 (UNS N04400) Tantal (UNS R05440) Alloy 400 vergoldet Edelstahl 316L vergoldet

Ablass-/Entlüftungsventile

Edelstahl 316, Alloy C-276 oder Alloy 400/K-500 (Ventilsitz: Alloy 400, Ventilspindel: Alloy K-500)

Prozessflansche und Ovaladapter

Kohlenstoffstahl galvanisiert Edelstahl: CF-8M (Gussausführung von Edelstahl 316) gemäß ASTM A-743 Guss C-276: CW-12MW gemäß ASTM A-494 Guss Alloy 400: M-30C gemäß ASTM A-494

Mediumberührte O-Ringe

Glasgefülltes PTFE (Graphitgefülltes PTFE mit Trennmembrane Optionscode 6)

Nicht mediumberührte Werkstoffe

Elektronikgehäuse

Aluminiumlegierung oder Edelstahl: CF-3M (Edelstahlguss 316L) oder CF-8M (Edelstahlguss 316)

NEMA 4X, IP 66, IP 68 (20 m [66 ft.] für 168 Stunden)

Coplanar Sensorgehäuse

Edelstahl: CF-3M (Edelstahlguss 316L)

Schrauben

Galvanisierter Kohlenstoffstahl gemäß ASTM A-449 Typ 1

Austenitischer Edelstahl 316 gemäß ASTM F593

Edelstahl gemäß ASTM A-453, Class D, Grade 660

Legierter Stahl gemäß ASTM A-193, Grade B7M

Edelstahl gemäß ASTM A-193, Class 2, Grade B8M

Alloy K-500

Sensor-Füllmedium

Silikonöl oder inerter Halogenkohlenwasserstoff.

Lackierung

Polyurethan

O-Ringe für Gehäusedeckel

Buna-N

Versandgewichte für 3051S MultiVariable Messumformer

3051SMV mit PlantWeb Gehäuse: 3,1 kg (6,7 lb)

Optionscode	Option	Plus kg (lb)
1J, 1K, 1L	Edelstahl PlantWeb Gehäuse	1,6 (3,5)
1A, 1B, 1C	Aluminium PlantWeb Gehäuse	0,5(1,1)
M5	Digitalanzeiger für Aluminium PlantWeb Gehäuse ⁽¹⁾ Digitalanzeiger für Edelstahl PlantWeb Gehäuse ⁽¹⁾	0,4 (0,8) 0,7 (1,6)
B4	Edelstahl Montagehalter für Coplanar Flansch	0,5 (1,2)
B1, B2, B3	Montagehalter für Anpassungsflansch	0,8 (1,7)
B7, B8, B9	Montagehalter für Anpassungsflansch mit Edelstahlschrauben	0,8 (1,7)
BA, BC	Edelstahl Montagehalter für Anpassungsflansch	0,7 (1,6)
B4	Edelstahl Montagehalter für Inline-Montage	0,6(1,3)
F12, F22	Edelstahl Anpassungsflansch mit Edelstahl Ablass-/Entlüftungsventilen ⁽²⁾	1,5 (3,2)
F13, F23	Guss C-276 Anpassungsflansch mit Alloy C-276 Ablass-/Entlüftungsventilen ⁽²⁾	1,6 (3,6)
E12, E22	Edelstahl Coplanar Flansch mit Edelstahl Ablass-/Entlüftungsventilen ⁽²⁾	0,9 (1,9)
F14, F24	Guss Alloy 400 Anpassungsflansch mit Alloy 400/K-500 Ablass-/Entlüftungsventilen ⁽²⁾	1,6 (3,6)
F15, F25	Edelstahl Anpassungsflansch mit Alloy C-276 Ablass-/Entlüftungsventilen ⁽²⁾	1,5 (3,2)
G21	Montageflansch, senkrecht – 3 Zoll, 150	5,7 (12,6)
G22	Montageflansch, senkrecht – 3 Zoll, 300	7,2 (15,9)
G11	Montageflansch, senkrecht – 2 Zoll, 150	3,1 (6,8)
G12	Montageflansch, senkrecht – 2 Zoll, 300	3,7 (8,2)
G31	Montageflansch, senkrecht – DIN, DN 50, PN 40, Edelstahl	3,5 (7,8)
G41	Montageflansch, senkrecht – DIN, DN 80, PN 40, Edelstahl	5,9 (13,0)

Tabelle A-2. Gewichte von Messumformer-Optionen

Inklusive Digitalanzeiger und -Deckel.
 Inklusive Montageschrauben.

Teil	Gewicht in kg (lb)
Standarddeckel in Aluminium	0,2 (0,4)
Standarddeckel in Edelstahl	0,6(1,3)
Digitalanzeigerdeckel in Aluminium	0,3 (0,7)
Digitalanzeigerdeckel in Edelstahl	0,7 (1,5)
Digitalanzeiger ⁽¹⁾	0,04 (0,1)
Anschlussklemmenblock für PlantWeb Gehäuse	0,1 (0,2)

(1) Nur Anzeiger.
A.2 Maßzeichnungen

Abmessungen in mm (in.).

Prozessadapter (Option D2) und integrierter Rosemount 305 Ventilblock müssen zusammen mit dem Messumformer bestellt werden.

A.3 Bestellinformationen

A.3.1 Rosemount 3051S MultiVariable Messumformer

Tabelle 1. Rosemount 3051S Skalierbarer MultiVariable Messumformer – Bestellinformationen

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Modell	Messumformertyp			
3051SMV	Skalierbarer MultiVariable N	lessumformer		
Leistungsk	lasse			
Standard				Standard
3051SMV M	ultiVariable SuperModule, N	Messart 1 und 2		
3 ⁽¹⁾	Ultra für Durchfluss: Differer 10-Jahres Stabilität, 12 Jahre	nzdruck-Genauigkeit 0,04 % vom angezeigt e Garantie gemäß gesonderten Bedingunge	en Messwert, 200:1 Messspannenverhältnis, en	*
5	Classic MV: Differenzdruck-0	Genauigkeit 0,04 % der Messspanne, 100:1	Messspannenverhältnis, 5-Jahres Stabilität	*
3051SMV Ei	nzelvariable SuperModule, I	Nessart 3 und 4		
1 ⁽²⁾	Ultra: Differenzdruck-Genau 12 Jahre Garantie gemäß ge	igkeit 0,025 % der Messspanne, 200:1 Mes sonderten Bedingungen	sspannenverhältnis, 10-Jahres Stabilität,	*
2	Classic: Differenzdruck-Gena	auigkeit 0,055 % der Messspanne, 100:1 Me	essspannenverhältnis, 5-Jahres Stabilität	*
3 ⁽¹⁾	Ultra für Durchfluss: Differer Stabilität, 12 Jahre Garantie	nzdruck-Genauigkeit 0,04 % vom Messwert gemäß gesonderten Bedingungen	, 200:1 Messspannenverhältnis, 10-Jahres	*
MultiVaria	ble Typ			
Standard				Standard
М	MultiVariable Messung mit	oll kompensiertem Masse- und Energiedur	chfluss	*
Р	MultiVariable Messung mit o	direktem Ausgang der Prozessvariable		*
Messart				
Standard				Standard
1	Differenzdruck, statischer Druck und Temperatur			*
2	Differenzdruck und statischer Druck			*
3	Differenzdruck und Tempera	atur		*
4	Differenzdruck			*
Differenzd	ruckbereich			
Standard				Standard
0 ⁽²⁾⁽³⁾	–7,47 bis 7,47 mbar (–3 bis	3 inH ₂ O)		*
1	1 –62,2 bis 62,2 mbar (–25 bis 25 inH ₂ O)			*
2	-623 bis 623 mbar (-250 bis 250 inH ₂ O)			*
3	–2,5 bis 2,5 bar (–1000 bis 1	000 inH ₂ O)		*
4	4 –20,7 bis 20,7 bar (–300 bis 300 psi)			*
5	–137,9 bis 137,9 bar (–2000) bis 2000 psi)		*
Statische D	Druckart			
Standard				Standard
N ⁽⁴⁾	Keiner			*
А	Absolutdruck			*
G	Überdruck			*
Statischer	Druckbereich	Absolutdruck	Überdruck	
Standard				Standard
N ⁽⁴⁾	Keiner			*
3	Messbereich 3	0,03 bis 55,2 bar (0,5 bis 800 psia)	–0,98 bis 55,2 bar (–14,2 bis 800 psig)	*
4 ⁽⁵⁾	Messbereich 4	0,03 bis 250 bar (0,5 bis 3626 psia)	–0,98 bis 250 bar (–14,2 bis 3626 psig)	*

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Temperat	ureingang					
Standard						Standard
N ⁽⁶⁾	Keiner					*
R ⁽⁷⁾	Widerstandsthermometer E	Eingang (Typ Pt100, –20	0 bis 850 °C [–328 bi	s 1562 °F])		*
Trennmer	nbran					
Standard						Standard
2 ⁽⁸⁾	Edelstahl 316L					*
3 ⁽⁸⁾	Allov C-276					*
Erweitert	····· · · · · · · · · · · · · · · · ·					
5 ⁽⁹⁾	Tantal					
7	Edelstahl 316L vergoldet					
				Werkstoff		
			Flanschwork	Ablass_/		
Prozessan	schluss	Größe	stoff	Fntlüftungsventil	Schrauben	
		GIOBE	3.011	Littlattangsventin	Jennauben	
Standard						Standard
000	Keiner					*
ATT ⁽¹⁰⁾	Andau an einen integrierter	1 Rosemount 305/306 V	entildiock			*
AI2 ⁽¹⁰⁾	Andau an einen Kosemount	1100 D	ock mit Edeistani Anp	assungstiansch		*
BIT ⁽¹⁰⁾⁽¹¹⁾	Andau an einen Kosemount	1199 Druckmittler				*
BI2 ⁽¹⁰⁾	Andau an zwei Rosemount	1 199 Druckmittler				*
CII ⁽¹⁰⁾	Anbau an einen Rosemount	405 Wirkdruckgeber	1 1			*
D11 ⁽¹⁰⁾	Anbau an eine integrierte R	osemount 1195 Messbl	ende und einen integ	rierten Rosemount 305 Ve	ntilblock	*
EA2(10)	Anbau an einen Rosemount Wirkdruckgeber mit Coplan	: Annubar Iar Flansch	Edelstahl	Edelstahl 316		*
EA3 ⁽¹⁰⁾	Anbau an einen Rosemount Wirkdruckgeber mit Coplan	: Annubar Iar Flansch	Guss C-276	Alloy C-276		*
EA5 ⁽¹⁰⁾	Anbau an einen Rosemount Wirkdruckgeber mit Coplan	: Annubar Iar Flansch	Edelstahl	Alloy C-276		*
E11	Coplanar Flansch	¹ /4–18 NPT	Kohlenstoffstahl	Edelstahl 316		*
E12	Coplanar Flansch	¹ /4–18 NPT	Edelstahl	Edelstahl 316		*
E13 ⁽⁸⁾	Coplanar Flansch	¹ /4–18 NPT	Guss C-276	Alloy C-276		*
E14	Coplanar Flansch	¹ /4–18 NPT	Guss Alloy 400	Alloy 400/K-500		*
E15 ⁽⁸⁾	Coplanar Flansch	¹ /4–18 NPT	Edelstahl	Alloy C-276		*
E16 ⁽⁸⁾	Coplanar Flansch	¹ /4–18 NPT	Kohlenstoffstahl	Alloy C-276		*
E21	Coplanar Flansch	RC ¹ /4	Kohlenstoffstahl	Edelstahl 316		*
E22	Coplanar Flansch	RC ¹ /4	Edelstahl	Edelstahl 316		*
E23 ⁽⁸⁾	Coplanar Flansch	RC ¹ /4	Guss C-276	Alloy C-276		*
E24	Coplanar Flansch	RC ¹ /4	Guss Alloy 400	Alloy 400/K-500		*
E25 ⁽⁸⁾	Coplanar Flansch	RC ¹ /4	Edelstahl	Alloy C-276		*
E26 ⁽⁸⁾	Coplanar Flansch	RC ¹ /4	Kohlenstoffstahl	Alloy C-276		*
F12	Anpassungsflansch	¹ /4–18 NPT	Edelstahl	Edelstahl 316		*
F13 ⁽⁸⁾	Anpassungsflansch	¹ /4–18 NPT	Guss C-276	Alloy C-276		*
F14	Anpassungsflansch	¹ /4–18 NPT	Guss Alloy 400	Alloy 400/K-500		*
F15 ⁽⁸⁾	Anpassungsflansch	¹ /4–18 NPT	Edelstahl	Alloy C-276		*
F22	Anpassungsflansch	RC ¹ /4	Edelstahl	Edelstahl 316		*
F23 ⁽⁸⁾	Anpassungsflansch	RC ¹ /4	Guss C-276	Alloy C-276		*
F24	Annassungsflansch	RC ¹ /4	Guss Allov 400	Allov 400/K-500		+

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

			Werkstoff			
Prozessanschluss		Größe	Flanschwerk- stoff	Ablass-/ Entlüftungsventil	Schrauben	
F25 ⁽⁸⁾	Anpassungsflansch	RC ¹ /4	Edelstahl	Alloy C-276		*
F52	DIN Anpassungsflansch	¹ /4–18 NPT	Edelstahl	Edelstahl 316	⁷ /16 Zoll Schrauben	*
G11	Anpassungsflansch (senkrecht)	2 Zoll ANSI Class 150	Edelstahl			*
G12	Anpassungsflansch (senkrecht)	2 Zoll ANSI Class 300	Edelstahl			*
G14 ⁽⁸⁾	Anpassungsflansch (senkrecht)	2 Zoll ANSI Class 150	Guss C-276			*
G15 ⁽⁸⁾	Anpassungsflansch (senkrecht)	2 Zoll ANSI Class 300	Guss C-276			*
G21	Anpassungsflansch (senkrecht)	3 Zoll ANSI Class 150	Edelstahl			*
G22	Anpassungsflansch (senkrecht)	3 Zoll ANSI Class 300	Edelstahl			*
G31	Anpassungsflansch (senkrecht)	DIN, DN 50, PN 40	Edelstahl			*
Erweitert						
EB6	Anbau an einen Wirkdruck	geber mit Ventilblock und	l Coplanar Flansch, k	ohlenstoffstahl, Alloy C-2	76	
F32	Bodenentlüftung – Anpassungsflansch	¹ /4–18 NPT	Edelstahl	Edelstahl 316		
F42	Bodenentlüftung – Anpassungsflansch	RC ¹ /4	Edelstahl	Edelstahl 316		
F62	DIN Anpassungsflansch	¹ /4–18 NPT	Edelstahl	Edelstahl 316	M10 Schrauben	
F72	DIN Anpassungsflansch	¹ /4–18 NPT	Edelstahl	Edelstahl 316	M12 Schrauben	
G41	Anpassungsflansch (senkrecht)	DIN, DN 80, PN 40	Edelstahl			
Messumfo	ormerausgang					
Standard						Standard
А	4–20 mA mit digitalem Sig	jnal basierend auf HART P	rotokoll			*
Gehäuseau	usführung		Werkstoff	Leitungseinführung	sgewinde	
Standard						Standard
1A	PlantWeb Gehäuse		Aluminium	¹ /2–14 NPT		*
1B	PlantWeb Gehäuse		Aluminium	M20 x 1,5		*
1J	PlantWeb Gehäuse		Edelstahl	¹ /2–14 NPT		*
1K	PlantWeb Gehäuse		Edelstahl	M20 x 1,5		*
Erweitert						
1C	PlantWeb Gehäuse		Aluminium	G ¹ /2		
1L	PlantWeb Gehäuse		Edelstahl	G ¹ /2		

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Für die erweiterten Produktangebote gelten längere Lieferzeiten.

Optionen (mit der jeweiligen Modellnummer angeben)

Kabel für V	Viderstandsthermometer (Widerstandsthermometer muss separat bestellt werden)	
Standard		Standard
C12	Widerstandsthermometer Eingang mit 3,66 m (12 ft.) abgeschirmtem Kabel	*
C13	Widerstandsthermometer Eingang mit 7,32 m (24 ft.) abgeschirmtem Kabel	*
C14	Widerstandsthermometer Eingang mit 22,86 m (75 ft.) abgeschirmtem Kabel	*
C20 ⁽¹²⁾	Widerstandsthermometer Eingang mit 69 cm (27 in.) armiertem, abgeschirmtem Kabel	*
C21	Widerstandsthermometer Eingang mit 1,22 m (4 ft.) armiertem, abgeschirmtem Kabel	*
C22	Widerstandsthermometer Eingang mit 3,66 m (12 ft.) armiertem, abgeschirmtem Kabel	*
C23	Widerstandsthermometer Eingang mit 7.32 m (24 ft.) armiertem, abgeschirmtem Kabel	*
C24	Widerstandsthermometer Eingang mit 22.86 m (75 ft.) armiertem, abgeschirmtem Kabel	*
C30 ⁽¹²⁾	Widerstandsthermometer Eingang mit 64 cm (25 in.) Kabel gemäß ATEX/IECEx Druckfeste Kapselung	*
C32	Widerstandsthermometer Eingang mit 3,66 m (12 ft) Kabel gemäß ATEX/IECEx Druckfeste Kapselung	*
C33	Widerstandsthermometer Eingang mit 7.32 m (24 ft.) Kabel gemäß ATEX/IECEx Druckfeste Kapselung	*
C34	Widerstandsthermometer Eingang mit 22.86 m (75 ft.) Kabel gemäß ATEX/IECEx Druckfeste Kapselung	*
C40 ⁽¹²⁾	Widerstandsthermometer Eingang mit 86,36 cm (34 in.) abgeschirmtem Kabel und 60,96 cm (24 in.) Anschlusskabel mit FM Zulassung	*
C41 ⁽¹²⁾	Widerstandsthermometer Eingang mit 101,60 cm (40 in.) abgeschirmtem Kabel und 76,20 cm (30 in.) Anschlusskabel mit FM Zulassung	*
Montageh	alter ⁽¹³⁾	
Standard		Standard
B4	Coplanar Flansch Montagehalter, komplett Edelstahl, 50 mm (2 in.) Rohr- und Wandmontage	*
B1	Anpassungsflansch Montagehalter, Kohlenstoffstahl, 50 mm (2 in.) Rohrmontage	*
B2	Anpassungsflansch Montagehalter, Kohlenstoffstahl, Wandmontage	*
B3	Montageplatte, Kohlenstoffstahl, 50 mm (2 in.) Rohrmontage	*
B7	Anpassungsflansch Montagehalter, B1 mit Edelstahlschrauben	*
B8	Anpassungsflansch Montagehalter, B2 mit Edelstahlschrauben	*
B9	Anpassungsflansch Montagehalter, B3 mit Edelstahlschrauben	*
BA	Anpassungsflansch Montagehalter, B1, komplett Edelstahl	*
BC	Anpassungsflansch Montagehalter, B3, komplett Edelstahl	*
Software-I	Konfiguration	
Standard		Standard
C1	Kundenspezifische Software-Konfiguration	*
	Hinweis: Èin Konfigurationsdatenblatt ist auszufüllen, siehe DokNr. 00806-0100-4803.	
C2	Kundenspezifische Durchflusskonfiguration Hinweis: Ein kundenspezifisches Mediendatenblatt ist auszufüllen, siehe DokNr. 00806-0200-4803.	*
C4	NAMUR Alarm- und Sättigungswerte, Hochalarm	*
C5	NAMUR Alarm- und Sättigungswerte, Niedrigalarm	*
C6	Kundenspezifische Alarm- und Sättigungswerte, Hochalarm	*
С7	Kundenspezifische Alarm- und Sättigungswerte, Niedrigalarm	*
C8	Niedrigalarm (Standard Rosemount Alarm- und Sättigungswerte)	*
Ovaladapt	er	
Standard		Standard
D2 ⁽¹³⁾	¹ /2–14 NPT Ovaladapter	*
Erweitert		
D9 ⁽¹³⁾	RC ¹ /2 Ovaladapter aus Edelstahl	
Erdungssc	hraube	
Standard		Standard
D4	Außenliegender Erdungsanschluss	*

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Ablass-/En	ıtlüftungsventil	
Standard		Standard
D5 ⁽¹³⁾	Ohne Messumformer Ablass-/Entlüftungsventile (mit Verschlussstopfen)	*
Erweitert		
D7 ⁽¹³⁾	Coplanar Flansch ohne Ablass-/Entlüftungsanschlüsse	
Verschluss	sstopfen	
Standard		Standard
DO ⁽¹⁴⁾	Leitungseinführungsverschluss aus Edelstahl 316	*
Produkt-Z	ulassungen	
Standard	-	Standard
E1	ATEX Druckfeste Kapselung	*
11	ATEX Eigensicherheit	*
N1	ATEX Typ n	*
ND	ATEX Staub	*
K1	ATEX Druckfeste Kapselung, Eigensicherheit, Typ n, Staub (Kombination von E1, I1, N1 und ND)	*
E4	TIIS Druckfeste Kapselung	*
E5	FM Ex-Schutz, Staub Ex-Schutz	*
15	FM Eigensicherheit, Division 2	*
К5	FM Ex-Schutz, Staub Ex-Schutz, Eigensicherheit, Division 2 (Kombination von E5 und I5)	*
E6 ⁽¹⁵⁾	CSA Ex-Schutz, Staub Ex-Schutz, Division 2	*
16	CSA Eigensicherheit	*
K6 ⁽¹⁵⁾	CSA Ex-Schutz, Staub Ex-Schutz, Eigensicherheit, Division 2 (Kombination von E6 und I6)	*
E7	IECEx Druckfeste Kapselung, Staub Ex-Schutz	*
17	IECEx Eigensicherheit	*
N7	IECEx Typ n	*
K7	IECEx Druckfeste Kapselung, Staub Ex-Schutz, Eigensicherheit und Typ n (Kombination von E7, 17 und N7)	*
E2	INMETRO Druckfeste Kapselung	*
12	INMETRO Eigensicherheit	*
E3	China Druckfeste Kapselung	*
13	China Eigensicherheit	*
KA ⁽¹⁵⁾⁽¹⁶⁾	ATEX und CSA Ex-Schutz, Eigensicherheit, Division 2 (Kombination von E1, E6, I1 und I6)	*
KB ⁽¹⁵⁾⁽¹⁶⁾	FM und CSA Ex-Schutz, Staub Ex-Schutz, Eigensicherheit, Division 2 (Kombination von E5, E6, I5 und I6)	*
KC	FM und ATEX Ex-Schutz, Eigensicherheit, Division 2 (Kombination von E5, E1, I5 und I1)	*
KD ⁽¹⁵⁾⁽¹⁶⁾	FM, CSA und ATEX Ex-Schutz, Eigensicherheit (Kombination von E5, E6, E1, I5, I6 und I1)	*
DW ⁽¹⁷⁾	NSF Trinkwasser-Zulassung	*
Weitere W	Verkstoffoptionen	
Standard		Standard
L1	Inertes Füllmedium (nur Differenz- und Überdrucksensoren) Hinweis: Silikonölfüllung ist Standard.	*
L2	Graphitgefüllter PTFE O-Ring	*
L4 ⁽¹³⁾	Schrauben aus austenitischem Edelstahl 316	*
L5 ⁽⁸⁾⁽¹³⁾	Schrauben gemäß ASTM A-193, Grade B7M	*
L6 ⁽¹³⁾	Schrauben aus Alloy K-500	*
L7 ⁽⁸⁾⁽¹³⁾	Schrauben gemäß ASTM A-453, Class D, Grade 660	*
L8 ⁽¹³⁾	Schrauben gemäß ASTM A-193, Class 2, Grade B8M	*

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Für die erweiterten Produktangebote gelten längere Lieferzeiten.

Digitalanzo	eiger	
Standard		Standard
M5	Digitalanzeiger für PlantWeb	*
Spezialver	ahren 🦷	
Standard		Standard
P1 ⁽¹⁸⁾	Hydrostatische Druckprobe mit Zertifikat	*
P9 ⁽²⁾	310 bar (4500 psig) max. statischer Druck	*
P0 ⁽²⁾⁽¹⁹⁾	420 bar (6092 psig) max. statischer Druck	*
Erweitert		
P2 ⁽¹³⁾	Reinigung für Spezialanwendungen	
P3 ⁽¹³⁾	Reinigung für weniger als 1 PPM Chlor/Fluor	
Spezielle Z	ertifikate	
Standard		Standard
Q4	Kalibrierzertifikat	*
QP	Kalibrierzertifikat und spezielle Verpackungsprozedur	*
Q8	Werkstoffzeugnis gemäß EN 10204 3.1B	*
Q16	Zertifikat für Oberflächengüte für Hygiene-Druckmittler	*
QZ	Berechnungsreport für die Leistungsmerkmale des Druckmittler-Systems	*
Überspann	ungsschutz	
Standard		Standard
T1	Anschlussklemmenblock mit Überspannungsschutz	*
Kabeleinfü	hrung, elektrischer Anschluss	
Standard		Standard
GE ⁽²⁰⁾	M12, 4-poliger Stecker (eurofast [®])	*
GM ⁽²⁰⁾	4-poliger Mini-Stecker (minifast [®]), Größe A	*
Tieftempe	ratur	
Standard		Standard
BRR	–51 °C (–60 °F) Tieftemperatur Inbetriebnahme	*
Typische M	lodellnummer: 3051SMV 3 M 1 2 G 4 R 2 E12 A 1A B4 C2 M5	

(1) Nur mit Differenzdruck-Messbereich 2 und 3, Trennmembran aus Edelstahl 316L oder Alloy G276 und Silikonöl als Füllmedium erhältlich.

(2) Nur lieferbar mit Messart Code 3 und 4.

(3) Differenzdruck-Messbereich 0 ist nur lieferbar mit Anpassungsflansch, Trennmembran aus Edelstahl 316L und Schrauben Option L4.

(4) Für Messart Code 3 und 4 erforderlich.

(5) Für Messart 1 und 2 mit Differenzdruck-Messbereich 1: Absolutdruckgrenzen 0,03 bis 137,9 bar (0,5 bis 2000 psi) und Überdruckgrenzen –0,98 bis 137,9 bar (-14,2 bis 2000 psig).

(6) Erforderlich für Messart Code 2 und 4.

(7) Erforderlich für Messart Code 1 und 3. Widerstandsthermometer muss separat bestellt werden.

(8) Die Werkstoffe entsprechen den Empfehlungen gemäß NACE MR0175/ISO 15156 f
ür Sour oil field production environments. Die Umgebungsgrenzen gelten f
ür bestimmte Werkstoffe. Weitere Informationen finden Sie in den aktuellen Fassungen der Normen. Die angegebenen Werkstoffe entsprechen auch NACE MR0103 f
ür Sour Refining Environments.

(9) Trennmembran aus Tantal ist nur lieferbar für Differenzdruck-Messbereiche 2–5.

(10) "Anbau an" Positionen werden separat spezifiziert und erfordern eine komplette Modellnummer.

(11) Leistungsdaten erhalten Sie von Emerson Process Management.

(12) Zur Verwendung mit Durchflussmessgeräten mit integriertem Widerstandsthermometer.

(13) Nicht lieferbar mit Prozessanschluss Optionscode A11.

(14) Messum former wird mit Leitungseinführungsverschlüssen aus Edelstahl 316 (nicht installiert) statt mit Leitungseinführungsverschlüssen aus Standardkohlenstoffstahl geliefert.

(15) Nicht lieferbar mit Leitungseinführung Größe M20 oder G ½.

(16) Kabel des Widerstandsthermometers nicht lieferbar mit dieser Option.

(17) Erfordert Trennmembran aus Edelstahl 316L, glasgefüllten PTFE O-Ring (Standard) und Prozessanschluss Code E12 oder F12.

(18) Nicht lieferbar mit Differenzdruck-Messbereich 0.

(19) Erfordert Membran aus Edelstahl 316L oder Alloy C276, Anbau an integrierten Rosemount 305 Ventilblock oder Prozessanschluss mit DIN Anpassungsflansch und Schrauben Option L8. Beschränkt auf Differenzdruck-Messbereiche 2–5.

(20) Lieferbar nur mit Zulassung Eigensicherheit. Für FM Zulassung Eigensicherheit, keine Funken erzeugend (Optionscode I5) ist die Installation gemäß Rosemount Zeichnung 03151-1009 durchzuführen, um die Gehäuseschutzart (NEMA 4X und IP66) zu erhalten.

A.3.2 Rosemount 300SMV Gehäusesatz

Tabelle A-3. 300SMV Bestellinformationen

Modell				
300SMV	Gehäusesatz für Rosemount 3051S MultiVariable Me	ssumformer		
Code	MultiVariable Typ			
Standard				Standard
Μ	MultiVariable Messung mit voll kompensiertem Mass	se- und Energiedurchfluss		*
Р	MultiVariable Messung mit direktem Ausgang der Pr	ozessvariable		*
Code	Temperatureingang			
Standard				Standard
N	Keiner			*
R ⁽¹⁾	Widerstandsthermometer Eingang (Typ Pt100, –200) bis 850 °C [–328 bis 1562 °	°F])	*
Code	Messumformerausgang			
A	4–20 mA mit digitalem Signal basierend auf HART Pr	otokoll		*
Code	Gehäuseausführung	Werkstoff ⁽²⁾	Leitungseinführung	
Standard		1		Standard
1A	PlantWeb Gehäuse	Aluminium	¹ /2–14 NPT	*
1B	PlantWeb Gehäuse	Aluminium	M20 x 1,5 (CM20)	*
1]	PlantWeb Gehäuse	Edelstahl	1/2-14 NPT	*
1K	PlantWeb Gehäuse	Edelstahl	M20 x 1,5 (CM20)	*
Erweitert				
1C	PlantWeb Gehäuse	Aluminium	G ¹ /2	
1L	PlantWeb Gehäuse	Edelstahl	G ¹ /2	
Code	Optionen			
Kabel für W	iderstandsthermometer (Widerstandstherm	ometer muss separat b	estellt werden)	
Standard				Standard
C12	Widerstandsthermometer Eingang mit 3,66 m (12 ft	.) abgeschirmtem Kabel		*
C13	Widerstandsthermometer Eingang mit 7,32 m (24 ft.) abgeschirmtem Kabel			*
C14	Widerstandsthermometer Eingang mit 22,86 m (75 ft.) abgeschirmtem Kabel			*
C20 ⁽³⁾	Widerstandsthermometer Eingang mit 69 cm (27 in.) armiertem, abgeschirmtem Kabel			*
C21	Widerstandsthermometer Eingang mit 1,22 m (4 ft.) armiertem, abgeschirmtem Kabel			*
C22	Widerstandsthermometer Eingang mit 3,66 m (12 ft.) armiertem, abgeschirmtem Kabel			*
C23	Widerstandsthermometer Eingang mit 7,32 m (24 ft.) armiertem, abgeschirmtem Kabel			*
C24	Widerstandsthermometer Eingang mit 22,86 m (75 ft.) armiertem, abgeschirmtem Kabel			*
	Widerstandsthermometer Eingang mit 64 cm (25 in.) Kabel gemäß ATEX/IECEX Druckfeste Kapselung			*
(33	Widerstandsthermometer Eingang mit 7,32 m (24 ft	.) Kabel gemäß ATEX/IECEX	Druckfeste Kapselung	*
(34	Widerstandsthermometer Eingang mit 22.86 m (75 ft.) Kabel gemäß ATEX/IECEX Druckfeste Kapselung			÷
C40 ⁽³⁾	Widerstandsthermometer Eingang mit 22,00 m (73	in.) abgeschirmtem Kabel	und 60,96 cm (24 in.)	*
	Anschlusskabel mit FM Zulassung			
C41 ⁽³⁾	Widerstandsthermometer Eingang mit 101,60 cm (4 Anschlusskabel mit FM Zulassung	10 in.) abgeschirmtem Kabe	el und 76,20 cm (30 in.)	*
Alarmwerte				
Standard				Standard
C4	NAMUR Alarm- und Sättigungswerte, Hochalarm			*
C5	NAMUR Alarm- und Sättigungswerte, Niedrigalarm			*
C8	Niedrigalarm (Standard Rosemount Alarm- und Sätti	gungswerte)		*

Außenliege	nder Erdungsanschluss	
Standard		Standard
D4	Außenliegender Erdungsanschluss	*
Produkt-Zu	lassungen	
Standard		Standard
F1	ATEX Druckfeste Kapselung	*
11	ATEX Figensicherheit	*
N1	ATEX Typ n	*
ND	ATEX Staub	*
К1	ATEX Druckfeste Kapselung, Eigensicherheit, Typ n. Staub (Kombination von E1, I1, N1 und ND)	*
E4	TIIS Druckfeste Kapselung	*
14	TIIS Eigensicherheit	*
K4	TIIS Druckfeste Kapselung und Eigensicherheit (Kombination von E4 und I4)	*
E5	FM Ex-Schutz, Staub Ex-Schutz	*
15	FM Eigensicherheit, Division 2	*
K5	FM Ex-Schutz, Staub Ex-Schutz, Eigensicherheit, Division 2 (Kombination von E5 und I5)	*
E6	CSA Ex-Schutz, Staub Ex-Schutz, Division 2	*
16	CSA Eigensicherheit	*
K6	CSA Ex-Schutz, Staub Ex-Schutz, Eigensicherheit, Division 2 (Kombination von E6 und I6)	*
E7	IECEx Druckfeste Kapselung, Staub Ex-Schutz	*
17	IECEx Eigensicherheit	*
N7	IECEx Typ n	*
К7	IECEx Druckfeste Kapselung, Staub Ex-Schutz, Eigensicherheit, Typ n (Kombination von E7, I7 und N7)	*
E2 ⁽⁴⁾	INMETRO Druckfeste Kapselung	*
12 ⁽⁴⁾	INMETRO Eigensicherheit	*
K2 ⁽⁴⁾	INMETRO Druckfeste Kapselung, Eigensicherheit (Kombination von E2 und I2)	*
E3 ⁽⁴⁾	China Druckfeste Kapselung	*
13 ⁽⁴⁾	China Eigensicherheit	*
KA ⁽⁵⁾	ATEX und CSA Ex-Schutz, Eigensicherheit, Division 2 (Kombination von E1, E6, I1 und I6)	*
KB	FM und CSA Ex-Schutz, Staub Ex-Schutz, Eigensicherheit, Division 2 (Kombination von E5, E6, I5 und I6)	*
KC ⁽⁵⁾	FM und ATEX Ex-Schutz, Eigensicherheit, Division 2 (Kombination von E5, E1, I5 und I1)	*
KD ⁽⁵⁾	FM, CSA und ATEX Ex-Schutz, Eigensicherheit (Kombination von E5, E6, E1, I5, I6 und I1)	*
Digitalanze	iger	
Standard		Standard
M5	Digitalanzeiger für PlantWeb	*
Anschlussk	lemmenblöcke	
Standard		Standard
T1	Anschlussklemmenblock mit Überspannungsschutz	*
Kabeleinführ	ung, elektrischer Anschluss	
GE ⁽⁶⁾	M12, 4-poliger Stecker (<i>eurofast</i> [®])	*
GM ⁽⁶⁾	4-poliger Ministecker (<i>minifast[®]</i>), Größe A	*
Typische M	odellnummer: 300SMV M R 1A C22 M5	

Widerstandsthermometer muss separat bestellt werden.
 Werkstoffe, die als Gussausführung angegeben sind: CF-8M ist die Gussausführung von Edelstahl 316, CF-3M ist die Gussausführung von Edelstahl 316L, CW-12MW ist die Gussausführung von Alloy C276, M-30C ist die Gussausführung von Alloy 400. Der Gehäusewerkstoff ist Aluminium mit Polyurethanbeschichtung.
 Zur Verwendung mit Durchflussmessgeräten mit integriertem Widerstandsthermometer.
 Lieferbare Zulassungen auf Anfrage bei Emerson Process Management.

Kabel des Widerstandschermometers nicht lieferbar mit dieser Option. Lieferbar nur mit Zulassung Eigensicherheit. Für FM Zulassung Eigensicherheit, keine Funken erzeugend (Optionscode I5) ist die Installation gemäß Rosemount Zeichnung 03151-1206 durchzuführen, um die Gehäuseschutzart (NEMA 4X und IP66) zu erhalten. (5) (6)

A.4 Zubehör

A.4.1 Rosemount Engineering Assistant (EA) Softwarepakete

Die Rosemount Engineering Assistant Software unterstützt die Durchflusskonfiguration des 3051S MultiVariable Messumformers. Die Software ist mit oder ohne Modem und Anschlusskabel lieferbar. Alle Konfigurationen sind separat organisiert.

Um die Leistungsfähigkeit der Engineering Assistant Software voll zu nutzen, sollten folgende Hard- und Softwarevoraussetzungen verfügbar sein:

- Pentium-Prozessor: 500 MHz oder schneller
- Betriebssystem: Windows 2000, XP Professional oder Windows 7
- 32 Bit
- 64 Bit
- 256 MB RAM
- 100 MB freier Festplattenspeicher
- Serielle RS232-Schnittstelle oder USB-Anschluss (für das HART Modem)
- CD-ROM-Laufwerk

Engineering Assistant Softwarepakete

Code	Produktbeschreibung
EA	Softwareprogramm Engineering Assistant
Code	Softwareversion
3	EA Rev. 6 (kompatibel nur mit 3051SMV)
Code	Sprache
E	Englisch
Code	Modem und Anschlusskabel
0	Keine
Н	Modem und Kabel für HART (serieller Anschluss)
В	Modem und Kabel für HART (USB-Anschluss)
С	FOUNDATION Feldbus PCM-CIA Interface Karte und Kabel
Code	Lizenz
N1	Lizenz für einen PC
N2	Lizenz für den Standort
Typiscl	ne Modellnummer: EA 2 E O N1

Zubehör

Teilebeschreibung	Teilenummer
Nur Modem und Kabel für HART (serieller Anschluss)	03095-5105-0001
Nur Modem und Kabel für HART (USB-Anschluss) ⁽¹⁾	03095-5105-0002

(1) Unterstützt durch Snap-On EA mit AMS Device Manager Version 6.2 oder höher.

A.5 Explosionsdarstellung

Die folgende Darstellung zeigt die Bezeichnung und Anordnung der üblichen Ersatzteile.

A.6 Ersatzteile

Sensormodule	
Siehe Bestelltabellen für den Rosemount 3051S MultiVariable Messumformer in Anhang A (S Bestellung von Sensormodulen als Ersatzteil. Die Gehäuseausführung Code 00 in der 3051S Modellnummer verwenden.	eite 27) für die MultiVariable
– Typische Modellnummer: 3051SMV 3 M 1 2 G 3 R 2 E11 A 00 C21	
Funktionsplatinen- und Gehäuseeinheit	
Siehe Bestelltabellen für das Rosemount 300SMV auf Seite 33 für die Bestellung von Gehäusen ode Ersatzteil.	er Funktionsplatinen als
– Typische Modellnummer: 300SMV M R A 1A C21	
Digitalanzeiger	
Aluminium PlantWeb Gehäuse	
Digitalanzeigersatz: Digitalanzeigereinheit, 4-Pin Anschlusseinheit und Aluminiumdeckeleinheit	03151-9193-0001
Nur Digitalanzeiger: Digitalanzeigereinheit, 4-Pin Anschlusseinheit	03151-9193-0002
Deckelsatz: Aluminiumdeckeleinheit	03151-9193-0003
Edelstahl 316L PlantWeb Gehäuse	
Digitalanzeigersatz: Digitalanzeigereinheit, 4-Pin Anschlusseinheit, Edelstahl 316L Deckeleinheit	03151-9193-0004
Nur Digitalanzeiger: Digitalanzeigereinheit, 4-Pin Anschlusseinheit	03151-9193-0002
Deckelsatz: Edelstahl 316L Deckeleinheit	03151-9193-0005
Elektronikgehäuse, Anschlussklemmenblöcke	
PlantWeb Gehäuse Anschlussklemmenblock, HART (4–20 mA)	
Standard Anschlussklemmenblock mit Temperatureingang	03151-9006-0001
Standard Anschlussklemmenblock ohne Temperatureingang	03151-9005-0001
Überspannungsschutz Anschlussklemmenblock mit Temperatureingang	03151-9006-0002
Überspannungsschutz Anschlussklemmenblock ohne Temperatureingang	03151-9005-0002
Gehäusedeckel	
Aluminium Elektronikdeckel, Gehäusedeckel und O-Ring	03151-9030-0001
Edelstahl 316L Elektronikdeckel, Gehäusedeckel und O-Ring	03151-9030-0002
Gehäuse – Verschiedenes	
Außenliegender Erdungsanschluss (Option D4): Schraube, Klemme, Unterlegscheibe	03151-9060-0001
Gehäuse V-Dichtung für PlantWeb und Anschlussgehäuse	03151-9061-0001
PlantWeb Gehäuse Kopfkabel O-Ring (12 Stück pro Packung)	03151-9011-0001

Flansche	Teilenummer
Differenzdruck Coplanar Flansch	
Kohlenstoffstahl vernickelt	03151-9200-0025
Edelstahl	03151-9200-0022
Guss C-276	03151-9200-0023
Guss Alloy 400	03151-9200-0024
Über-/Absolutdruck Coplanar Flansch	
Kohlenstoffstahl vernickelt	03151-9200-1025
Edelstahl	03151-9200-1022
Guss C-276	03151-9200-1023
Guss Alloy 400	03151-9200-1024
Coplanar Flansch Positionierschraube (12 Stück pro Packung)	03151-9202-0001
Anpassungsflansch	
Edelstahl	03151-9203-0002
Guss C-276	03151-9203-0003
Guss Alloy 400	03151-9203-0004
Ovaladaptersätze (Jeder Satz enthält Adapter, Schrauben und O-Ring für einen Differenzdruck-Messumforme Druck-/Überdruck-Messumformer.)	r oder zwei
Kohlenstoffstahlschrauben, glasgefüllte PTFE O-Ringe	
Edelstahl Adapter	03031-1300-0002
Guss C-276 Adapter	03031-1300-0003
Guss Alloy 400 Adapter	03031-1300-0004
Kohlenstoffstahl vernickelt Adapter	03031-1300-0005
Edelstahlschrauben, glasgefüllte PTFE O-Ringe	
Edelstahl Adapter	03031-1300-0012
Guss C-276 Adapter	03031-1300-0013
Guss Alloy 400 Adapter	03031-1300-0014
Kohlenstoffstahl vernickelt Adapter	03031-1300-0015
Kohlenstoffstahlschrauben, Graphit PTFE O-Ringe	
Edelstahl Adapter	03031-1300-0102
Guss C-276 Adapter	03031-1300-0103
Guss Alloy 400 Adapter	03031-1300-0104
Kohlenstoffstahl vernickelt Adapter	03031-1300-0105

Edelstahlschrauben, Graphit PTFE O-Ringe			
Edelstahl Adapter	03031-1300-0112		
Guss C-276 Adapter	03031-1300-0113		
Guss Alloy 400 Adapter	03031-1300-0114		
Kohlenstoffstahl vernickelt Adapter	03031-1300-0115		
Ovaladapter	Teilenummer		
Kohlenstoffstahl vernickelt	03151-9259-0005		
Edelstahl	03151-9259-0002		
Guss C-276	03151-9259-0003		
Guss Alloy 400	03151-9259-0004		
Ablass-/Entlüftungsventilsätze (jeder Satz enthält Teile für einen einzelnen Messumformer)	Teilenummer		
Differenzdruck Ablass-/Entlüftungsventilsätze			
Edelstahl Ventilspindel- und Ventilsitzsatz	03151-9268-0022		
Alloy C-276 Ventilspindel- und Ventilsitzsatz	03151-9268-0023		
Alloy K-500 Ventilspindel und Alloy 400 Ventilsitzsatz	03151-9268-0024		
Edelstahl Ablass-/Entlüftungsventilsatz mit Keramikkugel	03151-9268-0122		
Alloy C-276 Ablass-/Entlüftungsventilsatz mit Keramikkugel	03151-9268-0123		
Alloy 400/K-500 Ablass-/Entlüftungsventilsatz mit Keramikkugel	03151-9268-0124		
Über-/Absolutdruck Ablass-/Entlüftungsventilsätze			
Edelstahl Ventilspindel- und Ventilsitzsatz	03151-9268-0012		
Alloy C-276 Ventilspindel- und Ventilsitzsatz	03151-9268-0013		
Alloy K-500 Ventilspindel und Alloy 400 Ventilsitzsatz	03151-9268-0014		
Edelstahl Ablass-/Entlüftungsventilsatz mit Keramikkugel	03151-9268-0112		
Alloy C-276 Ablass-/Entlüftungsventilsatz mit Keramikkugel	03151-9268-0113		
Alloy 400 Ablass-/Entlüftungsventilsatz mit Keramikkugel	03151-9268-0114		
O-Ring Packungen (12 Stück pro Packung)			
Elektronikgehäuse, Gehäusedeckel (Standard und Digitalanzeiger)	03151-9040-0001		
Elektronikgehäuse, Modul	03151-9041-0001		
Prozessflansch, glasgefülltes PTFE	03151-9042-0001		
Prozessflansch, graphitgefülltes PTFE	03151-9042-0002		
Ovaladapter, glasgefülltes PTFE	03151-9043-0001		
Ovaladapter, graphitgefülltes PTFE	03151-9043-0002		
Verschraubungs- and Muffensätze			
Verschraubungs- und Muffensätze	03151-9250-0001		

Montagehalter	
Coplanar Flansch Montagehaltersatz	
B4 Montagehalter, Edelstahl, 50 mm (2 in.) Rohrmontage, Edelstahlschrauben	03151-9270-0001
Montagehaltersätze für Anpassungsflansch	
B1 Montagehalter, 50 mm (2 in.) Rohrmontage, Kohlenstoffstahlschrauben	03151-9272-0001
B2 Montagehalter, Wandmontage, Kohlenstoffstahlschrauben	03151-9272-0002
B3 Montageplatte, 50 mm (2 in.) Rohrmontage, Kohlenstoffstahlschrauben	03151-9272-0003
B7 (B1 Montagehalter mit Edelstahlschrauben)	03151-9272-0007
B8 (B2 Montagehalter mit Edelstahlschrauben)	03151-9272-0008
B9 (B3 Montagehalter mit Edelstahlschrauben)	03151-9272-0009
BA (B1 Edelstahl Montagehalter mit Edelstahlschrauben)	03151-9272-0011
BC (B3 Edelstahl Montagehalter mit Edelstahlschrauben)	03151-9272-0013
DIN Anpassungsflansch Montagehaltersätze – M10 Gewinde (F62 Prozessanschluss)	
B1 Montagehalter, 50 mm (2 in.) Rohrmontage, Kohlenstoffstahlschrauben	03151-9272-0101
B2 Montagehalter, Wandmontage, Kohlenstoffstahlschrauben	03151-9272-0101
B3 Montageplatte, 50 mm (2 in.) Rohrmontage, Kohlenstoffstahlschrauben	03151-9272-0103
B7 (B1 Montagehalter mit Edelstahlschrauben)	03151-9272-0107
B8 (B2 Montagehalter mit Edelstahlschrauben)	03151-9272-0108
B9 (B3 Montagehalter mit Edelstahlschrauben)	03151-9272-0109
BA (B1 Edelstahl Montagehalter mit Edelstahlschrauben)	03151-9272-0111
BC (B3 Edelstahl Montagehalter mit Edelstahlschrauben)	03151-9272-0113
DIN Anpassungsflansch Montagehaltersätze – M12 Gewinde (F72 Prozessanschluss)	
B1 Montagehalter, 50 mm (2 in.) Rohrmontage, Kohlenstoffstahlschrauben	03151-9272-0201
B2 Montagehalter, Wandmontage, Kohlenstoffstahlschrauben	03151-9272-0202
B3 Montageplatte, 50 mm (2 in.) Rohrmontage, Kohlenstoffstahlschrauben	03151-9272-0203
B7 (B1 Montagehalter mit Edelstahlschrauben)	03151-9272-0207
B8 (B2 Montagehalter mit Edelstahlschrauben)	03151-9272-0208
B9 (B3 Montagehalter mit Edelstahlschrauben)	03151-9272-0209
BA (B1 Edelstahl Montagehalter mit Edelstahlschrauben)	03151-9272-0211
BC (B3 Edelstahl Montagehalter mit Edelstahlschrauben)	03151-9272-0213

Schraubensätze				
COPLANAR FLANSCH				
Flanschschraubensatz (44 mm [1,75 in.])				
Kohlenstoffstahl (4 pro Satz)	03151-9280-0001			
Edelstahl 316 (4 pro Satz)	03151-9280-0002			
ANSI/ASTM-A-193-B7M (4 pro Satz)	03151-9280-0003			
Alloy K-500 (4 pro Satz)	03151-9280-0004			
ASTM A-453, Class D Grade 660 (4 pro Satz)	03151-9280-0005			
ASTM A-193, Grade B8M, Class 2 (4 pro Satz)	03151-9280-0006			
Flansch-/Adapterschraubensatz (73 mm [2,88 in.])				
Kohlenstoffstahl (4 pro Satz)	03151-9281-0001			
Edelstahl 316 (4 pro Satz)	03151-9281-0002			
ANSI/ASTM-A-193-B7M (4 pro Satz)	03151-9281-0003			
Alloy K-500 (4 pro Satz)	03151-9281-0004			
ASTM A 453, Class D Grade 660 (4 pro Satz)	03151-9281-0005			
ASTM A-193, Grade B8M, Class 2 (4 pro Satz)	03151-9281-0006			
Ventilblock-/Flanschsatz (57 mm [2,25 in.])				
Kohlenstoffstahl (4 pro Satz)	03151-9282-0001			
Edelstahl 316 (4 pro Satz)	03151-9282-0002			
ANSI/ASTM-A-193-B7M (4 pro Satz)	03151-9282-0003			
Alloy K-500 (4 pro Satz)	03151-9282-0004			
ASTM A-453, Class D, Grade 660 (4 pro Satz)	03151-9282-0005			
ASTM A-193, Grade B8M, Class 2 (4 pro Satz)	03151-9282-0006			
ANPASSUNGSFLANSCH				
Differenzdruck Flansch- und Adapterschraubensatz				
Kohlenstoffstahl (8 pro Satz)	03151-9283-0001			
Edelstahl 316 (8 pro Satz)	03151-9283-0002			
ANSI/ASTM-A-193-B7M (8 pro Satz)	03151-9283-0003			
Alloy K-500 (8 pro Satz)	03151-9283-0004			
ASTM A-453, Class D, Grade 660 (8 pro Satz)	03151-9283-0005			
ASTM A-193, Grade B8M, Class 2 (8 pro Satz)	03151-9283-0006			

Über-/Absolutdruck Flansch- und Adapterschraubensatz			
Kohlenstoffstahl (6 pro Satz)	03151-9283-1001		
Edelstahl 316 (6 pro Satz)	03151-9283-1002		
ANSI/ASTM-A-193-B7M (6 pro Satz)	03151-9283-1003		
Alloy K-500 (6 pro Satz)	03151-9283-1004		
ASTM A-453, Class D, Grade 660 (6 pro Satz)	03151-9283-1005		
ASTM A-193, Grade B8M, Class 2 (6 pro Satz)	03151-9283-1006		
Ventilblock-/Anpassungsflanschschrauben			
Kohlenstoffstahl	Im Lieferumfang des Ventilblocks enthaltene Schrauben verwenden		
Edelstahl 316	Im Lieferumfang des Ventilblocks enthaltene Schrauben verwenden		

Anhang B Produkt-Zulassungen

Zugelassene Herstellungsstandorte	Seite 9
Standardbescheinigung gemäß Factory Mutual	Seite 9
Informationen zu EU-Richtlinien	Seite 9
Ex-Zulassungen	Seite 10
Einbauzeichnungen	Seite 15
Factory Mutual (FM)	Seite 15
Canadian Standards Association (CSA)	Seite 20
GE/GM Option NEMA 4X	Seite 25

Dieser Abschnitt enthält die Ex-Zulassungen für den 3051S MultiVariable Messumformer.

B.1.1 Zugelassene Herstellungsstandorte

Emerson Process Management – Chanhassen, Minnesota, USA Emerson Process Management GmbH & Co. OHG – Weßling, Deutschland Emerson Process Management Asia Pacific Private Limited – Singapur Beijing Rosemount Far East Instrument Co., LTD – Peking, China

B.2.1 Standardbescheinigung gemäß Factory Mutual

Der Messumformer wurde standardmäßig von FM untersucht und geprüft, um zu gewährleisten, dass die Konstruktion die grundlegenden elektrischen, mechanischen und Brandschutzanforderungen erfüllt. FM ist ein national anerkanntes Prüflabor (NRTL), zugelassen von der Federal Occupational Safety and Health Administration (OSHA [US-Behörde für Sicherheit und Gesundheitsschutz am Arbeitsplatz]).

B.3.1 Informationen zu EU-Richtlinien

Die EU-Konformitätserklärung für alle auf dieses Produkt zutreffenden EU-Richtlinien ist unter www.emersonprocess.com/rosemount zu finden. Diese Dokumente erhalten Sie auch durch Emerson Process Management.

ATEX-Richtlinie (94/9/EG)

Die Produkte von Emerson Process Management erfüllen die Anforderungen der ATEX-Richtlinie.

Europäische Druckgeräterichtlinie (PED) (97/23/EG)

Modelle mit Differenzdruck-Messbereichen = 2 bis 5 inkl. mit statischem Druck = nur Bereich 4. Außerdem Optionen P9 und P0.

Alle anderen Druckmessumformer der Modellreihe 3051SMV

- Gemäß "Guter Ingenieurspraxis"

Messumformerzubehör: Membrandruckmittler – Prozessflansch – Ventilblock – Gemäß "Guter Ingenieurspraxis"

Wirkdruckgeber, Durchflussmessgerät

- Siehe Kurzanleitung des jeweiligen Wirkdruckgebers

Elektromagnetische Verträglichkeit (EMV) (2004/108/EWG)

EN 61326-1:2006 und EN 61326-2-3:2006

B.4.1 Ex-Zulassungen

Nordamerikanische Zulassungen

Factory Mutual (FM)

- **E5** Ex-Schutz für Class I, Division 1, Groups B, C und D; Staub Ex-Schutz für Class II und Class III, Division 1, Groups E, F und G Ex-Bereiche; Gehäuseschutzart 4X, keine abgedichtete Leitungseinführung erforderlich.
- I5 Eigensicher für Class I, Division 1, Groups A, B, C und D; Class II, Division 1, Groups E, F und G; Class III, Division 1; Class I, Zone 0 AEx ia IIC, wenn die Installation gemäß Rosemount Zeichnung 03151-1206 erfolgt; keine Funken erzeugend für Class I, Division 2, Groups A, B, C und D; Gehäuseschutzart 4X Eingangsparameter siehe Zulassungs-Zeichnung 03151-1206.

Canadian Standards Association (CSA)

Alle gemäß CSA zugelassenen Messumformer sind gemäß ANSI/ISA 12.27.01-2003 zertifiziert.

- **E6** Ex-Schutz für Class I, Division 1, Groups B, C und D; Staub Ex-Schutz für Class II und Class III, Division 1, Groups E, F und G; geeignet für Class I, Division 2, Groups A, B, C und D; CSA Gehäuseschutzart 4X, keine abgedichtete Leitungseinführung erforderlich.
- **I6** Eigensicher für Class I, Division 1, Groups A, B, C und D, wenn die Installation gemäß Rosemount Zeichnungen 03151-1207 erfolgt; Eingangsparameter siehe Zulassungs-Zeichnung 03151-1207.

Europäische Zulassungen

I1 ATEX Eigensicherheit Zulassungs-Nr.: 08ATEX0064X (II 1G Ex ia IIC T4 (T_a = −60 °C bis 70 °C) -HART c€ 1180

Tabelle B-1. Eingangsparameter

Messkreis/	
Spannungsver-	
sorgung	Gruppen
U _i = 30 V	HART
l _i = 300 mA	HART
P _i = 1,0 W	HART
C _i = 14,8 nF	HART
$L_i = 0$	HART

N1

Spezielle Voraussetzungen zur sicheren Verwendung (x)

Das Gerät hält dem 500 V Isolationstest gemäß EN 60079-11, Absatz 6.3.12, nicht stand. Dies muss bei der Installation des Geräts berücksichtigt werden.

Spezielle Voraussetzungen zur sicheren Verwendung (x)

Dieses Gerät hält dem Isolationstest mit 500 V gemäß EN 60079-15, Absatz 6.8.1, nicht stand. Dies muss bei der Installation des Geräts berücksichtigt werden.

ND ATEX Staub

Zulassungs-Nr.: BAS01ATEX1303X II 1 D T105 °C (-20 °C \leq T_{amb} \leq 85 °C) V_{max} = 42,4 V max. A = 24 mA IP66 ce 1180

Spezielle Voraussetzungen zur sicheren Verwendung (x)

Der Anwender muss sicherstellen, dass die maximale Nennspannung und Stromstärke (42,4 V, 22 mA, DC) nicht überschritten werden. Alle angeschlossenen oder hinzugefügten Geräte haben Einfluss auf Spannung und Stromstärke, äquivalent zu einem "ib" Messkreis gemäß EN 60079-11.

- 1. Verwendete Kabelverschraubungen müssen mindestens die Schutzart IP66 aufweisen.
- 2. Unbenutzte Leitungseinführungen müssen mit geeigneten Blindstopfen verschlossen werden, die mindestens die Anforderungen von IP66 erfüllen.
- 3. Kabelverschraubungen und Blindstopfen müssen für die Umgebungsbedingungen des Geräts geeignet sein und einer 7J Stoßprüfung standhalten.
- 4. Der 3051SMV Messumformer muss sicher verschraubt sein, um den Schutzgrad des Gehäuses nicht zu verletzen.
- E1 ATEX Druckfeste Kapselung Zulassungs-Nr.: KEMA 00ATEX2143X (a) II 1/2 G Ex d IIC T6 (-50 °C \leq T_{amb} \leq 65 °C) Ex d IIC T5 (-50 °C \leq T_{amb} \leq 80 °C) V_{max} = 42,4 V ce 1180

Spezielle Voraussetzungen zur sicheren Verwendung (x)

- 1. Geeignete Blindstopfen, Kabelverschraubungen und Kabel gemäß ex d müssen für eine Temperatur von 90 °C ausgelegt sein.
- 2. Dieses Gerät verfügt über eine dünnwandige Membran. Bei Installation, Betrieb und Wartung sind die Umgebungsbedingungen zu berücksichtigen, denen die Membran ausgesetzt ist. Die Wartungsanweisungen des Herstellers sind genau einzuhalten, um so die Sicherheit während der erwarteten Lebensdauer sicherzustellen.
- 3. Der 3051SMV Messumformer erfüllt die Anforderungen von EN 60079-1, Absatz 5.2, Tabelle 2, nicht für alle Verbindungen. Informationen über die Abmessungen druckfest gekapselter Anschlüsse sind auf Anfrage von Emerson Process Management erhältlich.

Japanische Zulassungen

- **E4** TIIS Druckfeste Kapselung Liefermöglichkeit auf Anfrage
- I4 TIIS Eigensicherheit Liefermöglichkeit auf Anfrage

INMETRO Zulassungen

E2 INMETRO Druckfeste Kapselung Zulassungs-Nr.: NCC 12.1128 X Ex d IIC T6/T5 Ga/Gb T6 (-50 °C ≤T_{amb} ≤ +65 °C) T5 (-50 °C ≤ T_{amb} ≤ +80 °C)

Spezielle Voraussetzungen zur sicheren Verwendung (x)

- 1. Bei Prozesstemperaturen über 135 °C muss der Benutzer erwägen, ob die Temperaturklasse des SuperModule für diese Temperaturen geeignet ist. Bei diesen Anwendungen besteht das Risiko, dass die Temperatur des SuperModule oberhalb der Temperaturklasse T5 liegt, da diese Temperaturen bei der für diese Ausrüstung verwendeten Art der Entlüftung auftreten können.
- 2. Blindstopfen, Kabelverschraubungen und Kabel gemäß Ex d müssen für eine Temperatur von 90 °C ausgelegt sein.
- 3. Der 3051 Messumformer verfügt über eine dünnwandige Membran. Bei Installation, Wartung und Betrieb sind die Umgebungsbedingungen zu berücksichtigen, denen die Membran ausgesetzt ist. Die Wartungsanweisungen des Herstellers sind genau einzuhalten, um so die Sicherheit während der erwarteten Lebensdauer sicherzustellen.
- 4. Im Fall einer Reparatur beim Hersteller bzgl. Informationen über die Abmessungen der druckfest gekapselten Verbindungen nachfragen.
- I2 INMETRO Eigensicherheit Zulassungs-Nr.: NCC 12.1158 X Ex ia IIC T4 Ga T4 (-60 °C ≤ T_{amb} ≤ +70 °C)

Feldanschluss/ 4–20 mA Messkreis	Widerstandsthermo- meter Anschluss
U _i = 30 V	U _i = 30 V
l _i = 300 mA	l _i = 2,31 mA
$P_{i} = 1,0 W$	P _i = 17,32 W
C _i = 14,8 nF	C _i = 0
$L_i = 0$	L _i = 0

Spezielle Voraussetzungen zur sicheren Verwendung (x)

- 1. Ist das Gerät mit einem optionalen 90 V Überspannungsschutz ausgestattet, hält es dem 500 V Isolationstest gegen Erde nicht stand. Dies muss bei der Installation berücksichtigt werden.
- 2. Bei Prozesstemperaturen über 135 °C muss der Benutzer erwägen, ob die Temperaturklasse des SuperModule für diese Temperaturen geeignet ist. Bei diesen Anwendungen besteht das Risiko, dass die Temperatur des SuperModule oberhalb der Temperaturklasse T5 liegt, da diese Temperaturen bei der für diese Ausrüstung verwendeten Art der Entlüftung auftreten können.

Chinesische Zulassungen (NEPSI)

- **E3** China Druckfeste Kapselung Ex d II B+H₂T3 ~ T5
- I3 China Eigensicherheit Ex ia IIC T3/T4

IECEx Zulassungen

IECEx Eigensicherheit
 Zulassungs-Nr.: IECExBAS08.0025X
 Ex ia IIC T4 (T_a = -60 °C to 70 °C) -HART
 IP66

Tabelle B-2. Eingangsparameter

Messkreis/	
Spannungsversorgung	Gruppen
U _i = 30 V	HART
l _i = 300 mA	HART
P _i = 1,0 W	HART
C _i = 14,8 nF	HART
$L_i = 0$	HART

Spezielle Voraussetzungen zur sicheren Verwendung (x)

Der 3051SMV HART 4–20 mA hält dem Isolationstest mit 500 V gemäß IEC 60079-11, Absatz 6.3.12, nicht stand. Dies muss bei der Installation berücksichtigt werden.

N7 IECEx Typ n

Zulassungs-Nr.: IECExBAS08.0026X Ex nA nL IIC T4 ($T_a = -40 \degree C$ bis 70 $\degree C$) $U_i = 45 \text{ VDC max}$. IP66

Spezielle Voraussetzungen zur sicheren Verwendung (x)

Das Gerät hält dem Isolationstest mit 500 V gemäß IEC 60079-15, Absatz 6.8.1, nicht stand.

E7 IECEx Druckfeste Kapselung Zulassungs-Nr.: IECExKEM08.0010X Ex d IIC T6 ($-50 \degree C \le T_{amb} \le 65 \degree C$) Ex d IIC T5 ($-50 \degree C \le T_{amb} \le 80 \degree C$) $V_{max} = 42,4 V$

Spezielle Voraussetzungen zur sicheren Verwendung (x)

- 1. Geeignete Blindstopfen, Kabelverschraubungen und Kabel gemäß ex d müssen für eine Temperatur von 90 °C ausgelegt sein.
- 2. Dieses Gerät verfügt über eine dünnwandige Membran. Bei Installation, Betrieb und Wartung sind die Umgebungsbedingungen zu berücksichtigen, denen die Membran ausgesetzt ist. Die Wartungsanweisungen des Herstellers sind genau einzuhalten, um so die Sicherheit während der erwarteten Lebensdauer sicherzustellen.
- 3. Der 3051SMV Messumformer erfüllt die Anforderungen von IEC 60079-1, Absatz 5.2, Tabelle 2, nicht für alle Verbindungen. Informationen über die Abmessungen druckfest gekapselter Anschlüsse sind auf Anfrage von Emerson Process Management erhältlich.

Zulassungskombinationen

Ein Zulassungs-Typenschild aus Edelstahl wird mitgeliefert, wenn optionale Zulassungen spezifiziert sind. Ist ein Gerät installiert, das mit mehreren Zulassungen gekennzeichnet ist, darf es nicht erneut mit anderen Zulassungen installiert werden. Die permanente Beschriftung des Zulassungsschilds dient der Unterscheidung des installierten Zulassungstyps von den nicht verwendeten Zulassungen.

- K1 Kombination von E1, I1, N1 und ND
- **K2** Kombination von E2 und I2
- K4 Kombination von E4 und I4
- **K5** Kombination von E5 und I5
- K6 Kombination von E6 und I6
- K7 Kombination von E7, I7 und N7
- KA Kombination von E1, E6, I1 und I6
- KB Kombination von E5, E6, I5 und I6
- KC Kombination von E5, E1, I5 und I1
- **KD** Kombination von E5, E6, E1, I5, I6 und I1

B.5 Einbauzeichnungen

B.5.1 Factory Mutual (FM)

CONFIDENTIAL AND PR	ROPRIETARY					RE	IVISIONS				
HEREIN AND MUS HANDLED ACCORE	T BE DINGLY	REV		D	ESCRIPTI	ON		С	HG. NO.	APP'D	DATE
		AA	NEW	RELI	EASE			RTC	1025256	A.J.W.	1/2/08
		AB	UPDATI	E NC	DTES 8	AD	d rtd	RTC	1025712	A.J.W.	2/28/08
			TO DIA	AGRA	MS						
					MODE						
	ENILLY	PPR	UVALS	FUR	MUDE	.L 36	J5ISMV				
	, CODE "V	Ч (Л _	.20 ~^		этис	CEE	СПЕСТ	-c >	- 2		
001201	NON	VINC	ENDIVE	SEI	E SHE	. 366 et 4	SHEET	5 2	- 3		
THE ROSE	MOUNT TRA	NSMI	TTERS I	ISTE		'F ARI	F F.M. AF	PROV	'ED AS		
INTRINSICAL	LY SAFE W	HEN			CUIT W	TH F	M APPRO	DVED	BARRIER	S	
DIVISION 1 C	GROUPS IND	ICATE	ED.	.NJ L	IJILD	111 111	L CLHJJ	1, 11	, HND III		
TO ASSUR	RE AN INTRI	INSIC	ALLY SA	AFE S	SYSTEM,	, THE	TRANSMI	TTER	AND BA	RRIER	
MUST BE WI	RED IN ACC NS AND THE	CORDA	ANCE WI 'LICABLE	TH TI E CIR	HE BAR CUIT D	RIER IAGRA	MANUFAC M.	TURE	R'S FIEL	D WIRIN	٩G
								CAD	MAINTAINED	(MicroSt	tation)
					\$		D	VCI	- MUI	NT®	
UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES [mm]. REMOVE ALL BURRS AND	LUNIRALI NU.				EMERS Process Mana	SON. gement	8200 Marke	t Boulevar	d • Chanhassen, N	IN 55317 USA	
SHARP EDGES. MACHINE SURFACE FINISH 125	DR. Myles Lee	Miller	12/17/07	TITLE				0			
-TOLERANCE-	CHK'D				IND	EX (JF 1.5. - M Fr	. & ID 7		JENUI V	VE
.X ± .1 [2,5] .XX ± .02 [0,5]	APP'D.					Г	.I™I. FU		101210	V	
.XXX ± .010 [0,25] <u>FRACTIONS</u> <u>ANGLES</u>				SIZE	FSCM NO		DWG NO.	C	12151-	-1201	
₹ <u>± 1/32</u> ± 2*	APP'D.GOVT.			Α	N 1 7 A	.		V			ے ا
DO NOT SCALE PRINT	-			SCALE	N/A	wt			SHEET]	OF	່ວ

				RE	VISIONS			
		REV	DESCRI	PTION		CHG. NO.	APP'D	DATE
		AB						1
			PT APPRO					.1
THE ENTITY CON TO ASSOCIATED AP THE APPROVED VAL CIRCUIT CURRENT (ASSOCIATED APPAR VOLTAGE (Vmax, OR INPUT POWER (Pmax APPROVED MAX. ALL MUST BE GREATER UNPROTECTED INTE THE APPROVED MAX APPARATUS MUST E AND THE UNPROTEC NOTE: ENTITY PA	CEPT ALLOWS PARATUS NOT UES OF MAX. Isc, Io, OR It) ATUS MUST BI U1), MAXIMUM (OR P1) OF TI OWABLE CONN THAN THE SU RNAL CAPACIT (ALLOWABLE BE GREATER T TED INTERNAL ARAMETERS LI	INTERCONNEC SPECIFICALL OPEN CIRCUIT AND MAX.POW E LESS THAN SAFE INPUT HE INTRINSIC IECTED CAPAC M OF THE IN ANCE (C1) OF CONNECTED IN HAN THE SUM INDUCTANCE STED APPLY	CTION OF IN Y EXAMINED VOLTAGE VER Po(Voc OR EQUAL CURRENT (C ALLY SAFE ITANCE (Co TERCONNEC THE INTRIN NDUCTANCE OF THE I C(L1) OF TH ONLY TO A	NTRINSICA) IN COME (Voc, Uo (X Isc/4) TO THE N (max OR I APPARATU) OF THE TING CABI NSICALLY (La) OF T NTERCONN E INTRINS SSOCIATED	LLY SAFE 4 SINATION AS DR Vt) AND OR Vt) AND MAXIMUM SA MAXIMUM SA MAXIMUM SA MAXIMUM SA MAXIMUM SA MAXIMUM SAFE APPAI HE ASSOCIA ECTING CAB SICALLY SAFE MAPPARATU	APPARATUS A SYSTEM MAX.SHORT //4),FOR TH FE INPUT IMUM SAFE ION,THE APPARATU: ANCE AND T RATUS, AND ITED LE INDUCTA E APPARAT S WITH LIN	NCE US. EAR OUT	PUT.
FOR OUTPUT COD U1 or $V_{MAX} =$ I1 or I MAX = P1 or P_MAX = C1 = 14.8n L1 = $\mathcal{O}_{\mu}H$	E "A" MODEL 3 30V 300mA 1.0 WATT F	8051SMV Uo, V _T Io, I _T o (<u>VT X II</u>) or C _A IS L _A IS	C or V _{OC} IS r I _{SC} IS Voc X Ios) I GREATER GREATER	LASS I.D LESS T LESS TH S LESS THAN 14 THAN Ø,	IV.1,GROUP HAN OR EO AN OR EO THAN OR E .8∩F ∠H	5 A, B, C AN Dual to 3 Jal to 30 Coual to	ID D ØV ØmA 1.Ø WAT	T
T4 (Ta=-50°C	to +70°C)							
FOR RTD SENSOR Vt = 7.14V It = 3.64mA Po = 6.5mW Ca = 13.5nF La = 1 H	PARAMETERS							
	Rosemount Inc 8200 Market B Chanhassen, M	oulevard IN 55317 USA		NA	C.	AD MAINTAINE) (MicroS	tation)
	DR. Myles	Lee Miller	A SIZE FSCM	NO	DWG NO.	Ø3151	-120	6
	ISSUED		SCALE N	'Α wτ.		SHEET	2 OF	5

	REVISIONS										
		REV		DESCRIPTI	ON		СН	G. NO.	APP'D	DATE	
		AB									
	NOTES:										
	1. NO REVISION TO THIS	DRAWI	NG WITH	DUT PRI	OR FM	APPRC)VAL.				
	2. ASSOCIATED APPARATUS MANUFACTURER'S INSTALLATION DRAWING MUST BE FOLLOWED WHEN INSTALLING THIS EQUIPMENT.										
	3. DUST-TIGHT CONDUIT SEAL MUST BE USED WHEN INSTALLED IN CLASS II AND CLASS III ENVIRONMENTS.										
	4. CONTROL EQUIPMENT C USE OR GENERATE MOR	ONNEC Re tha	TED TO AN 250 V	ASSOCIA 'rms or	TED A Vdc.	PPARAT	US №	IUST NO	Т		
	5. RESISTANCE BETWEEN BE LESS THAN 1.0 OHM	INTRIN 1.	NSICALLY	SAFE (GROUN) AND E	EARTH	H GROUI	ND MUS	ST	
	6. INSTALLATION SHOULD "INSTALLATION OF INTF LOCATIONS" AND THE N	BE IN RINSIC ATION	N ACCORE CALLY SA AL ELEC	FE SYS FE SYS	ITH AN IEMS CODE	NSI/ISA FOR HA (ANSI/N	-RP12 ZARDI IFPA	2.06.01 OUS (CL 70).	ASSIF	(ED)	
	7. THE ASSOCIATED APPAR	RATUS	MUST B	E FM A	PROV	ED.					
	8. WARNING - SUBSTITUTI	ON OF	СОМРОМ	ENTS M	AY IM	PAIR IN	TRIN	SIC SAF	ETY.		
	9. THE ENTITY CONCEPT (APPARATUS WITH ASSO Vmax or U1 IS GREA Imax or I1 IS GRETE Pmax or P1 IS GRET Ca IS GREATER THA La IS GREATER THA	ALLOW CIATE TER T IER T IER T N or N or	INTER D APPARI HAN or AN or EC HAN or E EQUAL T EQUAL T	CONNECT ATUS WH EQUAL T UAL TO EQUAL T D THE S D THE S	ION O EN TH O Voc Isc,I O Po SUM OF	F INTRI HE FOLL ,Vt or t or Io F ALL (F ALL (INSIC OWIN Uo Cı's F _ı's F	ALLY S IG IS T PLUS Ca PLUS La	AFE RUE: cable		
	10. WARNING - TO PREVENI ATMOSPHEF	F IGNI Res, d	TION OF	FLAMMA T POWE	ABLE (R BEF	OR COME ORE SE	BUSTI RVICI	IBLE Ing.			
	11. THE ASSOCIATED APPARATUS MUST BE A RESISTIVELY LIMITED SINGLE OR MULTIPLE CHANNEL FM APPROVED BARRIER HAVEING PARAMETERS LESS THAN THOSE QUOTED, AND FOR WHICH THE OUTPUT AND THE COMBINATIONS OF OUTPUTS IS NON-IGNITION CAPABLE FOR THE CLASS, DIVISION AND GROUP OF USE.										
	Rosemount Inc 8200 Market B Chaphancon M	Soulevard	7 1154				CAD N	MAINTAINED	(MicroS	tation)	
			SIZ	E FSCM NC	1	DWG NO.	[7]	3151-	-1201	(
Rev AC	ISSUED	Lee Mill	ler A	IF NI/A	WT_			SHEET F		<u></u>	
For				IN/ H	1				,	5	

B.5.2 Canadian Standards Association (CSA)

CONFIDENTIAL AND F	PROPRIETARY					RE	VISIONS				
HEREIN AND MU HANDLED ACCOR	JST BE RDINGLY	REV		I	DESCRIPTI	ON		C	HG. NO.	APP'D	DATE
		AA	NEW	REL	EASE			RTC	1025256	A.J.W.	1/2/08
			<u> </u>								
		1	ЧРРКО	VALS	FUR						
OUT	PUT CODE	"A"	I.S. EN	ITITY	PARA	METER	RS SHE	ET	2		
UUIPUI	CODE "A"	(4-)	20 mA	I HAH	(1) I.S.	SEE	SHEETS	5 3	& 4		
TO ASSU	RE AN INTR		ALLY ANCE V	SAFE /ITH T	SYSTEM, 'hf bar	THE RIFR N	TRANSMI MANUFAC		AND BA	RRIER D WIRIN	NG
INSTRUCTIO	INS AND THE	E APF	PLICABI	E CIF	RCUIT	IAGRAN	1.				
WARNING	- EXPLOSION	I HA	ZARD -	SUBS	TITUTION	OF C	COMPONE	NTS			
MAY IMP	air suitabili	IYF	OR CL	455 I,	DIVISION	I.					
AVERTISS	SEMENT - RIS						TUTION I	DE CO	OMPOSAN	TS	
DE CLAS	SE I, DIVISION		L INAC								
										(MicroSi	ration)
UNLESS OTHERWISE SPECIFIED	CONTRACT NO.			7	EMERS	ion .	R	OS	emou	NT [®]	
REMOVE ALL BURRS AND SHARP EDGES. MACHINE					Process Mana	gement	8200 Marke	t Boulevar	d • Chanhassen, N	IN 55317 USA	
		Miller	12/17/(Inc	ЭЕХ	OF	I.S.	. CSA	FOF	7
.X ± .1 [2,5]				_			305	1SM	1V		
.XXX ± .010 [0,25]				S17F	ESCM NO					400	
$\frac{\text{FRACTIONS}}{\pm 1/32} \qquad \frac{\text{ANGLES}}{\pm 2^{\circ}}$									13151-	-120	/
DO NOT SCALE PRINT	APP'D.GOVT.			SCAL	e N/A	wt. —			SHEET 1	OF	5

	REVISIONS								
	REV		DESC	DESCRIPTION			APP'D	DATE	
	ENTI	Y CONC	EPT APF	ROVALS					
THE ENTITY CONCEPT AL TO ASSOCIATED APPARATUS THE APPROVED VALUES OF CIRCUIT CURRENT (Isc) AND ASSOCIATED APPARATUS MU VOLTAGE (Vmax), MAXIMUM (Pmax) OF THE INTRINSICAL ABLE CONNECTED CAPACITA THAN THE SUM OF THE IN INTERNAL CAPACITANCE (C) APPROVED MAX.ALLOWABLE MUST BE GREATER THAN T UNPROTECTED INTERNAL IN	LLOWS NOT MAX. JST BI SAFE LLY SF ANCE (TERCO) OF 1 CONN HE SU DUCTA	INTER(SPECIF OPEN C E LESS INPUT (FE APF Ca) OF NNECTIN HE INT ECTED M OF T NOCE (L:	CONNECTI ICALLY IRCUIT V (Voc X I THAN OF CURRENT ARATUS. THE ASS IG CABLE RINSICAL INDUCTAI HE INTE) OF THE	ON OF IN EXAMINED OLTAGE sc/4),FC R EQUAL (Imax),A IN ADDIT OCIATED E CAPACI LY SAFE NCE (La) RCONNEC	NTRINSICA D IN COME (Voc) AND DR THE TO THE NND MAXIN TION, THE APPARAT TANCE AN APPARAT OF THE 4 TING CAB GICALLY S	ALLY SAFE 3INATION & MAX.SHOI MUM SAFE APPROVED US MUST I ND THE UN FUS, AND T ASSOCIATE LE INDUCT GAFE APPA	APPARATI AS A SYST RT INPUT PO MAX.ALL BE GREATE PROTECTE HE D APPARA ANCE AND RATUS.	JS TEM. WER OW- ER D TUS THE	
FOR OUTPUT CODE "A" MODEL CLASS I, DIV. 1, G	. 3051 ROUPS	SMV A, B, C	AND D						
V _{MAX} = 30V		V _{OC} IS	LESS T	HAN OR I	EQUAL TO	30V			
I _{MAX} = 300mA		I _{SC} IS	LESS T	HAN OR I	EQUAL TO	300mA			
$C_1 = 14.8 \text{nF}$		$\frac{C_A}{I}$ IS	GREATE	R IHAN	14.8nf + 0 4 + 1 -	Ccable			
$\Box \Box I = U \mu H$		LA IS	GREATE	RIHAN	υμΗ + Lc	able			
NOTE: ENTITY PARAN	1ETER:	5 LISTE		ONLY T	O ASSOCI	ATED			
Rosemount Ir 8200 Market Chanhassen,	IH LI nc. Bouleva MN 553	rd 17 USA				CAD MAINTA	AINED (Micros	Station)	
DR. M.I	SIZE FSC	M NO	DWG NO.	Ø315	51-120	7			
ISSUED			SCALE N	V/A WT.		- SHEET	2 OF	5	
L I			· ·				-	-	

		REVISIONS							
	REV	DESC		CHG. NO.	APP'D	DATE			
	AA								
C CIRI HAZAR	SA INTF CUIT CONN INTRINSICA 4- DOUS ARE	RINSIC SAFE ection with ba Ex ic Lly safe/sec 20 ma, ("a" out a	TY APPRO RRIER OR CON JRITE INTRINSE PUT CODE)	VAL S IVERTE	S :R				
ROSEMOLINT				N	NON-HAZARDO	OR ER	А		
MODELS INCLUDE EWITH OR WITHOUT (TRANSIENT PROTECTION 305ISMV	ED - TI 1) OPTION]	ROSEM MODEL 37 FAMILY IN	OUNT 5 SMART TERFACE						
Rosemou 8200 Ma Chanhass	nt Inc. rket Boulevarc ien, MN 5531	7 USA		C NO	CAD MAINTAINED) (MicroS	tation)		
DR. Myles	Lee Miller 12	ν17/07 <u>Α</u>			Ø3151	-120	/		
ISSUED		SCALE	V/A WT		- SHEET (3 OF	5		

		REVISIONS						
	REV		DESCRIPT	ON		CHG. NO.	APP'D	DATE
	AA							
DEVICE	mA, ("A" (Parai)UTPUT Meters	COE	DE)	APPROVED FOR CLASS I, DIV.I			
CSA APPROVED SAFETY BARRIER		* 30 V * 330 OHM * 28 V * 300 OHM 25 V 200 OHM * 22 V 180 OHM	DR LESS 5 OR MOF DR LESS 5 OR MOF DR LESS 5 OR MOF DR LESS 5 OR MOR	RE RE E		GROUPS	А, В, С	, D
FOXBORO CONVER 2AI-I2V-CGB, 2A 2AS-I3I-CGB, 3A 3A2-I3D-CGB, 3/ 3A4-I2D-CGB, 2/ 3F4-I2DA	TER 1-13V-CGB, 2-12D-CGB, AD-131-CGB, AS-121-CGB,					GROUP	SB,C,	D
CSA APPROVED SAFETY BARRIER	30 V 150 OHMS	OR LESS OR MOR	E		GROL	IPS C,D		
R	osemount Inc. 200 Market Bouleva hanhassen, MN 553	ırd 317 USA				CAD MAINTAINED) (MicroS	tation)
	. Myles Lee M	Liller A	E FSCM NC		DWG NO.	Ø3151	-120	7
IS	SUED	SC	LE N/A	WT.		— SHEET 4	4 OF	5

			REVISIONS									
		REV	[CHG. NO.	APP'D	DATE						
		AA										
N	NOTES:											
1.	APPROVED ASSOCI MANUFACTURER'S	ATED APPARA INSTRUCTION	ATUS MUST E S.	BE INSTALLED) IN ACCI	ORDANCE WIT	H					
2.	2. CSA APPROVED ASSOCIATED APPARATUS MUST MEET THE FOLLOWING PARAMETERS: Voc LESS THAN OR EQUAL TO (Vmax AND Isc LESS THAN OR EQUAL TO (Imax).											
3.	3. THE MAXIMUM NON-HAZARDOUS AREA VOLTAGE MUST NOT EXCEED 250V.											
4.	4. THE INSTALLATION MUST BE IN ACCORDANCE WITH CANADIAN ELECTRICAL											
5.	5. CAUTION: USE ONLY SUPPLY WIRES SUITABLE FOR 5°C ABOVE SURROUNDING TEMPERATURE.											
6.	WARNING: SUBSTI	TUTION OF C	OMPONENTS N	AAY IMPAIR I	NTRINSIC	SAFETY.						
	Γ											
	Ros	semount Inc. 10. Market Boulevo	rd									
	Cha	inhassen, MN 550	BIT USA	5001.1/2	Dura inc	CAD MAINTAINE) (MicroS	tation)				
AC	DR.	Myles Lee M	iller SIZE	FSCM NO	DWG NO.	Ø3151	-12Ø	7				
orm Rev	ISSU	IED	SCAL	EN/AWT.		- SHEET	5 OF	5				
B.5.3 GE/GM Option NEMA 4X

	CONFIDE	ITIAL AND PROPR	RIETARY	REVISIONS								
	I NFORI HEI	MATION IS CONT REIN AND MUST	AINED BE	REV		DESCR	IPTION			ECO NO.	APP'D	DATE
ļ	HAN	DLED ACCORDING	LY.	AA	NEW REL	EASE				RTC1022362	2 B.L.H.	9/1/06
	NOT I 1. 2.	ES: USE TURCK GE / GM O LOK-FAST INSTALLAT	CORD PTION GUARD IONS.	SETS TO IS	S AS SP ENSURE REQUIR	ECIFI OUTD ED FO	ED II OOR I R CL.	N THIS ATING ASS I	5 DR/ 5 (NE DIV	AWING WIT EMA 4X or ISION 2	Н ІР66).	
	<u>/ 3 \</u>	CONDUIT E	-4.51 NTRY INTO	N/I4 THRE CM2	ADS. 20 COND	UNSTA (X)XX UTTE	LLED V 49 NTRY	- 4 . 5 I N THREA	1/2· 1/M2(ADS.	-14 NPI) IS		
	4.	eurofast [®]	AND	mini	fast®	ARE R	EGIS	TERED	TRA	DEMARKS ()F TURCH	(INC.
r	11111 ESS 01	HEBMISE SPECIFIEN										
	DIMENSION REMOVE SHARP SURFA	ERWISE SPECIFIED S IN INCHES [mm]. ALL BURRS AND EDGES. MACHINE CE FINISH 125			EM	IERSON 18 Managemen]8:	ROS 200 Market Bo		OUNT® Chanhassen, MN 553	917 USA	
	. X =	OLERANCES- ± .1 [2,5] ± .02 [0,5]			GE	<u> </u>	G M S T A	OPTI IIAT	ON TON	NEMA 4 N. FM	4 X	
Kev An	.XXX : FRACTIO ± 1/3	± .010 [0,25] NS ANGLES 2 ± 2°	DR. APP'D		Myles Le Bryc	e Mille e Haqbo	<u>r 8/29/</u> m 8/30/	06 SIZE 06 A	DRAWIN	<u>G NO.</u> 03	5 - 0	09 AA
5	DO NO	T SCALE PRINT			C	AD MAINTA	INED, (I	RO/E)		S	HEET I O	F 3

Index

Numerics

3-Leiter Widerstandsthermometer .	

Α

Abgleichen
Analogausgang 18
Nullpunkt 12
Sensor
Skalierter Analogausgang18
Adresse
Ändern
Alarm
Alarmverhalten, Werte
Werte überprüfen
Alarmverhalten und Sättigungswerte
Werte
Anforderungen
Mechanische Anforderungen
Messstellenumgebung 11
Werkstoffverträglichkeit 11
Anforderungen an die Messstellenumgebung11
Anschlussschemata
HART Protokoll
Auf Werksabgleich zurücksetzen
Differenzdruck 14
Prozesstemperatur
Statischer Druck

В

Backup-Temperaturmodus	61
Betrieb	9
Burst-Betriebsart	39

С

Callendar-Van Dusen-Konstanten

D

Digitalanzeiger drehen	13
Drehmomentwerte	16

Ε

Erdung

Außenliegender Anschluss	25
Erdung der Signalleitungen	24
Innenliegender Anschluss	25
Ersatzteile	37

F

-	
Feld Upgrades	23
Funktionsplatine12,	24

G

Gehäuse drehen	12
----------------	----

npulsleitungen	0
Gehäusedeckel	3
Montage	5
Drehmomentwerte 1	6
Montagehalter 1	5
Prozessflanschausrichtung 1	4
Schrauben 1	6

Κ

Kalibrierart	
Differenzdruck	14
Statischer Druck	16
Kalibrierung	
Sensorabgleich	12
Konfiguration	
Durchflusskonfiguration	13
Gerätekonfiguration	31

L

	السمينيام															С	^
Leitungen	, impuis.	 			•	•	• •	•			•	• •				2	U

Μ

Messkreistest
Messstellenkennung
Gerät
Montage
Installation
Schraubenmontage
Drehmomentwerte16
Montageanforderungen
Dampf
Flüssigkeiten
Montagehalter
Montage
Multidrop-Kommunikation

0

U	
O-Ring	

Ρ

F				
Prozessanschlüsse	 • • • • •	 • • • • •	 •••••	. 18

S

Sättigung
Werte, Alarmverhalten
Schalter und Steckbrücken
Sicherheit (Schreibschutz)
Schemata
HART Anschlussklemmenblock
Installation
Schrauben
Installation
Werkstoff 17
Sensoraboleich 12
Sensorangassung 17
Service und Support 2
Sicherheit (Schreibschutz) 11
Status 13
Störungsanalvse und -beseitigung 9
Hoher PV-Wert 15
Instabiler PV-Wert 15
Kommunikationsprobleme 14
Niedriger oder kein PV-Wert 16
Referenztabelle 12
Träges Ansprechverhalten/Drift des Ausgangs 16

Т

Temperaturmodi6	1
Testberechnung	0
Typische Installation	5

U

Überspannung	
Schutz	23
Übertragungsfunktion6	63

V

-	
Ventilblöcke	27
Verdrahtung	
Überspannungen	23
Verdrahtung des Widerstandsthermometers	23

W

Wartung	9
Werte gemäß NAMUR	35

Ζ

Zeichnungen	
Zulassungen	15
Zulassungen	
Zeichnungen	15

Das Emerson Logo ist eine Marke der Emerson Electric Co. Rosemount, das Rosemount Logo und SMART FAMILY sind eingetragene Marken von Rosemount Inc. Coplanar ist eine Marke von Rosemount Inc. Halocarbon ist eine Marke der Halocarbon Products Corporation. Fluorinert ist eine eingetragene Marke der Minnesota Mining and Manufacturing Company Corporation. Syltherm 800 und D.C. 200 sind eingetragene Marken der Dow Corning Corporation. Neobee M-20 ist eine eingetragene Marke von PVO International, Inc. HART ist eine eingetragene Marke der HART Communication Foundation. Foundation fieldbus ist eine eingetragene Marke der Fieldbus Foundation. Alle anderen Marken sind Eigentum der jeweiligen Inhaber.

© April 2013 Rosemount, Inc. Alle Rechte vorbehalten.

Deutschland Emerson Process Management GmbH & Co. OHG Argelsrieder Feld 3 82234 Weßling Deutschland T +49 (0) 8153 939 - 0 F +49 (0) 8153 939 - 172 www.emersonprocess.de Schweiz Emerson Process Management AG Blegistrasse 21 6341 Baar-Walterswil Schweiz T +41 (0) 41 768 6111 F +41 (0) 41 761 8740 www.emersonprocess.ch Österreich Emerson Process Management AG Industriezentrum NÖ Süd Straße 2a, Objekt M29 2351 Wr. Neudorf Österreich T +43 (0) 2236-607 F +43 (0) 2236-607 44 www.emersonprocess.at

