
Rosemount 3051 Druckmessumformer

mit Profibus PA Protokoll

August 2010

Rosemount Druckmessumformer 3051

HINWEIS

Lesen Sie diese Betriebsanleitung, bevor Sie mit dem Produkt arbeiten. Bevor Sie das Produkt installieren, in Betrieb nehmen oder warten, sollten Sie über ein entsprechendes Produktwissen verfügen, um somit eine optimale Produktleistung zu erzielen sowie die Sicherheit von Personen und Anlagen zu gewährleisten.

Technische Unterstützung erhalten Sie unter:

Kundendienst

Technischer Kundendienst, Angebote und Fragen zu Aufträgen.

Vereinigte Staaten – 1-800-999-9307 (7 bis 19 Uhr CST)

Asien-Pazifik - 65 777 8211

Europa / Naher Osten / Afrika - 49 (8153) 9390

North American Response Center

Geräteservice

1-800-654-7768 (24 Stunden - inkl. Kanada)

Außerhalb dieser Regionen wenden Sie sich bitte an Emerson Process Management.

⚠ ACHTUNG

Die in diesem Dokument beschriebenen Produkte sind NICHT für nukleare Anwendungen qualifiziert und ausgelegt. Werden Produkte oder Hardware, die nicht für den nuklearen Bereich qualifiziert sind, im nuklearen Bereich eingesetzt, kann das zu ungenauen Messungen führen.

Informationen zu nuklear-qualifizierten Rosemount Produkten erhalten Sie von Emerson Process Management.

Inhaltsverzeichnis

ABSCHNITT 1 Einleitung	Leitfaden zu dieser Betriebsanleitung Service Unterstützung Modellpalette Geräteversionen Messumformer Übersicht. Produkt Recycling/ Entsorgung	1-2 1-3 1-3
ABSCHNITT 2	Übersicht	2-1
Konfiguration	Sicherheitshinweise	
	Warnungen	2-1
	Ex-Zulassungen	
	Richtlinien für die Konfiguration	
	Profile 3.02 Identifikationsnummern Adaptationsmodus	
	Blockmodi	
	Konfigurations-Hilfsmittel	
	Grundeinstellungen	
	Zuweisung der Adresse	
	Druckkonfiguration	
	Durchflusskonfiguration	
	Füllstand konfigurieren	
	Radizierung bei der DP Konfiguration	
	Dämpfung	
	Prozessalarm	
	LCD Anzeige	2-7
	Schreibschutz	
	Bedieninterface Sicherheit	2-8
	Simulation	2-8
ABSCHNITT 3	Übersicht	3-1
Hardware Installation	Sicherheitshinweise	
	Warnungen	
	Anforderungen an die Installation	3-2
	Anforderungen an die Mechanik	
	Anforderungen an die Messstellenumgebung	
	Installationsverfahren	
	Messumformer montieren	
	Impulsleitungen	
	Prozessanschlüsse	
	Prozessanschluss mit Inline Flansch	
	Rosemount 305, 306 und 304 Integrierte Ventilblöcke	
	Rosemount 305 Integrierter Ventilblock, Installationsanweisung Rosemount 306 Integrierter Ventilblock, Installationsanweisung	
	Rosemount 304 Konventioneller Ventilblock,	5-14
	Installationsanweisung	3-14
	Ventilblock Funktionsweise	
	Füllstandsmessung von Flüssigkeiten	
	Offene Behälter	
	Goschlossono Bohältor	2 10

Sicherheitsanleitung

Rosemount 3051

00809-0105-4797, Rev CA August 2010

ABSCHNITT 4	Übersicht	4-1
Elektrische Installation	Sicherheitshinweise	4-1
	Warnungen	4-1
	LCD Anzeige	4-1
	LCD Anzeige mit Bedieninterface	4-2
	Sicherheit und Simulation konfigurieren	4-2
	Elektrische Anforderungen	4-3
	Montage Kabeldurchführung/ -schutzrohr	4-3
	Verdrahtung	4-4
	Erdung der Signalverdrahtung	4-6
	Anschlussklemmenblock mit integriertem Überspannungsschutz Erdung	
ABSCHNITT 5	Übersicht	5-1
Kalibrierung	Sicherheitshinweise	5-1
9	Warnungen	5-1
	Übersicht Einstellungsmöglichkeiten	5-2
	Nullpunktabgleich	5-2
	Sensorabgleich	5-2
	Werksabgleich aufrufen	5-2
	Einstellintervalle festlegen	5-3
	Nullpunktabgleich	5-5
	Sensorabgleich	5-5
	Werksabgleich abrufen	5-6
	Kompensation des statischen Drucks	5-7
	Bereich 2 und Bereich 3	5-7
	Bereich 4 und Bereich 5	5-7
ABSCHNITT 6	Übersicht	
Störungssuche und	Sicherheitshinweise	
-behebung	Warnungen	
	Diagnostische Identifizierung und empfohlene Maßnahmen	
	Erweiterte Diagnose-Identifizierung mit Master Klasse 1	
	PlantWeb und NE107 Diagnose	
	Alarmmeldungen und Auswahl der Ausfallsicherungsart	
	Demontageverfahren	
	Anschlussklemmenblock ausbauen	
	Ausbau der Elektronikplatine	
	Sensormodul aus dem Elektronikgehäuse ausbauen	
	Montageverfahren	
	Elektronikplatine installieren	
	Anschlussklemmenblock installieren	
	Ablass-/Entlüftungsventil installieren	
	/\puiass*/Elitiultuilusvelitii iliställieleli	0-10

Sicherheitsanleitung 00809-0105-4797, Rev CA August 2010

Rosemount 3051

ANHANG A Technische Daten

Leistungsdaten	
Übereinstimmung mit der Spezifikation (±3σ [Sigma])	
Referenzgenauigkeit	A-2
Leistungsmerkmal Durchfluss – Referenzgenauigkeit Durchfluss	
Gesamtgenauigkeit	
Langzeitstabilität	
Dynamische Genauigkeit	
Einfluss des statischen Drucks pro 6,9 MPa (1000 psi)	
Einfluss der Umgebungstemperatur pro 28 °C (50 °F)	A-4
Einfluss der Einbaulage	A-5
Einfluss von Vibrationen	A-5
Einfluss der Spannungsversorgung	A-5
RFI-Einflüsse	A-5
Elektromagnetische Verträglichkeit (EMV)	A-5
Überspannungsschutz (Option Code T1)	A-5
Funktionsbeschreibung	
Messbereichs- und Sensorgrenzen	A-5
Einsatzbereiche	
HART 4-20 mA (Ausgangscode A)	
FOUNDATION Feldbus (Ausgangscode F)	
Profibus PA (Ausgangscode W)	A-8
1–5 VDC HART Low Power (Ausgangscode M)	A-9
Überlastgrenzen für den Druck	A-9
Statische Druckgrenzen	A-9
Berstdrücke	.A-10
Alarmverhalten	.A-10
Zulässige Temperaturen	
Feuchte	
Einschaltzeit	.A-11
Verdrängungsvolumen	
Dämpfung	.A-11
Geräteausführungen	.A-12
Elektrische Anschlüsse	
Prozessanschlüsse	
Prozessmedienberührte Teile	
Rosemount 3051L Medienberührte Teile	.A-12
Nicht medienberührte Teile	.A-13
Versandgewichte	.A-14
Maßzeichnungen	.A-15
Bestellinformationen	.A-24
Optionen	.A-39
Ersatzteile	.A-45

Sicherheitsanleitung 00809-0105-4797, Rev CA August 2010

ANHANG B	L'Ib a raight	D 4
	Übersicht	
Produkt-Zulassungen	Sicherheitshinweise	
	Warnungen	
	Zugelassene Herstellungsstandorte	
	Informationen zu EU-Richtlinien	B-2
	Ex-Zulassungen	B-2
	Zulassungskombinationen	
	Zulassungs-zeichnungen	
	Factory Mutual 03031-1019	
	Canadian Standards Association (CSA) 03031-1024	
	Standards Association of Australia (SAA) 03031-1026	
ANHANG C	Übersicht	C-1
	Sicherheitshinweise	
Menü Bedieninterface		
	Warnungen	
ANHANG D	Übersicht	
Profibus	Sicherheitshinweise	
	Warnungen	
Blockinformationen	Parameter des Profibus Blocks	
	Komprimierter Status	
	Nonphilioto datas	D-(

Abschnitt 1 Einleitung

LEITFADEN ZU DIESER BETRIEBSANLEITUNG

Die einzelnen Abschnitte in dieser Betriebsanleitung liefern Ihnen die Informationen, die Sie für Installation, Betrieb und Wartung des Rosemount 3051 benötigen. Die Abschnitte sind folgendermaßen untergliedert:

Abschnitt 2: Konfiguration enthält Anweisungen für die Inbetriebnahme und den Betrieb der Rosemount Messumformer 3051. Informationen über Softwarefunktionen, Konfigurationsparameter und Online-Variablen sind ebenfalls in diesem Abschnitt enthalten.

Abschnitt 3: Hardware Installation enthält Anweisungen zur mechanischen Installation sowie Upgrade Optionen vor Ort.

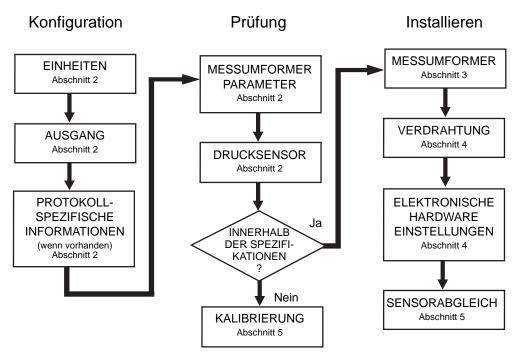
Abschnitt 4: Elektrische Installation enthält Anweisungen zur elektrischen Installation sowie Upgrade Optionen vor Ort.

Abschnitt 5: Kalibrierung enthält Techniken für Betrieb und Wartung.

Abschnitt 6: Störungssuche und -behebung enthält Techniken zur Störungsanalyse und -beseitigung für die am häufigsten auftretenden Betriebsprobleme.

Anhang A: Technische Daten enthält technische Daten und Spezifikationen sowie Bestellinformationen.

Anhang B: Produkt-Zulassungen enthält Informationen über eigensichere Zulassungen, die europäische ATEX Richtlinie und Zulassungszeichnungen.


Anhang C: Menü Bedieninterface enthält das komplette Menü des Bedieninterface.

Anhang D: Profibus Blockinformationen enthält Informationen über Profibus Blöcke und Parameter.

Abbildung 1-1. Flussdiagramm zur Inbetriebnahme und Installation

SERVICE UNTERSTÜTZUNG

Bezüglich Service, Unterstützung sowie Rücklieferung und Reparaturen setzen Sie sich mit Emerson Process Management des jeweiligen Landes (siehe Rückseite dieser Betriebsanleitung) in Verbindung.

In den Vereinigten Staaten wenden Sie sich an das Emerson Process Management Response Center unter der gebührenfreien Telefonnummer 1 800 654 7768. Das Kundendienstzentrum ist rund um die Uhr besetzt, um Ihnen die benötigten Informationen oder Teile bereitzustellen.

Sie müssen die Modell- und Seriennummern des Produktes bereithalten und es wird Ihnen eine Rücksendegenehmigungs-Nummer (Return Material Authorization [RMA]) für das Produkt zugeteilt. Sie werden auch nach dem Prozessmedium gefragt, dem das Produkt zuletzt ausgesetzt war.

⚠ ACHTUNG

Personen, die Produkte handhaben, die gefährlichen Substanzen ausgesetzt sind, können Verletzungen vermeiden, wenn Sie über die Gefahren beim Umgang mit solchen Produkten informiert sind und sich dieser Gefahren bewusst sind. Wenn das zurückgesandte Produkt gefährlichen Substanzen ausgesetzt war, muss bei dessen Rücksendung für jede gefährliche Substanz eine Kopie des Sicherheitsdatenblattes (MSDS) beigefügt werden.

Die Mitarbeiter des Emerson Process Management Instrument and Valve Response Center können Ihnen die zusätzlichen Informationen und Verfahren erläutern, die bei der Rücksendung von Produkten, die gefährlichen Substanzen ausgesetzt wurden, zu beachten sind.

MODELLPALETTE

August 2010

In dieser Betriebsanleitung werden die folgenden Rosemount Druckmessumformer der Serie 3051 beschrieben.

Rosemount 3051C Coplanar Druckmessumformer

Rosemount 3051CD Differenzdruck Messumformer Zur Messung von Differenzdruck bis 137,9 bar (2000 psi).

Rosemount 3051CG Überdruck Messumformer Zur Messung von Überdruck bis 137,9 bar (2000 psi).

Rosemount 3051CA Absolutdruck Messumformer Zur Messung von Absolutdruck bis 275,8 bar (4000 psia).

Rosemount 3051T Inline Druckmessumformer

Rosemount 3051T Messumformer für Über- und Absolutdruck Zur Messung von Überdruck bis 689,5 bar (10000 psi).

Rosemount 3051L Messumformer für Flüssigkeitsfüllstand

Zur präzisen Messung von Füllstand und spezifischer Dichte bis zu 20,7 bar (300 psi) für einen grossen Bereich von Tankkonfigurationen.

HINWEIS

Für Rosemount 3051 mit HART[®] siehe Rosemount Betriebsanleitung 00809-0105-4001. Für Rosemount 3051 mit FOUNDATION[™] Feldbus siehe Rosemount Betriebsanleitung 00809-0100-4774.

GERÄTEVERSIONEN

Tabelle 1-1. Geräteversionen (NE53)

Datum	Softwareversion	Profibus Profil	Softwareänderungen	Kompatible Dateien	Betriebsanleitung Version
08/10	2.5.0 [11]	3.02	Neues Produkt	3051 GSD: rmt4444.gsd Profil 3.02 GSD: pa139700.gsd DD: ROPA3TP_3051.ddl DTM: Pressure_Profibus_3.02_DTM_v1.0.8.exe	CA

MESSUMFORMER ÜBERSICHT

Die Rosemount Messumformer 3051C Coplanar[™] werden als Differenzdruck (DP), Druck (GP) und Absolutdruck (AP) Messgeräte angeboten. Der Rosemount 3051C verwendet für die DP und GP Messgeräte die kapazitive Sensortechnologie von Emerson Process Management. Bei den Rosemount Messgeräten 3051T und 3051CA kommt die piezoresistive Sensortechnologie zum Einsatz.

Die Hauptkomponenten der Rosemount Modellreihe 3051 sind das Sensormodul und das Elektronikgehäuse. Das Sensormodul beinhaltet das mit Öl gefüllte Sensorsystem (bestehend aus Trennmembranen, Ölfüllung und Sensor) sowie der Sensorelektronik. Die Sensorelektronik ist im Sensormodul installiert und besteht aus einem Temperatursensor (Widerstandsthermometer [RTD]), einem Speichermodul und dem kapazitiven/digitalen Wandler (C/D Wandler). Die elektronischen Signale vom Sensormodul werden zur Ausgangselektronik im Elektronikgehäuse gesendet. Das Elektronikgehäuse enthält die Ausgangs-Elektronikplatine, die Tasten für das Bedieninterface und den Anschlussklemmenblock.

Wenn die Trennmembranen des Rosemount 3051C mit Druck beaufschlagt werden, wird die mittlere Membran durch das Öl ausgelenkt, was eine Änderung der Kapazität zur Folge hat. Dieses kapazitive Signal wird im C/D Wandler in ein digitales Signal umgewandelt. Der Mikroprozessor berechnet aus den digitalen Signalen von Widerstandsthermometer und C/D Wandler den korrigierten Messumformerausgang.

PRODUKT RECYCLING/ ENTSORGUNG

Recycling und Entsorgung des Gerätes und der Verpackung hat entsprechend den lokalen und nationalen Gesetzgebung/Vorschriften zu erfolgen.

Abschnitt 2 Konfiguration

Übersicht	Seite 2-1
Sicherheitshinweise	
Ex-Zulassungen	Seite 2-1
Richtlinien für die Konfiguration Seite	
Grundeinstellungen	Seite 2-3
Detaillierte Einstellungspunkte	Seite 2-4

ÜBERSICHT

Dieser Abschnitt enthält Informationen über die Inbetriebnahme des Rosemount 3051 Profibus Druckmessumformers unter Verwendung des Bedieninterface (LOI) oder des Masters Klasse 2.

SICHERHEITSHINWEISE

Verfahren und Anweisungen in diesem Abschnitt können besondere Vorsichtsmaßnahmen erfordern, um die Sicherheit des Bedienungspersonals zu gewährleisten. Informationen, die eine erhöhte Sicherheit erfordern, sind mit einem Warnsymbol () markiert. Lesen Sie die folgenden Sicherheitshinweise, bevor ein durch dieses Symbol gekennzeichnetes Verfahren durchgeführt wird.

Warnungen

⚠ WARNUNG

Explosionen können zu schweren oder tödlichen Verletzungen führen

Die Installation dieses Messumformers in explosionsgefährdeten Umgebungen muss entsprechend der lokalen, nationalen und internationalen Normen, Vorschriften und Empfehlungen erfolgen. Einschränkungen in Verbindung mit der sicheren Installation finden Sie in der Betriebsanleitung für den 3051 im Kapitel "Zulassungen".

 Bei einer Ex-Schutz/Druckfeste Kapselung Installation die Gehäusedeckel des Messumformers nicht entfernen, wenn der Stromkreis unter Spannung steht.

Prozessleckagen können zu schweren oder tödlichen Verletzungen führen.

 Vor der Druckbeaufschlagung müssen die Prozessanschlüsse installiert und fest angezogen werden.

Elektrischer Schlag kann zu schweren oder tödlichen Verletzungen führen.

 Kontakt mit den Leitungsadern und Anschlussklemmen vermeiden. Elektrische Spannung an den Leitungsadern kann zu elektrischen Schlägen führen.

EX-ZULASSUNGEN

⚠ Die einzelnen Messumformer sind eindeutig mit einem Schild versehen, das die entsprechenden Zulassungen angibt. Messumformer müssen gemäß allen zutreffenden Normen und Vorschriften installiert werden, um diesen Zulassungen zu entsprechen. Informationen zu Zulassungen siehe "Ex-Zulassungen" auf Seite B-2.

ROSEMOUNT

August 2010

Rosemount 3051

RICHTLINIEN FÜR DIE KONFIGURATION

Der Rosemount 3051 kann vor oder nach der Installation konfiguriert werden. Durch Konfigurieren des Messumformers in der Werkstatt mit dem Bedieninterface oder dem Master Klasse 2 wird gewährleistet, dass alle Komponenten des Messumformers vor der Installation ordnungsgemäß funktionieren.

Bei der Konfiguration in der Werkstatt werden eine Spannungsversorgung, ein Bedieninterface (Option M4) oder ein Master Klasse 2 mit DP/PA Koppler, die geeignete Kabel und Abschlüsse benötigt.

Sicher stellen, dass die Hardware-Steckbrücke Sicherheit zur Konfiguration in der Position OFF (AUS) steht. Siehe Abbildung 4-2 bezüglich der Positionierung der Steckbrücke.

Profile 3.02 Identifikationsnummern Adaptationsmodus

Rosemount 3051 Profibus Profile 3.02 Geräte sind ab Werk auf den Identifikationsnummern Adaptationsmodus (0127) eingestellt. In diesem Modus kann der Messumformer mit allen Profibus Mastern Klasse 1 entweder über das generische Profile GSD (9700) oder das für Rosemount 3051 spezifische GSD (4444) kommunizieren.

Blockmodi

Beim Konfigurieren eines Geräts über das Bedieninterface wechselt der Ausgangsstatus auf *Gut – Funktionsprüfung*, um die Hosts zu alarmieren, dass sich der Messumformer nicht im normalen Betriebsmodus befindet.

Beim Konfigurieren eines Geräts mit einem Master Klasse 2 müssen die Blöcke eingestellt werden auf *Außer Betrieb (Out of Service [OOS])*, um Parameter herunter zu laden, die sich auf den Ausgang auswirken können. So wird verhindert, dass der Master Klasse 1 einen Ausgangssprung erkennt, ohne einen Statuswechsel. Die Einstellung der Blöcke auf *OOS* und zurück auf *Auto* wird unter Verwendung des Rosemount 3051 DD oder DTM automatisch über den Master Klasse 2 durchgeführt. Daher müssen für die Konfiguration dieses Geräts keine weiteren Maßnahmen durchgeführt werden.

Konfigurations-Hilfsmittel

Der Rosemount 3051 kann mit zwei Hilfsmitteln konfiguriert werden: Über das Bedieninterface oder dem Master Klasse 2.

Das Bedieninterface erfordert die Bestellung von Option Code M4. Zum Aktivieren des Bedienerinterface wird eine der Konfigurationstasten unter dem oberen Schild des Messumformers gedrückt. Siehe Tabelle 2-1 und Abbildung 2-1 bzgl. Informationen zum Betrieb und Menü. Eine komplette Menüstruktur des Bedieninterface ist in Anhang D zu finden.

Für den Master Klasse 2 werden entweder die Dateien DD oder DTM zur Konfiguration benötigt. Diese Dateien befinden sich auf www.rosemount.com oder sind über Emerson Process erhältlich.

Der weitere Teil dieses Abschnittes beschreibt die Konfigurationspunkte unter Verwendung eines der Konfigurations-Hilfsmittel.

HINWEIS

Die Anweisungen in diesem Abschnitt verwenden die Ausdrücke, die im Master Klasse 2 oder dem Bedieninterface verwendet werden. Einen Querverweis von Spezifikationsparametern des Masters Klasse 2, des Bedieninterface und des Profibus finden Sie unter Anhang D: Profibus Blockinformationen.

GRUNDEINSTELLUNGEN

Die folgenden Punkte werden für die erste Konfiguration des Rosemount 3051 Profibus Geräts empfohlen.

Zuweisung der Adresse

Der Rosemount 3051 wird mit der vorläufigen Adresse 126 geliefert. Diese muss auf einen eindeutigen Wert zwischen 0 und 125 geändert werden, um eine Verbindung zum Master Klasse 1 herzustellen. Adressen von 0–2 sind normalerweise für den Master reserviert, weshalb die Messumformer Adressen 3 bis 125 für das Gerät empfohlen werden.

Die Adresse lässt sich einstellen über:

- Das Bedienerinterface (LOI) siehe Tabelle 2-1 und Abbildung 2-1
- Den Master Klasse 2 siehe entsprechende Betriebsanleitung für den Master Klasse 2 bezüglich der Einstellung der Geräteadresse

Druckkonfiguration

Falls nicht anderweitig gefordert, wird der Rosemount 3051 mit den folgenden Einstellungen ausgeliefert:

· Messart: Druck

Physikalische Einheiten: Inch H₂O

Linearisierung: KeineSkalierung: Keine

Alle diese Parameter können eingestellt werden über

- Das Bedienerinterface (LOI) siehe Tabelle 2-1 und Abbildung 2-1
- Den Master Klasse 2 siehe Tabelle 2-2 bzgl. der Konfiguration

Parameter Druckeinheit

Das Bedieninterface wurde so entwickelt, dass es bei Auswahl einer Druckeinheit automatisch die folgenden Parameter einstellt:

Messart: Druck

Linearisierung: Keine

Skalierung: Keine

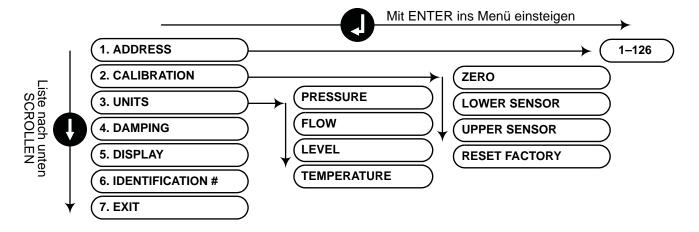

Bei der Konfiguration von Durchfluss oder Füllstand mit dem Bedieninterface siehe voreingestellte Konfiguration.

Tabelle 2-1. Bedienung des Bedieninterface

Tasten	Aktion	Navigation	Zeicheneingabe	Speichern?
0		Durchläuft die Menükategorien	Ändert den Zeichenwert ⁽¹⁾	Wechselt zwischen "Speichern" und "Abbrechen"
•	Eingabe	Wahl der Menükategorie	Eingabe von Zeichen und Vorrücken	Speichern

⁽¹⁾ Zeichen blinken, wenn sie geändert werden können.

Abbildung 2-1. Bedieninterface Menü

HINWEIS

Siehe Anhang C bezüglich eines detaillierteren Bedieninterface-Menüs und einer Liste der Einheiten.

Tabelle 2-2. Druckkonfiguration mit Master Klasse 2

Schritte	Kategorie >> Feld >> Wert
Messart einstellen ⁽¹⁾	Primärwert >> Typ des Primärwerts >> Druck
Einheiten auswählen Alle Einheiten müssen übereinstimmen	Eingangsskalierung (Transducer Block) >> Einheit (Sekundärwert 1) >> [Druckeinheit] Ausgangsskalierung (Transducer Block) >> Einheit (PV) >> [Druckeinheit] Ausgangssignal (Al Block) >> Einheit (Ausgang) >> [Druckeinheit]
Skalierung eingeben Die Skalierung wird im Transducer Block durchgeführt. Für die Druckmessung ist keine Skalierung erforderlich.	Eingangsskalierung (Transducer Block) >> Unterer Wert >> 0 Eingangsskalierung (Transducer Block) >> Oberer Wert >> 100 Ausgangsskalierung (Transducer Block) >> Unterer Wert >> 0 Ausgangsskalierung (Transducer Block) >> Oberer Wert >> 100
Analogeingang (AI) Block prüfen Die Skalierung sollte im Al Block nicht wiederholt werden	Prozesswertskala (AI Block) >> Unterer Wert >> 0 Prozesswertskala (AI Block) >> Oberer Wert >> 100 Ausgangsskalierung (AI Block) >> Unterer Wert >> 0 Ausgangsskalierung (AI Block) >> Oberer Wert >> 100 Ausgangssignal (AI Block) >> Charakterisierungsart >> Keine Linearisierung

⁽¹⁾ Messart Druck setzt Linearisierung auf Keine (Charakterisierung >> Charakterisierungsart >> Keine Linearisierung), wenn sie auf das Gerät herunter geladen wird. Die Konfiguration erneut hochladen, um die neue Charakterisierungsart zu bestätigen.

DETAILLIERTE EINSTELLUNGSPUNKTE

Die folgenden Punkte erläutern die Schritte zur Konfiguration des Rosemount 3051 für eine Durchfluss- oder Füllstandmessung sowie die Konfiguration zusätzlicher Geräteparameter.

Durchflusskonfiguration

Bedieninterface

Zur Konfiguration des Rosemount 3051 für die Durchflussmessung mit dem Bedieninterface UNITS >> FLOW wählen (EINHEITEN >> DURCHFLUSS). Bei Konfiguration der Einheiten für den Durchfluss werden die folgenden Parameter eingestellt:

Messart: Durchfluss Linearisierung: Radiziert

Bei der Konfiguration der Einheit definiert der Anwender die Skalierung, die Einheiten und die Schleichmengenabschaltung gemäß der Anwendungsanforderungen. Für weitere Unterstützung zur Skalierung siehe Anhang D bezüglich eines detaillierten Menüs.

HINWEIS

Das Bedieninterface setzt die Skalierung basierend auf dem Nullpunkt (Min. Druck = Min. Durchfluss = Null) für die Durchflussanwendungen voraus, um die Effizienz der Konfiguration zu verbessern. Master Klasse 2 können verwendet werden, wenn eine Skalierung erforderlich ist, die nicht auf dem Nullpunkt basiert. Der Vorgabewert für die Schleichmengenabschaltung beträgt 5,0 %. Die Schleichmengenabschaltung kann nach Bedarf auch auf 0 % eingestellt werden.

Master Klasse 2

Siehe Tabelle 2-3 bezüglich der Konfiguration des Durchflusses mit einem Master Klasse 2.

Tabelle 2-3. Durchflusskonfiguration mit Master Klasse 2

Schritte	Kategorie >> Feld >> Wert
Messart einstellen ⁽¹⁾	Primärwert >> Typ des Primärwerts >> Durchfluss
Einheiten auswählen Alle Durchflusseinheiten	Eingangsskalierung (Transducer Block) >> Einheit (Sekundärwert 1) >> [Druckeinheit]
müssen übereinstimmen	Ausgangsskalierung (Transducer Block) >> Einheit (PV) >> [Durchflusseinheit] Ausgangssignal (Al Block) >> Einheit (Ausgang) >> [Durchflusseinheit]
Skalierung eingeben Die Skalierung wird im Transducer Block durchgeführt	Eingangsskalierung (Transducer Block) >> Unterer Wert >> 0 Eingangsskalierung (Transducer Block) >> Oberer Wert >> [HI Druckwert] Ausgangsskalierung (Transducer Block) >> Unterer Wert >> 0 Ausgangsskalierung (Transducer Block) >> Oberer Wert >> [HI Durchflusswert] Primärwert > Schleichmengenabschaltung >> [% des Durchflussbereichs]
Analogeingang (AI) Block prüfen Die Skalierung sollte im AI Block nicht wiederholt werden	Prozesswertskala (Al Block) >> Unterer Wert >> 0 Prozesswertskala (Al Block) >> Oberer Wert >> 100 Ausgangsskalierung (Al Block) >> Unterer Wert >> 0 Ausgangsskalierung (Al Block) >> Oberer Wert >> 100 Ausgangssignal (Al Block) >> Charakterisierungsart >> Keine Linearisierung

⁽¹⁾ Messart Durchfluss setzt die Linearisierung auf Radiziert (Charakterisierung >> Charakterisierungsart >> Radiziert), wenn sie auf das Gerät heruntergeladen wird. Die Konfiguration erneut hochladen, um die neue Charakterisierungsart zu bestätigen.

Füllstand konfigurieren

Bedieninterface

Zur Konfiguration des Rosemount 3051 für die Füllstandmessung mit dem Bedieninterface UNITS >> LEVEL wählen (EINHEITEN >> FÜLLSTAND). Bei Konfiguration der Einheiten für den Füllstand werden die folgenden Parameter eingestellt:

Messart: Ebene

Linearisierung: Keine

Bei der Konfiguration der Einheit definiert der Anwender die Skalierung und die Einheiten gemäß der Anwendungsanforderungen. Für weitere Unterstützung zur Skalierung siehe Anhang D bezüglich eines detaillierten Menüs.

Master Klasse 2

Siehe Tabelle 2-4 bezüglich einer Konfiguration des Füllstands mit einem Master Klasse 2.

Tabelle 2-4. Füllstandskonfiguration mit Master Klasse 2

Schritte	Kategorie >> Feld >> Wert
Messart einstellen ⁽¹⁾	Primärwert >> Typ des Primärwerts >> Füllstand
Einheiten auswählen Alle Füllstandeinheiten müssen übereinstimmen	Eingangsskalierung (Transducer Block) >> Einheit (Sekundärwert 1) >> [Druckeinheit] Ausgangsskalierung (Transducer Block) >> Einheit (PV) >> [Füllstandeinheit] Ausgangssignal (Al Block) >> Einheit (Ausgang) >> [Füllstandeinheit]
Skalierung eingeben Die Skalierung wird im Transducer Block durchgeführt	Eingangsskalierung (Transducer Block) >> Unterer Wert >> [LO Druckwert] Eingangsskalierung (Transducer Block) >> Oberer Wert >> [HI Druckwert] Ausgangsskalierung (Transducer Block) >> Unterer Wert >> [LO Füllstandwert] Ausgangsskalierung (Transducer Block) >> Oberer Wert >> [HI Füllstandwert]
Analogeingang (AI) Block prüfen Die Skalierung sollte im AI Block nicht wiederholt werden	Ausgangsskalierung (Al Block) >> Unterer Wert >> 0 Ausgangsskalierung (Al Block) >> Oberer Wert >> 100 Ausgangssignal (Al Block) >> Charakterisierungsart >> Keine Linearisierung

⁽¹⁾ Messart Füllstand setz die Linearisierung auf Keine (Charakterisierung >> Charakterisierungsart >> Radiziert), wenn sie auf das Gerät heruntergeladen wird. Die Konfiguration erneut hochladen, um die neue Charakterisierungsart zu bestätigen.

Radizierung bei der DP Konfiguration

Der Rosemount 3051 verfügt über zwei Druckausgangseinstellungen: linear und radiziert. Aktivieren Sie die Radizierung, um ein durchflussproportionales Ausgangssignal zu erhalten.

Um den Messumformer auf den Ausgang Radizierung für den Differenzdruck einzustellen, muss ein Master Klasse 2 verwendet werden. Siehe Tabelle 2-5 bezüglich der Konfiguration.

Tabelle 2-5. Radizierung der DP Konfiguration unter Verwendung des Masters Klasse 2

Schritte	Kategorie >> Feld >> Wert				
Messart einstellen ⁽¹⁾	Primärwert >> Typ des Primärwerts >> Druck				
Einheiten auswählen Alle Einheiten müssen übereinstimmen	Eingangsskalierung (Transducer Block) >> Einheit (Sekundärwert 1) >> [Druckeinheit] Ausgangsskalierung (Transducer Block) >> Einheit (PV) >> [Druckeinheit] Ausgangssignal (Al Block) >> Einheit (Ausgang) >> [Druckeinheit]				
Skalierung eingeben Die Skalierung wird im Transducer Block durchgeführt. Für die Druckmessung ist keine Skalierung erforderlich.	Eingangsskalierung (Transducer Block) >> Unterer Wert >> 0 Eingangsskalierung (Transducer Block) >> Oberer Wert >> 100 Ausgangsskalierung (Transducer Block) >> Unterer Wert >> 0 Ausgangsskalierung (Transducer Block) >> Oberer Wert >> 100				
Analogeingang (AI) Block prüfen Die Radizierung muss im Al Block angewandt werden	Prozesswertskala (Al Block) >> Unterer Wert >> 0 Prozesswertskala (Al Block) >> Oberer Wert >> 1 Ausgangsskalierung (Al Block) >> Unterer Wert >> 0 Ausgangsskalierung (Al Block) >> Oberer Wert >> 1 Ausgangssignal (Al Block) >> Charakterisierungsart >> Radizierung				

⁽¹⁾ Messart Druck setzt die Linearisierung auf Keine (Charakterisierung >> Charakterisierungsart >> Keine Linearisierung), wenn sie auf das Gerät heruntergeladen wird. Daher wird die Radizierung im Al Block wie abgebildet gesetzt.

Dämpfung

Eine vom Benutzer ausgewählte Dämpfung beeinflusst die Reaktionsfähigkeit des Messumformers auf Änderungen im angewendeten Verfahren. Im Rosemount 3051 wird der voreingestellte Dämpfungswert von 0,0 Sekunden im Analogeingangs (AI) Block angewandt.

Die Dämpfung kann eingestellt werden über

- Das Bedienerinterface (LOI) siehe Tabelle 2-1 und Abbildung 2-1
- Den Master Klasse 2 siehe Tabelle 2-6 bzgl. der Konfiguration

Tabelle 2-6. Dämpfungskonfiguration mit Master Klasse 2

Schritte	Kategorie >> Feld >> Wert			
Dämpfung einstellen	Dämpfung >> Zeitkonstante des Filters >> [Wert]			

Prozessalarm

Die Prozessalarme aktivieren einen Ausgangsalarmstatus, wenn der voreingestellte Alarmwert überschritten wurde. Ein Prozessalarm wird kontinuierlich ausgesendet, wenn die Ausgangssollwerte überschritten werden. Die Prozesswarnung wird zurückgesetzt, wenn der Bereich in den normalen Bereich zurückkehrt.

Prozessalarmparameter werden folgendermaßen definiert

- Hoch Alarm: Ändert Ausgangsstatus auf Gut Kritischer Alarm Obere Grenze
- Hoch Warnung: Ändert Ausgangsstatus auf Gut Hinweisalarm Obere Grenze
- Niedrig Warnung: Ändert Ausgangsstatus auf Gut Hinweisalarm Untere Grenze
- Niedrig Alarm Ändert Ausgangsstatus auf Gut Kritischer Alarm Untere Grenze
- Alarmhysterese: Der Wert, um den der Ausgang wieder in den Bereich zurückkehren muss, bevor der Alarm gelöscht wird.

Beispiel: Hoch Alarm = 100 psi. Alarmhysterese = 0,5 psi. Nach Aktivierung bei 100 psi wird der Alarm gelöscht, sobald der Ausgang unter 99,5 psi = 100–0,5 psi abfällt.

Prozessalarme können eingestellt werden über

• Den Master Klasse 2 – siehe Tabelle 2-7 bzgl. der Konfiguration

Tabelle 2-7. Prozessalarmkonfiguration mit Master Klasse 2

Schritte	Kategorie >> Feld >> Wert
Prozessalarme eingeben	Ausgangsgrenzwerte >> Alarm unterer Grenzwert >> [Wert]
	Ausgangsgrenzwerte >> Warnung unterer Grenzwert >> [Wert]
	Ausgangsgrenzwerte >> Warnung oberer Grenzwert >> [Wert]
	Ausgangsgrenzwerte >> Alarm oberer Grenzwert >> [Wert]
	Ausgangsgrenzwerte >> Alarmhysterese >> [Wert]

LCD Anzeige

Die LCD Anzeige ist direkt mit der Elektronikplatine verbunden, die direkten Zugang zu den Signalanschlussklemmen bietet. Im Lieferumfang der LCD Anzeige ist ein entsprechender Gehäusedeckel enthalten.

Das Display zeigt stets den Messumformerausgang (Druck, Durchfluss oder Füllstand) sowie eine Abkürzung des Diagnosestatus (falls zutreffend) an. Temperatur und Druck des Sensors sind optionale Variablen, die mit dem Bedieninterface oder dem Master Klasse 2 konfiguriert werden können. Wenn es eingeschaltet wird, wechselt das Display zwischen den ausgewählten Variablen.

Für eine Konfiguration der LCD Anzeige über

- Das Bedienerinterface (LOI) siehe Tabelle 2-1 und Abbildung 2-1 auf Seite 2-4
- Master Klasse 2 siehe Tabelle 2-8

Tabelle 2-8. Konfiguration der LCD Anzeige mit Master Klasse 2

Schritte	Kategorie >> Feld >> Wert			
Displayvariablen auswählen	Bedieninterface (LOI) >> Displayauswahl >> [Auswählen]			

Schreibschutz

Der Rosemount 3051 verfügt über hierarchische Sicherheitsfunktionen. Die Steckbrücke Sicherheit auf der Elektronikplatine (oder optional der LCD Anzeige) stellt die höchste Sicherheitsstufe dar. Wenn die Steckbrücke ON Position ist, werden alle Schreibvorgänge zum Messumformer deaktiviert (einschließlich Schreibvorgänge vom Bedieninterface oder einem Master Klasse 2).

Siehe Abschnitt 4: Sicherheit und Simulation konfigurieren bezüglich Details der Konfiguration der Steckbrücke.

Bedieninterface Sicherheit

Zusätzlich zur Steckbrücke Sicherheit kann das Bedieninterface des Rosemount 3051 Profibus mit zwei verschiedenen Softwareparametern geschützt werden:

- Bedieninterface aktiviert: Verhindert die Betätigung der lokalen Konfigurationstasten, wodurch das Bedieninterface deaktiviert wird.
- Bedieninterface Passwort: Der Anwender muss ein vierstelliges Passwort ungleich Null am Messumformer eingeben, um das Bedieninterface betätigen zu können.

Diese Parameter können eingestellt werden über

Master Klasse 2 – siehe Tabelle 2-9

Tabelle 2-9. Bedieninterface Sicherheitskonfiguration mit Master Klasse 2

Schritte	Kategorie >> Feld >> Wert
Tasten deaktivieren	Bedieninterface (LOI) >> Bedieninterface aktiv? >> Deaktiviert
Tasten aktivieren	Bedieninterface (LOI) >> Bedieninterface aktiv? >> Aktiviert
Bedieninterface Passwort ein	Bedieninterface (LOI) >> Passwort >> [Wert eingeben]
Bedieninterface Passwort aus	Bedieninterface (LOI) >> Passwort >> 0

HINWEIS

Die Steckbrücke Sicherheit muss in der Position OFF und die Tasten aktiviert sein, damit das Bedieninterface funktioniert. Das Passwort erscheint, nachdem das Bedieninterface über die lokalen Einstelltasten aktiviert wurde.

Simulation

Die Simulation ist im Al Block und wird verwendet, um den Ausgang vom Transducer Block zu überprüfen. Der Rosemount 3051 verfügt über eine Steckbrücke Simulation auf der Elektronikplatine (oder optionalen LCD Anzeige), die auf die Position ON (EIN) gesetzt sein muss, um eine Simulation durchzuführen.

HINWEIS

Diese Steckbrückenposition wird ignoriert, wenn der Messumformer erstmals eingeschaltet wird. Die Steckbrückenposition muss geändert werden, wenn der Messumformer eingeschaltet wird, um die Simulation zu aktivieren. Wenn die Spannungsversorgung aus- und wieder eingeschaltet wird, ist der Simulationsmodus aus (OFF) ungeachtet der Steckbrückenposition.

Bei aktivierter Simulation hat der aktuelle Messwert keinen Einfluss auf den Ausgangswert oder dessen Status. Der Ausgangswert ist gleich dem simulierten Wert vom Transducer Block plus aller im Al Block durchgeführten Skalierungs- oder Linearisierungseffekte.

Nachdem die Steckbrücke Simulation auf die Position ein gesetzt wurde, kann der Simulationsmodus aktiviert werden über

Master Klasse 2 – siehe Tabelle 2-10

Tabelle 2-10. Simulationskonfiguration mit Master Klasse 2

Schritte	Kategorie >> Feld >> Wert		
Simulation aktivieren	Folgendes aus dem Menü auswählen:		
	Gerät >> Simulation >> Simulation		
	Enabled (Aktiviert) wählen		
	Simulationswert eingeben		
	Simulationsstatus wählen		
	Transfer drücken		
Simulation deaktivieren	Folgendes aus dem Menü auswählen:		
	Gerät >> Simulation >> Simulation		
	Disabled (Deaktiviert) wählen		
	Transfer drücken		
	Close (Schließen) drücken		

Abschnitt 3 Hardware Installation

Übersicht	Seite 3-1
Sicherheitshinweise	Seite 3-1
Anforderungen an die Installation	Seite 3-2
Installationsverfahren	Seite 3-3
Rosemount 305, 306 und 304 Integrierte Ventilblöcke	. Seite 3-13
Füllstandsmessung von Flüssigkeiten	. Seite 3-19

ÜBERSICHT

Dieser Abschnitt enthält Informationen zur Installation des Rosemount 3051. Im Lieferumfang jedes Messumformers enthalten ist eine Kurzanleitung, die den Anschluss an die Rohrleitung, Verdrahtungsverfahren und grundlegende Konfigurationen für die Erstinstallation beschreibt.

SICHERHEITSHINWEISE

Verfahren und Anweisungen in diesem Abschnitt können besondere Vorsichtsmaßnahmen erfordern, um die Sicherheit des Bedienungspersonals zu gewährleisten. Informationen, die eine erhöhte Sicherheit erfordern, sind mit einem Warnsymbol () markiert. Lesen Sie die folgenden Sicherheitshinweise, bevor ein durch dieses Symbol gekennzeichnetes Verfahren durchgeführt wird.

Warnungen

⚠ WARNUNG

Explosionen können zu schweren oder tödlichen Verletzungen führen

Die Installation dieses Messumformers in explosionsgefährdeten Umgebungen muss entsprechend der lokalen, nationalen und internationalen Normen, Vorschriften und Empfehlungen erfolgen. Einschränkungen in Verbindung mit der sicheren Installation finden Sie in der Betriebsanleitung den Modell 3051 im Kapitel "Zulassungen".

 Bei einer Ex-Schutz/Druckfeste Kapselung Installation die Gehäusedeckel des Messumformers nicht entfernen, wenn der Stromkreis unter Spannung steht.

Prozessleckagen können zu schweren oder tödlichen Verletzungen führen.

 Vor der Druckbeaufschlagung müssen die Prozessanschlüsse installiert und fest angezogen werden.

Elektrischer Schlag kann zu schweren oder tödlichen Verletzungen führen.

 Kontakt mit den Leitungsadern und Anschlussklemmen vermeiden. Elektrische Spannung an den Leitungsadern kann zu elektrischen Schlägen führen.

ANFORDERUNGEN AN DIE INSTALLATION

Die Messgenauigkeit hängt von der korrekten Installation des Messumformers und der Impulsleitungen ab. Montieren Sie den Messumformer nahe zum Prozess und halten Sie die Impulsleitungen möglichst kurz, um so eine hohe Genauigkeit zu erreichen. Berücksichtigen Sie ebenso einen leichten Zugang, die Sicherheit für Personen, eine entsprechende Feldkalibrierung und eine geeignete Umgebung für den Messumformer. Montieren Sie den Messumformer so, dass er möglichst geringen Vibrations- und Stoßeinflüssen sowie Temperaturschwankungen ausgesetzt ist.

WICHTIG

Montieren Sie den beiliegenden Verschlussstopfen (siehe Verpackung) in die unbenutzte Kabeleinführung. Drehen Sie den Stopfen mindestens fünf Gewindegänge ein, um die Anforderungen für Explosionsschutz zu erfüllen. Es sind mindestens fünf Gewindegänge einzuschrauben, um die Anforderungen für Explosionsschutz zu erfüllen. Siehe Leitungseinführungsgewinde bezüglich zusätzlicher Anforderungen. Für NEMA 4X, IP66 und IP68 Dichtband (PTFE) oder Gewindedichtungsmittel auf das Außengewinde auftragen, um die wasserdichte Abdichtung zu gewährleisten.

Informationen zur Werkstoffverträglichkeit sind im Dokument Nr. 00816-0100-3045 unter www.emersonprocess.com/rosemount zu finden.

Anforderungen an die Mechanik

Dampfanwendung

Bei Dampfmessung oder Anwendungen mit Prozesstemperaturen, die über den Grenzwerten des Messumformers liegen, blasen Sie die Impulsleitungen nicht über den Messumformer aus. Sperren Sie zum Messumformer hin ab, spülen Sie die Impulsleitungen und befüllen Sie die Leitungen wieder mit Wasser, bevor Sie die Messung fortsetzen.

Seitliche Montage

Zur besseren Entlüftung und Entwässerung montieren Sie den Messumformer mit Coplanar Flansch seitlich zur Prozessleitung. Montieren Sie den Flansch wie in Abbildung 3-9 auf Seite 3-9 gezeigt. Bei Anwendungen mit Gas ordnen Sie die Ablass-/Entlüftungsventile nach unten an, bei Anwendungen mit Flüssigkeiten nach oben.

Anforderungen an die Messstellenumgebung

Montieren Sie den Messumformer so, dass er möglichst geringen Temperaturschwankungen ausgesetzt ist. Der Betriebstemperaturbereich der Messumformerelektronik beträgt –40 bis 85 °C (–40 bis 185 °F). Siehe Anhang A: Technische Daten bzgl. der Betriebstemperaturgrenzen der Messzelle. Montieren Sie den Messumformer so, dass er keinen Vibrationsund Stoßeinflüssen ausgesetzt ist und vermeiden Sie äußerlich den Kontakt mit korrosiven Werkstoffen.

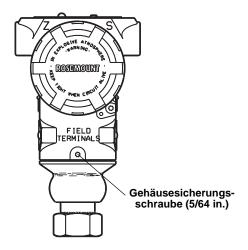
INSTALLATIONSVER-FAHREN

Messumformer montieren

August 2010

Maßzeichnungen siehe Anhang A: Technische Daten auf Seite A-15.

Ausrichtung Prozessflansch


Montieren Sie die Prozessflansche mit ausreichendem Freiraum für die Prozessanschlüsse. Aus Sicherheitsgründen montieren Sie die Ablass-/Entlüftungsventile so, dass wenn die Ventile geöffnet werden, das Prozessmedium nicht mit Menschen in Kontakt kommt. Denken Sie auch an einen Prüf- oder Kalibrieranschluss.

Gehäuse drehen

Zum Verbessern des Zugangs zur Feldverdrahtung sowie der Ablesbarkeit der optionalen Digitalanzeige kann das Elektronikgehäuse in beiden Richtungen um je 180° gedreht werden. Um das Gehäuse zu drehen, gehen Sie folgt vor:

- 1. Lösen Sie die Sicherungsschraube mit einem $\frac{5}{64}$ in. Inbusschlüssel.
- Drehen Sie das Gehäuse von der Ausgangsposition aus (wie geliefert) um bis zu 180° nach links oder rechts. Überdrehen beschädigt den Messumformer.
- 3. Gehäusesicherungsschraube wieder festziehen.

Abbildung 3-1. Gehäuse drehen

Elektronikgehäuse, Seite mit dem Anschlussklemmenblock

Montieren Sie den Messumformer so, dass die Seite mit dem Anschlussklemmenblock zugänglich ist. Zum Entfernen des Gehäusedeckels wird ein Freiraum von 19 mm (0,75 in.) benötigt. Verwenden Sie den Verschlussstopfen für die unbenutzte Kabeleinführung.

Elektronikgehäuse, Seite mit den Platinenbaugruppen

Bei Geräten ohne LCD Anzeige wird ein Freiraum von 19 mm (0,75 in.) benötigt. Wenn eine LCD Anzeige installiert ist, so montieren, dass eine gute Ablesbarkeit gewährleistet ist. Ein Freiraum von 77 mm (3 in.) wird benötigt, um den LCD Anzeige Gehäusedeckel zu demontieren.

Leitungseinführungsgewinde

Für NEMA 4X, IP66 und IP68 Dichtband (PTFE) oder Gewindedichtungsmittel auf das Außengewinde auftragen, um die wasserdichte Abdichtung zu gewährleisten.

Montagewinkel

Rosemount 3051 können mit der optionalen Montagehalterung an ein 50 mm (2 in.) Rohr oder eine Wand montiert werden. Siehe Tabelle 3-1 bzgl. des kompletten Angebots und Abbildung 3-2 bis Abbildung 3-6 auf Seiten 3-4 und 3-5 bzgl. Abmessungen und Montagearten.

Tabelle 3-1. Montagehalterungen

	3051 Montagewinkel									
	Prozessanschlüsse Montage			Werkstoffe						
Option	Coplanar	In-Line	Anpassungs- flansch	Rohr- montage	Wand- montage	Flache Wand- montage			Kohlen- stoffstahl- Schrauben	Edelstahl- schrauben
B4	Х	Х		Х	Х	Х		Х		Х
B1			Х	Х			Х		Х	
B2			Х		Х		Х		Х	
В3			Х			Х	Х		Х	
B7			Х	Х			Х			Х
B8			Х		Х		Х			Х
В9			Х			Х	Х			Х
ВА			Х	Х				Х		Х
ВС			Х			Х		Х		Х

Abbildung 3-2. Montagewinkel Option Code B4

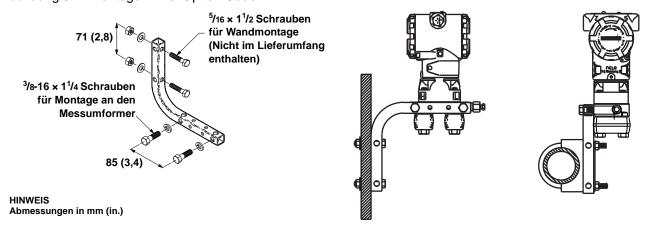


Abbildung 3-3. Montagewinkel Option Codes B1, B7 und BA

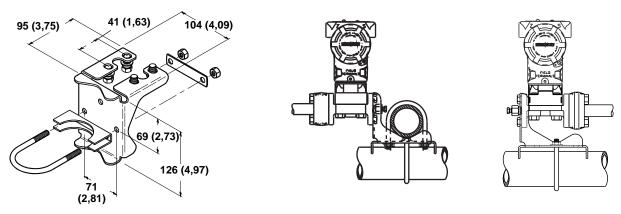


Abbildung 3-5. Wandmontagewinkel Option Codes B2 und B8

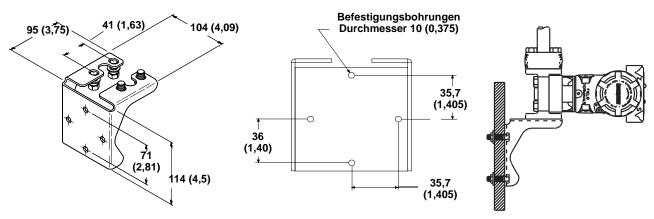
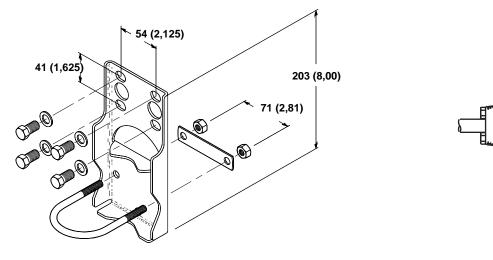



Abbildung 3-6. Montagewinkel Flachmontage Option Codes B3 und BC

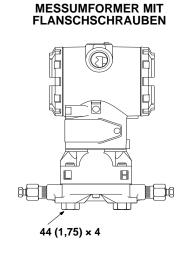
Flanschschrauben

Der 3051 kann mit einem Coplanar Flansch oder einem Anpassungsflansch mit vier 44 mm (1,75 in.) Schrauben montiert geliefert werden. Montageschrauben und Schraubenkonfigurationen für die Coplanar Flanschund Anpassungsflansche finden Sie auf Seite 3-7. Von Emerson Process Management gelieferte Edelstahlschrauben sind zur besseren Montage mit einem Gleitmittel versehen. Kohlenstoffstahl Schrauben benötigen kein Schmiermittel. Verwenden Sie kein zusätzliches Schmiermittel, wenn Sie einen dieser Schraubentypen montieren. Von Emerson Process Management gelieferte Schrauben können durch ihre Markierung am Schraubenkopf identifiziert werden:

Schraubenmontage

Nerwenden Sie ausschließlich Schrauben, die mit dem Rosemount 3051 geliefert oder von Emerson Process Management als Ersatzteile für den Rosemount 3051 Messumformer geliefert werden. Die Schrauben folgendermaßen montieren:

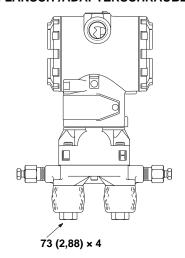
- 1. Schrauben handfest anziehen.
- Schrauben kreuzweise mit dem Anfangsdrehmoment anziehen (siehe Tabelle 3-2 bezüglich Anzugsmomente).
- 3. Schrauben kreuzweise (wie vorher) mit dem Enddrehmoment anziehen.


Tabelle 3-2. Drehmomentwerte für die Montage der Schrauben

Schraubenwerkstoff	Anfangswert	Endwert
CS-ASTM-A445 Standard	34 Nm (300 in-lb.)	73 Nm (650 inlb)
316 SST – Option L4	17 Nm (150 inlb)	34 Nm (300 in-lb.)
ASTM-A-193-B7M – Option L5	34 Nm (300 in-lb.)	73 Nm (650 inlb)
Alloy 400 – Option L6	34 Nm (300 in-lb.)	73 Nm (650 inlb)

Abbildung 3-7. Anpassungsflansch Schraubenanordnung

Entlüftungsventil Ablass-/ Entlüftungsventil 44 (1,75) x 4 38 (1,50) x 4 HINWEIS Abmessungen in mm (in.)


Abbildung 3-8. Montageschrauben und Schraubenkonfiguration für Coplanar Flansche

HINWEIS

Abmessungen in mm (in.)

MESSUMFORMER MIT OVALADAPTERN UND FLANSCH-/ADAPTERSCHRAUBEN

Beschreibung	Menge	Größe mm (in.)
Differenzdruck		
Flanschschrauben	4	44 (1,75)
Flansch-/Adapterschrauben	4	73 (2,88)
Über-/Absolutdruck ⁽¹⁾		
Flanschschrauben	4	44 (1,75)
Flansch-/Adapterschrauben	2	73 (2,88)

⁽¹⁾ Messumformer 3051T wird direkt montiert und benötigt keine Schrauben für den Prozessanschluss.

Impulsleitungen

Montageanforderungen

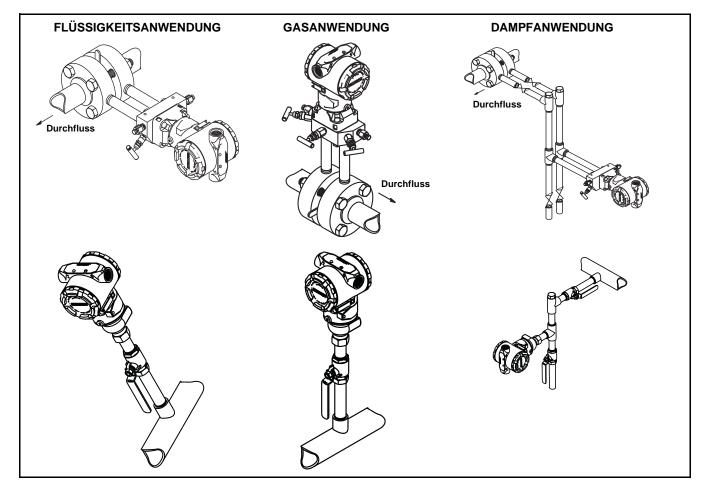
Die Konfiguration der Impulsleitungen ist abhängig von den speziellen Messbedingungen. Siehe hierzu Abbildung 3-9 als Beispiele für die folgenden Anordnungen:

Durchflussmessung von Flüssigkeiten

- Die Entnahmestutzen seitlich von der Leitung anbringen, um Ablagerungen auf den Messumformer-Trennmembranen zu vermeiden.
- Den Messumformer neben oder unterhalb den Entnahmestutzen montieren, damit Gase in die Prozessleitung entweichen können.
- Das Ablass-/Entlüftungsventil nach oben anbringen, damit Gase entweichen können.

Durchflussmessung von Gasen

- Die Anschlüsse an der Oberseite oder an der Seite der Leitung anbringen.
- Den Messumformer neben den Entnahmestutzen oder darüber montieren, damit Flüssigkeiten in die Prozessleitung ablaufen können.


Durchflussmessung von Dämpfen

- Die Anschlüsse an der Seite der Leitung anbringen.
- Den Messumformer unterhalb der Entnahmestutzen montieren, um sicherzustellen, dass die Impulsleitungen mit Kondensat gefüllt bleiben.
- Bei Betrieb mit Dampf über 121 °C (250 °F) füllen Sie die Impulsleitungen mit Wasser, um so zu verhindern, dass Dampf direkt an den Messumformer gelangt, und um zu gewährleisten, dass eine korrekte Messung von der Inbetriebnahme an erfolgen kann.

HINWEIS

Bei Dampf oder anderen Anwendungen mit ebenso hohen Temperaturen ist es wichtig, dass die Temperaturen am Prozessanschluss nicht die Temperaturgrenzen des Messumformers überschreiten.

Abbildung 3-9. Installationsbeispiele

Hinweise zur Handhabung

Um genaue Messungen zu erreichen, müssen die Leitungen zwischen der Prozessleitung und dem Messumformer den Druck exakt übertragen. Es gibt fünf mögliche Störungsursachen: Druckübertragung, Leckagen, Reibungsverluste (speziell beim Ausblasen), Gaseinschlüsse bei Flüssigkeiten, Flüssigkeit in Gasen und Dichteabweichungen zwischen den beiden Impulsleitungen.

Die beste Anordnung des Messumformers zur Prozessleitung ist abhängig vom Prozess selbst. Verwenden Sie nachfolgende Richtlinien, um Messumformer und Impulsleitungen richtig anzuordnen:

- Halten Sie die Impulsleitungen so kurz wie möglich.
- Bei Flüssigkeitsanwendungen verlegen Sie die Impulsleitungen vom Messumformer aus mit einer Steigung von mindestens 8 cm pro m (1 in./ft.) nach oben zum Prozessanschluss.
- Bei Gasanwendungen verlegen Sie die Impulsleitungen vom Messumformer aus mit einer Neigung von mindestens 8 cm pro m (1 in./ft.) nach unten zum Prozessanschluss.
- Vermeiden Sie hoch liegende Punkte bei Flüssigkeitsleitungen und niedrig liegende bei Gasleitungen.
- Stellen Sie sicher, dass beide Impulsleitungen die gleiche Temperatur haben.
- Verwenden Sie Impulsleitungen, die groß genug sind, um ein Verstopfen sowie ein Einfrieren zu verhindern.
- Entlüften Sie alles Gas aus den mit Flüssigkeit gefüllten Impulsleitungen.
- Wenn Sie eine Sperrflüssigkeit verwenden, befüllen Sie beide Impulsleitungen auf das gleiche Niveau.
- Zum Ausblasen setzen Sie die Ausblasanschlüsse möglichst nahe an die Prozessentnahmestutzen und blasen Sie mittels gleich langen und gleichem Rohrdurchmesser aus. Vermeiden Sie das Ausblasen über den Messumformer.
- Bringen Sie korrosive oder heiße Prozessmedien (über 121 °C [250 °F]) nicht in direkten Kontakt mit dem Sensormodul und den Flanschen.
- Verhindern Sie Ablagerungen in den Impulsleitungen.
- Halten Sie den Flüssigkeitsspiegel in beiden Impulsleitungen auf gleichem Niveau.
- Vermeiden Sie Betriebsbedingungen, die das Einfrieren der Prozessflüssigkeit bis hin zu den Prozessflanschen ermöglichen.

Prozessanschlüsse

Prozessanschluss mit Coplanar- oder Anpassungsflansch

↑ Um Leckagen zu verhindern, montieren und ziehen Sie alle vier Flanschschrauben an, bevor Sie das Gerät mit Druck beaufschlagen. Bei richtiger Installation stehen die Flanschschrauben über das Gehäuse des Moduls hinaus. Versuchen Sie nicht, die Flanschschrauben während des Betriebs zu lösen oder zu entfernen.

Rosemount 3051DP und GP verfügen über Messumformerflansche mit ½-18 NPT Prozessanschlüsse. Ovaladapter sind mit Standard ½-14 NPT Class 2 Anschlüssen lieferbar. Mithilfe der Ovaladapter können Anwender den Messumformer durch Entfernen der Flansch-/Adapterschrauben vom Prozess trennen. Für die Installation verwenden Sie Schmiermittel oder Dichtmittel, die für Ihre Anlage zugelassen sind. Siehe "Maßzeichnungen" auf Seite A-15 bzgl. des Abstands zwischen Druckanschlüssen. Der Abstand kann durch Drehen eines oder beider Ovaladapter um ±3,2 mm (⅓ in.) variiert werden.

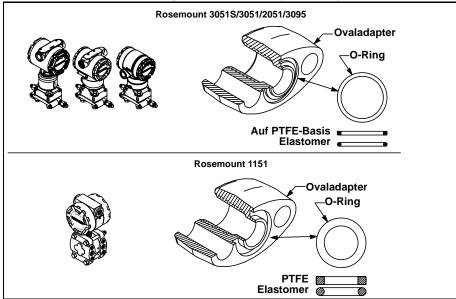
Zur Installation von Ovaladaptern an einen Coplanar Flansch gehen Sie folgt vor:

- 1. Entfernen Sie die Prozessflanschschrauben.
- 2. Belassen Sie den Coplanar Flansch und positionieren Sie die Ovaladapter einschließlich der O-Ringe.
- 3. Befestigen Sie die Ovaladapter und den Coplanar Flansch mit den mitgelieferten längeren Schrauben am Sensormodul.
- 4. Ziehen Sie die Schrauben fest. Siehe hierzu Drehmomentwerte in "Flanschschrauben" auf Seite 3-6.

Immer wenn Sie die Flansche oder Ovaladapter demontieren, inspizieren Sie visuell die PTFE O-Ringe. Sollten Sie Beschädigungen wie Risse oder Kerben feststellen, tauschen Sie den O-Ring grundsätzlich gegen einen O-Ring für Rosemount Messumformer aus. Unbeschädigte O-Ringe können erneut verwendet werden. Nach dem Sie die O-Ringe ausgetauscht haben, müssen die Flanschschrauben nach erfolgter Montage nochmals nachgezogen werden, um die Kaltflusseigenschaft der O-Ringe auszugleichen. Siehe hierzu Abschnitt 5: Kalibrierung / Vorgehensweise Sensormontage.

HINWEIS

PTFE O-Ringe müssen ersetzt werden, wenn der Ovaladapter ausgebaut wird.

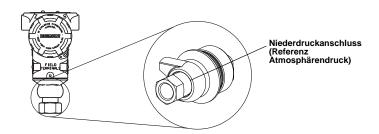

O-Ringe:

Die beiden Ausführungen der Rosemount Ovaladapter (Rosemount 1151 und Rosemount 3051S/3051/2051/3095) erfordern einen unterschiedlichen O-Ring (siehe Abbildung 3-10). Verwenden Sie nur den O-Ring, der für den jeweiligen Ovaladapter konstruiert wurde.

Abbildung 3-10. O-Ringe.

⚠ WARNUNG

Fehler bei der Installation der richtigen O-Ringe für die Ovaladapter können zu Leckagen führen und somit ernsthafte Verletzung hervorrufen oder tödlich sein. Die beiden Flanschadapter unterscheiden sich durch die O-Ring-Nuten. Nur den O-Ring verwenden, der für den jeweiligen Flanschadapter konstruiert wurde (siehe unten).

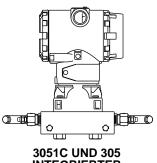

Prozessanschluss mit Inline Flansch

Inline Überdruck Messumformer Einbaulage

Der Niederdruckanschluss des Inline Überdruck-Messumformers befindet sich am Stutzen des Messumformers hinten am Gehäuse. Die Entlüftungsöffnungen sind 360 Grad um den Messumformer zwischen Gehäuse und Sensor angeordnet (siehe Abbildung 3-11).

Halten Sie die Entlüftungsöffnungen bei der Messumformer Montage stets frei von z. B. Lack, Staub, Schmiermittel, so dass der Prozess sich entlüften kann.

Abbildung 3-11. Niederdruckanschluss des Inline Überdruck Messumformers


August 2010

ROSEMOUNT 305, 306 UND 304 INTEGRIERTE VENTILBLÖCKE

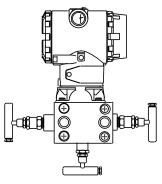

Das Modell 305 ist in zwei Ausführungen erhältlich: mit Anpassungsund Coplanar Flansch. Mit den Ovaladaptern kann die Ausführung Anpassungsflansch des Modells 305 an die meisten auf dem Markt befindlichen Primärelemente montiert werden. Um die Funktionen von Absperr- und Entlüftungsventil, bis 690 bar (10000 psi), zu realisieren, wird das Modell 306 für In-line Messumformer verwendet.

Abbildung 3-12. Ventilblöcke



3051C UND 305 INTEGRIERTER COPLANAR FLANSCH

Rosemount 305 Integrierter Ventilblock, Installationsanweisung

Installation eines integrierten Ventilblocks Modell 305 an einen Messumformer Modellreihe 3051:

1. Inspizieren Sie die PTFE O-Ringe des Sensormoduls. Unbeschädigte O-Ringe können erneut verwendet werden. Weisen die O-Ringe Beschädigungen wie z. B. Risse oder Kerben auf, müssen sie erneuert werden.

WICHTIG

Achten Sie darauf, dass die O-Ring-Nuten und die Trennmembran beim Austausch defekter O-Ringe nicht verkratzt oder beschädigt werden.

- 2. Montieren Sie den integrierten Ventilblock an das Sensormodul. Verwenden Sie die vier 57 mm (2.25 in.) Schrauben zur Zentrierung. Ziehen Sie die Schrauben handfest an, dann schrittweise über Kreuz, bis Sie den Drehmomentendwert erreicht haben. Weitere Informationen und Drehmomentwerte finden Sie unter "Flanschschrauben" auf Seite 3-6. Nach dem vollständigen Anziehen müssen die Schrauben durch die Oberseite des Sensormodul-Gehäuses hinausragen.
- 3. Sollten Sie die PTFE O-Ringe des Sensormoduls ausgetauscht haben, müssen die Flanschschrauben nach erfolgter Montage nochmals nachgezogen werden, um die Kaltflusseigenschaften der O-Ringe auszugleichen.

HINWEIS

Um Montageeffekte zu vermeiden, führen Sie nach der Installation immer einen Nullpunktabgleich an der Messumformer-/Ventilblock-Einheit durch.

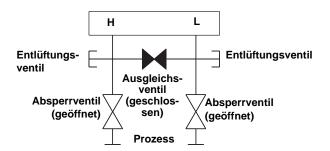
Rosemount 306 Integrierter Ventilblock, Installationsanweisung

Der Ventilblock 306 kann nur mit dem Inline Messumformer 3051T verwendet werden.

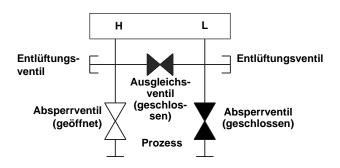
⚠ Montieren Sie den Ventilblock 306 und den Inline-Messumformer 3051T unter Verwendung eines Gewindedichtmittels.

Rosemount 304 Konventioneller Ventilblock, Installationsanweisung Installation eines Ventilblocks Modell 304 mit Anpassungsflansch an einen Messumformer Modellreihe 3051:

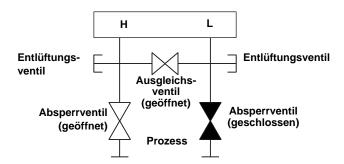
- 1. Richten Sie den konventionellen Ventilblock auf den Flansch des Messumformers aus. Verwenden Sie die vier Ventilblockschrauben zur Zentrierung.
- 2. Ziehen Sie die Schrauben handfest an, dann schrittweise über Kreuz, bis Sie das endgültige Anzugsmoment erreicht haben. Weitere Informationen zur Schraubenmontage und Anzugsmomente finden Sie unter "Flanschschrauben" auf Seite 3-6. Nach dem vollständigen Anziehen müssen die Schrauben durch die Oberseite des Sensormodul-Gehäuses hinausragen.
- 3. Führen Sie über den gesamten Druckbereich des Messumformers eine Leckageprüfung durch.

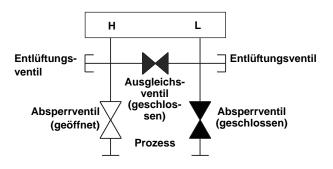

Ventilblock Funktionsweise

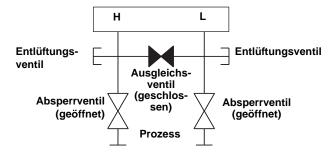
Die unsachgemäße Installation oder der unsachgemäße Betrieb von Ventilblöcken können zu Prozessleckagen führen und somit ernsthafte oder tödliche Verletzungen verursachen.


Um Abweichungen/Shift aufgrund von Montageeffekten zu vermeiden, führen Sie nach der Installation immer einen Nullpunktabgleich an der Messumformer-/Ventilblock-Einheit durch. Siehe "Sensorabgleich" auf Seite 5-5.

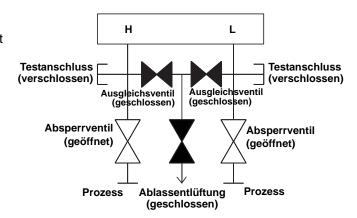
3- und 5-fach Ventilausführungen abgebildet:


Beim normalen Betrieb sind die beiden Absperrventile zwischen dem Prozess- und Geräteanschluss geöffnet und das Ausgleichsventil geschlossen.

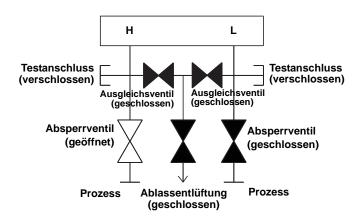

 Zum Nullpunktabgleich des 3051 das Absperrventil auf der Niederdruckseite (Auslassseite) des Messumformers zuerst schließen.


 Das mittlere Ausgleichsventil öffnen, um die Drücke auf beiden Seiten des Messumformers auszugleichen. Die Ventile des Ventilblocks sind nun korrekt konfiguriert, um den Nullpunktabgleich des Messumformers durchführen zu können.

3. Nach dem Nullpunktabgleich des Messumformers das Ausgleichsventil schließen.

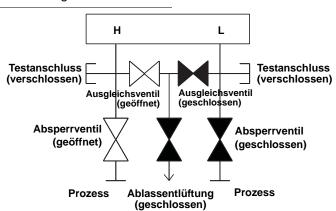


4. Das Absperrventil auf der Niederdruckseite des Messumformers öffnen, um den Messumformer wieder in Betrieb zu nehmen.



5-fach Ventilausführungen für Erdgas abgebildet:

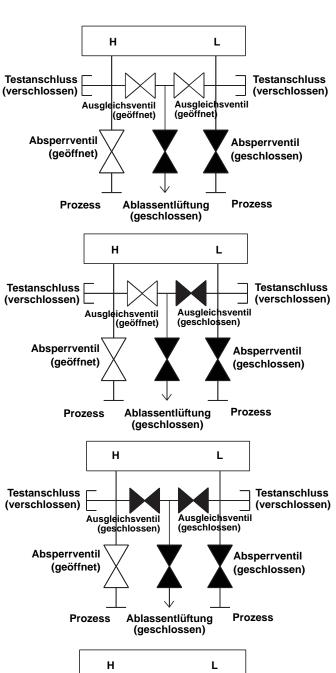
Beim normalen Betrieb sind die beiden Absperrventile zwischen dem Prozess- und Geräteanschluss geöffnet und die Ausgleichsventile geschlossen.

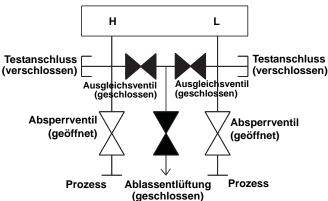

 Zum Nullpunktabgleich des 3051 das Absperrventil auf der Niederdruckseite (Auslassseite) des Messumformers zuerst schließen.

HINWEIS

Das Ausgleichsventil auf der Niederdruckseite nicht vor dem Ausgleichsventil auf der Hochdruckseite öffnen. Andernfalls wird der Messumformer mit zu hohem Druck beaufschlagt.

2. Das Ausgleichsventil auf der Hochdruckseite (Einlassseite) des Messumformers öffnen.




 Das Ausgleichsventil auf der Niederdruckseite (Auslassseite) des Messumformers öffnen. Der Ventilblock ist nun korrekt konfiguriert, um den Nullpunktabgleich des Messumformers durchzuführen.

4. Nach dem Nullpunktabgleich des Messumformers das Ausgleichsventil auf der Niederdruckseite (Auslassseite) des Messumformers schließen.

5. Das Ausgleichsventil auf der Hochdruckseite (Einlassseite) schließen.

6. Zum Abschluss das Absperrventil auf der Niederdruckseite öffnen, um den Messumformer wieder in Betrieb zu nehmen.

August 2010

Rosemount 3051

FÜLLSTANDSMESSUNG **VON FLÜSSIGKEITEN**

Für die Füllstandsmessung von Flüssigkeiten verwendete Differenzdruck Messumformer messen die Höhe der hydrostatischen Flüssigkeitssäule. Der hydrostatische Flüssigkeitsdruck wird durch Flüssigkeitspegel und spezifische Dichte einer Flüssigkeit bestimmt. Dieser Druck entspricht der Höhe der Flüssigkeit über der Druckentnahme multipliziert mit der spezifischen Dichte der Flüssigkeit. Die Druckhöhe ist von Volumen oder Form des Behälters unabhängig.

Offene Behälter

Ein in der Nähe des Behälterbodens montierter Druckmessumformer misst den Druck der darüberliegenden Flüssigkeit.

Den Anschluss an der Hochdruckseite des Messumformers vornehmen und die Niederdruckseite zur Atmosphäre entlüften. Die Druckhöhe entspricht der spezifischen Dichte der Flüssigkeit multipliziert mit der Höhe der Flüssigkeit über der Druckentnahme.

Wenn der Messumformer unter dem Nullpunkt des gewünschten Flüssigkeitsbereichs liegt, ist eine Nullpunktunterdrückung erforderlich. Abbildung 3-13 zeigt ein Beispiel einer Füllstandsmessung von Flüssigkeiten.

Geschlossene Behälter

Der Druck über einer Flüssigkeit beeinflusst den am Boden eines geschlossenen Behälters gemessenen Druck. Dieser Druck am Boden des Behälters kann durch Multiplikation der spezifischen Dichte der Flüssigkeit mit der Höhe der Flüssigkeit und Addition des Behälterdruck errechnet werden.

Zum Messen des wahren Flüssigkeitsstands muss der Behälterdruck vom Druck am Boden des Behälters subtrahiert werden. Hierfür eine Druckentnahme an der Oberseite des Behälters anbringen und mit der Niederdruckseite des Messumformers verbinden. Der Behälterdruck liegt dann gleichermaßen an der Hoch- und Niederdruckseite des Messumformer an. Der resultierende Differenzdruck ist proportional zur Höhe der Flüssigkeit multipliziert mit der spezifischen Dichte der Flüssigkeit.

Zustand mit "trockener" Impulsleitung

Die Niederdruckseite der Messumformer Impulsleitung bleibt leer, wenn das Gas über der Flüssigkeit nicht kondensiert. Dieser Zustand wird als "trockene" Impulsleitung bezeichnet. Die Berechnungen zur Bestimmung des Messbereichs sind mit denen identisch, die für am Boden montierte Messumformer in offenen Behältern beschrieben und in Abbildung 3-13 dargestellt sind.

Abbildung 3-13. Beispiel einer Füllstandsmessung von Flüssigkeiten.

Wenn X dem vertikalen Abstand zwischen dem Minimum und dem Maximum des messbaren Flüssigkeitsspiegels (500 in.) entspricht.

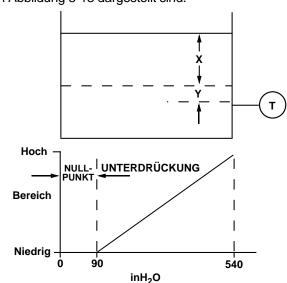
Wenn Y dem vertikalen Abstand zwischen der Bezugslinie des Messumformers und dem Minimum des messbaren Flüssigkeitsspiegels (100 in.) entspricht. Wenn SG der spezifischen Dichte der Flüssigkeit (0,9) entspricht.

Wenn h dem maximalen Druck der darüber liegenden Flüssigkeitssäule in in. von Wasser entspricht.

Wenn e dem Druck der darüber liegenden Flüssigkeitssäule in in. von Wasser entspricht, der von Y erzeugt wird.

Wenn Bereich dem Wert e zu e + h entspricht.

Dann ist h=(X)(SG)

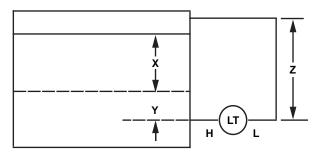

 $= 500 \times 0.9$

 $= 450 \text{ inH}_2\text{O}$

e = (Y)(SG)

 $= 100 \times 0.9$

 $= 90 \text{ inH}_2\text{O}$ **Bereich** = $90 \text{ bis } 540 \text{ inH}_2\text{O}$



Zustand mit "nasser" Impulsleitung

Die Kondensation des Gases über der Flüssigkeit führt dazu, dass sich die Niederdruckseite der Messumformer Impulsleitung langsam mit Flüssigkeit füllt. Um diesen potenziellen Fehler zu vermeiden, wird die Impulsleitung mit einer geeigneten Referenzflüssigkeit gefüllt. Dieser Zustand wird als "nasse" Impulsleitung bezeichnet.

Die Referenzflüssigkeit übt auf der Niederdruckseite des Messumformers einen Druck aus. In diesem Fall muss der Nullpunkt des Messbereichs angehoben werden. Siehe Abbildung 3-14.

Abbildung 3-14. Beispiel der "nassen" Impulsleitung

Wenn **X** dem vertikalen Abstand zwischen dem Minimum und dem Maximum des messbaren Flüssigkeitsspiegels (500 in.) entspricht.

Wenn Y dem vertikalen Abstand zwischen der Bezugslinie des Messumformers und dem Minimum des messbaren Flüssigkeitsspiegels (50 in.) entspricht.

Wenn **z** dem vertikalen Abstand zwischen der Oberseite der Flüssigkeit im nassen Bein und der Bezugslinie des Messumformers (600 in.) entspricht.

Wenn SG₁ der spezifischen Dichte der Flüssigkeit (1,0) entspricht.

Wenn \mathbf{SG}_2 der spezifischen Dichte der Flüssigkeit (1,1) in der nassen Impulsleitung entspricht.

Wenn h dem maximalen Druck der darüber liegenden Flüssigkeitssäule in in. von Wasser entspricht.

Wenn ${\bf e}$ dem Druck der darüber liegenden Flüssigkeitssäule in in. von Wasser entspricht, der von ${\bf Y}$ erzeugt wird. Wenn ${\bf s}$ dem Druck der darüber liegenden Flüssigkeitssäule in in. von Wasser entspricht, der von ${\bf z}$ erzeugt wird. Wenn **Bereich** dem Wert ${\bf e} - {\bf s}$ to ${\bf h} + {\bf e} - {\bf s}$ entspricht.

```
Dann ist h = (X)(SG_1)

= 500 \times 1.0

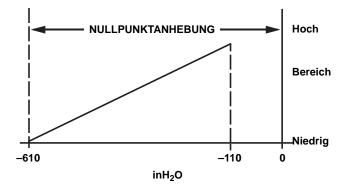
= 500 \text{ inH}_2\text{O}

e = (Y)(SG_1)

= 50 \times 1.0

= 50 \text{ inH}_2\text{O}

s = (z)(SG_2)

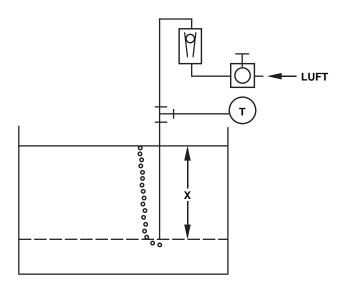

= 600 \times 1.1

= 660 \text{ inH}_2\text{O}

Bereich = e - s zu h + e - s.

= 50 - 660 zu 500 + 50 - 660

= -610 \text{ bis} -110 \text{ inH}_2\text{O}
```

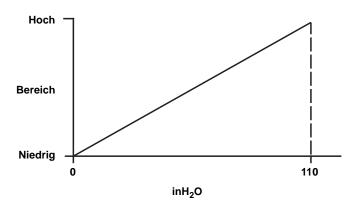


Perlrohrsystem in einem offenen Behälter

In offenen Behältern kann ein Perlrohrsystem mit einem oben montierten Druckmessumformer verwendet werden. Dieses System besteht aus einer Druckluftversorgung, einem Druckregler, einem konstanten Durchflussmessgerät, einem Druckmessumformer und einem Rohr, das nach unten in den Behälter ragt.

Luftblasen strömen mit konstantem Durchfluss durch das Rohr. Der zur Aufrechterhaltung des Durchflusses erforderliche Druck entspricht der spezifischen Dichte der Flüssigkeit multipliziert mit der vertikalen Höhe der Flüssigkeit über der Rohröffnung. Abbildung 3-15 zeigt ein Beispiel für eine Füllstandsmessung von Flüssigkeiten mit Perlrohr.

Abbildung 3-15. Beispiel einer Füllstandsmessung von Flüssigkeiten mit Perlrohr


Wenn **X** dem vertikalen Abstand zwischen dem Minimum und dem Maximum des messbaren Flüssigkeitsspiegels (100 in.) entspricht.

Wenn SG der spezifischen Dichte der Flüssigkeit (1,1) entspricht.

Wenn h dem maximalen Druck der darüber liegenden Flüssigkeitssäule in in. von Wasser entspricht. Wenn Bereich dem Wert Null zu h entspricht.

Dann ist h = (X)(SG)= 100 x 1,1 = 110 inH₂O

Bereich = $0 \text{ bis } 110 \text{ inH}_2\text{O}$

Sicherheitsanleitung 00809-0105-4797, Rev CA August 2010

Rosemount 3051

Abschnitt 4 Elektrische Installation

Übersicht	. Seite 4-1
Sicherheitshinweise	. Seite 4-1
Elektrische Anforderungen	. Seite 4-3

ÜBERSICHT

Dieser Abschnitt enthält Informationen zur Installation des Rosemount 3051. Im Lieferumfang jedes Messumformers enthalten ist eine Kurzanleitung, die den Anschluss an die Rohrleitung, Verdrahtungsverfahren und grundlegende Konfigurationen für die Erstinstallation beschreibt.

SICHERHEITSHINWEISE

Verfahren und Anweisungen in diesem Abschnitt können besondere Vorsichtsmaßnahmen erfordern, um die Sicherheit des Bedienungspersonals zu gewährleisten. Informationen, die eine erhöhte Sicherheit erfordern, sind mit einem Warnsymbol () markiert. Lesen Sie die folgenden Sicherheitshinweise, bevor ein durch dieses Symbol gekennzeichnetes Verfahren durchgeführt wird.

Warnungen

⚠ WARNUNG

Explosionen können zu schweren oder tödlichen Verletzungen führen:

Die Installation dieses Messumformers in explosionsgefährdeten Umgebungen muss entsprechend der lokalen, nationalen und internationalen Normen, Vorschriften und Empfehlungen erfolgen. Einschränkungen in Verbindung mit der sicheren Installation finden Sie in der Betriebsanleitung für den 3051 im Kapitel "Zulassungen".

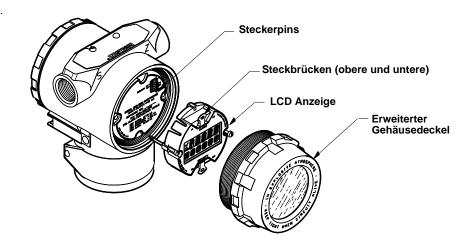
 Bei einer Ex-Schutz/Druckfeste Kapselung Installation die Gehäusedeckel des Messumformers nicht entfernen, wenn der Stromkreis unter Spannung steht.

Prozessleckagen können zu schweren oder tödlichen Verletzungen führen.

 Vor der Druckbeaufschlagung müssen die Prozessanschlüsse installiert und fest angezogen werden.

Elektrischer Schlag kann zu schweren oder tödlichen Verletzungen führen.

 Kontakt mit den Leitungsadern und Anschlussklemmen vermeiden. Elektrische Spannung an den Leitungsadern kann zu elektrischen Schlägen führen.


LCD Anzeige

Bei Messumformern, die mit der LCD Anzeige Option (M5) bestellt wurden, ist die Anzeige bereits installiert. Für die Installation der Anzeige an einen vorhandenen Rosemount 3051 wird ein kleiner Schraubendreher benötigt.

ROSEMOUNT®

Abbildung 4-1. Digitalanzeiger

LCD Anzeige mit Bedieninterface

Bei Messumformern, die mit der LCD Anzeige und Bedieninterface Option (M4) bestellt wurden, sind die Anzeige und lokalen Einstelltasten bereits installiert. Die Einstelltasten befinden sich unter dem oberen Schild, wie auf dem Aufkleber dargestellt. Siehe Tabelle 2-1 bezüglich der Betätigung des Bedieninterface. Für die Aufrüstung auf einen Messumformer mit Bedieninterface müssen eine neue Elektronikplatine, Einstelltasten und eine LCD Anzeige (falls nicht zuvor bestellt) installiert werden.

Sicherheit und Simulation konfigurieren

Sicherheit (Schreibschutz)

Der Rosemount 3051 Messumformer verfügt über drei Methoden zum Einstellen der Sicherheitsfunktion:

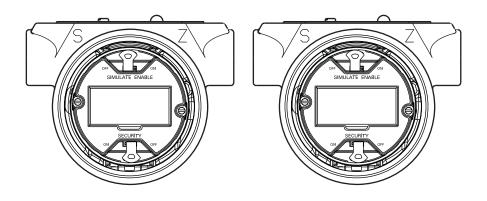
- Steckbrücke Schreibschutz: verhindert Änderungen an der Messumformerkonfiguration.
- Verriegelung der Software durch Tasten: verhindert Änderungen der Messumformer Bereichspunkte mittels den Einstelltasten.
- Entfernen der Einstelltasten: eliminiert die Möglichkeit zur Verwendung der Tasten.

Mit der Schreibschutz Steckbrücke können Änderungen der Messumformer Konfigurationsdaten verhindert werden. Die Einstellung erfolgt mithilfe der Steckbrücke Sicherheit (Schreibschutz) auf der Elektronikplatine oder am Digitalanzeiger. Setzen Sie die Steckbrücke auf der Messumformer Elektronikplatine in die Position ON (EIN), um unbeabsichtigte oder vorsätzliche Änderungen der Konfigurationsdaten zu verhindern.

Befindet sich die Schreibschutz Steckbrücke auf ON, akzeptiert der Messumformer keinen Schreibvorgang auf den Speicher.

HINWEIS

Wenn keine Schreibschutz Steckbrücke vorhanden ist, wird der Messumformer in der Sicherheitskonfiguration OFF betrieben.


Simulation

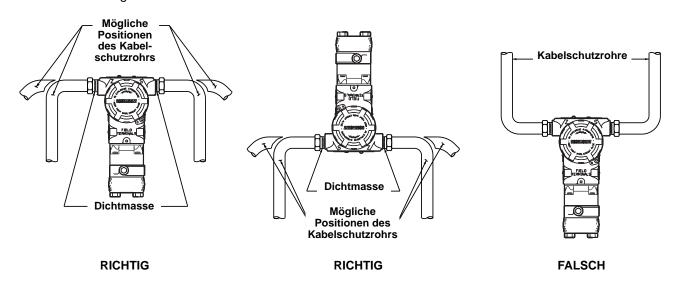
Der Rosemount 3051 verfügt über eine Simulationssteckbrücke auf der Elektronikplatine (oder optionalen LCD Anzeige), die auf die Position ON (EIN) gesetzt sein muss, um eine Simulation mit dem Master Klasse 2 durchzuführen.

Siehe Abschnitt 2: Konfiguration bezüglich Details über den Simulationsmodus.

00809-0105-4797, Rev CA August 2010

Abbildung 4-2. Position der Messumformer-Steckbrücken

ELEKTRISCHE ANFORDERUNGEN

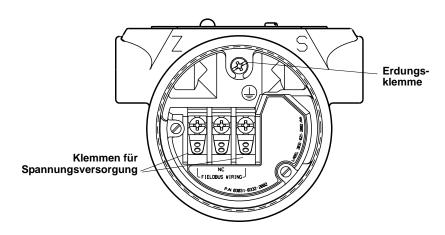

Stellen Sie sicher, dass der elektrische Anschluss gemäß nationaler und lokaler Vorschriften für die Elektroinstallation vorgenommen wird.

Montage Kabeldurchführung/ -schutzrohr Empfohlene Kabeldurchführung/-schutzrohr sind Abbildung 4-3 dargestellt.

⚠ ACHTUNG

Alle Kabeldurchführungen müssen abgedichtet werden, da der Messumformer durch Ansammlung übermäßiger Feuchtigkeit beschädigt werden kann. Montieren Sie den Messumformer so, dass das Elektronikgehäuse nach unten weist, um den Flüssigkeitsabfluss zu gewährleisten. Um die Ansammlung von Feuchtigkeit im Gehäuse zu vermeiden, verlegen Sie die Leitungen so mit einer Abtropfschlaufe, so dass das unterste Niveau tiefer als die Kabeldurchführungen und das Messumformergehäuse liegt.

Abbildung 4-3. Kabelschutzrohr Installationsdarstellungen


Verdrahtung

Siehe Abbildung 4-5 bezüglich einer grundlegenden Profibus PA Systemkonfiguration.

Den Messumformer wie folgt anschließen:

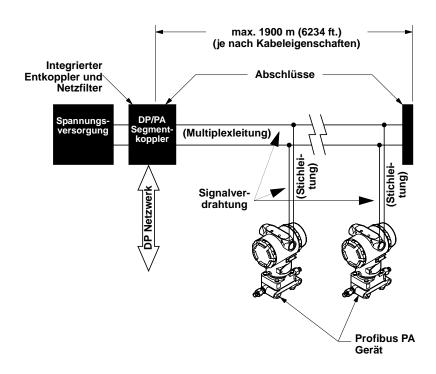
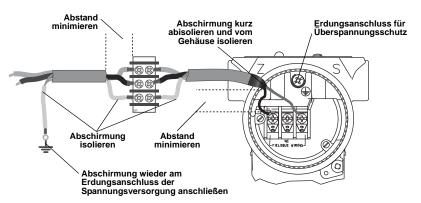

- 1. Den Gehäusedeckel auf der mit FIELD TERMINALS (Feldanschlussklemmen) markierten Seite entfernen.
- Die Adern der Spannungsversorgung an die am Anschlussklemmenblocks angegebenen Klemmen anschließen. Siehe Abbildung 4-4 3051 Profibus Anschlussklemmenblock.
 - Bei den Klemmen für die Spannungsversorgung spielt die Polarität keine Rolle. Das Plus- oder Minuskabel kann an jede beliebige Klemme angeschlossen werden.
- Auf die ordnungsgemäße Erdung achten. Die Abschirmung der Gerätekabel muss: Siehe Abbildung 4-6.
 - kurz abisoliert und vom Gehäuse des Messumformers isoliert werden.
 - mit der nächsten Abschirmung verbunden werden, wenn das Kabel durch eine Anschlussbox verlegt wird.
 - mit einem guten Erdungsanschluss am Ende der Spannungsversorgung verbunden werden.
- 4. Nicht verwendete Leitungseinführungen verschließen und abdichten.
- 5. Die Verdrahtung (sofern erforderlich) mit einer Abtropfschlaufe installieren. Siehe Abbildung 4-3.
- 6. Die Gehäuseabdeckung wieder anbringen.

Abbildung 4-4. 3051 Profibus Anschlussklemmenblock

"NC" bedeutet "No Connect" (Klemme nicht verwenden)

Abbildung 4-5. Grundlegende Profibus PA Systemkonfiguration



Erdung der Signalverdrahtung

Die Signalleitungen nicht zusammen mit Stromleitungen in Kabelkanälen oder in der Nähe von großen Elektroanlagen führen. Erdungsklemmen sind außen am Elektronikgehäuse und im Anschlussklemmengehäuse zu finden. Diese Erdungsanschlüsse werden verwendet, wenn Anschlussklemmenblöcke mit Überspannungsschutz installiert sind oder um lokale Vorschriften zu erfüllen. Weitere Informationen zur Erdung der Kabelabschirmung siehe unten Schritt 2.

- 1. Den Gehäusedeckel mit der Markierung Feld-Anschlussklemmen (Field Terminals) entfernen.
- Das Adernpaar und den Erdleiter wie in Abbildung 4-6 dargestellt anschließen. Die Kabelabschirmung sollte:
 - a. kurz abisoliert und vom Gehäuse des Messumformers isoliert werden.
 - b. dauerhaft am Anschlusspunkt verbunden sein.
 - c. mit einem guten Erdungsanschluss am Ende der Spannungsversorgung verbunden werden.

Abbildung 4-6. Verdrahtung

- 3. Den Gehäusedeckel wieder anbringen. Es wird empfohlen, den Deckel festzuziehen, bis zwischen Deckel und Gehäuse kein Abstand mehr vorhanden ist.
- 4. Nicht verwendete Leitungseinführungen verschließen und abdichten.

Spannungsversorgung

Die Welligkeit der Gleichspannungsversorgung muss unter 2 % liegen. Zur Gewährleistung des vollen Funktionsumfangs und ordnungsgemäßen Betriebs benötigt der Messumformer zwischen 9 und 32 V DC an den Anschlussklemmen.

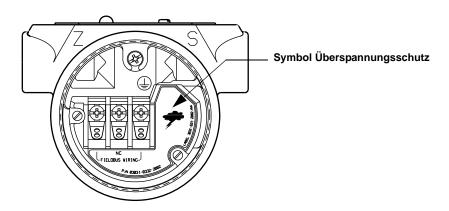
Entkoppler

Der DP/PA Segmentkoppler enthält häufig einen integrierten Netzfilter.

Erdung

Die Messumformer sind bis 500 V AC (RMS-Wert) elektrisch isoliert. Die Signalverdrahtung kann nicht geerdet werden.

Erdung des Kabelschirms


Schirmkabel müssen an einem einzelnen Erdungspunkt geerdet werden, damit kein Erdungskreis entsteht. Der Erdungspunkt ist gewöhnlich an der Spannungsversorgung zu finden.

Anschlussklemmenblock mit integriertem Überspannungsschutz

Der Messumformer widersteht gewöhnlich elektrischen Überspannungen, die dem Energieniveau von statischen Entladungen bzw. induktiven Schaltüberspannungen entsprechen. Energiereiche Überspannungen, die z. B. von Blitzschlägen in der Verdrahtung induziert werden, können jedoch den Messumformer beschädigen.

Der Anschlussklemmenblock mit integriertem Überspannungsschutz kann als installierte Option (Option Code T1 in der Modellnummer des Messumformers) oder als ein an installierte Messumformer 3051 nachrüstbares Ersatzteil bestellt werden. Ersatzteilnummern sind unter "Ersatzteile" auf Seite A-45 zu finden. Das in Abbildung 4-7 dargestellte Blitzsymbol identifiziert den Anschlussklemmenblock mit integriertem Überspannungsschutz.

Abbildung 4-7. Verdrahtung mit Überspannungsschutz

HINWEIS

Der Anschlussklemmenblock mit integriertem Überspannungsschutz bietet keinen Überspannungsschutz, wenn das Messumformergehäuse nicht ordnungsgemäß geerdet ist. Die genannten Richtlinien zur Erdung des Messumformergehäuses befolgen. Siehe Seite 4-7.

Den Masseanschluss des Überspannungsschutzes nicht zusammen mit der Signalleitung verlegen. Der Masseanschluss kann im Falle eines Blitzschlags übermäßigen Strom leiten.

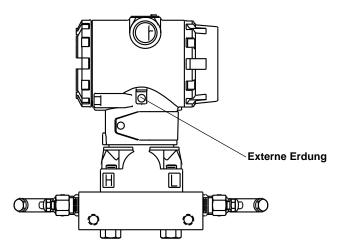
Erdung

Nerwenden Sie die folgenden Methoden, um die Signalverdrahtung und das Gehäuse des Messumformers ordnungsgemäß zu erden.

Signalverdrahtung

Die Signalleitungen nicht zusammen mit Stromleitungen in einem offenen Kabelkanal oder einem Schutzrohr und nicht in der Nähe von Starkstromgeräten verlegen. Die Abschirmung der Gerätekabel muss:

- kurz abisoliert und vom Gehäuse des Messumformers isoliert werden.
- mit der nächsten Abschirmung verbunden werden, wenn das Kabel durch eine Anschlussbox verlegt wird.
- mit einem guten Erdungsanschluss am Ende der Spannungsversorgung verbunden werden.


Messumformergehäuse

Das Messumformergehäuse stets gemäß nationaler und lokaler Vorschriften für die Elektroinstallation erden. Die beste Messumformer Gehäuseerdung wird durch einen direkten Erdungsanschluss mit minimaler Impedanz erreicht. Methoden zur Erdung des Messumformergehäuses:

- Innenliegender Erdungsanschluss: Die innenliegende Erde Anschlussschraube befindet sich innerhalb des Elektronikgehäuses auf der Seite FIELD TERMINALS. Die Schraube ist mit dem Erdungssymbol (

) gekennzeichnet und ist Standard bei allen Rosemount Messumformern 3051. Siehe Abbildung 4-4.
- Außenliegender Erdungsanschluss: Dieser Erdungsanschluss ist bei dem Anschlussklemmenblock mit Überspannungsschutz (Option Code T1) sowie bei zahlreichen anderen Zulassungen für Ex-Bereiche bereits enthalten. Dieser außenliegender Erdungsanschluss kann aber ebenso mit dem Messumformer (Option Code V5) oder als ein Ersatzteil bestellt werden. Siehe "Ersatzteile" auf Seite A-45. Siehe Abbildung 4-8 bzgl. der Position der außenliegenden Erdungsschraube.

Abbildung 4-8. Außenliegender Erdungsanschluss

HINWEIS

Die Erdung des Messgerätgehäuses am Leitungseinführungsgewinde gewährleistet ggf. keinen ausreichenden Schutz.

Abschnitt 5 Kalibrierung

Übersicht	Seite 5-1
Sicherheitshinweise	Seite 5-1
Übersicht Einstellungsmöglichkeiten	Seite 5-2
Einstellintervalle festlegen	Seite 5-3
Nullpunktabgleich	Seite 5-5
Sensorabgleich	Seite 5-5
Werksabgleich abrufen	Seite 5-6
Kompensation des statischen Drucks	Seite 5-7

ÜBERSICHT

Dieser Abschnitt enthält Informationen über die Kalibrierung des Rosemount 3051 Profibus Druckmessumformers unter Verwendung des Bedieninterface (LOI) oder des Masters Klasse 2.

SICHERHEITSHINWEISE

Verfahren und Anweisungen in diesem Abschnitt können besondere Vorsichtsmaßnahmen erfordern, um die Sicherheit des Bedienungspersonals zu gewährleisten. Informationen, die eine erhöhte Sicherheit erfordern, sind mit einem Warnsymbol () markiert. Lesen Sie die folgenden Sicherheitshinweise, bevor ein durch dieses Symbol gekennzeichnetes Verfahren durchgeführt wird.

Warnungen

⚠ WARNUNG

Explosionen können zu schweren oder tödlichen Verletzungen führen:

Die Installation dieses Messumformers in explosionsgefährdeten Umgebungen muss entsprechend der lokalen, nationalen und internationalen Normen, Vorschriften und Empfehlungen erfolgen. Einschränkungen in Verbindung mit der sicheren Installation finden Sie in der Betriebsanleitung für den 3051 im Kapitel "Zulassungen".

 Bei einer Ex-Schutz/Druckfeste Kapselung Installation die Gehäusedeckel des Messumformers nicht entfernen, wenn der Stromkreis unter Spannung steht.

Prozessleckagen können zu schweren oder tödlichen Verletzungen führen.

 Vor der Druckbeaufschlagung müssen die Prozessanschlüsse installiert und fest angezogen werden.

Elektrischer Schlag kann zu schweren oder tödlichen Verletzungen führen.

 Kontakt mit den Leitungsadern und Anschlussklemmen vermeiden. Elektrische Spannung an den Leitungsadern kann zu elektrischen Schlägen führen.

ÜBERSICHT EINSTEL-LUNGSMÖGLICHKEITEN

Die Kalibrierung ist das Verfahren, das erforderlich ist, um die Genauigkeit des Messumformers über einen bestimmten Bereich zu optimieren. Dies erfolgt durch Anpassung der Werkscharakterisierung des Sensors, deren Kennlinie im Mikroprozessor gespeichert ist. Dies wird mit einem der folgenden Verfahren durchgeführt:

Nullpunktabgleich

Eine Einpunkt Offset Einstellung. Diese ist sinnvoll zur Kompensation der Einflüsse der Einbaulage. Sie sollte erst dann durchgeführt werden, wenn der Messumformer in seiner endgültigen Position installiert ist.

Wenn Sie einen Nullpunktabgleich mit einem Ventilblock ausführen, siehe "Ventilblock Funktionsweise" auf Seite 3-15.

HINWEIS

Keinen Nullpunktabgleich an einem Druckmessumformer für Absolutdruck vornehmen. Der Nullpunkt bezieht sich auf 0 als Druckwert, und der Messumformer für Absolutdruck bezieht sich auf einen absoluten Druckwert von 0. Zur Korrektur der Einflüsse der Einbaulage bei einem Absolutdruckmessumformer einen Abgleich des unteren Werts innerhalb des Sensorabgleichs durchführen. Der Abgleich des unteren Werts führt eine Offsetkorrektur ähnlich wie beim Nullpunktabgleich durch, es ist jedoch kein Nullpunkt basierender Eingang erforderlich.

Sensorabgleich

Eine Zweipunkt Sensorkalibrierung, bei der die beiden Druck-Endwerte eingestellt und alle zwischen diesen beiden Werten liegenden Ausgangswerte linearisiert werden. Immer zuerst den unteren Abgleichwert einstellen, um den korrekten Offset festzulegen. Durch die Einstellung des oberen Abgleichwerts wird die Steigung der Kennlinie basierend auf dem unteren Abgleichwert korrigiert. Durch Festlegung der Werte für den Abgleich können Sie die Genauigkeit des Messumformers über den angegebenen Messbereich bei der eingestellten Temperatur optimieren. Der Sensorabgleich erfordert einen genauen Eingangsdruck – mindestens 4 Mal genauer als der Messumformer – um die Leistungsdaten für einen spezifischen Druckbereich zu optimieren.

HINWEIS

Der Rosemount 3051 wurde sorgfältig im Werk kalibriert. Abgleichfunktionen justieren die Lage der Kennlinie der Werkscharakterisierung. Wenn ein Abgleich nicht korrekt oder mit ungenauen Betriebsmitteln ausgeführt wird, kann die Messumformerleistung verschlechtert werden.

HINWEIS

Die Rosemount Messumformer 3051C Bereich 4 und 5 benötigen eine spezielle Kalibrierung, wenn sie in einer Differenzdruckanwendung mit hohem statischen Betriebsdruck eingesetzt werden. Siehe "Kompensation des statischen Drucks" auf Seite 5-7.

Werksabgleich aufrufen

Dieser Befehl ermöglicht das Zurücksetzen auf die werksseitigen Einstellungen des Sensorabgleichs. Dieser Befehl kann verwendet werden, wenn bei einem Messumformer für Absolutdruck versehentlich eine Nullpunkteinstellung durchgeführt oder eine ungenaue Druckquelle verwendet wurde.

EINSTELLINTERVALLE FESTLEGEN

Die Einstellintervalle können stark voneinander abweichen, je nach Applikation, erforderlicher Genauigkeit sowie Prozessbedingungen. Nachfolgendes Verfahren kann als Richtlinie verwendet werden, um die Einstellintervalle abzuschätzen.

- 1. Festlegen der erforderlichen Genauigkeit für Ihre Applikation.
- 2. Feststellen der Betriebsbedingungen.
- Berechnung des wahrscheinlichen Gesamtfehlers (TPE = Total Probable Error).
- 4. Stabilität pro Monat berechnen.
- 5. Berechnung der Einstellintervalle.

Beispielberechnung für ein Standard 3051C

Schritt 1: Festlegen der erforderlichen Genauigkeit für Ihre Applikation.

Erforderliche Genauigkeit: 0,20 % der Messspanne

Schritt 2: Feststellen der Betriebsbedingungen.

Messumformer: 3051CD, Messbereich 2 (URL = 623 mbar [250 inH₂O])

Eingestellte Messspanne: 374 mbar (150 in H_2O) Änderung der ± 28 °C (50 °F)

Änderung der Umgebungstemperatur:

Auslegungsdruck: 34,5 bar (500 psig)

Schritt 3: Berechnung TPE.

Wobei:

Referenzgenauigkeit = ±0,065 % der Messspanne

Einfluss der Umgebungstemperatur =

$$\pm \left(\frac{0.0125 \times \text{URL}}{\text{Messspanne}} + 0.0625\right)$$
 % pro 50 °F = ± 0.0833 % der Messspanne

Einfluss des statischen Drucks⁽¹⁾ =

0,1 % vom Messwert pro 69 bar (1000 psi) = ±0,05 % der eingestellten Messspanne bei maximalem Messbereich

(1) Der Einfluss auf den Nullpunkt kann durch Nullpunktabgleich bei statischem Druck kompensiert werden.

Schritt 4: Stabilität pro Monat berechnen.

Stabilität =
$$\pm \left[\frac{0,0125 \times \text{URL}}{\text{Messspanne}} \right]$$
% der Messspanne für 5 Jahre = $\pm 0,0035$ % der Messspanne pro Monat

Schritt 5: Kalibrierintervalle berechnen.

Kal. Interv. =
$$\frac{\text{(Erforderl. Genauigkeit - TPE)}}{\text{Stabilität pro Monat}} = \frac{(0.2 \% - 0.108 \%)}{0.00125 \%} = 73 \text{ Monate}$$

Beispielberechnung für 3051C mit Option P8 (0,04 % Genauigkeit und 5-Jahres-Stabilität)

Schritt 1: Festlegen der erforderlichen Genauigkeit für Ihre Applikation.

Erforderliche Genauigkeit: 0,20 % der Messspanne

Schritt 2: Feststellen der Betriebsbedingungen.

Messumformer: 3051CD, Messbereich 2 (URL = 623 mbar [250 inH₂O])

Eingestellte Messspanne: 374 mbar (150 in H_2O) Änderung der \pm 28 °C (50 °F)

Umgebungstemperatur:

Auslegungsdruck: 34,5 bar (500 psig)

Schritt 3: Berechnung TPE.

TPE = $\sqrt{\text{(Referenzgenauigkeit)}^2 + (\text{Einfluss der Temperatur)}^2 + (\text{Einfluss des statischen Drucks)}^2}$ = 0,095 % der Messspanne

Wobei:

Referenzgenauigkeit = ±0,04 % der Messspanne

Einfluss der Umgebungstemperatur =

$$\pm \left(\frac{0.0125 \times \text{URL}}{\text{Messspanne}} + 0.0625\right)$$
 % pro 50 °F = ± 0.070 % der Messspanne

Einfluss des statischen Drucks⁽¹⁾ =

0,1 % vom Messwert pro 69 bar (1000 psi) = ± 0.05 % der eingestellten Messspanne bei maximalem Messbereich

(1) Der Einfluss auf den Nullpunkt kann durch Nullpunktabgleich bei statischem Druck kompensiert werden.

Schritt 4: Stabilität pro Monat berechnen.

$$Stabilit \ddot{a}t = \pm \left[\frac{0,0125 \times URL}{Messspanne}\right]\% \ der \ Messspanne \ f \ddot{u}r \ 5 \ Jahre = \pm 0,00125 \ \% \ der \ Messspanne \ pro \ Monat$$

Schritt 5: Kalibrierintervalle berechnen.

Kal. Interv. =
$$\frac{\text{(Erforderl. Genauigkeit - TPE)}}{\text{Stabilität pro Monat}} = \frac{(0.2 \% - 0.095 \%)}{0.00125 \%} = 84 \text{ Monate}$$

NULLPUNKTABGLEICH

HINWEIS

Die PV des Messumformers muss bei Nulldruck innerhalb von 10 % x obere Sensorgrenze (USL) von Null liegen, um eine Kalibrierung mit der Nullpunktabgleichfunktion durchführen zu können.

Bedieninterface (LOI)

- 1. Kalibrierung eingeben >> Nullpunkt
 - a. Bestätigen, dass die Messung innerhalb von 10 % x USL des Nullpunkts liegt
 - b. Speichern

Master Klasse 2

Schritte	Aktionen		
Den Transducer Block	Folgendes aus dem Menü auswählen:		
auf "Out of Service"	Device >> Device Mode >> Transducer Block		
setzen	(Gerät >> Gerätemodus >> Transducer Block)		
	Den Target Mode auf "Out of Service" setzen		
	Transfer drücken		
Calibrate Sensor	Folgendes aus dem Menü auswählen:		
(Sensor kalibrieren)	Device >> Sensor Calibration >> Lower Sensor Calibration		
	(Gerät >> Sensorkalibrierung >> Kalibrierung der unteren		
	Sensorgrenze)		
	0 eingeben für den unteren Kalibrierpunkt		
	Die Druckquelle auf Nulldruck einstellen		
	Bestätigen, dass der Druck abgeglichene Wert stabil ist und		
	innerhalb von 10 % x USL von Null liegt.		
	Transfer drücken		
	Close (Schließen) drücken		
Transducer Block auf	Folgendes aus dem Menü auswählen:		
AUTO setzen	Device >> Device Mode >> Transducer Block		
	(Gerät >> Gerätemodus >> Transducer Block)		
	Target Mode auf Auto setzen		
	Transfer drücken		
	Close (Schließen) drücken		

SENSORABGLEICH

HINWEIS

Eine Quelle für den Eingangsdruck verwenden, die mindestens viermal genauer ist als der Messumformer. Vor der Eingabe eines Werts 10 Sekunden lang warten, damit sich der Druck stabilisieren kann.

Bedieninterface (LOI)

- Calibration wählen >> Lower
 - a. Abgleicheinheit und Wert eingeben
 - b. Sicherstellen, dass die Messung stabil ist
 - c. Speichern
- Calibration wählen >> Upper
 - a. Abgleicheinheit und Wert eingeben
 - b. Sicherstellen, dass die Messung stabil ist
 - c. Speichern

Master Klasse 2

Schritte	Aktionen
Den Transducer Blocks auf "Out of Service" setzen	Folgendes aus dem Menü auswählen: Device >> Device Mode >> Transducer Block (Gerät >> Gerätemodus >> Transducer Block) Den Target Mode auf "Out of Service" setzen Transfer drücken
Calibrate Sensor (Sensor kalibrieren)	Folgendes aus dem Menü auswählen: Device >> Sensor Calibration >> Lower Sensor Calibration (Gerät >> Sensorkalibrierung >> Kalibrierung der unteren Sensorgrenze) Unteren Kalibrierpunkt eingeben Die Druckquelle auf den gewünschten Druck einstellen Bestätigen, dass der Druck abgeglichene Wert stabil ist Transfer drücken Die Registerkarte "Upper Sensor Calibration" (Kalibrierung der oberen Sensorgrenze) wählen Oberen Kalibrierpunkt eingeben Die Druckquelle auf den gewünschten Druck einstellen Bestätigen, dass der Druck abgeglichene Wert stabil ist Transfer drücken Close (Schließen) drücken
Transducer Block auf AUTO setzen	Folgendes aus dem Menü auswählen: Device >> Device Mode >> Transducer Block (Gerät >> Gerätemodus >> Transducer Block) Target Mode auf Auto setzen Transfer drücken Close (Schließen) drücken

WERKSABGLEICH ABRUFEN

Bedieninterface (LOI)

- Calibration >> Reset (Kalibrierung >> Rücksetzen) wählen
 a. Speichern.
- Master Klasse 2

Schritte	Aktionen
Den Transducer Blocks auf "Out of Service" setzen	Folgendes aus dem Menü auswählen: Device >> Device Mode >> Transducer Block (Gerät >> Gerätemodus >> Transducer Block) Den Target Mode auf "Out of Service" setzen Transfer drücken
Werksabgleich aufrufen	Folgendes aus dem Menü auswählen: Device >> Sensor Calibration >> Calibration Factory (Gerät >> Sensorkalibrierung >> Werksseitige Kalibrierung) Bei Auswahl werden die Kalibriereinheiten auf Werkswerte zurückgesetzt Factory Trim Standard (Werksseitige Standard Abglaich) wählen Transfer drücken Close (Schließen) drücken
Transducer Block auf AUTO setzen	Folgendes aus dem Menü auswählen: Device >> Device Mode >> Transducer Block (Gerät >> Gerätemodus >> Transducer Block) Target Mode auf Auto setzen Transfer drücken Close (Schließen) drücken

KOMPENSATION DES STATISCHEN DRUCKS

Bereich 2 und Bereich 3

Die folgende Spezifikationen stellen den Effekt des Betriebsdrucks auf einen Rosemount 3051 Bereich 2 und Bereich 3 Druckmessumformers dar der für eine Differenzdruckanwendung verwendet wird, wenn der Betriebsdruck 138 bar (2000 psi) überschritten wird.

Nullpunkteinfluss

 \pm 0,1 % vom Messende plus \pm 0,1 % vom Messendefehler für je 69 bar (1000 psi) des Betriebsdrucks über 138 bar (2000 psi).

Beispiel: Betriebsdruck ist 207 bar (3000 psi) für Messumformer mit Ultra Leistungsmerkmal Berechnung des Nullpunktfehlers:

 $\pm \{0.05 + 0.1 \times [3 \text{ kpsi} - 2 \text{ kpsi}]\} = \pm 0.15 \% \text{ vom Messende}$

Messspanneneinfluss

Siehe "Effekt des Betriebsdrucks" auf Seite A-4.

Bereich 4 und Bereich 5

Rosemount Druckmessumformer Serie 3051 mit Bereich 4 und 5 müssen mit einem speziellen Verfahren kalibriert werden, wenn diese zur Messung von Differenzdruck eingesetzt werden. Mit diesem Verfahren wird die Genauigkeit des Messumformers optimiert, indem die Einflüsse des statischen Drucks bei solchen Anwendungen reduziert werden. Bei Differenzdruck Messumformern Serie 3051 (Bereich 1, 2 und 3) müssen diese Verfahren nicht angewendet werden, da diese Optimierung im Sensor vorgenommen wird.

Wenn Druckmessumformer Serie 3051 mit Bereich 4 und 5 mit hohem statischen Druck beaufschlagt werden, führt dies zu einer systematischen Verschiebung des Ausgangs. Diese Verschiebung ist linear zum statischen Druck und kann durch den Sensorabgleich korrigiert werden. Anweisungen zu diesem Verfahren finden Sie auf Seite 5-2.

Die folgenden Spezifikationen zeigen den Einfluss des statischen Drucks für Messumformer Serie 3051 mit Bereich 4 und 5 bei Differenzdruck-Anwendungen:

Nullpunkteinfluss:

 $\pm\,0.1$ % vom Messende pro 69 bar (1000 psi) bei einem statischen Druck von 0 bis 138 bar (0 bis 2000 psi).

Bei einem statischen Druck über 138 bar (2000 psi) beträgt der Nullpunktfehler \pm 0,2 % vom Messende plus weitere \pm 0,2 % des Fehlers des Messendes pro 69 bar (1000 psi) des statischen Drucks über 138 bar (2000 psi).

Beispiel: Der statische Druck beträgt 3 kpsi (3000 psi). Berechnung des Nullpunktfehlers:

 $\pm \{0.2 + 0.2 \times [3 \text{ kpsi} - 2 \text{ kpsi}]\} = \pm 0.4 \% \text{ des Messendes}$

Messspanneneinfluss:

Korrigierbar auf ± 0.2 % des Messwerts pro 69 bar (1000 psi) bei einem statischem Druck von 0 bis 250 bar (0 bis 3626 psi).

Die systematische Messspannenverschiebung bei Anwendungen mit statischem Druck beträgt –1,00 % vom Messwert pro 69 bar (1000 psi) bei Messumformern mit Bereich 4 und –1,25 % des Messwerts pro 69 bar (100 psi) bei Messumformern mit Bereich 5.

Abschnitt 6

Störungssuche und -behebung

Übersicht	Seite 6-1
Sicherheitshinweise	Seite 6-1
Diagnostische Identifizierung und empfohlene Maßnahmen	Seite 6-2
PlantWeb und NE107 Diagnose	Seite 6-4
Alarmmeldungen und Auswahl der Ausfallsicherungsart	Seite 6-5
Demontageverfahren	Seite 6-6
Montageverfahren	Seite 6-8

ÜBERSICHT

Dieser Abschnitt enthält Informationen zur Störungssuche und -behebung am Rosemount Druckmessumformer 3051 Profibus.

SICHERHEITSHINWEISE

Verfahren und Anweisungen in diesem Abschnitt können besondere Vorsichtsmaßnahmen erfordern, um die Sicherheit des Bedienungspersonals zu gewährleisten. Informationen, die eine erhöhte Sicherheit erfordern, sind mit einem Warnsymbol (A) markiert. Lesen Sie die folgenden Sicherheitshinweise, bevor ein durch dieses Symbol gekennzeichnetes Verfahren durchgeführt wird.

Warnungen (∧)

⚠ WARNUNG

Explosionen können zu schweren oder tödlichen Verletzungen führen:

Die Installation dieses Messumformers in explosionsgefährdeten Umgebungen muss entsprechend der lokalen, nationalen und internationalen Normen, Vorschriften und Empfehlungen erfolgen. Einschränkungen in Verbindung mit der sicheren Installation finden Sie in der Betriebsanleitung für den 3051 im Kapitel "Zulassungen".

 Bei einer Ex-Schutz/Druckfeste Kapselung Installation die Gehäusedeckel des Messumformers nicht entfernen, wenn der Stromkreis unter Spannung steht.

Prozessleckagen können zu schweren oder tödlichen Verletzungen führen.

 Vor der Druckbeaufschlagung müssen die Prozessanschlüsse installiert und fest angezogen werden.

Elektrischer Schlag kann zu schweren oder tödlichen Verletzungen führen.

 Kontakt mit den Leitungsadern und Anschlussklemmen vermeiden. Elektrische Spannung an den Leitungsadern kann zu elektrischen Schlägen führen.

DIAGNOSTISCHE
IDENTIFIZIERUNG UND
EMPFOHLENE
MAßNAHMEN

Die Gerätediagnose des Rosemount 3051 Profibus kann verwendet werden, um den Benutzer vor einem potenziellen Messumformerfehler zu warnen. Ein Messumformerfehler ist vorhanden, wenn der Ausgangsstatus etwas anderes anzeigt als *Good (Gut)* oder *Good – Function Check (Gut – Funktionsprüfung)* oder wenn die LCD Anzeige *SNSR* oder *ELECT* anzeigt. Verwenden Sie Tabelle 6-1 um zu identifizieren, welcher Diagnosezustand basierend auf einer Kombination von Fehlern in den Spalten *Identifizierung* vorliegt. Beginnen Sie mit der Physical Block Diagnose-Erweiterung und verwenden Sie Primärwert und Temperaturstatus, um den Diagnosezustand zu identifizieren. Wenn das Feld leer ist, muss dieser Diagnosezustand nicht identifiziert werden. Nachdem der Zustand identifiziert wurde, verwenden Sie die Spalte "Maßnahme", um den Fehler zu beheben.

Tabelle 6-1. Diagnostische Indentifizierung und empfohlene Maßnahmen

Identifizierung	Diagnosefunktionen	Identifizierung			Maßnahmen
		Master Klasse 1 oder 2	Master Klasse 2		
	Diagnosebedingung	Physical Block Diagnose-Erweiterung	Primärwert Status	Temperatur Status	Empfohlene Maßnahme
	PV Simulation aktiv	Simulation aktiv			Simulationsschalter prüfen Elektronik austauschen
	Druck außerhalb der Sensorgrenzwerte	Sensor Transducer Block Fehler	Schlecht, Sensorfehler, Durchfluss zu niedrig/zu hoch		Bestätigen, dass der beaufschlagte Druck innerhalb des Bereichs des Drucksensors liegt Impulsleitung auf Verstopfung oder undichte Stellen untersuchen Sensormodul austauschen
	Modultemperatur außerhalb der Grenzwerte			Unsicher	Bestätigen, dass die Sensortemperatur zwischen –45 °C und 90 °C liegt Sensormodul austauschen
	Sensormodul Speicherfehler		Schlecht, Out of Service (OOS, Nicht in Betrieb)		Sensormodul austauschen
	Keine Druckaktualisierungen des Sensormoduls		Schlecht, Sensorfehler, konstant		Verdrahtung zwischen Sensormodul und Elektronik prüfen Elektronik austauschen Sensormodul austauschen
	Keine Aktualisierungen der Gerätetemperatur			Schlecht	Verdrahtung zwischen Sensormodul und Elektronik prüfen Elektronik austauschen Sensormodul austauschen
	Messkreisplatine Speicherfehler	Speicherfehler oder Integritätsfehler des nichtflüchtigen Speichers			1. Elektronik austauschen
	Taste des Bedieninterface klemmt	Fehlfunktion der Bedieninterface-Taste			Prüfen, ob die Taste unter dem Gehäuse klemmt Tasten austauschen Elektronik austauschen

Erweiterte Diagnose-Identifizierung mit Master Klasse 1

Bei Verwendung eines Masters Klasse 1 zur Identifizierung von *Physical Block Diagnose-Erweiterungen*, siehe Abbildung 6-1 und Abbildung 6-2 bezüglich Informationen über Diagnosebits. Tabelle 6-2 und Tabelle 6-3 führen die Diagnosebeschreibungen für jedes Bit auf.

HINWEIS

Ein Master Klasse 2 dekodiert automatisch Bits und bietet Diagnosenamen.

Abbildung 6-1. Erweiterte Diagnose-Identifizierung

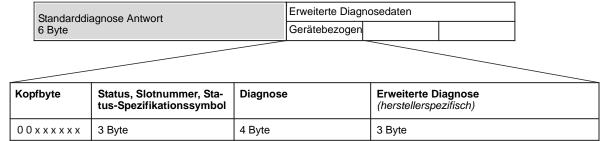


Abbildung 6-2. Diagnosen und erweiterte Diagnosen Bit Identifizierung

Diagnose

Tabelle 6-2. Diagnose Beschreibung

Gerätebezogene Diagnose				
Byte-Bit Unit_Diag_Bit (1) Diagnose Beschreibung				
2–4	36	Kaltstart		
2–3	35	Warmstart		
3–2	42	Funktionsprüfung		
3–0	40	Wartungsalarm		
4–7	55	Weitere Informationen verfügbar		

⁽¹⁾ Unit_Diag_Bit in der GSD Datei

Tabelle 6-3. Erweiterten Diagnose Beschreibung⁽¹⁾

Diagnose Erweiterung Byte-Bit		
Byte-Bit	Unit_Diag_Bit (1)	Diagnose Beschreibung
1–4	28	Simulation aktiv
1–7	63	Andere
2–0	64	Außer Betrieb
2–1	65	Spannungsversorgung einschalten
2–2	66	Gerät benötigt jetzt Wartung
2–4	68	Verlust von NV Daten
2–5	69	Verlust statistischer Daten
2–6	70	Speicherfehler
3–1	73	ROM Integritätsfehler
3–3	75	Integritätsfehler des nichtflüchtigen Speichers
3–4	76	Hardware/Software nicht kompatibel
3–5	77	Herstellungsblockintegritätsfehler
3–6	78	Sensor Transducer Block Fehler
3–7	79	Fehler Bedieninterface Taste erkannt

⁽¹⁾ Unit_Diag_Bit in der GSD Datei

PLANTWEB UND NE107 DIAGNOSE

Tabelle 6-4 beschreibt den empfohlenen Status aller Diagnosezustände auf Basis von Empfehlungen nach PlantWeb und Namur NE107.

Tabelle 6-4. Ausgangsstatus

Name	PlantWeb Alarmkategorie	NE107 Kategorie
PV Simulation aktiv	Hinweis	Prüfen
Bedieninterface Taste gedrückt	Hinweis	Gut
Druck außerhalb der Sensorgrenzwerte	Wartung	Fehler
Modultemperatur außerhalb der Grenzwerte	Wartung	Außerhalb der Spezifikation
Sensor Modul Speicherfehler	Fehler	Fehler
Keine Sensormodul Druckaktualisierungen	Fehler	Fehler
Keine Aktualisierungen der Gerätetemperatur	Fehler	Außerhalb der Spezifikation
Messkreisplatine Speicherfehler	Fehler	Fehler
Taste des Bedieninterface klemmt	Fehler	Fehler

ALARMMELDUNGEN UND AUSWAHL DER AUSFALLSICHE-RUNGSART

Tabelle 6-5 definiert den Ausgangsstatus und die LCD Meldungen, die von einem Diagnosezustand gesetzt werden. Diese Tabelle kann verwendet werden, um zu bestimmen, welche Einstellungsart für die Ausfallsicherung bevorzugt ist. Die Art der Ausfallsicherung kann mit einem Master Klasse 2 unter dem Modus fail safe >> fail safe (Ausfallsicherung >> Ausfallsicherung) gesetzt werden.

Tabelle 6-5. Alarmmeldungen

Diagnose	Ausgangsstatus (auf Basis der Art der Ausfallsicherung)			LCD
Name	Fehlerspeicherwert verwenden	Letzten guten Wert verwenden	falsch berechneten Wert verwenden	LCD Status
PV Simulation aktiv	Abhängig vom simulierten Wert/Status	Abhängig vom simulierten Wert/Status	Abhängig vom simulierten Wert/Status	k. A.
Bedieninterface Taste gedrückt	Gut, Funktionsprüfung	Gut, Funktionsprüfung	Gut, Funktionsprüfung	k. A.
Druck außerhalb der Sensorgrenzwerte	Unsicher, Austauschsatz	Unsicher, Austauschsatz	Schlecht, prozessbezogen, Wartungsalarm	SNSR
Modultemperatur außerhalb der Grenzwerte	Ungsicher, Austauschsatz	Ungsicher, prozessbezogen, keine Wartung	Unsicher, prozessbezogen, keine Wartung	SNSR
Sensor Modul Speicherfehler	Schlecht, passiviert	Unsicher, Austauschsatz	Schlecht, Wartungsalarm	SNSR
Keine Druckaktualisierungen des Sensormoduls	Ungewiss, Austauschsatz	Ungewiss, Austauschsatz	Schlecht, prozessbezogen, Wartungsalarm	SNSR
Keine Aktualisierungen der Gerätetemperatur	Unsicher, prozessbezogen, keine Wartung	Unsicher, prozessbezogen, keine Wartung	Unsicher, prozessbezogen, keine Wartung	SNSR
Messkreisplatine Speicherfehler	Schlecht, deaktiviert	Schlecht, deaktiviert	Schlecht, deaktiviert	ELECT
Taste des Bedieninterface klemmt	Schlecht, deaktiviert	Schlecht, deaktiviert	Schlecht, deaktiviert	ELECT

Tabelle 6-6. Definition des Ausgangsstatusbits

Beschreibung	HEX	DEZIMAL
Schlecht – deaktiviert	0x23	35
Schlecht, Wartungsalarm, weitere Diagnose verfügbar	0x24	36
Schlecht, prozessbezogen – keine Wartung	0x28	40
Unsicher, Austauschsatz	0x4B	75
Unsicher, prozessbezogen, keine Wartung	0x78	120
Gut, OK	0x80	128
Gut, Ereignis aktualisieren	0x84	132
Gut, Hinweisalarm, unterer Grenzwert	0x89	137
Gut, Hinweisalarm, oberer Grenzwert	0x8A	138
Gut, kritischer Alarm, unterer Grenzwert	0x8D	141
Gut, kritischer Alarm, oberer Grenzwert	0x8E	142
Gut, Funktionsprüfung	0xBC	188

DEMONTAGE-**VERFAHREN**

↑ In explosionsgefährdeten Atmosphären den Gehäusedeckel des Geräts nicht abnehmen, wenn der Stromkreis unter Spannung steht.

Messumformer außer Betrieb nehmen

Auf Folgendes achten:

- Alle Richtlinien und Verfahren für die Anlagensicherheit beachten.
- Die Prozessleitungen vom Messumformer isolieren und entlüften, bevor der Messumformer außer Betrieb genommen wird.
- Alle elektrischen Leiter und das Schutzrohr abklemmen.
- Den Messumformer vom Prozessanschluss abschrauben.
 - Der Rosemount Messumformer 3051C ist mit vier Schrauben und zwei Kopfschrauben am Prozessanschluss montiert. Die Schrauben abmontieren und den Messumformer vom Prozessanschluss trennen. Den Prozessanschluss für die erneute Installation in seiner Position belassen.
 - Der Rosemount Messumformer 3051T ist mit einer Sechskantmutter am Prozessanschluss montiert. Die Sechskantmutter lockern, um den Messumformer vom Prozess zu trennen. Keinen Schraubenschlüssel am Flansch des Messumformers ansetzen.
- Die Trennmembranen nicht verkratzen, durchstechen oder zusammendrücken.
- Die Trennmembranen mit einem weichen Tuch und einer milden Reinigungslösung reinigen und mit sauberem Wasser abspülen.
- Bei der Demontage des 3051C vom Prozessflansch oder Ovaladaptern stets die PTFE O-Ringe überprüfen. Die O-Ringe austauschen, wenn diese Anzeichen von Beschädigung wie Kerben oder Risse aufweisen. Unbeschädigte O-Ringe können erneut verwendet werden.

Anschlussklemmenblock ausbauen

Die elektrischen Anschlüsse befinden am Anschlussklemmenblock in dem mit FIELD TERMINALS (Anschlussklemmen) gekennzeichneten Gehäuseraum.

- 1. Den Gehäusedeckel auf der Seite mit den Anschlussklemmen abnehmen.
- 2. Die beiden kleinen Schrauben in der 9 Uhr Stellung und in der 5 Uhr Stellung an der Baugruppe lösen.
- 3. Den gesamten Anschlussklemmenblock aus dem Gehäuse herausziehen, um diesen abzuklemmen.

Ausbau der Elektronikplatine

Die Elektronikplatine des Messumformers befindet sich in der den Anschlussklemmen gegenüberliegenden Gehäusekammer. Die Elektronikplatine wie folgt ausbauen:

- Entfernen Sie den Gehäusedeckel auf der Seite, die der Seite mit der Aufschrift FIELD TERMINALS (Feldanschlussklemmen) gegenüber liegt.
- 2. Zum Demontieren eines Messumformers mit Digitalanzeiger die beiden unverlierbaren Schrauben links und rechts vom Digitalanzeiger lösen.

- 3. Die beiden unverlierbaren Schrauben lösen, mit denen die Platine am Gehäuse befestigt ist. Die Elektronikplatine ist elektrostatisch empfindlich; die entsprechenden Handhabungsvorschriften für statisch empfindliche Komponenten befolgen. Beim Ausbau des Digitalanzeigers vorsichtig vorgehen, da er über elektronische Pins verfügt, die die Verbindung zwischen Digitalanzeiger und Elektronikplatine herstellen. Die beiden Schrauben befestigen den Digitalanzeiger an der Elektronikplatine und die Elektronikplatine am Gehäuse.
- 4. Die Elektronikplatine mit den beiden unverlierbaren Schrauben aus dem Gehäuse ziehen. Das Sensormodul-Flachkabel fixiert die Elektronikplatine am Gehäuse. Auf die Steckerverriegelung drücken, um das Flachkabel zu lösen.

Sensormodul aus dem Elektronikgehäuse ausbauen

1. Die Elektronikplatine ausbauen. Siehe "Ausbau der Elektronikplatine"

WICHTIG

Um Schäden am Sensormodul-Flachkabel zu verhindern, das Kabel von der Elektronikplatine trennen, bevor das Sensormodul aus dem Elektronikgehäuse ausgebaut wird.

Den Kabelstecker vorsichtig vollständig in die interne schwarze Kappe schieben.

HINWEIS

Das Gehäuse erst dann entfernen, nachdem der Kabelstecker vorsichtig vollständig in die interne schwarze Kappe geschoben wurde. Die schwarze Kappe schützt das Flachkabel vor Beschädigungen, die beim Drehen des Gehäuses auftreten können.

- 3. Die Gehäusesicherungsschraube mit einem 5/64 in. Inbusschlüssel lösen und dann eine volle Umdrehung zurückdrehen.
- 4. Das Modul vom Gehäuse abschrauben und sicherstellen, dass die schwarze Kappe und das Sensorkabel nicht am Gehäuse hängen bleiben.

MONTAGEVERFAHREN

- 1. Alle (nicht mediumberührten) O-Ringe von Deckel und Gehäuse untersuchen und falls erforderlich austauschen. Die O-Ringe leicht mit Silikonfett schmieren, um eine gute Abdichtung zu gewährleisten.
- 2. Den Kabelstecker vorsichtig vollständig in die interne schwarze Kappe schieben. Hierfür die schwarze Kappe und das Kabel eine Umdrehung gegen den Uhrzeigersinn drehen, um das Kabel zu spannen.
- 3. Das Elektronikgehäuse auf das Modul absenken. Die interne schwarze Kappe und das Kabel durch das Gehäuse und in die externe schwarze Kappe führen.
- 4. Das Modul im Uhrzeigersinn in das Gehäuse schrauben.

WICHTIG

Sicherstellen, dass das Sensormodul-Flachkabel und die interne schwarze Kappe beim Drehen nicht am Gehäuse hängen bleiben. Wenn sich die interne schwarze Kappe und das Flachkabel mit dem Gehäuse drehen, kann das Kabel beschädigt werden.

- ↑ 5. Das Gehäuse vollständig auf das Sensormodul aufschrauben. Das Gehäuse nur so weit aufschrauben, dass es bis auf eine Umdrehung mit dem Sensormodul fluchtet, um die Anforderungen für Ex-Schutz zu erfüllen.
 - 6. Die Gehäusesicherungsschraube mit einem 5/64 in. Sechskant-Schraubenschlüssel anziehen.

Elektronikplatine installieren

- 1. Den Kabelstecker aus der internen schwarzen Kappe herausziehen und an der Elektronikplatine anbringen.
- 2. Die Elektronikplatine unter Verwendung der beiden unverlierbaren Schrauben als Griff in das Gehäuse einsetzen. Sicherstellen, dass die Stifte am Elektronikgehäuse ordnungsgemäß in die Buchsen auf der Elektronikplatine eingreifen. Die Einheit nicht eindrücken. Die Elektronikplatine muss leicht in die Anschlüsse gleiten.
- 3. Die unverlierbaren Befestigungsschrauben festziehen.

1. Den Deckel des Elektronikgehäuses wieder anbringen. Die Messumformer-Gehäusedeckel müssen vollständig eingeschraubt werden, so dass sich Deckel- und Gehäuserand berühren, um eine ordnungsgemäße Abdichtung zu gewährleisten und die Ex-Schutz Anforderungen zu erfüllen.

Anschlussklemmenblock installieren

- 1. Den Anschlussklemmenblock vorsichtig einschieben und darauf achten, dass die Stifte am Elektronikgehäuse ordnungsgemäß in die Buchsen am Anschlussklemmenblock eingreifen.
- 2. Die unverlierbaren Schrauben festziehen.
- 3. Den Deckel des Elektronikgehäuses wieder anbringen. Die Messumformer-Gehäusedeckel müssen vollständig geschlossen sein, um die Ex-Schutz Anforderungen zu erfüllen.

3051C Prozessflansch wieder montieren

 Inspizieren Sie die PTFE O-Ringe des Sensormoduls. Unbeschädigte O-Ringe können erneut verwendet werden. Die O-Ringe austauschen, wenn sie Anzeichen von Beschädigung wie z. B. Kerben, Risse oder allgemeine Verschleißerscheinungen aufweisen.

HINWEIS

Beim Auswechseln beschädigter O-Ringe darauf achten, dass die Nut der O-Ringe bzw. die Oberfläche der Trennmembran nicht verkratzt wird.

- 2. Den Prozessflansch installieren. Zu den möglichen Optionen gehören:
 - a. Coplanar Prozessflansch
 - Den Prozessflansch fixieren, indem zwei Justierschrauben handfest montiert werden (Schrauben sind nicht drucktragend). Die Schrauben nicht zu fest anziehen, da sonst die Ausrichtung zwischen Modul und Flansch beeinträchtigt wird.
 - Die vier 1,75 in. Flanschschrauben handfest am Flansch anschrauben.
 - b. Coplanar Prozessflansch mit Ovaladaptern:
 - Den Prozessflansch fixieren, indem zwei Justierschrauben handfest montiert werden (Schrauben sind nicht drucktragend). Die Schrauben nicht zu fest anziehen, da sonst die Ausrichtung zwischen Modul und Flansch beeinträchtigt wird.
 - Die Ovaladapter und Adapter-O-Ringe beim Installieren der vier Ausführungen mit vier 2,88 in. Schrauben fixieren. Bei Ausführungen für Überdruck zwei 2,88 in. Schrauben und zwei 1,75 in. Schrauben verwenden.
 - c. Ventilblock:
 - Informationen über die geeigneten Schrauben und Verfahren erhalten Sie vom Hersteller des Ventilblocks.
- 3. Die Schrauben über Kreuz auf das Anfangsdrehmoment anziehen. Die entsprechenden Drehmomentwerte finden Sie in Tabelle 6-7.

Tabelle 6-7. Drehmomentwerte für die Montage der Schrauben

Schraubenwerkstoff	Anfangswert	Endwert
CS-ASTM-A445 Standard	34 Nm (300 in-lb.)	73 Nm (650 in-lb.)
316 SST – Option L4	17 Nm (150 in-lb.)	34 Nm (300 in-lb.)
ASTM-A-193-B7M – Option L5	34 Nm (300 in-lb.)	73 Nm (650 in-lb.)
ASTM-A-193 Class 2, Grade B8M – Option L8	17 Nm (150 in-lb.)	34 Nm (300 in-lb.)

HINWEIS

Wenn die PTFE O-Ringe des Sensormoduls ausgetauscht wurden, müssen die Flanschschrauben nach der Installation wieder angezogen werden, um den Kaltfluss zu kompensieren.

HINWEIS

Nach dem Auswechseln der O-Ringe an einem Messumformer mit Messbereich 1 und der erneuten Montage des Prozessflansches muss der Messumformer zwei Stunden lang einer Temperatur von 85 °C (185 °F) ausgesetzt werden. Danach die Flanschschrauben erneut über Kreuz anziehen und den Messumformer vor der Kalibrierung erneut zwei Stunden lang einer Temperatur von 85 °C (185 °F) aussetzen.

Ablass-/Entlüftungsventil installieren

- Dichtungsband am Gewinde des Ventilsitzes anbringen. Am unteren Ende des Ventils beginnend zwei Lagen des Dichtungsbandes im Uhrzeigersinn anbringen, wobei das Gewindeende zum Monteur zeigen muss.
- 2. Das Ablass-/Entlüftungsventil mit 28,25 Nm (250 in-lb.) anziehen.
- 3. Die Öffnung am Ventil so ausrichten, dass die Prozessflüssigkeit beim Öffnen des Ventils zum Boden abfließen kann und ein Kontakt mit Menschen verhindert wird.

Anhang A Technische Daten

Leistungsdaten	Seite A-1
Funktionsbeschreibung	Seite A-5
Geräteausführungen	Seite A-12
Maßzeichnungen	Seite A-15
Bestellinformationen	Seite A-24
Optionen	Seite A-39
Ersatzteile	Seite A-45

LEISTUNGSDATEN

Anhang A Rosemount 3051 HART, FOUNDATION Feldbus und Profibus PA Protokolle, falls nicht anders spezifiziert.

Messspanne mit Nullpunkt zur Basis, Referenzbedingungen, Silikonölfüllung, glasgefüllte PTFE O-Ringe, Edelstahlwerkstoffe, Coplanar-Flansch (3051C) oder ½ in.14 NPT (3051T) Prozessanschlüsse, Messanfang und Messende digital abgeglichen.

Übereinstimmung mit der Spezifikation (±3σ [Sigma])

Technologische Führungsposition, fortschrittliche Fertigungstechniken und statistische Prozesssteuerung garantieren eine Übereinstimmung mit der Spezifikation auf mindestens $\pm 3\sigma$.

Referenzgenauigkeit

Die angegebenen Genauigkeiten beinhalten die Linearität, Hysterese und Reproduzierbarkeit.

Bei FOUNDATION Feldbusgeräten und Profibus PA Geräten anstelle der Messspanne den Kalibrierbereich verwenden.

Modelle	Standard	Hochgenaue Option
3051CD, 3051CG Messbereich 0 (CD)	±0,10 % der eingestellten Messspanne Für Messspannen kleiner als 2:1, Genauigkeit = ±0,05 % der eingestellten Messspanne	
Wessbereich	$\pm 0,10$ % der eingestellten Messspanne Für Messspannen kleiner als 15:1, Genauigkeit = $\pm \left[0,025 + 0,005 \left(\frac{\text{URL}}{\text{Messspanne}}\right)\right] \% \text{ der eingestellten Messspanne}$	
Messbereich 2–5	$\pm 0,065$ % der eingestellten Messspanne Für Messspannen kleiner als 10:1, Genauigkeit = $\pm \left[0,015 + 0,005 \left(\frac{\text{URL}}{\text{Messspanne}}\right)\right]_{\text{Messspanne}}^{\text{%}} \text{der eingestellten}$	Messbereich 2–4 Hochgenaue Option, P8 ±0,04 % der eingestellten Messspanne Für Messspannen kleiner als 5:1, Genauigkeit = ± 0,015 + 0,005 (URL Messspanne) % der eingestellten Messpanne
3051T Messbereich 1–4	±0,065 % der eingestellten Messspanne Für Messspannen kleiner als 10:1, Genauigkeit = ± \[0,0075 \left(\frac{\text{URL}}{\text{Messspanne}} \right) \] % der eingestellten Messspanne	Messbereich 2–4 Hochgenaue Option, P8 ±0,04 % der eingestellten Messspanne Für Messspannen kleiner als 5:1, Genauigkeit = ± \[0,0075 \left(\frac{URL}{Messspanne} \right) \] % der eingestellten Messspanne
Messbereich 5	$\pm 0,075$ % der eingestellten Messspanne Für Messspannen kleiner als 10:1, Genauigkeit = $\pm \left[0,0075\left(\frac{\text{URL}}{\text{Messspanne}}\right)\right]$ % der eingestellten Messspanne	
3051CA Messbereich 1–4	$\pm 0,065$ % der eingestellten Messspanne Für Messspannen kleiner als 10:1, Genauigkeit = $\pm \left[0,0075\left(\frac{\text{URL}}{\text{Messspanne}}\right)\right]$ % der eingestellten Messspanne	Messbereich 2–4 Hochgenaue Option, P8 ±0,04 % der eingestellten Messspanne Für Messspannen kleiner als 5:1, Genauigkeit = ± [0,0075 (URL Messspanne
3051L Alle Messbereiche	$\pm 0,075$ % der eingestellten Messspanne Für Messspannen kleiner als 10:1, Genauigkeit = $\pm \left[0,025 + 0,005 \left(\frac{\text{URL}}{\text{Messspanne}}\right)\right]$ % der eingestellten Messspanne	

Leistungsmerkmal Durchfluss – Referenzgenauigkeit Durchfluss

3051CFA Annubar Durchflussmesser			
Messbereich 2–3	±1,60 % vom Durchfluss bei 8:1 Durchfluss Messspannenverhältnis		
3051CFC Durchflussmesse	3051CFC Durchflussmesser Kompaktmessblende – Mehrloch-Messblende Option C		
Messbereich 2–3	β =0,4	±1,75 % vom Durchfluss bei 8:1 Durchfluss Messspannenverhältnis	
iviessbereich 2–3	β =0,65	±1,95 % vom Durchfluss bei 8:1 Durchfluss Messspannenverhältnis	
3051CFC Durchflussmesser Kompaktmessblende – Messblendentyp Option P ⁽¹⁾			
Messbereich 2–3	β =0,4	±2,00 % vom Durchfluss bei 8:1 Durchfluss Messspannenverhältnis	
	β =0,65	±2,00 % vom Durchfluss bei 8:1 Durchfluss Messspannenverhältnis	
3051CFP Integrierter Blendendurchflussmesser			
	β <0,1	±3,00 % vom Durchfluss bei 8:1 Durchfluss Messspannenverhältnis	
	0,1<β<0,2	±1,95 % vom Durchfluss bei 8:1 Durchfluss Messspannenverhältnis	
Messbereich 2-3	0,2<β<0,6	±1,75 % vom Durchfluss bei 8:1 Durchfluss Messspannenverhältnis	
	0,6<β<0,8	±2,15 % vom Durchfluss bei 8:1 Durchfluss Messspannenverhältnis	

⁽¹⁾ Für kleinere Nennweiten siehe Rosemount Kompaktmessblende

Gesamtgenauigkeit

Die Gesamtgenauigkeit errechnet sich aus den kombinierten Messgenauigkeiten der Referenzgenauigkeit sowie Einfluss von Umgebungstemperatur und statischem Druck.

Für ±28 °C (50 °F) Temperaturänderung, bis zu 6,9 MPa (1000 psi) statischem Druck (nur CD), Messspannenverhältnis von 1:1 bis 5:1.		
Modelle		Gesamtgenauigkeit
3051C		
	Messbereich 2-5	±0,15 % der eingestellten Messspanne
3051T		
	Messbereich 1-4	±0,15 % der eingestellten Messspanne

Langzeitstabilität

Modelle	Langzeitstabilität
3051C	
Messbereich 2–5	± 0,125 % der oberen Messbereichsgrenze (URL) auf 5 Jahre
	±28 °C (50 °F) Temperaturänderung, und bis zu 6,9 MPa (1000 psi) statischem Druck.
3051CD Low	
Power/Kleinstdrücke	
Messbereich 0-1	±0,2 % der oberen Messbereichsgrenze (URL) auf 1 Jahr
3051T	
Messbereich 1-4	± 0,125 % der oberen Messbereichsgrenze (URL) auf 5 Jahre
	±28 °C (50 °F) Temperaturänderung, und bis zu 6,9 MPa (1000 psi) statischem Druck.

Dynamische Genauigkeit

	4–20 mA HART ⁽¹⁾ 1–5 VDC HART Low Power	FOUNDATION Feldbus und Profibus PA Protokolle ⁽³⁾	Typische Ansprechzeit des HART Messumformers
Gesamtansprechzeit (T _d + T _c)	⁽²⁾ :		
3051C, Messbereiche 2-5:	100 ms	152 ms	
Messbereich 1:	255 ms	307 ms	Messumformerausgang – Zeit
Messbereich 0:	700 ms	k.A.	Messumormerausgang – Zen
3051T:	100 ms	152 ms	Signaländerung
3051L:	Siehe Instrument Toolkit®	Siehe Instrument Toolkit	T _d = Totzeit
Totzeit (Td)	45 ms (Nominal)	97 ms	100 % T _c = Zeitkonstante
Messwerterneuerung	22 /s	22 /s	Ansprechzeit = T _d +T _c
(1) Totzeit und Messwerterneuerung gelten für alle Modelle und Messbereiche, jeweils nur für den Analogausgang. (2) Die nominale Gesamtansprechzeit gilt für die Referenzbedingung von 24 °C (75 °F). (3) Ansprechzeit des Transducer Blocks, Ausführungszeit des Al Blocks nicht mit einberechnet.		36,8 % 63,2 % der Gesamtänderung 0 % Zeit	

Einfluss des statischen Drucks pro 6,9 MPa (1000 psi)

Bei statischen Drücken über 13,7 MPa (2000 psi) und Messbereichen 4–5 siehe Betriebsanleitung (Dokument-Nummer 00809-0105-4001 für HART, 00809-0100-4774 für FOUNDATION Feldbus und 00809-0100-4797 für Profibus PA).

(Dokument-Numinie) 00009-0105-4001 für HART, 00009-0100-4774 für i OondAffort elabas üha 00009-0100-4797 für i Tolibas i A).		
Modelle	Einfluss des statischen Drucks	
3051CD, 3051CF	Nullpunktfehler ⁽¹⁾	
Messbereich 0	±0,125 % der oberen Messbereichsgrenze/6,89 bar (100 psi)	
Messbereich 1	±0,25 % der oberen Messbereichsgrenze/68,9 bar (1000 psi)	
Messbereich 2–3	±0,05 % der oberen Messbereichsgrenze/68,9 bar (1000 psi) bei einem statischem Druck von 0 bis	
	13,7 MPa (0 bis 2000 psi)	
	Messspannenfehler	
Messbereich 0	±0,15 % vom angezeigten Wert/6,89 bar (100 psi)	
Messbereich 1	±0,4 % vom angezeigten Wert/68,9 bar (1000 psi)	
Messbereich 2–3	±0,1 % vom angezeigten Wert/68,9 bar (1000 psi)	

⁽¹⁾ Kann durch Einstellung unter statischem Druck vollständig kompensiert werden.

Einfluss der Umgebungstemperatur pro 28 °C (50 °F)

Modelle	Einfluss der Umgebungstemperatur	
3051CD, 3051CG, 3051CF		
Messbereich 0	±(0,25 % URL + 0,05 % der eingestellten Messspanne)	
Messbereich 1	±(0,1 % URL + 0,25 % der eingestellten Messspanne)	
Messbereich 2–5	±(0,0125 % URL + 0,0625 % der eingestellten Messspanne) von 1:1 bis 5:1	
	±(0,025 % URL + 0,125 % der eingestellten Messspanne) von 5:1 bis 100:1	
3051T		
Messbereich 1	±(0,025 % URL + 0,125 % der eingestellten Messspanne) von 1:1 bis 10:1	
	±(0,05 % URL + 0,125 % der eingestellten Messspanne) von 10:1 bis 100:1	
Messbereiche 2–4	±(0,025 % URL + 0,125 % der eingestellten Messspanne) von 1:1 bis 30:1	
	±(0,035 % URL + 0,125 % der eingestellten Messspanne) von 30:1 bis 100:1	
Messbereich 5	±(0,1 % URL + 0,15 % der eingestellten Messspanne)	
3051CA		
Alle Messbereiche	±(0,025 % URL + 0,125 % der eingestellten Messspanne) von 1:1 bis 30:1	
	±(0,035 % URL + 0,125 % der eingestellten Messspanne) von 30:1 bis 100:1	
3051L	Siehe Instrument Toolkit Software.	

Einfluss der Einbaulage

Modelle	Einfluss der Einbaulage
3051C	Nullpunktverschiebung bis zu ±3,11 mbar (1,25 inH ₂ O), kann vollständig kompensiert werden. Kein Einfluss auf die Messspanne.
3051L	Druckmittler in vertikaler Position: Nullpunktverschiebung bis zu 2,49 mbar (1 inH ₂ O). Druckmittler in horizontaler Position: Nullpunktverschiebung bis zu 12,43 mbar (5 inH ₂ O) plus Länge des Membranvorbaus bei Einheiten mit Vorbau. Alle Nullpunktverschiebungen können vollständig kompensiert werden. Kein Einfluss auf die Messspanne.
3051CA, 3051T	Nullpunktverschiebung bis zu $\pm 6,22$ mbar (2,5 in H_2O), kann vollständig kompensiert werden. Kein Einfluss auf die Messspanne.

Einfluss von Vibrationen

Geringer als ±0,1 % URL, geprüft nach den IEC 60770-1 Vorschriften im Feld oder bei hohen Rohrleitungsvibrationen (10–60 Hz, 0,21 mm Amplitude und 60–2000 Hz mit 3 g).

Geringer als ±0,005 % der eingestellten Messspanne pro Volt.

Spannungsversorgung

Einfluss der

RFI-Einflüsse

 $\pm\,0,1$ % der eingestellten Messspanne zwischen 20 MHz und 1000 MHz und für Feldstärken bis

zu 30 V/m.

Elektromagnetische Verträglichkeit (EMV)

Entspricht allen geltenden Anforderungen von EN 61326 und NAMUR NE-21.

Überspannungsschutz (Option Code T1)

Entspricht IEEE C62.41, Kategorie Standort B

6 kV Spannungsspitze (0,5 μs – 100 kHz)

3 kV Spannungsspitze (8 x 20 μs)

6 kV Spannungsspitze (1,2 x 50 μs)

HINWEIS

Kalibrierung bei 20 °C (68 °F) gemäß ASME Z210.1 (ANSI)

FUNKTIONS-BESCHREIBUNG

Messbereichs- und Sensorgrenzen

Tabelle A-1. Messbereichs- und Sensorgrenzen für 3051CD, 3051CG, 3051CF und 3051L

ich	Min. Messspanne		Messbereichs- und Sensorgrenzen				
ere			Untere (LRL)				
Messbereich	3051CD ⁽¹⁾ , 3051CG, 3051CF, 3051L	Obere (URL)	3051CD Differenzdruck 3051CF Durchflussmesser	3051CG Überdruck	3051L Differenzdruck	3051L Überdruck	
0	0,25 mbar (0,1 inH ₂ O)	7,47 mbar (3,0 inH ₂ O)	−7,47 mbar (−3,0 inH ₂ O)	k.A.	k.A.	k.A.	
1	1,2 mbar (0,5 inH ₂ O)	62,3 mbar (25 inH ₂ O)	−62,1 mbar (−25 inH ₂ O)	–62,1 mbar (–25 inH ₂ O)	k.A.	k.A.	
2	6,2 mbar (2,5 inH ₂ O)	0,62 bar (250 inH ₂ O)	–0,62 bar (−250 inH ₂ O)	-0,62 bar (-250 inH ₂ O)	-0,62 bar (-250 inH ₂ O)	-0,62 bar (-250 inH ₂ O)	
3	24,9 mbar (10 inH ₂ O)	2,49 bar (1000 inH ₂ O)	−2,49 bar (−1000 inH ₂ O)	34,5 mbar abs (0,5 psia)	-2,49 bar (-1000 inH ₂ O)	34,5 mbar abs (0,5 psia)	
4	0,20 bar (3 psi)	20,6 bar (300 psi)	−20,6 bar (−300 psi)	34,5 mbar abs (0,5 psia)	–20,6 bar (–300 psi)	34,5 mbar abs (0,5 psia)	
5	1,38 bar (20 psi)	137,9 bar (2000 psi)	–137,9 bar (–2000 psi)	34,5 mbar abs (0,5 psia)	k.A.	k.A.	

⁽¹⁾ Messbereich 0 nur lieferbar mit 3051CD. Messbereich 1 nur lieferbar mit 3051CD, 3051CG oder 3051CF.

Tabelle A-2. Messbereichs- und Sensorgrenzen

ڃ	3051CA			ڃ	3051T			
Messbereich	Messbereichs- und Sensorgrenzen			Messbere Sensor		Untere ⁽¹⁾		
Mess	Min. Messspanne	Obere (URL)	Untere (LRL)	Mess	Min. Messspanne	Obere (URL)	Untere (LRL)	(LRL) (Überdruck)
1	20,6 mbar	2,07 bar	0 bar	1	20,6 mbar	2,07 bar	0 bar	-1,01 bar
	(0,3 psia)	(30 psia)	(0 psia)		(0,3 psia)	(30 psia)	(0 psia)	(-14,7 psig)
2	0,103 bar	10,3 bar	0 bar	2	0,103 bar	10,3 bar	0 bar	-1,01 bar
	(1,5 psia)	(150 psia)	(0 psia)		(1,5 psia)	(150 psia)	(0 psia)	(-14,7 psig)
3	0,55 bar	55,2 bar	0 bar	3	0,55 bar	55,2 bar	0 bar	-1,01 bar
	(8 psia)	(800 psia)	(0 psia)		(8 psia)	(800 psia)	(0 psia)	(-14,7 psig)
4	2,76 bar	275,8 bar	0 bar	4	2,76 bar	275,8 bar	0 bar	-1,01 bar
	(40 psia)	(4000 psia)	(0 psia)		(40 psia)	(4000 psia)	(0 psia)	(-14,7 psig)
				5	137,9 bar	689,4 bar	0 bar	-1,01 bar
					(2000 psi)	(10000 psi)	(0 psia)	(-14,7 psig)

⁽¹⁾ Angenommener Atmosphärendruck von 1,01 bar (14,7 psig).

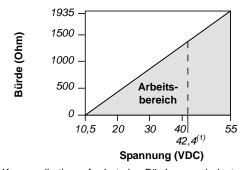
Einsatzbereiche

Flüssigkeits-, Gas- und Dampfanwendungen

HART 4-20 mA (Ausgangscode A)

Ausgang

Zweileiter, 4–20 mA Signal, linearer oder radizierter Ausgang – wählbar durch den Anwender. Der Wert der Prozessvariablen ist als digitales Signal dem 4–20 mA Signal überlagert und kann von einem Hostrechner mit *HART* Protokoll empfangen werden.


Spannungsversorgung

Externe Spannungsversorgung erforderlich. Standard Messumformer (4–20 mA) können mit einer Spannungsversorgung zwischen 10,5 und 55 V DC betrieben werden.

Bürdengrenzen

Der maximal zulässige Messkreiswiderstand ist abhängig von der externen Spannungsversorgung und lässt sich wie folgt bestimmen:

Max. Messkreisbürde = 43,5 (Versorgungsspannung – 10,5)

Die Kommunikation erfordert eine Bürde von mindestens 250 Ohm.

(1) Für CSA Anwendungen darf die Spannungsversorgung 42,4 V DC nicht überschreiten.

Einstellung von Nullpunkt und Messspanne

Die Werte für Nullpunkt und Messspanne können innerhalb der Messbereichsgrenzen beliebig gesetzt werden; siehe Tabelle A-1 und Tabelle A-2.

Die Messspanne muss größer oder gleich der minimalen Messspanne gem. Tabelle A-1 und Tabelle A-2 sein.

Indikation

Optionale zweizeilige LCD Anzeige

FOUNDATION Feldbus (Ausgangscode F)

Spannungsversorgung

Es ist eine externe Spannungsversorgung notwendig. Messumformer können mit einer Spannungsversorgung zwischen 9,0 und 32,0 VDC betrieben werden.

Stromverbrauch

Für alle Konfigurationen 17,5 mA (inklusive LCD-Anzeige)

Indikation

Optionale zweizeilige LCD Anzeige

Ausführungszeiten des Foundation Feldbus Function Blocks

Block	Ausführungszeit
Resource	-
Transducer	-
LCD-Block	-
Analog Input 1, 2	30 ms
PID	45 ms
Input Selector	30 ms
Arithmetic	35 ms
Signal Characterizer	40 ms
Integrator	35 ms

FOUNDATION Feldbus Parameter

Schedule Entries	7 (max.)
Links	20 (max.)
Virtual Communications Relationships (VCR)	12 (max.)

Standard Function Blocks

Resource Block

Enthält Hardware-, Elektronik- und Diagnoseinformationen

Transducer Block

Enthält aktuelle Sensormessdaten inkl. Sensordiagnose sowie der Möglichkeit des Abgleichs des Drucksensors oder wiederherstellen der Herstellereinstellungen.

LCD-Block

Konfiguriert die Digitalanzeige

2 Analog Input Blocks

Führt die Messungen für die Eingänge der anderen Function Blocks durch. Der Ausgangswert erfolgt in technischen- oder kundenspezifischen Einheiten und enthält einen Status, der die Messqualität anzeigt.

PID-Block

Enthält alle logisch auszuführenden PID-Feldsteuerungen inkl. Kaskaden- und Störgrößenaufschaltung.

Backup Link Active Scheduler (LAS)

Der Messumformer kann als Link Active Scheduler (LAS) funktionieren, wenn das aktuelle Link Mastergerät gestört oder vom Segment abgekoppelt ist.

Erweiterte Control Function Blockeinheit (Option Code A01)

Input Selector Block

Wählt zwischen Eingängen aus und erzeugt einen Ausgang mit bestimmten Strategien wie minimaler, maximaler, mittlerer, durchschnittlicher oder first good Strategie.

Arithmetic Block

Bietet vordefinierte, auf Anwendungen basierende Gleichungen inkl. Durchfluss mit partieller Dichtekompensation, elektronischer externer Verriegelung, hydrostatische Tankmessung, Verhältnissteuerung und weiteres.

Signal Characterizer Block

Charakterisiert oder nähert sich jeder Funktion an, die ein Ein-/Ausgangsverhältnis durch Konfiguration von bis zu zwanzig X/Y-Koordinaten definiert. Der Block interpoliert einen Ausgangswert bei einem gegebenen Eingangswert unter Verwendung der durch die Koordinaten konfigurierten Kurve.

Integrator Block

Vergleicht die integrierten oder akkumulierten Werte von ein oder zwei Variablen mit vorherigen und aktuellen Auslösegrenzen und generiert binäre Ausgangssignale, wenn die Grenzen erreicht sind. Dieser Block ist hilfreich für Berechnungen wie Gesamtdurchfluss, Gesamtmasse oder Volumen über eine Zeiteinheit.

FOUNDATION Feldbus Diagnoseeinheit (Option Code D01)

Die 3051C FOUNDATION Feldbus Diagnose bietet präventive Indikationen für ungewöhnliche Situationen (Abnormal Situation Prevention [ASP]). Die integrierte Technologie der statistischen Prozessüberwachung (SPM) berechnet die Mittelwert- und Standardabweichung der Prozessvariablen 22 mal pro Sekunde. Der ASP-Algorithmus des 3051C verwendet diese Werte sowie hoch flexible Konfigurationsoptionen für die Anpassung an vom Anwender definierte oder anwendungsspezifische ungewöhnliche Situationen. Die Erkennung verstopfter Impulsleitungen ist die erste verfügbare, vordefinierte Anwendung.

Profibus PA (Ausgangscode W)

Profilversion

3.02

Spannungsversorgung

Es ist eine externe Spannungsversorgung notwendig. Messumformer können mit einer Spannungsversorgung zwischen 9,0 und 32,0 VDC betrieben werden.

Stromverbrauch

Für alle Konfigurationen 17,5 mA (inklusive Option LCD Anzeige)

Messwerterneuerung des Ausgangs

Vier Mal pro Sekunde

Standard Function Blocks

Analog Input (Al Block)

Der Al Function Block führt die Messungen durch und stellt sie dem Hostsystem zur Verfügung. Der Ausgangswert des Al Blocks wird in Messeinheiten ausgegeben und enthält einen Status, der die Qualität der Messung angibt.

Physical Block

Der Physical Block definiert die physikalischen Ressourcen des Geräts, einschließlich Speicherart, Hardware, Elektronik und Diagnoseinformationen.

Transducer Block

Enthält aktuelle Sensormessdaten inkl. Sensordiagnose sowie der Möglichkeit des Abgleichs des Drucksensors oder wiederherstellen der Herstellereinstellungen.

Indikation

Optionale zweizeilige LCD Anzeige

Bedieninterface

Optionale externe Einstelltasten

1-5 VDC HART Low Power (Ausgangscode M)

Ausgang

3-Leiter 1–5 VDC oder 0,8–3,2 VDC (Option Code C2), vom Anwender wählbarer Ausgang. Zusätzlich kann vom Anwender das Ausgangssignal linear oder radiziert konfiguriert werden. Die digitale Prozessvariablen ist dem Spannungssignal überlagert und ist für jeden Hostrechner mit *HART* Protokoll verfügbar. Betriebsspannung am Low Power/Kleinstdrücke Messumformer 6–12 V DC ohne Bürde.

Stromverbrauch

3,0 mA, 18-36 mW

Min. Bürdenimpedanz

100 kΩ (V_{Ausgang} Verdrahtung)

Indikation

Fünfstellige LCD-Anzeige (Option)

Überlastgrenzen für den Druck

Rosemount 3051CD/CG/CF

Messbereich 0: 51,7 bar (750 psi)

• Messbereich 1: 137,9 bar (2000 psig)

• Messbereich 2-5: 250 bar (3626 psig)

310,3 bar (4500 psig) bei Option Code P9

Rosemount 3051CA

• Messbereich 1: 51,7 bar (750 psi)

• Messbereich 2: 103,4 bar (1500 psia)

• Messbereich 3: 110,3 bar (1600 psia)

• Messbereich 4: 413,7 bar (6000 psia)

Rosemount 3051TG/TA

• Messbereich 1: 51,7 bar (750 psi)

• Messbereich 2: 103,4 bar (1500 psi)

• Messbereich 3: 110,3 bar (1600 psi)

• Messbereich 4: 413,7 bar (6000 psi)

• Messbereich 5: 1034,2 bar (15000 psi)

Für Modell 3051L oder Modelle mit Flanschanschluss Option Codes FA, FB, FC, FD, FP und FQ reicht die Überlastgrenze von 0 psia bis zur Druckstufe des Sensors oder der Druckstufe des Flansches. Es gilt der jeweils niedrigere Wert.

Tabelle A-3. 3051L und Modelle mit Flanschanschluss

Standard	Time	Max. Druck C-Stahl	Max. Druck Edelstahl	
Standard	Тур	C-Stani	Edeistani	
ANSI/ASME	Class 150	285 psig	275 psig	
ANSI/ASME	Class 300	740 psig	720 psig	
ANSI/ASME	Class 600	1480 psig	1440 psig	
Bezugstemperatur 3				
steigende	r Temperatur (gem	iäß ANSI/ASME B	16.5).	
DIN	PN 10-40	40 bar	40 bar	
DIN	PN 10/16	16 bar	16 bar	
DIN PN 25/40 40 bar 40 bar				
Bezugstemperatur 120 °C (248 °F), die zulässige Druckbelastung sinkt				
mit steigender Temperatur (gemäß DIN 2401).				

Statische Druckgrenzen

Nur Rosemount 3051CD

Der Messumformer arbeitet innerhalb der Spezifikation, bei einem statischen Druck zwischen 310 bar, 3 bar (0,5 psia und 3626 psig) (4500 psig bei Option Code P9).

Messbereich 0: 3,4 bar und 51,7 bar (0,5 psia und 750 psig)

Messbereich 1: 3,4 bar und 137,9 bar (0,5 psia und 2000 psig)

Berstdrücke

3051C und 3051CF Coplanar- oder Anpassungsflansch

69 MPa (10000 psig)

3051T Inline

Messbereich 1–4: 75,8 MPa (11000 psi) Messbereich 5: 179 MPa (26000 psig)

Alarmverhalten

Wird bei der ständigen Selbstüberwachung eine Störung des Sensors oder Mikroprozessors erkannt, so wird das Analogsignal auf einen hohen oder niedrigen Wert gesetzt, um so den Anwender zu alarmieren. Der Anwender kann mittels einer Steckbrücke am Messumformer wählen, ob im Störfall der Modus hoch oder niedrig anliegen soll. Die Ausgangswerte des Messumformers im Störfall hängen davon ab, ob werkseitig der *Standard-* oder *NAMUR-*Betrieb konfiguriert wurde. Die Werte für jeden Modus sind wie folgt:

Standard Modus				
Ausgangscode	Linearer Ausgang	Hochalarm	Niedrigalarm	
Α	$3,9 \le I \le 20,8$	I ≥ 21,75 mA	I ≤ 3,75 mA	
М	$0.97 \le V \le 5.2$	V ≥ 5,4 V	V ≤ 0,95 V	

NAMUR Modus			
Ausgangscode	Linearer Ausgang	Hochalarm	Niedrigalarm
Α	$3.8 \le I \le 20.5$	I ≥ 22,5 mA	I ≤ 3,6 mA

Ausgangscode F und W

Wird bei der Selbstüberwachung ein Fehler des Messumformers erkannt, so wird die Information als eine Statusmeldung mit der Prozessvariablen weitergegeben.

Zulässige Temperaturen

Umgebung

-40 bis 85 °C (-40 bis 185 °F) Mit LCD Anzeige⁽¹⁾: -20 bis 80 °C (-4 bis 175 °F)

Lagerung

-46 bis 110 °C (-50 bis 230 °F)

Mit integrierter LCD Anzeige: -40 bis 85 °C (-40 bis 185 °F)

Prozess

Bei Atmosphärendruck und darüber Siehe Tabelle A-4.

(1) Bei Temperaturen unter –20 °C (–4 °F) kann es sein, dass die LCD Anzeige nicht ablesbar ist und die Updates langsamer werden.

Tabelle A-4. 3051 Prozesstemperaturgrenzen

3051CD, 3051CG, 3051CF, 3051CA				
Sensor-Füllmedium Silikonöl ⁽¹⁾				
mit Coplanar-Flansch	-40 bis 121 °C (-40 bis 250 °F) ⁽²⁾			
mit Anpassungsflansch	-40 bis 149 °C (-40 bis 300 °F)(2)(3)			
mit Flansch für Füllstand	-40 bis 149 °C (-40 bis 300 °F) ⁽²⁾			
mit integriertem Ventilblock 305	-40 bis 149 °C (-40 bis 300 °F) ⁽²⁾			
Sensor-Füllmedium Inert ⁽¹⁾	-18 bis 85 °C (0 bis 185 °F) ⁽⁴⁾⁽⁵⁾			
3051T (Füllflüssigkeit au	m Prozessanschluss)			
Sensor-Füllmedium Silikonöl ⁽¹⁾	-40 bis 121 °C (-40 bis 250 °F) ⁽²⁾			
Sensor-Füllmedium Inert ⁽¹⁾	-30 bis 121 °C (-22 bis 250 °F) ⁽²⁾			
3051L L-Seite, Nic	3051L L-Seite, Niederdruckseite			
Sensor-Füllmedium Silikonöl ⁽¹⁾	-40 bis 121 °C (-40 bis 250 °F) ⁽²⁾			
Sensor-Füllmedium Inert ⁽¹⁾	–18 bis 85 °C (0 bis 185 °F) ⁽²⁾			
3051L H-Seite, Hochdruckseite (Füll	flüssigkeit am Prozessanschluss)			
Syltherm® XLT	-73 bis 149 °C (-100 bis 300 °F)			
D.C. Silicone 704®	0 bis 205 °C (32 bis 400 °F)			
D.C. Silikon 200	-40 bis 205 °C (-40 bis 400 °F)			
Inertes Füllmedium –45 bis 177 °C (–50 bis 350 °F				
Glyzerin und Wasser	–18 bis 93 °C (0 bis 200 °F)			
Neobee M-20	–18 bis 205 °C (0 bis 400 °F)			
Propylenglykol / Wassergemisch	−18 bis 93 °C (0 bis 200 °F)			

- (1) Bei einer Prozesstemperatur über 85 °C (185 °F) reduziert sich die zulässige Umgebungstemperatur im Verhältnis 1,5:1.
- (2) Bei Betrieb im Vakuum beträgt die maximale Temperatur 104 °C (220 °F), unterhalb von 35 mbar abs. (0,5 psia) maximal 54 °C (130 °F).
- (3) Beim Modell 3051CD0 betragen die Prozesstemperaturgrenzen –45 bis 100 °C (–40 bis 212 °F)
- (4) Bei Betrieb in Vakuum beträgt die maximale Temperatur 71 °C (160 °F).
- (5) Nicht lieferbar für 3051CA.

Feuchte

Einschaltzeit

0-100 % relative Feuchte

Max. 2,0 Sekunden nach dem Einschalten arbeitet der Messumformer innerhalb seiner Spezifikation (10,0 Sekunden bei Profibus Protokoll).

Verdrängungsvolumen

Kleiner als 0,08 cm3 (0,005 in.3)

Dämpfung

4-20 mA HART

Die Ansprechgeschwindigkeit des analogen Ausgangs kann über die Zeitkonstante zwischen 0 und 36 Sekunden vom Anwender gewählt werden. Diese softwaremäßige Dämpfung ist zur Ansprechzeit des Sensors hinzu zu addieren.

FOUNDATION Feldbus

Transducer Block: 0,4 Sekunden fest

Al Block: Konfigurierbar durch den Anwender

Profibus PA

Nur Al Block: Konfigurierbar durch den Anwender

GERÄTEAUS-FÜHRUNGEN

Elektrische Anschlüsse

¹/₂-14 NPT, PG 13.5, G¹/₂ und M20 × 1,5 (CM20) Leitungseinführung. Der Anschluss der *HART* Schnittstelle erfolgt über den Klemmenblock.

Prozessanschlüsse

Rosemount 3051C

¹/4-18 NPT mit 2¹/8 in. Bohrungsabstand

¹/2-14 NPT mit 2-, 2¹/8 oder 2¹/4 in. Bohrungsabstand

Rosemount 3051L

Hochdruckseite: Flansch nach ASME B 16.5 (ANSI), 2, 3 oder 4 in., Class 150, 300 oder 600, Flansch nach DIN DN50, 80 oder 100, PN 40 oder 10/16

Niederdruckseite: ¹/₄ 18 NPT am Flansch ¹/₂ 14 NPT im Ovaladapter

Rosemount 3051T

¹/₂-14 NPT innengewinde DIN 16288 Außengewinde (erhältlich in Edelstahl nur für Messumformer Messbereiche 1–4) oder Autoklave-Typ F-250-C (druckentlastet ⁹/₁₆-18 Gewinde; ¹/₄ OD Hochdruckrohr mit 60° Konus; erhältlich in Edelstahl nur für Messumformer Messbereich 5).

Rosemount 3051CF

Für 3051CFA siehe 00813-01000-4485 im Abschnitt 485 Für 3051CFC siehe 00813-01000-4485 im Abschnitt 405 Für 3051CFP siehe 00813-01000-4485 im Abschnitt 1195

Prozessmedienberührte Teile

Ablass-/Entlüftungsventile

Edelstahl 316 SST, Alloy C-276 oder Alloy 400 (Alloy 400 ist für den 3051L nicht lieferbar)

Werkstoffe der Prozessflansche und Adapter

Kohlenstoffstahl galvanisiert, CF-8M (Gussausführung von Edelstahl 316 SST gemäß ASTM-A743), CW12MW Gussausführung Typ C oder Gusslegierung M30C

O-Ringe

Glasgefülltes PTFE oder graphitgefülltes PTFE

Werkstoffe der Trennmembran

Werkstoffe Trennmembran	3051CD 3051CG	3051T	3051CA
Edelstahl 316L	•	•	•
Alloy C-276	•	•	•
Alloy 400	•		•
Tantal	•		
Alloy 400 vergoldet	•		•
Edelstahl (SST) vergoldet	•		•

Rosemount 3051L Medienberührte Teile

Flansch-Prozessanschlüsse (Messumformer H-Seite)

Prozessmembrane einschließlich Dichtfläche

Edelstahl 316L. Allov C-276 oder Tantal

Membranvorbau

CF-3M (Gussausführung des Edelstahls 316L SST gemäß ASTM-A743) oder Alloy C-276. Passend für Rohrleitung Schedule 40 und 80.

Montageflansch

Galvanisierter Kohlenstoffstahl oder Edelstahl

Referenzanschluss (Messumformer L-Seite)

Werkstoffe der Trennmembran

Edelstahl 316L SST oder Alloy C-276

Referenzflansch und Adapter

CF-8M (Gussausführung des Edelstahls 1.4401 (316 SST), Schutzgrad NEMA 4X, IP65, IP66)

Nicht medienberührte Teile

Elektronikgehäuse

Aluminiumgehäuse oder CF-8M (Gussausführung des Edelstahls 316 SST) Gehäuseschutzart 4X, IP 65, IP 66, IP 68

Coplanar Sensorgehäuse

CF-3M (Gussausführung des Edelstahls 316L SST gemäß ASTM-A743)

Schrauben

ASTM A449, Typ 1 (galvanisierter Kohlenstoffstahl)
ASTM F593G, Kondition CW1 (austenitischer Edelstahl 316 SST)
ASTM A193, Grade B7M (Zink galvanisierte Stahllegierung)
Alloy K-500

Sensor-Füllmedium

Silikonöl (D.C. 200) oder Fluorocarbon-Öl (Halocarbon oder Fluorinert® FC-43 für 3051T)

Füllflüssigkeit am Prozessanschluss (nur 3051L)

Syltherm XLT, Silikonöl D.C. 704, Silikonöl D.C. 200, inertes Füllmedium, Glyzerin/Wassergemisch, Neobee M-20 oder Propylenglykol/Wassergemisch

Lackierung

Polyurethan

O-Ring Gehäusedeckel

Buna-N

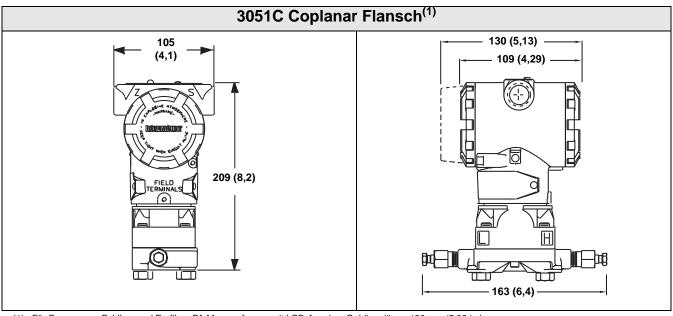
Versandgewichte

Tabelle A-5. Messumformer Gewicht ohne Optionen

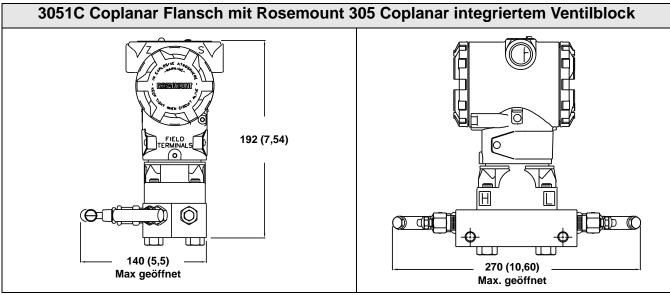
Messumformer	Mehr-Gewicht in kg (lb)	
3051C	2,7 (6,0)	
3051T	1,4 (3,0)	
3051L	Tabelle A-6 auf Seite A-14	

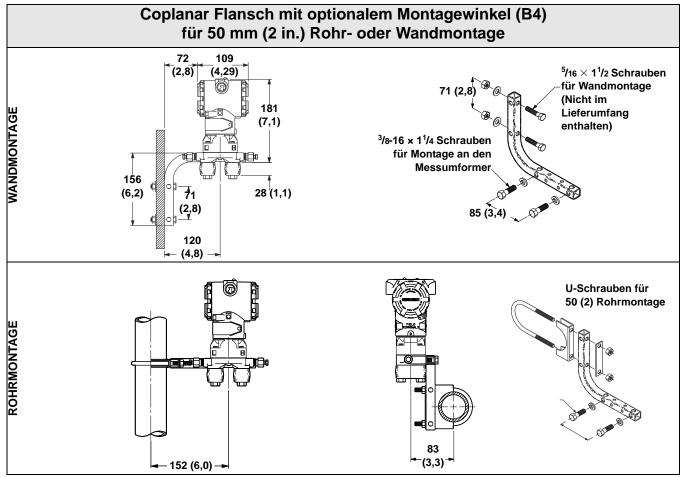
Tabelle A-6. 3051L Gewicht ohne Optionen

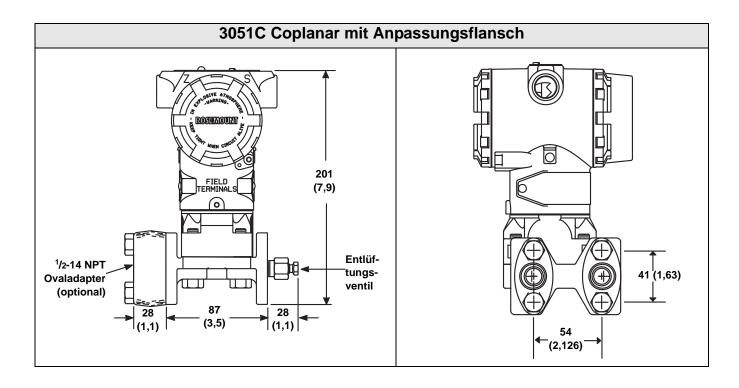
Flansch	Bündig kg (lb.)	2 in. Membranvorbau kg (lb.)	4 in. Membranvorbau kg (lb.)	6 in. Membranvorbau kg (lb.)
2 in., 150	5,7 (12,5)	_	_	_
3 in., 150	7,9 (17,5)	8,8 (19,5)	9,3 (20,5)	9,7 (21,5)
4 in., 150	10,7 (23,5)	12,0 (26,5)	12,9 (28,5)	13,8 (30,5)
2 in., 300	7,9 (17,5)	_	_	_
3 in., 300	10,2 (22,5)	11,1 (24,5)	11,6 (25,5)	12,0 (26,5)
4 in., 300	14,7 (32,5)	16,1 (35,5)	17,0 (37,5)	17,9 (39,5)
2 in., 600	6,9 (15,3)	_	_	_
3 in., 600	11,4 (25,2)	12,3 (27,2)	12,8 (28,2)	13,2 (29,2)
DN 50/PN 40	6,2 (13,8)	_	_	_
DN 80/PN 40	8,8 (19,5)	9,7 (21,5)	10,2 (22,5)	10,6 (23,5)
DN 100/ PN 10/16	8,1 (17,8)	9,0 (19,8)	9,5 (20,8)	9,9 (21,8)
DN 100/ PN 40	10,5 (23,2)	11,5 (25,2)	11,9 (26,2)	12,3 (27,2)

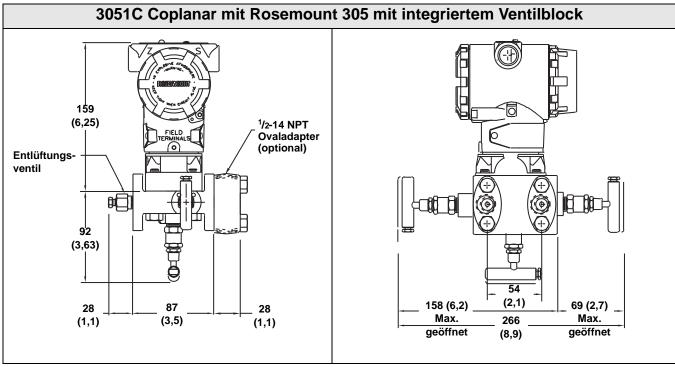

Tabelle A-7. Gewicht Messumformer-Optionen

Code	Option	Addieren kg (lb.)
J, K, L, M	Edelstahlgehäuse (T)	1,8 (3,9)
J, K, L, M	Edelstahlgehäuse (C, L, H, P)	1,4 (3,1)
M4/M5	LCD-Anzeige mit Aluminiumgehäuse	0,2 (0,5)
M4/M6	LCD-Anzeige für Edelstahlgehäuse	0,6 (1,25)
B4	Edelstahl Montagewinkel für Coplanar Flansch	0,5 (1,0)
B1, B2, B3	Montagewinkel für Anpassungsflansch	1,0 (2,3)
B7, B8, B9	Montagewinkel für Anpassungsflansch	1,0 (2,3)
BA, BC	Edelstahl-Montagewinkel für Anpassungsflansch	1,0 (2,3)
H2	Anpassungsflansch	1,1 (2,4)
H3	Anpassungsflansch	1,2 (2,7)
H4	Anpassungsflansch	1,2 (2,6)
H7	Anpassungsflansch	1,1 (2,5)
FC	Flanschanschluss senkrecht – 3 in., 150	4,9 (10,8)
FD	Flanschanschluss senkrecht – 3 in., 300	6,5 (14,3)
FA	Flanschanschluss senkrecht – 2 in., 150	4,8 (10,7)
FB	Flanschanschluss senkrecht – 2 in., 300	6,3 (14,0)
FP	Flanschanschluss senkrecht – DIN, DN 50, PN 40, Edelstahl	3,8 (8,3)
FQ	Flanschanschluss senkrecht – DIN, DN 80, PN 40, Edelstahl	6,2 (13,7)

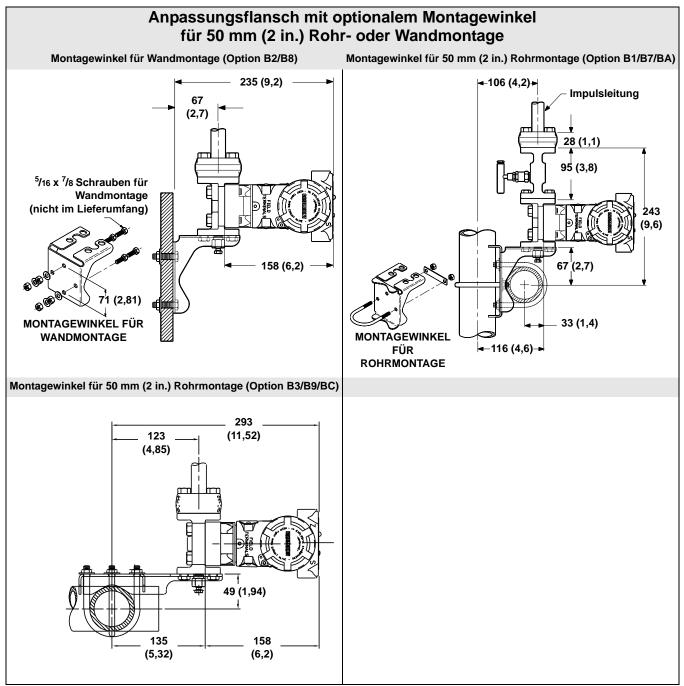

MAßZEICHNUNGEN


August 2010

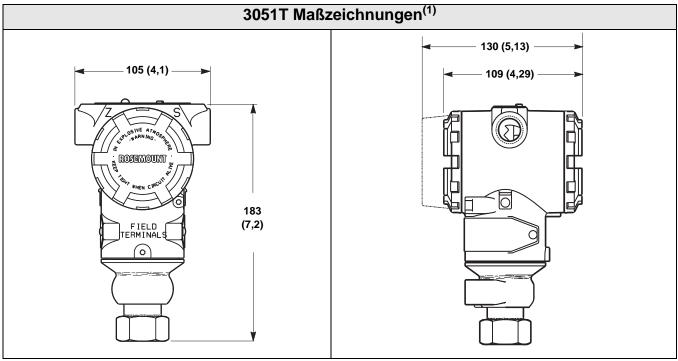

(1) Für FOUNDATION Feldbus und Profibus PA Messumformer mit LCD Anzeige, Gehäuselänge 136 mm (5,36 in.).

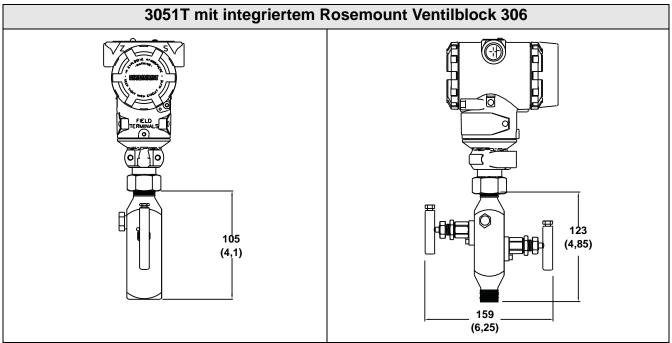


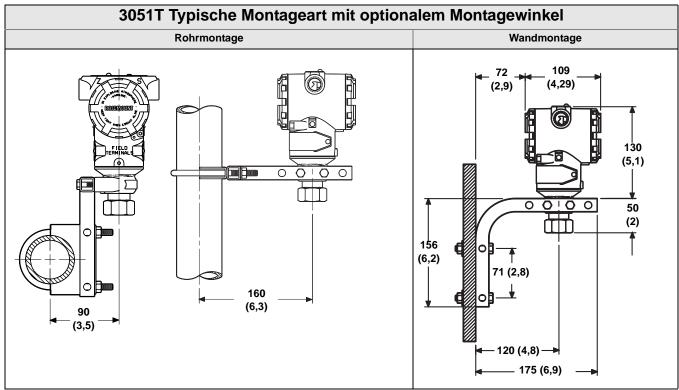
Abmessungen in mm (in.)



Abmessungen in mm (in.)




Abmessungen in mm (in.)


Abmessungen in mm (in.)

(1) Für FOUNDATION Feldbus und Profibus PA Messumformer mit LCD Anzeige, Gehäuselänge 136 mm (5,36 in.).

Abmessungen in mm (in.)

Abmessungen in mm (in.)

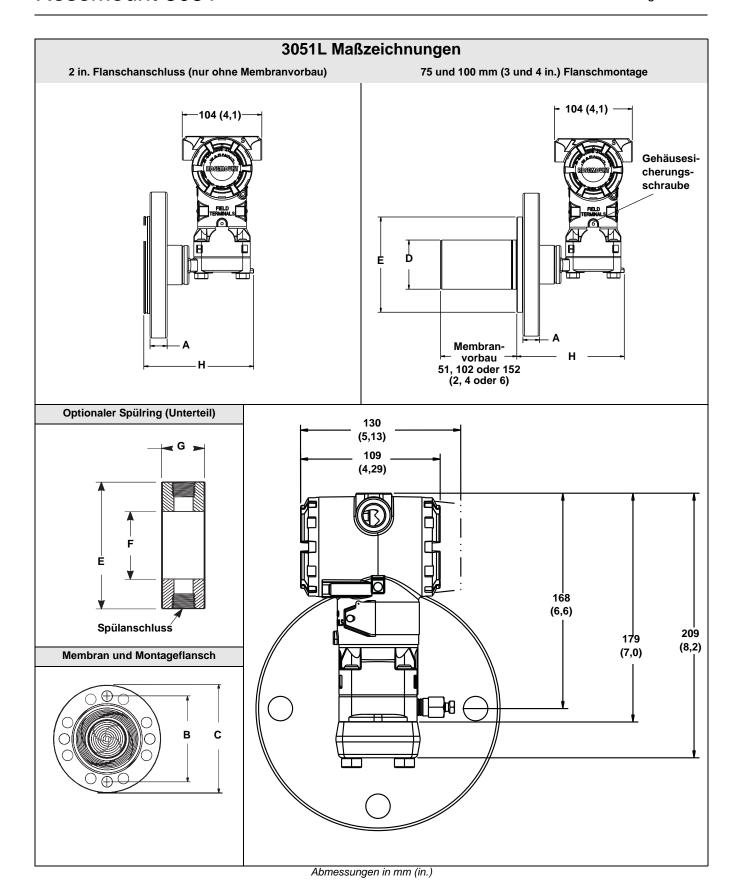


Tabelle A-8. 3051L Abmessungen

Abmessungen in mm (in.), Ausnahmen sind gekennzeichnet

Klasse	Nenn- weite	Flansch- dicke A	Lochkreis- durch- messer B	Außen- durch- messer C	Anzahl der Schrauben	Loch- durch- messer	Membranvor- bau Durch- messer ⁽¹⁾ D	Dichtlei- sten Durch- messer E
ASME B16.5 (ANSI) 150	51 (2)	18 (0,69)	121 (4,75)	152 (6,0)	4	19 (0,75)	k,A,	92 (3,6)
	76 (3)	22 (0,88)	152 (6,0)	191 (7,5)	4	19 (0,75)	66 (2,58)	127 (5,0)
	102 (4)	22 (0,88)	191 (7,5)	229 (9,0)	8	19 (0,75)	89 (3,5)	158 (6,2)
ASME B16.5 (ANSI) 300	51 (2)	21 (0,82)	127 (5,0)	165 (6,5)	8	19 (0,75)	k,A,	92 (3,6)
	76 (3)	27 (1,06)	168 (6,62)	210 (8,25)	8	22 (0,88)	66 (2,58)	127 (5,0)
	102 (4)	30 (1,19)	200 (7,88)	254 (10,0)	8	22 (0,88)	89 (3,5)	158 (6,2)
ASME B16.5 (ANSI) 600	51 (2)	25 (1,00)	127 (5,0)	165 (6,5)	8	19 (0,75)	k,A,	92 (3,6)
	76 (3)	32 (1,25)	168 (6,62)	210 (8,25)	8	22 (0,88)	66 (2,58)	127 (5,0)
DIN 2501 PN 10-40	DN 50	20 mm	125 mm	165 mm	4	18 mm	k,A,	102 (4,0)
DIN 2501 PN 25/40	DN 80	24 mm	160 mm	200 mm	8	18 mm	66 mm	138 (5,4)
	DN 100	24 mm	190 mm	235 mm	8	22 mm	89 mm	158 (6,2)
DIN 2501 PN 10/16	DN 100	20 mm	180 mm	220 mm	8	18 mm	89 mm	158 (6,2)

Abmessungen in mm (in.)

		Pro-	Unterteil G		
Klasse	Nennweite	zessseite F	¹ /4 NPT	¹ /2 NPT	н
ASME B16.5 (ANSI) 150	51 (2)	54 (2,12)	25 (0,97)	33 (1,31)	143 (5,65)
	76 (3)	91 (3,6)	25 (0,97)	33 (1,31)	143 (5,65)
	102 (4)	91 (3,6)	25 (0,97)	33 (1,31)	143 (5,65)
ASME B16.5 (ANSI) 300	51 (2)	54 (2,12)	25 (0,97)	33 (1,31)	143 (5,65)
	76 (3)	91 (3,6)	25 (0,97)	33 (1,31)	143 (5,65)
	102 (4)	91 (3,6)	25 (0,97)	33 (1,31)	143 (5,65)
ASME B16.5 (ANSI) 600	51 (2)	54 (2,12)	25 (0,97)	33 (1,31)	194 (7,65)
	76 (3)	91 (3,6)	25 (0,97)	33 (1,31)	194 (7,65)
DIN 2501 PN 10-40	DN 50	61 (2,4)	25 (0,97)	33 (1,31)	143 (5,65)
DIN 2501 PN 25/40	DN 80	91 (3,6)	25 (0,97)	33 (1,31)	143 (5,65)
	DN 100	91 (3,6)	25 (0,97)	33 (1,31)	143 (5,65)
DIN 2501 PN 10/16	DN 100	91 (3,6)	25 (0,97)	33 (1,31)	143 (5,65)

⁽¹⁾ Toleranzen 1,02 (0,040), -0,51 (-0,020).

BESTELLINFORMATIONEN

Tabelle 1. 3051C Coplanar Druckmessumformer – Bestellinformationen

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Modell	Messumformer Montagetyp					
3051C	Coplanar Druckmessumfo	rmer				
Messart						
Standard	d					Standard
D	Differenzdruck					*
G	Überdruck					*
Erweiter	t					
Α	Absolutdruck					
Druckm	essbereiche (Messbereich/	Mindest-Me	ssspanne)			
	3051CD		3051CG ⁽¹⁾		3051CA	
Standard	d		1			Standard
1	-62,2 bis 62,2 mbar/1,2 m (-25 bis 25 inH ₂ O/0,5 inH ₂		-62,1 bis 62,2 (-25 bis 25 inl-	mbar/1,2 mbar I ₂ O/0,5 inH ₂ O)	0 bis 2,1 bar/20,7 mbar (0 bis 30 psia/0,3 psia)	*
2	-623 bis 623 mbar/6,2 mb (-250 bis 250 inH ₂ O/2,5 ir	ar	-621 bis 623 n		0 bis 10,3 bar/0,1 bar (0 bis 150 psia/1,5 psia)	*
3	-2,5 bis 2,5 bar/25 mbar (-1000 bis 1000 inH ₂ O/10	inH ₂ O)	-0,98 bis 2,5 b		0 bis 55,2 bar/0,55 bar (0 bis 800 psia/8 psia)	*
4	-20,7 bis 20,7 bar/0,2 bar (-300 bis 300 psi/3 psi)		-0,98 bis 20,7 (-14,2 bis 300	•	0 bis 275,8 bar/2,8 bar (0 bis 4000 psia/40 psia)	*
5	-137,9 bis 137,9 bar/1,4 bar		*			
Erweiter	t					
0 ⁽²⁾	-7,5 bis 7,5 mbar/0,25 mb (-3 bis 3 inH ₂ O/0,1 inH ₂ O)	7,5 bis 7,5 mbar/0,25 mbar Entfällt Entfällt Entfällt				
Ausgan	g					
Standard	d					Standard
А	4–20 mA mit digitalem Sig	nal basieren	d auf HART Prot	okoll		*
F	FOUNDATION Feldbus Proto	koll				*
W ⁽³⁾	Profibus PA Protokoll					*
Erweiter	t					
M	Low Power, 1–5 VDC mit I	Digitalsignal	basierend auf H	ART Protokoll (siehe	Option C2 für 0,8–3,2 VDC)	
Werksto	ffe					
	Prozessflansch Typ	Flansch	Werkstoff	Ablass-/Entlüft	ungsventil	
Standard	d					Standard
2	Coplanar	Edelstah	ıl	Edelstahl		*
3 ⁽⁴⁾	Coplanar	Guss C-	276	Alloy C-276		*
4	Coplanar	Gussleg	ierung 400	Alloy 400/K-500		*
5	Coplanar	Kohlens	toffstahl galv.	Edelstahl		*
7 ⁽⁴⁾	Coplanar	Edelstah	ıl	Alloy C-276		*
8 ⁽⁴⁾	Coplanar	Kohlens	toffstahl galv.	Alloy C-276		*
0	Weitere Prozessanschlüss	e – Siehe S	eite A-25			*
Trennme	embran					
Standard	d					Standard
2 ⁽⁴⁾	316L SST					*
3 ⁽⁴⁾	Alloy C-276					*

Tabelle 1. 3051C Coplanar Druckmessumformer – Bestellinformationen

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Die erweiterte Ausführung ist mit längeren Lieferzeiten verbunden.

Erweite	art				
4	Alloy 400	· ·			
5	Tantal (nur für Modell 3051CD und CG, Messber	reich 2-5 lieferbar. Nicht lieferbar für 3051CA)			
6	Vergoldetes Alloy 400 (Zusammen mit O-Ring C	Optionsode B verwenden)			
7	Edelstahl (SST) vergoldet				
O-Ring	ı				
Standa	rd		Standard		
Α	Glasgefülltes PTFE		*		
В	Graphitgefülltes PTFE		*		
Sensor	rfüllmedium				
Standa	rd		Standard		
1	Silikonöl		*		
2	Inertfüllung (Nur Differenz- und Überdruck)		*		
Gehäu	sewerkstoff	Leitungseinführungsgewinde			
Standa	rd		Standard		
Α	Aluminium, Polyurethan-beschichtet	½-14 NPT	*		
В	Aluminium, Polyurethan-beschichtet	M20 × 1,5 (CM20)	*		
J	Edelstahl	½-14 NPT	*		
K	Edelstahl	M20 × 1,5 (CM20)	*		
Erweite	ert				
D	Aluminium, Polyurethan-beschichtet	G½			
M	Edelstahl	G1/2			

Optionen (mit der jeweiligen Modellnummer angeben)

PlantV	/eb Reglerfunktionalität	
Standa	rd	Standard
A01	FOUNDATION Feldbus Erweiterte Reglerfunktionseinheit	*
PlantV	/eb Diagnosefunktionalität	
Standa	rd	Standard
D01	FOUNDATION Feldbus Diagnoseeinheit	*
Altern	ativer Flansch	
Standa	rd	Standard
H2	Anpassungsflansch Edelstahl (316 SST), Ablass-/Entlüftungsventil Edelstahl (SST)	*
H3 ⁽⁴⁾	Anpassungsflansch, Alloy C, Alloy C-276 Ablass-/Entlüftungsventil	*
H4	Anpassungsflansch, Guss Alloy 400, Alloy 400/K-500 Ablass-/Entlüftungsventil	*
H7 ⁽⁴⁾	Anpassungsflansch Edelstahl 316 SST, Alloy C-276 Ablass-/Entlüftungsventil	*
HJ	DIN Anpassungsflansch, Edelstahl (SST), ¹ /16 Adapter/Ventilblock Verschraubung	*
FA	Flanschanschluss (senkrecht), Edelstahl (SST), 2 in., ANSI Class 150	*
FB	Flanschanschluss (senkrecht), Edelstahl (SST), 2 in., ANSI Class 300	*
FC	Flanschanschluss (senkrecht), Edelstahl (SST), 3 in., ANSI Class 150	*
FD	Flanschanschluss (senkrecht), Edelstahl (SST), 3 in., ANSI Class 300	*
FP	DIN Flanschanschluss (senkrecht), Edelstahl (SST), DN 50, PN 40	*
FQ	DIN Flanschanschluss (senkrecht), Edelstahl (SST), DN 80, PN 40	*
Erweit	ert	
HK	DIN Anpassungsflansch, Edelstahl (SST), 10 mm Adapter/Ventilblock Verschraubung	
HL	DIN Anpassungsflansch, Edelstahl (SST), 12 mm Adapter/Ventilblock Verschraubung (nicht lieferbar für 3051CD0)	

0809-0105-4797, Rev CA August 2010

Tabelle 1. 3051C Coplanar Druckmessumformer – Bestellinformationen

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Integrie	rte Baugruppe	
Standar	d	Standard
S3 ⁽⁵⁾	Montage an Rosemount 405 Kompaktmessblende	*
S5 ⁽⁵⁾	Montage an einen integrierten Ventilblock Rosemount 305 (separat spezifizieren, siehe Produktdatenblatt für Rosemount Integrierter Ventilblock 305 und 306 [DokNr. 00813-0100-4733])	*
S6 ⁽⁵⁾	Montage an einen Rosemount Ventilblock 304 oder ein Anschlusssystem	*
Integrie	rte Wirkdruckgeber	
Standar	d	Standard
S4 ⁽⁵⁾	Montage an einen Rosemount Annubar oder eine integrierte Messblende Rosemount 1195 (Bei angebautem Wirkdruckgeber richtet sich der max. zul. Betriebsdruck nach Messumformer- oder Wirkdruckgeber-Druckstufe. Der niedrigere Wert ist zu berücksichtigen. Diese Option ist nur lieferbar bei Herstellermontage für Messumformer Messbereiche 1–4)	*
Druckm	ittler	
Standar	d	Standard
S1 ⁽⁵⁾	Montage an einen Rosemount Druckmittler 1199	*
S2 ⁽⁵⁾	Anbau an zwei Rosemount Druckmittler 1199	*
Druckm	ittler in voll verschweißten Konstruktion (für Anwendungen mit hohem Unterdruck)	
Standar	d	Standard
S0 ⁽⁵⁾	Ein Druckmittler, vollverschweißt (Direktanbau)	*
S7 ⁽⁵⁾	Ein Druckmittler, vollverschweißt (über Kapillare)	*
S8 ⁽⁵⁾	Zwei Druckmittler, vollverschweißt (über Kapillare)	*
S9 ⁽⁵⁾	Zwei Druckmittler, vollverschweißt, (1 mal Direktanbau und 1 mal über Kapillare)	*
Montag	ewinkel	
Standar	d	Standard
B1	Anpassungsflansch, Montagewinkel für 50 mm (2 in) Rohrmontage, Schrauben aus Kohlenstoffstahl	*
B2	Anpassungsflansch Montagewinkel für Wandmontage, Kohlenstoffstahl-Schrauben	*
В3	Anpassungsflansch, Montageplatte für 50 mm (2 in.) Rohrmontage, Schrauben aus Kohlenstoffstahl	*
B4	Coplanar Flansch, Montagewinkel für 50 mm (2 in) Rohr- oder Wandmontage, komplett Edelstahl	*
B7	B1 Montagewinkel, Schrauben Edelstahl Serie 300	*
B8	B2 Montagewinkel, Schrauben Edelstahl Serie 300	*
B9	B3 Montagewinkel, Schrauben Edelstahl Serie 300	*
ВА	Edelstahl B1 Montagewinkel mit Schrauben Edelstahl Serie 300	*
ВС	Edelstahl B3 Montagewinkel mit Schrauben Edelstahl Serie 300	*
Produk	t-Zulassungen	
Standar		Standard
C6	CSA Ex-Schutz, Staub Ex-Schutz, Eigensicherheit und Division 2	*
E2 ⁽⁷⁾	INMETRO Druckfeste Kapselung	*
E3 ⁽⁷⁾	China Druckfeste Kapselung	*
E4 ⁽⁶⁾	TIIS druckfeste Kapselung	*
E5	FM Ex-Schutz, Staub Ex-Schutz	*
E7 ⁽⁷⁾	IECEx Druckfeste Kapselung, Staub Ex-Schutz	*
E8	ATEX druckfeste Kapselung und Staub Zulassung	*

Tabelle 1. 3051C Coplanar Druckmessumformer – Bestellinformationen

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

* * *
*
★
*
*
*
*
*
*
*
E7) ★
*
*
*
*
*
*
Standard
former Typ ★
Standard
*
*
*
Standard
*
*
*
Standard
*
*
*
Standard
tumen und ★
Standard
*

Tabelle 1. 3051C Coplanar Druckmessumformer – Bestellinformationen

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Einstelle	r Nullpunkt/Messspanne	
Standard		Standard
J1 ⁽⁹⁾⁽¹⁰⁾	Nur Nullpunkttaste	*
J3 ⁽⁹⁾⁽¹⁰⁾	Ohne Einsteller Nullpunkt/Messspanne	*
Anschlus	ssklemmenblock mit Überspannungsschutz	
Standard		Standard
T1	Anschlussklemmenblock mit Überspannungsschutz	*
Software	-Konfiguration	
Standard		Standard
C1 ⁽⁹⁾	Kundenspezifische Softwarekonfiguration (ausgefülltes Konfigurationsdatenblatt 00806-0100-4001 wird bei Bestellung benötigt)	*
Low Pow	ver Ausgang	
Erweitert		
C2	Ausgangssignal 0,8 bis 3,2 V DC mit Digitalsignal gemäß HART Protokoll, (nur mit Ausgangscode M)	
Einstellu	ng als Messumformer für Überdruck	
Standard		Standard
C3	Einstellung als Messumformer für Überdruck (nur Modell 3051CA4)	*
Alarmso	lwert	
Standard		Standard
C4 ⁽⁹⁾⁽¹¹⁾	Analog-Ausgangswerte gemäß NAMUR-Empfehlungen NE 43, Hochalarm	*
CN ⁽⁹⁾⁽¹¹⁾	Analog-Ausgangswerte gemäß NAMUR-Empfehlungen NE 43, Niedrigalarm	*
Druckpri	ifung	
Erweitert		
P1	Hydrostatische Druckprobe mit Zertifikat	
Reinigun	gen	
Erweitert		
P2	Erhöhte Sauberkeitsstufe	
P3	Reinigung für weniger als <1 ppm Chlor/Fluor	
Druckka	ibrierung	
Erweitert		
P4	Kalibrierung bei statischem Druck (bei der Bestellung Q48 für die entsprechende Bescheinigung angeben)	
mit hohe	r Genauigkeit	
Standard		Standard
P8	0,04 % Genauigkeit bis Messspannenverhältnis von 5:1 (Messbereich 2-4)	*
Flanscha	idapter	
Standard		Standard
DF	¹ /2-14 NPT Ovaladapter	*
Ablass-/l	Entlüftungsventile	
Erweitert		
D7	Coplanar Flansch ohne Ablass-/Entlüftungsanschlüsse	
Verschlu	ssstopfen	
Standard		Standard
DO	Edelstahl 316 Verschlussstopfen	*

Sicherheitsanleitung

00809-0105-4797, Rev CA August 2010

Rosemount 3051

Tabelle 1. 3051C Coplanar Druckmessumformer – Bestellinformationen

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

DIC CI	weiterte Austumung ist mit langeren Lieferzeiten verbunden.	
RC ¹ /4 R	RC ¹ /2 Prozessanschluss	
Erweite	ert	
D9	JIS Prozessanschluss – RC ¼ Flansch mit RC ½ Flanschadapter	
Max. st	atischer Druck	
Standa	rd	Standard
P9	Max. statischer Druck 310 bar (4500 psig) (nur Modell 3051CD Messbereich 2–5)	*
Erdung	psschraube	
Standa	rd	Standard
V5 ⁽¹²⁾	Aussenliegender Erdungsanschluss	*
Trinkwa	asser Zulassung	
Standa	rd	Standard
DW	NSF Trinkwasser Zulassung	*
Oberflä	ichengüte	
Standa	rd	Standard
Q16	Prüfprotokoll Oberflächengüte für Hygiene-Druckmittler	*
Toolkit	für Gesamtsystem-Performanceberichte	
Standa	rd	Standard
QZ	Berechnungsreport für die Leistungsmerkmale des Druckmittler-Systems	*
Kabele	inführung, elektrischer Anschluss	
Standa	rd	Standard
GE	M12, 4-Pin Stecker (eurofast®)	*
GM	Ein Mini, 4-Pin Stecker (minifast®)	*
Typiscl	he Modellnummer: 3051CD 2 A 2 2 A 1 A B4	

- Die untere Messbereichsgrenze bei Modell 3051CG ist vom atmosphärischen Druck abhängig.
 3051CD0 ist nur lieferbar mit Ausgangscode A, Prozessflansch Code 0 (alternativ Flansch H2, H7, HJ oder HK), Trennmembran Code 2, O-Ring Code A und Schrauben Option L4.
- Option Code M4 LCD Anzeige mit Bedieninterface für lokale Adressierung und Konfiguration.
- (4) Die Werkstoffe entsprechen den Empfehlungen gemäß NACE MR0175/ISO 15156 für Produktionsbedingungen in Rohölfeldern (sour oil field production environments). Die Grenzen für die Umgebung beziehen sich auf bestimmte Werkstoffe. Konsultieren Sie die neuesten Standards für Details. Die angegebenen Werkstoffe entsprechen auch NACE MR0103 für Raffinerieumgebungen (sour refining environments)
 (5) "Montage an" Positionen sind separat spezifiziert und erfordern eine komplette Modellnummer.
 (6) Lieferhar nur mit Ausgangsgeodes A. A. 20 MART und E. Foundation Foldburg.
- (6) Lieferbar nur mit Ausgangscodes A 4–20 HART und F Foundation Feldbus.
- (7) Nicht lieferbar mit Low Power Code M.
 (8) Lieferbar nur mit 3051CD und 3051CG und Ausgangscode A 4–20 mA HART
- (9) Nicht lieferbar mit Feldbus (Ausgangscode F) oder Profibus (Ausgangscode W).
- (10) Nullpunkt- und Messspannentaste sind Standard, außer bei Option Code J1 oder J3.
- (11) Betrieb gemäß NAMUR, werksseitig voreingestellt, kann vor Ort nicht auf Standardbetrieb geändert werden.
- (12) Die Option V5 wird bei der Option T1 nicht benötigt; die aussenliegende Erdungsschraube ist bei Option T1 enthalten.

Tabelle 2. 3051T Messumformer für Über- und Absolutdruck – Bestellinformationen

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Die erweiterte Ausführung ist mit längeren Lieferzeiten verbunden.

Modell	Messumformer Montagetyp				
3051T	Druckmessumformer				
Druckart	<u> </u>				
Standard	1		Standard		
G	Überdruck		*		
Α	Absolutdruck		*		
Druck M	essende – Konfigurierbare Beschreibung				
	3051TG ⁽¹⁾	3051TA			
Standard	<u> </u>		Standard		
1	2,1 bar (30 psi)	2,1 bar (30 psia)	*		
2	10,3 bar (150 psi)	10,3 bar (150 psia)	*		
3	55,2 bar (800 psi)	55,2 bar (800 psia)	*		
4	275,8 bar (4000 psi)	275,8 bar (4000 psia)	*		
5	689,5 bar (10000 psi)	689,5 bar (10000 psia)	*		
Messum	former Ausgang				
Standard	ı		Standard		
Α	4–20 mA mit digitalem Signal basierend auf	HART Protokoll	*		
F	FOUNDATION Feldbus Protokoll		*		
W ⁽²⁾	Profibus PA Protokoll		*		
Erweitert					
M	Low Power, 1–5 VDC mit digitalem Signal ba	asierend auf dem HART Protokoll			
Prozessa	anschluss				
Standard			Standard		
2B	¹ /2-14 NPT Innengewinde				
2C	G½ A DIN 16288 Außengewinde (lieferbar in	n Edelstahl nur für Messbereich 1–4)	*		
Erweitert					
2F	Konisch und mit Gewinde, kompatibel mit Au Edelstahlausführung für Messbereich 5)	ıtoklave Typ F-250-C (mit Verschraubung und Hülse, nur in			
61	Instrumentenflansch ohne Gewinde (nur Mes	ssbereich 1–4)			
Trennme	,	Prozessanschluss medienberührte Teile			
Standard		T TO 2000 CONTROL MODEL MINE TO HO	Standard		
2 ⁽³⁾	Edelstahl 316L SST	Edelstahl 316L SST	→ Standard		
3 ⁽³⁾	Alloy C-276	Alloy C-276	*		
	üllmedium	7 110 9 2 2 7 0	^		
Standard			Standard		
1	Silikonöl		→ tandard		
2	Inert (Fluorinert® FC-43)		*		
	ewerkstoff	Leitungseinführungsgewinde	^		
Standard			Standard		
A	Aluminium, Polyurethan-beschichtet	½-14 NPT	⇒ Standard		
В	Aluminium, Polyurethan-beschichtet	M20 × 1,5 (CM20)	*		
J	Edelstahl	½-14 NPT	*		
K	Edelstahl	M20 × 1,5 (CM20)	*		
Erweitert					
D Erweitert	Aluminium, Polyurethan-beschichtet	G1/2			

Optionen (mit der jeweiligen Modellnummer angeben)

PlantWe	b Reglerfunktionalität	
Standard		Standard
A01	Erweiterte Reglerfunktionseinheit	*

Tabelle 2. 3051T Messumformer für Über- und Absolutdruck – Bestellinformationen

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Die erv	veiterte Ausführung ist mit längeren Lieferzeiten verbunden.	
PlantW	eb Diagnosefunktionalität	
Standar	d	Standard
D01	FOUNDATION Feldbus Diagnoseeinheit	*
Integrie	rte Baugruppe	
Standar	d	Standard
S5 ⁽⁴⁾	Anbau eines integrierten Rosemount Ventilblocks 306	*
Druckm	ittler	
Standar		Standard
S1 ⁽⁴⁾	Montage an einen Rosemount Druckmittler 1199	*
Montag		^
Standar		Ctondord
B4	Montagewinkel für 50 mm (2 in.) Rohr- oder Wandmontage, komplett Edelstahl	Standard ★
	t-Zulassungen	
Standar	•	Standard
C6	CSA Ex-Schutz, Staub Ex-Schutz, Eigensicherheit und Division 2	*
E2	INMETRO Druckfeste Kapselung	*
E3	China Druckfeste Kapselung	*
E4 ⁽⁵⁾	TIIS Druckfeste Kapselung	*
E5 E7 ⁽⁵⁾	FM Ex-Schutz, Staub Ex-Schutz	*
E8	IECEx Druckfeste Kapselung, Staub Ex-Schutz	*
I1 ⁽⁵⁾	ATEX druckfeste Kapselung und Staub Zulassung	*
	ATEX Eigensicherheit und Staub INMETRO Eigensicherheit	*
I2 I3	China Eigensicherheit	*
15	FM Eigensicherheit, Division 2	<u>*</u>
17 ⁽⁵⁾	IECEx Eigensicherheit	*
IA	ATEX Eigensicherheit nach FISCO, nur für FOUNDATION Feldbus Protokoll	*
IE	FM FISCO Eigensicherheit nur für FOUNDATION Feldbus Protokoll	*
K2	INMETRO Druckfeste Kapselung, Eigensicherheit	`
K5	FM Ex-Schutz, Staub Ex-Schutz, Eigensicherheit und Division 2	`
K6 ⁽⁵⁾	CSA und ATEX Ex-Schutz, Eigensicherheit und Division 2 (Kombination aus C6 und K8)	^ *
K7 ⁽⁵⁾	IECEx Druckfeste Kapselung, Staub Ex-Schutz, Eigensicherheit und Typ n (Kombination aus I7, N7 und E7)	<u>^</u>
K8 ⁽⁵⁾	ATEX Druckfeste Kapselung, Eigensicherheit, Typ n, Staub (Kombination aus E8, I1 und N1)	<u> </u>
KB	FM und CSA Ex-Schutz, Staub Ex-Schutz, Eigensicherheit und Division 2 (Kombination aus K5 und C6)	*
KD ⁽⁵⁾	FM, CSA und ATEX Ex-Schutz, Eigensicherheit (Kombination aus K5, C6, I1 und E8)	*
N1 ⁽⁵⁾	ATEX Typ n und Staub Zulassung	*
N3	China Typ n	*
N7 ⁽⁵⁾	IECEx Typ n Zulassung	*
Eicham	tlicher Transfer	
Standar	d	Standard
C5	Kanadische Zulassung für Eichpflichtigen Verkehr (Eingeschränkte Liefermöglichkeit, abhängig von Messumformer	*
	Typ und Messbereich. Setzen Sie sich mit Emerson Process Management in Verbindung)	
Kalibrie	rzertifikat	
Standar		Standard
Q4	Kalibrierzertifikat	⇒ Stanuaru ★
QG	Prüfprotokoll und GOST Prüfprotokoll	<u></u> ★
QP	Prüfprotokoll und manipulationssichere Verplombung	^ *
	office uprisse	
Standar	-	Standard
Q8	Werkstoffzeugnisse gemäß EN 10204 3.1.B HINWEIS: Diese Option ist nur für den Prozessanschluss verfügbar.	
		*
	szertifizierung	
Standar		Standard
QS	Betriebsbewährungs-Dokument (Prior-use) der FMEDA Daten	*

August 2010

Tabelle 2. 3051T Messumformer für Über- und Absolutdruck – Bestellinformationen

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Linctoll	weiterte Ausfuhrung ist mit langeren Lieferzeiten verbunden.	
	er Nullpunkt/Messspanne	
Standar J1 ⁽⁶⁾⁽⁷⁾		Standard
J3 ⁽⁶⁾⁽⁷⁾	Nur Nullpunkttaste	*
Erweite	Ohne Einsteller Nullpunkt/Messspanne	*
D1	Einsteller (Messanfang und -ende, Alarm, Schreibschutz)	
	und Bedieninterface – Optionen	
	<u>.</u>	<u> </u>
Standar		Standard
M4	LCD Anzeige mit Bedieninterface (Lieferbar nur mit Ausgangscode W – Profibus PA)	*
M5	LCD Anzeige	*
M6	LCD Anzeige für Edelstahlgehäuse (nur für Gehäuse Code J, K, L und M)	*
	ussstopfen	
Standar		Standard
DO	Edelstahl 316 Verschlussstopfen	*
Anschl	ussklemmenblock mit Überspannungsschutz	
Standar		Standard
T1	Anschlussklemmenblock mit Überspannungsschutz	*
Softwar	re-Konfiguration	
Standar	rd	Standard
C1 ⁽⁶⁾	Kundenspezifische Softwarekonfiguration (ausgefülltes Konfigurationsdatenblatt 00806-0100-4001 wird bei Bestellung benötigt)	*
Erweite		
C2 ⁽⁶⁾	Ausgangssignal 0,8 bis 3,2 V DC mit Digitalsignal gemäß HART Protokoll, (nur mit Ausgangscode M)	
Alarms	ollwert	
Standar	rd	Standard
C4 ⁽⁶⁾⁽⁸⁾	Analog-Ausgangswerte gemäß NAMUR-Empfehlungen NE 43, Hochalarm	*
CN ⁽⁶⁾⁽⁸⁾	Analog-Ausgangswerte gemäß NAMUR-Empfehlungen NE 43, Niedrigalarm	*
Druckp	rüfung	
Erweite	rt	
P1	Hydrostatische Druckprobe mit Zertifikat	
Reinigu		
Erweite		
P2	Erhöhte Sauberkeitsstufe	
P3	Reinigung für weniger als <1 ppm Chlor/Fluor	
	er Genauigkeit	
Standar	<u> </u>	Standard
P8	0,04 % Genauigkeit bis Messspannenverhältnis von 5:1 (Messbereich 2–4)	Standard ★
		*
	SSUII AUDE	
Erdung		Ctanaland
Erdung		Standard
Standar V5 (9)	Aussenliegender Erdungsanschluss	Standard *
Standar V5 (9) Trinkwa	Aussenliegender Erdungsanschluss asser Zulassung	*
Standar V5 ⁽⁹⁾ Trinkwa Standar	Aussenliegender Erdungsanschluss asser Zulassung d	* Standard
Standar V5 ⁽⁹⁾ Trinkwa Standar	Aussenliegender Erdungsanschluss asser Zulassung d NSF Trinkwasser Zulassung	*
Standar V5 ⁽⁹⁾ Trinkwa Standar	Aussenliegender Erdungsanschluss asser Zulassung d	* Standard
Standar V5 ⁽⁹⁾ Trinkwa Standar	Aussenliegender Erdungsanschluss asser Zulassung NSF Trinkwasser Zulassung chengüte	* Standard
Standar V5 ⁽⁹⁾ Trinkwa Standar DW Oberflä	Aussenliegender Erdungsanschluss asser Zulassung NSF Trinkwasser Zulassung chengüte	* Standard *
Erdung Standar V5 ⁽⁹⁾ Trinkwa Standar DW Oberflä Standar Q16	Aussenliegender Erdungsanschluss asser Zulassung td NSF Trinkwasser Zulassung chengüte	Standard * Standard
Erdung Standar V5 ⁽⁹⁾ Trinkwa Standar DW Oberflä Standar Q16	Aussenliegender Erdungsanschluss asser Zulassung d NSF Trinkwasser Zulassung chengüte d Prüfprotokoll Oberflächengüte für Hygiene-Druckmittler für Gesamtsystem-Performanceberichte	Standard * Standard

Sicherheitsanleitung

00809-0105-4797, Rev CA August 2010

Rosemount 3051

Tabelle 2. 3051T Messumformer für Über- und Absolutdruck – Bestellinformationen

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Kabeleinführung, elektrischer Anschluss			
Standard			Standard
GE	M12, 4-Pin Stecker (eurofast®)		
GM	Ein Mini, 4-Pin Stecker (minifast [®])		
Typische Modellnummer: 3051T G 5 F 2A 2 1 A B4		3051T G 5 F 2A 2 1 A B4	

- (1) Beim 3051TG variiert der Messanfang mit dem atmosphärischen Druck.
- (2) Option Code M4 LCD Anzeige mit Bedieninterface für lokale Adressierung und Konfiguration.
- (3) Die Werkstoffe entsprechen den Empfehlungen gemäß NACE MR0175 / ISO 15156 für Produktionsbedingungen in Rohölfeldern (sour oil field production environments). Die Grenzen für die Umgebung beziehen sich auf bestimmte Werkstoffe. Konsultieren Sie die neuesten Standards für Details. Die angegebenen Werkstoffe entsprechen auch NACE MR0103 für Raffinerieumgebungen (sour refining environments)
- (4) "Montage an" Positionen sind separat spezifiziert und erfordern eine komplette Modellnummer.
- (5) Nicht lieferbar mit Low Power Option Code M.
- (6) Nicht lieferbar mit Feldbus (Ausgangscode F) oder Profibus (Ausgangscode W).
- (7) Nullpunkt- und Messspannentaste sind Standard, außer bei Option Code J1 oder J3.
- (8) Betrieb gemäß NAMUR, werksseitig voreingestellt, kann vor Ort nicht auf Standardbetrieb geändert werden.
- (9) Die Option V5 wird bei der Option T1 nicht benötigt; die externe Erdungsschraube ist in der Option T1 enthalten.

Tabelle 3. Rosemount 3051L Messumformer für Flüssigkeitsfüllstand – Bestellinformationen

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Modell	Messumformer Montagetyp					
3051L	Messumformer für Flüssigkeitsf	üllstand				
Druckbere	ich					
Standard				Standard		
2	-0,6 bis 0,6 bar (-250 bis 250 ii	-0,6 bis 0,6 bar (-250 bis 250 inH ₂ O)				
3	-2,5 bis 2,5 bar (-1000 bis 100			*		
4	-20,7 bis 20,7 bar (-300 bis 30	2 ,		*		
Messumfo	rmer Ausgang	· ·				
Standard				Standard		
Α	4-20 mA mit digitalem Signal ba	asierend auf HART Protokoll		*		
F	FOUNDATION Feldbus Protokoll			*		
W ⁽¹⁾	Profibus PA Protokoll			*		
Erweitert						
M	Low Power, 1 – 5 VDC mit Digit	alsignal basierend auf HART	Protokoll (siehe Option C2 für 0,8–3,2 VDC)			
Prozessan	schluss Nennweite, Werkstoff, Lä					
Standard				Standard		
Code	Größe Prozessanschluss	Werkstoffe	Länge der Verlängerung	*		
G0 ⁽²⁾	2 in./DN 50	Edelstahl 316L	Ohne Membranvorbau	*		
H0 ⁽²⁾	2 in./DN 50	Alloy C-276	Ohne Membranvorbau	*		
J0	2 in./DN 50	Tantal	Ohne Membranvorbau	*		
A0 ⁽²⁾	3 in./DN 80	Edelstahl 316L	ohne Membranvorbau	*		
A2 ⁽²⁾	3 in./DN 80	Edelstahl 316L	50 mm/2 in.	*		
A4 ⁽²⁾	3 in./DN 80	Edelstahl 316L	100 mm/4 in.	*		
A6 ⁽²⁾	3 in./DN 80	Edelstahl 316L	150 mm/6 in.	*		
B0 ⁽²⁾	4 in./DN 100	Edelstahl 316L	ohne Membranvorbau	*		
B2 ⁽²⁾	4 in./DN 100	Edelstahl 316L	50 mm/2 in.	*		
B4 ⁽²⁾	4 in./DN 100	Edelstahl 316L	100 mm/4 in.	*		
B6 ⁽²⁾	4 in./DN 100	Edelstahl 316L	150 mm/6 in.	*		
C0 ⁽²⁾	3 in./DN 80	Alloy C-276	ohne Membranvorbau	*		
C2 ⁽²⁾	3 in./DN 80	Alloy C-276	50 mm/2 in.	*		
C4 ⁽²⁾	3 in./DN 80	Alloy C-276	100 mm/4 in.	*		
C6 ⁽²⁾	3 in./DN 80	Alloy C-276	150 mm/6 in.	*		
D0 ⁽²⁾	4 in./DN 100	Alloy C-276	ohne Membranvorbau	*		
D2 ⁽²⁾	4 in./DN 100	Alloy C-276	50 mm/2 in.	*		
D4 ⁽²⁾	4 in./DN 100	Alloy C-276	100 mm/4 in.	*		
D6 ⁽²⁾	4 in./DN 100	Alloy C-276	150 mm/6 in.	*		
E0	3 in./DN 80	Tantal	Ohne Membranvorbau	*		
F0	4 in./DN 100	Tantal	Ohne Membranvorbau	*		

Tabelle 3. Rosemount 3051L Messumformer für Flüssigkeitsfüllstand – Bestellinformationen

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Montagefla	nsch Nennweite, Ausle	egung, Werkstoff (H-Seite)		
	Nennweite	Druckstufe		Werkstoffe	
Standard					Standard
M	2 in.	ANSI/ASME B16.5 Clas	s 150	Kohlenstoffstahl	*
A	3 in.	ANSI/ASME B16.5 Clas		Kohlenstoffstahl	*
В	4 in.	ANSI/ASME B16.5 Clas		Kohlenstoffstahl	*
N	2 in.	ANSI/ASME B16.5 Clas		Kohlenstoffstahl	*
C	3 in.	ANSI/ASME B16.5 Clas		Kohlenstoffstahl	*
<u>D</u>	4 in.	ANSI/ASME B16.5 Clas		Kohlenstoffstahl	*
P	2 in.	ANSI/ASME B16.5 Clas		Kohlenstoffstahl	*
<u>.</u> Е	3 in.	ANSI/ASME B16.5 Clas		Kohlenstoffstahl	*
X ⁽²⁾	2 in.	ANSI/ASME B16.5 Clas		Edelstahl	*
F ⁽²⁾	3 in.	ANSI/ASME B16.5 Clas		Edelstahl	*
G ⁽²⁾	4 in.	ANSI/ASME B16.5 Clas		Edelstahl	*
Y ⁽²⁾	2 in.	ANSI/ASME B16.5 Clas		Edelstahl	*
H ⁽²⁾	3 in.	ANSI/ASME B16.5 Clas		Edelstahl	*
J ⁽²⁾	4 in.	ANSI/ASME B16.5 Clas		Edelstahl	*
Z ⁽²⁾	2 in.	ANSI/ASME B16.5 Clas		Edelstahl	*
L ⁽²⁾	3 in.	ANSI/ASME B16.5 Clas		Edelstahl	*
Q	DN 50	PN 10-40 gemäß EN 1092-1		Kohlenstoffstahl	*
R	DN 80	PN 40 gemäß EN 1092-		Kohlenstoffstahl	*
S	DN 100	PN 40 gemäß EN 1092-1		Kohlenstoffstahl	*
V	DN 100	PN 10/16 gemäß EN 10		Kohlenstoffstahl	*
K ⁽²⁾	DN 50	PN 10/16 gemäß EN 1092-1		Edelstahl	*
T ⁽²⁾	DN 80	PN 10-40 gemäß EN 1092-1 PN 40 gemäß EN 1092-1		Edelstahl	*
U ⁽²⁾	DN 100	PN 40 gemas EN 1092-1 PN 40 gemaß EN 1092-1		Edelstahl	*
W ⁽²⁾	DN 100	PN 10/16 gemäß EN 1092-1		Edelstahl	*
7 ⁽²⁾	4 in.	ANSI/ASME B16.5 Class 600		Edelstahl	*
Erweitert	7 111.	ANOI/AOINE DIO.5 Olas	3 000	Edelstain	
				T	
1	-	10K gemäß JIS B2238		Kohlenstoffstahl	
2	-	20K gemäß JIS B2238		Kohlenstoffstahl	
3	-	40K gemäß JIS B2238		Kohlenstoffstahl	
4 ⁽²⁾	_	10K gemäß JIS B2238		Edelstahl 316	
5 ⁽²⁾	-	20K gemäß JIS B2238		Edelstahl 316	
6 ⁽²⁾	<u> -</u>	40K gemäß JIS B2238	1	Edelstahl 316	
Füllmediun	n Hochdruckseite	Spezifische Gewicht	Temperaturgrenzv	verte (Umgebungstemperatur 21 °C (70 °F))	
Standard					Standard
A	Syltherm XLT	0,85	-75 bis 145 °C (-10	02 bis 293 °F)	*
С	Silikon 704	1,07	0 bis 205 °C (32 bis		*
D	Silikon 200	0,93	-45 bis 205 °C (-4		*
Н	Inertes Füllmedium (Halocarbon)	1,85	-45 bis 160 °C (-4	· · · · · · · · · · · · · · · · · · ·	*
G	Glyzerin und Wasser	1,13	-15 bis 95 °C (5 bis	203 °F)	*
N	Neobee M-20	0,92	-15 bis 205 °C (5 bi	is 401 °F)	*
Р	Propylenglykol / Wassergemisch	1,02	-15 bis 95 °C (5 bis		*

00809-0105-4797, Rev CA August 2010

Tabelle 3. Rosemount 3051L Messumformer für Flüssigkeitsfüllstand – Bestellinformationen

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Die erweiterte Ausführung ist mit längeren Lieferzeiten verbunden.

Niederdr	uckseite				
	Konfiguration	Ovaladapter	Membranwerkstoff	Sensorfüllmedium	
Standard	l '			<u> </u>	Standard
11 ⁽²⁾	Überdruck	Edelstahl	Edelstahl 316L	Silikonöl	*
21 ⁽²⁾	Differenzdruck	Edelstahl	Edelstahl 316L	Silikonöl	*
22(2)	Differenzdruck	Edelstahl	Alloy C-276	Silikonöl	*
2A ⁽²⁾	Differenzdruck	Edelstahl	Edelstahl 316L	Inertes Füllmedium (Halocarbon)	*
2B ⁽²⁾	Differenzdruck	Edelstahl	Alloy C-276	Inertes Füllmedium (Halocarbon)	*
31 ⁽²⁾	Abgestimmte Systemeinheit mit Druckmittler	Keine	Edelstahl 316L	Silikonöl (Option Code S1 erforderlich)	*
O-Ring					
Standard	I				Standard
Α	Glasgefülltes PTFE				*
Gehäuse	Gehäusewerkstoff Leitungseinführungsgewinde				
Standard	I				Standard
Α	Aluminium		½-14 NPT		*
В	Aluminium		M20 × 1,5		*
J	Edelstahl		½-14 NPT		*
K	Edelstahl		M20 × 1,5		*
Erweitert	t				
D	Aluminium		G½		
М	Edelstahl		G1/2		

Optionen (mit der jeweiligen Modellnummer angeben)

PlantWeb	Reglerfunktionalität	
Standard		Standard
A01 ⁽³⁾	FOUNDATION Feldbus Erweiterte Reglerfunktionseinheit	*
PlantWeb	Diagnosefunktionalität	
Standard		Standard
D01 ⁽³⁾	FOUNDATION Feldbus Diagnoseeinheit	*
Druckmittl	er	
Standard		Standard
S1 ⁽⁴⁾	Montiert an einen Rosemount 1199 Druckmittler (erfordert 1199M)	*
Produkt-Z	ulassungen	
Standard		Standard
E5	FM Ex-Schutz, Staub Ex-Schutz	*
15	FM Eigensicherheit, Division 2	*
K5	FM Ex-Schutz, Staub Ex-Schutz, Eigensicherheit und Division 2	*
I1 ⁽⁵⁾	ATEX Eigensicherheit und Staub	*
N1 ⁽⁵⁾	ATEX Typ n und Staub Zulassung	*
E8	ATEX druckfeste Kapselung und Staub Zulassung	*
E4 ⁽⁵⁾	TIIS Druckfeste Kapselung	*
C6	CSA Ex-Schutz, Staub Ex-Schutz, Eigensicherheit und Division 2	*
K6 ⁽⁵⁾	CSA und ATEX Ex-Schutz, Eigensicherheit und Division 2 (Kombination aus C6 und K8)	*
KB	FM und CSA Ex-Schutz, Staub Ex-Schutz, Eigensicherheit und Division 2 (Kombination aus K5 und C6)	*
K7 ⁽⁵⁾	IECEx Druckfeste Kapselung, Staub Ex-Schutz, Eigensicherheit und Typ n (Kombination aus I7, N7 und E7)	*
K8 ⁽⁵⁾	ATEX Druckfeste Kapselung und Eigensicherheit (Kombination aus I1 und E8)	*
KD ⁽⁵⁾	FM, CSA und ATEX Ex-Schutz, Eigensicherheit (Kombination von K5, C6, I1 und E8)	*

Tabelle 3. Rosemount 3051L Messumformer für Flüssigkeitsfüllstand – Bestellinformationen

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

	erte Ausführung ist mit längeren Lieferzeiten verbunden.	
17 ⁽⁵⁾	IECEx Eigensicherheit	*
E7 ⁽⁵⁾	IECEx Druckfeste Kapselung, Staub Ex-Schutz	*
N7 ⁽⁵⁾	IECEx Typ n Zulassung	*
IA	ATEX FISCO Eigensicherheit	*
IE	FM FISCO Eigensicherheit	*
E2	INMETRO Druckfeste Kapselung	*
12	INMETRO Eigensicherheit	*
K2	INMETRO Druckfeste Kapselung, Eigensicherheit	*
E3	China Druckfeste Kapselung	*
13	China Eigensicherheit	*
N3	China Typ n	*
Schrauber	werkstoff	
Standard		Standard
L4	Schrauben aus austenitischem Edelstahl 316 SST	*
L5	ASTM A 193, Grade B7M Schrauben	*
L6	Alloy K-500 Schrauben	*
L8	Schrauben aus ASTM A 193 Class 2, Grade B8M	*
Display un	d Bedieninterface – Optionen	
Standard	·	Standard
M4	LCD Anzeige mit Bedieninterface (Lieferbar nur mit Ausgangscode W – Profibus PA)	*
M5	LCD Anzeige für Aluminiumgehäuse (nur für Gehäuse Code A, B, C und D)	*
M6	LCD Anzeige für Edelstahlgehäuse (nur für Gehäuse Code J, K, L und M)	*
Kalibrierze		^
	illinat	2, 1, 1
Standard		Standard
Q4	Kalibrierzertifikat	*
QP	Prüfprotokoll und manipulationssicherer Verplombung	*
QG	Prüfprotokoll und GOST Prüfprotokoll	*
Werkstoffz	eugnisse	
Standard		Standard
Q8	Werkstoffzeugnis nach EN 10204 3.1	*
Qualitätsz	ertifizierung	
Standard		Standard
QS ⁽⁶⁾	D. C. L. T. D. L. C.	
	Betriebsbewährungs-Dokument (Prior-use) der FMEDA Daten	*
loolkit fur	Gesamtsystem-Performanceberichte	
Standard		Standard
QZ	Berechnungsreport für die Leistungsmerkmale des Druckmittler-Systems	*
Kabeleinfü	hrung, elektrischer Anschluss	
Standard		Standard
GE	M12, 4-Pin Stecker (eurofast [®])	*
GM	Ein Mini, 4-Pin Stecker (minifast®)	*
	Einstellungen	^
	Linatonungen	0
Standard		Standard
J1 ⁽⁷⁾⁽⁸⁾	Nur Nullpunkttaste	*
J3 ⁽⁷⁾⁽⁸⁾	Ohne Einsteller Nullpunkt/Messspanne	*
Mit Ubersp	annungsschutz	
Standard		Standard
T1 ⁽⁹⁾	Anschlussklemmenblock mit Überspannungsschutz	*
	<u> </u>	

Tabelle 3. Rosemount 3051L Messumformer für Flüssigkeitsfüllstand – Bestellinformationen

★ Die Standardausführung bietet die gebräuchlichsten Optionen. Die mit einem Stern versehenen Optionen (★) sollten ausgewählt werden, um die kürzeste Lieferzeit zu gewährleisten.

Software-k	Konfiguration			
Standard				Standard
C1 ⁽⁷⁾	Kundenspezifische Softwarekonfiguration (ausgefülltes Konfigurationsblatt 00806-0100-4001 wird bei Bestellung benötigt)			*
Low Powe	r Ausgang			
Standard				Standard
C2 ⁽⁷⁾	Ausgangssignal 0,8 bis 3,2 V DC mit	Digitalsignal gemäß HA	RT Protokoll (nur mit Ausgangscode M)	*
Alarmsolly	wert			
Standard				Standard
C4 ⁽⁷⁾⁽¹⁰⁾	NAMUR Alarm- und Sättigungs-Sign	alwerte, Hochalarm		*
CN ⁽⁷⁾⁽¹⁰⁾	NAMUR Alarm- und Sättigungs-Sign			*
Verschlus	sstopfen			
Standard			Standard	
DO	Edelstahl 316 Verschlussstopfen			*
Erdungsso	chraube			
Standard				Standard
V5 ⁽¹¹⁾	Aussenliegender Erdungsanschluss			*
Spülringar	nschluss Gehäuseunterteil – Optionen			
	Werkstoff Spülanschlussring	Nummer	Nennweite (NPT)	
Standard		l l		Standard
F1	Edelstahl 316	1	¹ /4-18 NPT	*
F2	Edelstahl 316	2	¹ /4-18 NPT	*
F3	Alloy C-276	1	¹ /4-18 NPT	*
F4	Alloy C-276	2	¹ /4-18 NPT	*
F7	Edelstahl 316	1	¹ /2-14 NPT	*
F8	Edelstahl 316	2	¹ /2-14 NPT	*
F9	Alloy C-276	1	¹ /2-14 NPT	*
F0	Alloy C-276	2	¹ /2-14 NPT	*
Typische N	Modellnummer: 3051L 2 A A0 D 21 A A	F1		

- (1) Option Code M4 LCD Anzeige mit Bedieninterface für lokale Adressierung und Konfiguration.
- (2) Die Werkstoffe entsprechen den Empfehlungen gemäß NACE MR0175/ISO 15156 für Produktionsbedingungen in Rohölfeldern (sour oil field production environments). Die Grenzen für die Umgebung beziehen sich auf bestimmte Werkstoffe. Konsultieren Sie die neuesten Standards für Details. Die angegebenen Werkstoffe entsprechen auch NACE MR0103 für Raffinerieumgebungen (sour refining environments)
- (3) Nur gültig mit F OUNDATION Feldbus Ausgang Code F.
 (4) "Montage an" Positionen sind separat spezifiziert und erfordern eine komplette Modellnummer.
- (5) Nicht lieferbar mit Low Power Option Code M
- (6) Nur lieferbar mit HART 4–20 mA Ausgang (Ausgangscode A).
- (7) Nicht lieferbar mit Feldbus (Ausgangscode F) oder Profibus (Ausgangscode W).
- (8) Nullpunkt- und Messspannentaste sind Standard, außer bei Code J1 oder J3.
- Die Option T1 wird nicht benötigt mit der FISCO Produktzulassung; Überspannungsschutz ist in den FISCO Produktzulassungscodes IA, IE, IF und IG
- (10) Betrieb gemäß NAMUR, vom Hersteller voreingestellt, kann vor Ort nicht auf Standardbetrieb geändert werden.
- (11) Die Option V5 wird bei der Option T1 nicht benötigt. Die externe Erdungsschraube ist bei Option T1 enthalten.

OPTIONEN

Standard-Konfiguration

Wenn nicht anders angegeben, wird der Messumformer wie folgt geliefert:

EINHEITEN Differenzdruck/Überdruck: Absolutdruck/3051T:	mbar/bar (alle Messbereiche) mbar/bar (alle Bereiche)
4 mA (1 VDC) ⁽¹⁾ :	0 (Einheiten siehe oben)
20 mA (5 VDC):	Messende
Ausgang:	Linearantriebe
Flanschtyp	Entsprechend Modellcode
Flanschwerkstoff:	Entsprechend Modellcode
O-Ring Werkstoff	Entsprechend Modellcode
Entlüftungsventil	Entsprechend Modellcode
Eingebauter Anzeiger:	montiert oder ohne
Alarm ⁽¹⁾ :	Aufwärts
Software-Kennung:	(Ohne)

⁽¹⁾ Nicht zutreffend für Feldbus.

Kundenspezifische Konfiguration nur für HART Protokoll⁽¹⁾

Bei Bestellung von Option Code C1 können folgende Parameter zusätzlich zur Standardkonfiguration gewählt werden.

- Informationen über den Ausgang
- Informationen über die Auswerteelektronik
- LCD-Anzeige Konfiguration
- Hardware Auswahl Informationen
- Signalauswahl

Siehe "HART Protokoll C1 Option Konfigurationsdatenblatt" Dok-Nr. 00806-0100-4001.

Kennzeichnung (3 Optionen wählbar)

- Standard Edelstahlschild mit Draht am Messumformer befestigt. Maximale Zeichenhöhe beträgt 3,18 mm (0,125 in.), maximal 56 Zeichen.
- Kennzeichnung kann auf Wunsch permanent auf dem Typenschild geprägt werden, maximal 56 Zeichen.
- Kennzeichnung kann im Messumformer Speicher abgelegt (max. 30 Zeichen). Die Software-Kennung bleibt unbeschriftet, sofern nicht anders angegeben.

Inbetriebnahme-Schild (nur Feldbus)

Ein vorläufiges Schild zur Inbetriebnahme ist an allen Messumformern angebracht. Das Schild gibt die Gerätekennung an und ermöglicht eine Eintragung des Standorts.

Optional integrierter Ventilblock Rosemount 304, 305 oder 306

Werksseitig montiert am Messumformer 3051C und 3051T. Weitere Informationen finden Sie in folgenden Produktdatenblättern (Dok.-Nr. 00813-0100-4839 für Rosemount 304 und 00813-0100-4733 für Rosemount 305 und 306).

Optionale Druckmittlersysteme

Siehe Rosemount Produktdatenblatt 00813-0100-4016 oder 00813-0201-4016 bzgl. weiterer Informationen.

(1) Nicht zutreffend für Feldbus.

Informationen über den Ausgang⁽¹⁾

Die Messbereichsendwerte des Ausgangs müssen die gleiche Einheit haben. Mögliche Einheiten für die Messung:

inH ₂ O	inH ₂ O bei 4 °C ⁽¹⁾	psi	Pa
inHg	ftH ₂ O	bar	kPa
mmH ₂ O	mmH ₂ O bei 4 °C ⁽¹⁾	mbar	torr
mmHg	g/cm ²	kg/cm ²	atm

⁽¹⁾ Nicht anwendbar bei Low Power/Kleinstdrücken oder älteren Ausführungen.

LCD-Anzeige

M5 LCD Anzeige, fünfstellig, zweizeilig

- Direkte digitale Anzeige des Messwertes für höhere Messgenauigkeit
- Anzeige von kundendefinierten Durchfluss-, Füllstands-, Volumen- oder Druckwerten
- Anzeige von Diagnosemeldungen für die Fehlersuche und -behebung vor Ort
- um 90 Grad drehbar für gute Ablesbarkeit

M6 Digitalanzeige mit Deckel aus Edelstahl 316 SST

Zur Verwendung mit optionalen Edelstahlgehäusen (Gehäuse Codes J, K und L)

Nullpunkt- und Messspannentaste⁽¹⁾

Der Messumformer wird mit Nullpunkt- und Messspannentaste geliefert, wenn nicht anders spezifiziert.

- Unabhängige, externe Nullpunkt- und Messspannentasten erleichtern die Einstellung
- Magnetschalter ersetzen die standardmässigen Potentiometern und optimieren die Leistungsmerkmale
- J1 Nur Nullpunkttaste⁽¹⁾
- J3 Ohne Einsteller Nullpunkt/Messspanne⁽¹⁾

Schrauben für Flansche und Adapter

- Werkstoffauswahl für Flansch- und Adapterschrauben
- Die Schrauben bestehen standardmäßig aus Kohlenstoffstahl, galvanisiert nach ASTM A449, Typ 1
- L4 Schrauben aus austenitischem Edelstahl 316 SST
- L5 Schrauben aus ASTM A 193, Güteklasse B7M
- L6 Alloy K-500 Schrauben

Montagewinkel Optionen für Rosemount 3051C Coplanar Flansch und 3051T

- B4 Montagewinkel für 50 mm (2 in.) Rohr- oder Wandmontage
- Zum Einsatz mit Coplanar Flansch
- Montagewinkel zur Befestigung des Messumformers an 50 mm (2 in.)
 Rohr oder für Wandmontage
- Alle Teile/Schrauben aus Edelstahl

⁽¹⁾ Nicht zutreffend für Feldbus.

Montagewinkel Optionen für Rosemount 3051H

- B5 Montagewinkel für 50 mm (2 in.) Rohr- oder Wandmontage
- Zur Verwendung mit dem Messumformer Modell 3051H für hohe Prozesstemperaturen
- Alle Teile/Schrauben aus Kohlenstoffstahl
- B6 Montagewinkel B5 mit Edelstahlschrauben
 - Wie Option B5, jedoch Edelstahlschrauben (Serie 300).

Optionen Montagewinkel – Anpassungsflansch

- B1 Montagewinkel für 50 mm (2 in.) Rohrmontage
 - Für den Einsatz mit der Option Anpassungsflansch
 - Montagewinkel zum Anbau an 50 mm (2 in.) Rohr
 - Alle Teile/Schrauben aus Kohlenstoffstahl
 - Polyurethan beschichtet
- B2 Montagewinkel für Wandmontage
 - Für den Einsatz mit der Option Anpassungsflansch
 - Zur Montage des Messumformers an einer Wand oder an einem Rohr
 - Alle Teile/Schrauben aus Kohlenstoffstahl
 - Polyurethan beschichtet
- B3 Montagewinkel (Flachmontage) für 50 mm (2 in.) Rohrmontage
- Für den Einsatz mit der Option Anpassungsflansch
- Montagewinkel f
 ür vertikale Montage des Messumformers an 50 mm (2 in.) Rohr
- Alle Teile/Schrauben aus Kohlenstoffstahl
- Polyurethan beschichtet
- B7 Montagewinkel B1 mit Edelstahlschrauben
- Wie Option B1, jedoch mit Edelstahlschrauben (Serie 300)
- B8 Montagewinkel B2 mit Edelstahlschrauben
- Wie Option B2, jedoch mit Edelstahlschrauben (Serie 300)
- B9 Montagewinkel B3 mit Edelstahlschrauben
- Wie Option B3, jedoch mit Edelstahlschrauben (Serie 300)
- BA Montagewinkel B1 aus Edelstahl mit Edelstahlschrauben
- Wie Option B1, jedoch alle Teile/Schrauben aus Edelstahl (Serie 300)
- BC Montagewinkel B3 aus Edelstahl mit Edelstahlschrauben
- Wie Option B3, jedoch alle Teile/Schrauben aus Edelstahl (Serie 300)

Versandgewichte

Tabelle A-9. Messumformer Gewicht ohne Optionen

Messumformer	Mehr-Gewicht in kg (lb)
3051C	2,7 (6,0)
3051L	Tabelle A-10
3051H	6,2 (13,6)
3051T	1,4 (3,0)

Tabelle A-10. 3051L Gewicht ohne Optionen

		2 in.	4 in.	6 in.
Flansch	Bündig kg (lb.)	Membranvorbau kg (lb.)	Membranvorbau kg (lb.)	Membranvorbau kg (lb.)
2 in., 150	5,7 (12,5)	_	_	_
3 in., 150	7,9 (17,5)	8,8 (19,5)	9,3 (20,5)	9,7 (21,5)
4 in., 150	10,7 (23,5)	12,0 (26,5)	12,9 (28,5)	13,8 (30,5)
2 in., 300	7,9 (17,5)	_	_	_
3 in., 300	10,2 (22,5)	11,1 (24,5)	11,6 (25,5)	12,0 (26,5)
4 in., 300	14,7 (32,5)	16,1 (35,5)	17,0 (37,5)	17,9 (39,5)
2 in., 600	6,9 (15,3)	_	_	_
3 in., 600	11,4 (25,2)	12,3 (27,2)	12,8 (28,2)	13,2 (29,2)
DN 50/PN 40	6,2 (13,8)	_	_	_
DN 80/PN 40	8,8 (19,5)	9,7 (21,5)	10,2 (22,5)	10,6 (23,5)
DN 100/PN 10/16	8,1 (17,8)	9,0 (19,8)	9,5 (20,8)	9,9 (21,8)
DN 100/PN 40	10,5 (23,2)	11,5 (25,2)	11,9 (26,2)	12,3 (27,2)

Tabelle A-11. Gewicht Messumformer-Optionen

Code	Option	Addieren kg (lb.)
J, K, L, M	Edelstahlgehäuse (T)	1,8 (3,9)
J, K, L, M	Edelstahlgehäuse (C, L, H, P)	1,4 (3,1)
M5	LCD-Anzeige mit Aluminiumgehäuse	0,2 (0,5)
M6	LCD-Anzeige mit Edelstahlgehäuse	0,6 (1,25)
B4	Edelstahl Montagewinkel für Coplanar Flansch	0,5 (1,0)
B1 B2 B3	Montagewinkel für Anpassungsflansch	1,0 (2,3)
B7 B8 B9	Montagewinkel für Anpassungsflansch	1,0 (2,3)
BA, BC	Edelstahl-Montagewinkel für Anpassungsflansch	1,0 (2,3)
B5 B6	Montagewinkel für 3051H	1,3 (2,9)
H2	Anpassungsflansch	1,1 (2,4)
H3	Anpassungsflansch	1,2 (2,7)
H4	Anpassungsflansch	1,2 (2,6)
H7	Anpassungsflansch	1,1 (2,5)
FC	Flanschanschluss senkrecht – 3 in., 150	4,9 (10,8)
FD	Flanschanschluss senkrecht – 3 in., 300	6,5 (14,3)
FA	Flanschanschluss senkrecht – 2 in., 150	4,8 (10,7)
FB	Flanschanschluss senkrecht – 2 in., 300	6,3 (14,0)
FP	Flanschanschluss senkrecht – DIN, DN 50, PN 40, Edelstahl	3,8 (8,3)
FQ	Flanschanschluss senkrecht – DIN, DN 80, PN 40, Edelstahl	6,2 (13,7)

Tabelle A-12. Messbereichsgrenzen für 3051C Messumformer für Differenz-/Überdruck

	Messspanne Bereich 1		Messspann	Messspanne Bereich 2		Messspanne Bereich 3		Messspanne Bereich 4		Messspanne Bereich 5	
Einheiten	Min.	max.	Min.	max.	Min.	max.	Min.	max.	Min.	max.	
inH ₂ O	0,5	25	2,5	250	10	1000	83,040	8304	553,60	55360	
inHg	0,03678	1,8389	0,18389	18,389	0,73559	73,559	6,1081	610,81	40,720	4072,04	
ftH ₂ O	0,04167	2,08333	0,20833	20,8333	0,83333	83,3333	6,9198	691,997	46,13	4613,31	
mmH ₂ O	12,7	635,5	63,553	6355	254	25421	2110,95	211095	14073	1407301	
mmHg	0,93416	46,7082	4,67082	467,082	18,6833	1868,33	155,145	15514,5	1034,3	103430	
psi	0,01806	0,903	0,0902	9,03183	0,36127	36,127	3	300	20	2000	
bar	0,00125	0,06227	0,00623	0,62272	0,02491	2,491	0,20684	20,6843	1,37895	137,895	
mbar	1,2454	62,2723	6,22723	622,723	24,9089	2490,89	206,843	20684,3	1378,95	137895	
g/cm ²	1,26775	63,3875	6,33875	633,875	25,355	2535,45	210,547	21054,7	1406,14	140614	
kg/cm ²	0,00127	0,0635	0,00635	0,635	0,0254	2,54	0,21092	21,0921	1,40614	140,614	
Pa	124,545	6227,23	622,723	62160,6	2490,89	249089	20684,3	2068430	137895	13789500	
kPa	0,12545	6,2272	0,62272	62,2723	2,49089	249,089	20,6843	2068,43	137,895	13789,5	
torr	0,93416	46,7082	4,67082	467,082	18,6833	1868,33	155,145	15514,5	1034,3	103430	
atm	0,00123	0,06146	0,00615	0,61460	0,02458	2,458	0,20414	20,4138	1,36092	136,092	

Bei Verwendung eines Handterminals ist aufgrund der Umrechnung der Einheiten eine Anpassung der Messumformergrenzen um ±5 % zulässig.

Tabelle A-13. Messbereichsgrenzen für 3051L/3051H Druckmessumformer

	Messspann	e Bereich 2	2 Messspanne Bereich 3		Messspann	Messspanne Bereich 4		e Bereich 5
Einheiten	Min.	max.	Min.	max.	Min.	max.	Min.	max.
inH ₂ O	2,5	250	10	1000	83,040	8304	553,60	55360
inHg	0,18389	18,389	0,73559	73,559	6,1081	610,81	40,720	4072,04
ftH ₂ O	0,20833	20,8333	0,83333	83,3333	6,9198	691,997	46,13	4613,31
mmH ₂ O	63,553	6355	254	25421	2110,95	211095	14073	1407301
mmHg	4,67082	467,082	18,6833	1868,33	155,145	15514,5	1034,3	103430
psi	0,0902	9,03183	0,36127	36,127	3	300	20	2000
bar	0,00623	0,62272	0,02491	2,491	0,20684	20,6843	1,37895	137,895
mbar	6,22723	622,723	24,9089	2490,89	206,843	20684,3	1378,95	137895
g/cm ²	6,33875	633,875	25,355	2535,45	210,547	21054,7	1406,14	140614
kg/cm ²	0,00635	0,635	0,0254	2,54	0,21092	21,0921	1,40614	140,614
Pa	622,723	62160,6	2490,89	249089	20684,3	2068430	137895	13789500
kPa	0,62272	62,2723	2,49089	249,089	20,6843	2068,43	137,895	13789,5
torr	4,67082	467,082	18,6833	1868,33	155,145	15514,5	1034,3	103430
atm	0,00615	0,61460	0,02458	2,458	0,20414	20,4138	1,36092	136,092

Bei Verwendung eines Handterminals ist aufgrund der Umrechnung der Einheiten eine Anpassung der Messumformergrenzen um ±5 % zulässig.

Tabelle A-14. Messbereichsgrenzen für 3051T Messumformer für Über-/Absolutdruck

	Messspanne Bereich 1 M		Messspann	e Bereich 2	Messspanne Bereich 3		Messspanne Bereich 4		Messspanne Bereich 5	
Einheiten	Min.	max.	Min.	max.	Min.	max.	Min.	max.	Min.	max.
inH ₂ O	8,30397	831,889	41,5198	4159,45	221,439	22143,9	1107,2	110720	55360	276799
inHg	0,61081	61,0807	3,05403	305,403	16,2882	1628,82	81,441	8144,098	4072,04	20360,2
ftH ₂ O	0,69199	69,3241	3,45998	345,998	18,4533	1845,33	92,2663	9226,63	4613,31	23066,6
mmH ₂ O	211,10	21130	1054,60	105460,3	5634,66	563466	28146,1	2814613	1407301	7036507
mmHg	15,5145	1551,45	77,5723	7757,23	413,72	41372	2068,6	206860,0	103430	517151
psi	0,3	30	1,5	150	8	800	40	4000	2000	10000
bar	0,02068	2,06843	0,10342	10,3421	0,55158	55,1581	2,75791	275,7905	137,895	689,476
mbar	20,6843	2068,43	103,421	10342,11	551,581	55158,1	2757,91	275790,5	137895	689476
g/cm ²	21,0921	2109,21	105,461	10546,1	561,459	56145,9	2807,31	280730,6	140614	703067
kg/cm ²	0,02109	2,10921	0,10546	10,5461	0,56246	56,2456	2,81228	281,228	140,614	701,82
Pa	2068,43	206843	10342,1	1034212	55158,1	5515811	275791	27579054	13789500	68947600
kPa	2,06843	206,843	10,3421	1034,21	55,1581	5515,81	275,791	27579,05	13789,5	68947,6
torr	15,5145	1551,45	77,5726	7757,26	413,721	413721	2068,6	206859,7	103430	517151
atm	0,02041	2,04138	0,10207	10,2069	0,54437	54,4368	2,72184	272,1841	136,092	680,46

Bei Verwendung eines Handterminals ist aufgrund der Umrechnung der Einheiten eine Anpassung der Messumformergrenzen um ±5 % zulässig.

Tabelle A-15. Messbereichsgrenzen für 3051C Messumformer für Absolutdruck

	Messspann	e Bereich 1	Messspann	e Bereich 2	Messspani	ne Bereich 3	Messspanne Bereich 4	
Einheiten	Min.	max.	Min.	max.	Min.	max.	Min.	max.
inH ₂ O	8,30397	831,889	41,5198	4151,98	221,439	22143,9	1107,2	110720
inHg	0,61081	61,0807	3,05403	305,403	16,2882	1628,82	81,441	8144,098
ftH ₂ O	0,69199	69,3241	3,45998	345,998	18,4533	1845,33	92,2663	9226,63
mmH ₂ O	211,10	21130	6,35308	635,308	5634,66	563466	28146,1	2814613
mmHg	15,5145	1551,45	1055,47	105547	413,72	41372	2068,6	206860,0
psi	0,3	30	1,5	150	8	800	40	4000
bar	0,02068	2,06843	0,10342	10,342	0,55158	55,1581	2,75791	275,7905
mbar	20,6843	2068,43	103,421	10342,1	551,581	55158,1	2757,91	275790,5
g/cm ²	21,0921	2109,21	105,27	105,27	561,459	56145,9	2807,31	280730,6
kg/cm ²	0,02109	2,10921	0,10546	10,546	0,56246	56,2456	2,81228	281,228
Pa	2068,43	206843	10342,1	1034210	55158,1	5515811	275791	27579054
kPa	2,06843	206,843	10,3421	1034,21	55,1581	5515,81	275,791	27579,05
torr	15,5145	1551,45	77,5726	7757,26	413,721	413721	2068,6	206859,7
atm	0,02041	2,04138	0,10207	10,207	0,54437	54,4368	2,72184	272,1841

Bei Verwendung eines Handterminals ist aufgrund der Umrechnung der Einheiten eine Anpassung der Messumformergrenzen um ±5 % zulässig.

Sicherheitsanleitung 00809-0105-4797, Rev CA

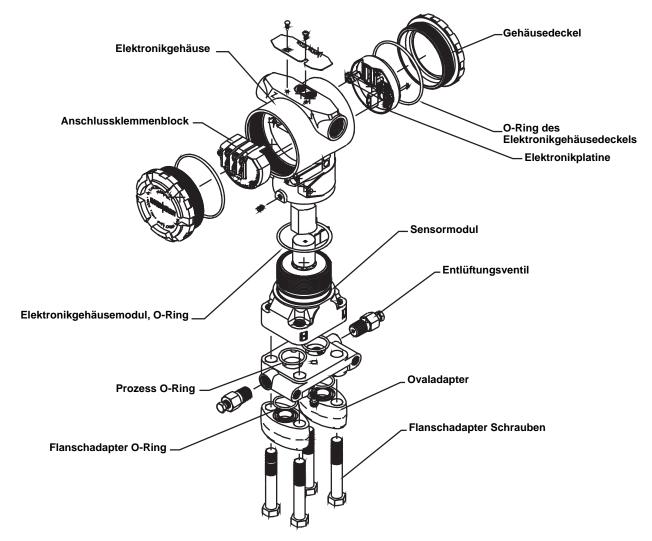
August 2010

ERSATZTEILE

Rosemount 305	1C Sensormodule für Über- und Dit	Silikonölfüllung	Inerte Füllung		
	ne/Messbereich)	Teilenummer	Teilenummer		
Hinweis: Je ein Ersatzteil pro 50 Messumformer wird empfohlen.					
Hinweis: Angabe	n geordnet nach Messbereich und Tre	ennmembran Bestellnummern.			
	Überdruckbereich	Differenzdruckbereich			
Messbereich 1	-25 bis 25 in H ₂ O/0,5 in H ₂ O	-25 bis 25 in H ₂ O/0,5 in H ₂ O			
Edelstahl 316L			03031-1045-0012	03031-1145-0012	
Alloy C-276			03031-1045-0013	03031-1145-0013	
Alloy 400			03031-1045-0014	03031-1145-0014	
Alloy 400 vergold	let		03031-1045-0016	03031-1145-0016	
Edelstahl (316 SS	ST) vergoldet		03031-1045-0017	03031-1145-0017	
Messbereich 2	-250 bis 250 inH ₂ O/2,5 inH ₂ O	-250 bis 250 inH ₂ O/2,5 inH ₂ O			
Edelstahl 316L			03031-1045-0022	03031-1145-0022	
Alloy C-276			03031-1045-0023	03031-1145-0023	
Alloy 400			03031-1045-0024	03031-1145-0024	
Tantal			03031-1045-0025	03031-1145-0025	
Alloy 400 vergold	let	03031-1045-0026	03031-1145-0026		
Edelstahl (316 S	ST) vergoldet		03031-1045-0027	03031-1145-0027	
Messbereich 3	-407 bis 1000 inH ₂ O/10 inH ₂ O	-1000 bis 1000 inH ₂ O/10 inH ₂ O			
Edelstahl 316L	1	'	03031-1045-0032	03031-1145-0032	
Alloy C-276			03031-1045-0033	03031-1145-0033	
Alloy 400			03031-1045-0034	03031-1145-0034	
Tantal			03031-1045-0035	03031-1145-0035	
Alloy 400 vergold			03031-1045-0036	03031-1145-0036	
Edelstahl (316 S	ST) vergoldet		03031-1045-0037	03031-1145-0037	
Messbereich 4	-14,2 bis 300 psi/3 psi	-300 bis 300 psi/3 psi			
Edelstahl 316L			03031-1045-2042	03031-1145-2042	
Alloy C-276			03031-1045-2043	03031-1145-2043	
Alloy 400			03031-1045-2044	03031-1145-2044	
Tantal			03031-1045-2045	03031-1145-2045	
Alloy 400 vergold			03031-1045-2046	03031-1145-2046	
Edelstahl (316 S	, •		03031-1045-2047	03031-1145-2047	
Messbereich 5	-14,2 bis 2000 psi/20 psi	-2000 bis 2000 psi/20 psi			
Edelstahl 316L		03031-1045-2052	03031-1145-2052		
Alloy C-276		03031-1045-2053	03031-1145-2053		
Alloy 400		03031-1045-2054	03031-1145-2054		
Tantal		03031-1045-2055	03031-1145-2055		
Alloy 400 vergold			03031-1045-2056	03031-1145-2056	
Edelstahl (316 SS	ST) vergoldet	03031-1045-2057	03031-1145-2057		

	Silikonölfüllung	Inerte Füllung			
Rosemount 3051C Absolutdruck Sensormodule (Min. Messspanne/Messbereich)	Teilenummer	Teilenummer			
Hinweis: Je ein Ersatzteil pro 50 Messumformer wird empfohlen.	<u>'</u>				
Hinweis: Angaben geordnet nach Messbereich und Trennmembran Bestellnummern.					
Messbereich 1, 0 bis 30 psia/0,3 psia					
Edelstahl 316L	03031-2020-0012	<u> </u>			
Alloy C-276	03031-2020-0013	—			
Alloy 400	03031-2020-0014	—			
Alloy 400 vergoldet	03031-2020-0016	<u> </u>			
Edelstahl (316 SST) vergoldet	03031-2020-0017	T-			

Messbereich 2, 0 bis 150/1,5 psia		
Edelstahl 316L	03031-2020-0022	<u> </u>
Alloy C-276	03031-2020-0023	_
Alloy 400	03031-2020-0024	_
Alloy 400 vergoldet	03031-2020-0026	_
Edelstahl (316 SST) vergoldet	03031-2020-0027	_
Messbereich 3, 0 bis 800 psia/8 psia		
Edelstahl 316L	03031-2020-0032	 -
Alloy C-276	03031-2020-0033	_
Alloy 400	03031-2020-0034	_
Alloy 400 vergoldet	03031-2020-0036	_
Edelstahl (316 SST) vergoldet	03031-2020-0037	_
Messbereich 4, 0 bis 400 psia/40 psia		
Edelstahl 316L	03031-2020-0042	-
Alloy C-276	03031-2020-0043	_
Alloy 400	03031-2020-0044	_
Alloy 400 vergoldet	03031-2020-0046	_
Edelstahl (316 SST) vergoldet	03031-2020-0047	_


Elektronikplatinen Einheiten	Teilenummer		
4–20 mA HART Standard	03031-0001-0002		
4–20 mA HART gemäss NAMUR	03031-0001-0003		
1–5 V VDC HART Low Power	03031-0001-1001		
FOUNDATION Feldbus	03031-0001-2001		
PROFIBUS PA Feldbus	03031-0001-2101		
LCD Anzeige	Teilenummer		
LCD Anzeigekits			
Feldbus (FOUNDATION oder PROFIBUS PA) – Aluminium	03031-0193-0104		
Feldbus (FOUNDATION oder PROFIBUS PA) – Edelstahl 316 SST	03031-0193-0112		
Nur LCD Anzeige			
Feldbus (FOUNDATION oder PROFIBUS PA)	03031-0193-0105		
Bedieninterface (inklusive neuer Elektronikplatine)	Teilenummer		
Inklusive LCD Anzeige und Deckel (zur Aufrüstung von Geräten ohne Display)			
Profibus – AL	03031-9030-0001		
Profibus – Edelstahl	03031-9030-0011		
Ohne LCD Anzeige und Deckel (zur Aufrüstung von Geräten mit Display)			
Profibus – AL	03031-9030-1001		
Profibus – Edelstahl	03031-9030-1011		
Anschlussklemmenblock Einheiten	Teilenummer		
Feldbus (FOUNDATION oder PROFIBUS PA)			
Standard Anschlussklemmenblock	03031-0332-2001		
Anschlussklemmenblock mit Überspannungsschutz (Option T1)	03031-0332-2002		
FISCO Anschlussklemmenblock	03031-0332-2005		
Elektronikgehäuse (ohne Anschlussklemmenblock)	Teilenummer		
Standard – Aluminium			
¹ / ₂ -14 NPT Leitungseinführung	03031-0635-0001		
M20 Leitungseinführung	03031-0635-0002		
G ¹ / ₂ Leitungseinführung	03031-0635-0004		
Standard – Edelstahl 316 SST			
¹ /2-14 NPT Leitungseinführung	03031-0635-0041		
M20 Leitungseinführung	03031-0635-0042		

Blindstopfen für Gehäuse	Teilenummer
¹ /2 NPT Blindstopfen	03031-0544-0003
M20 Blindstopfen	03031-0544-0001
G ¹ / ₂ Blindstopfen	03031-0544-0004
Gehäusedeckel (inklusive O-Ring)	Teilenummer
Deckel Feldanschlussklemmenseite – Aluminium	03031-0292-0001
Deckel Feldanschlussklemmenseite – Edelstahl 316 SST	03031-0292-0002
Externe Deckel Elektronikseite für Feldbus – Aluminium	03031-0292-0003
Externe Deckel Elektronikseite für Feldbus – Edelstahl 316 SST	03031-0292-0004
Externe LCD Anzeigendeckel für Feldbus – Aluminium	03031-0193-0007
Externe LCD Anzeigendeckel für Feldbus – Edelstahl 316 SST	03031-0193-0013
Sonstige Hardware	Teilenummer
Externe Erdungsschraube (Option V5)	03031-0398-0001
Flansche	Teilenummer
Differenzdruck Coplanar Flansch	
Edelstahl 316	03031-0388-0022
Guss C-276	03031-0388-0023
Gusslegierung 400	03031-0388-0024
Vernickelter Kohlenstoffstahl	03031-0388-0025
Über-/Absolutdruck Coplanar Flansch	
Edelstahl 316	03031-0388-1022
Guss C-276	03031-0388-1023
Gusslegierung 40	03031-0388-1024
Vernickelter Kohlenstoffstahl	03031-0388-1025
Coplanar Flansch Einstellschraube (12 Stück Packung)	03031-0309-0001
Anpassungsflansch	
Edelstahl 316	03031-0320-0002
Guss C-276	03031-0320-0003
Gusslegierung 400	03031-0320-0004
Edelstahl 316 SST – gemäss DIN (Option Code HJ)	03031-1350-0012
Anpassungsflansch, senkrecht	
2 in., Class 150, SST	03031-0393-0221
2 in., Class 300, SST	03031-0393-0222
3 in., Class 150, SST	03031-0393-0231
3 in., Class 300, SST	03031-0393-0232
DIN, DN 50 PN 40	03031-0393-1002
DIN, DN 80 PN 40	03031-0393-1012
Flanschadapterkits (jedes Kit enthält Teile für einen Differenzdruck Messumformer oder zwei Über-/Absolutdruck-Messumformer)	Teilenummer
Kohlenstoffstahlschrauben, glasgefüllte PTFE O-Ringe	
Edelstahl Adapter	03031-1300-0002
Adapter in Gussausführung Alloy C-276	03031-1300-0003
Alloy 400 Adapter	03031-1300-0004
Adapter aus vernickeltem Kohlenstoffstahl	03031-1300-0005
Edelstahlschrauben, glasgefüllte PTFE O-Ringe	
Edelstahl Adapter	03031-1300-0012
Adapter in Gussausführung Alloy C-276	03031-1300-0013
Alloy 400 Adapter	03031-1300-0014
Adapter aus vernickeltem Kohlenstoffstahl	03031-1300-0015
Kohlenstoffstahlschrauben, grafitgefüllte PTFE O-Ringe	
Edelstahl Adapter	03031-1300-0102
Adapter in Gussausführung Alloy C-276	03031-1300-0103
Alloy 400 Adapter	03031-1300-0104
Adapter aus vernickeltem Kohlenstoffstahl	03031-1300-0105

Edelstahlschrauben, grafitgefüllte PTFE O-Ringe	
Edelstahl Adapter	03031-1300-0112
Adapter in Gussausführung Alloy C-276	03031-1300-0113
Alloy 400 Adapter	03031-1300-0114
Adapter aus vernickeltem Kohlenstoffstahl	03031-1300-0115
Flanschadapter	Teilenummer
¹ / ₂ -14 NPT Adapter	
Edelstahl 316	02024-0069-0002
Guss C-276	02024-0069-0003
Gusslegierung 400	02024-0069-0004
Vernickelter Kohlenstoffstahl	02024-0069-0005
Adapter mit Überschiebflansch	02024-0009-0003
Edelstahl 316	02024-0069-1002
Guss C-276	02024-0069-1002
Gusslegierung 400	02024-0069-1003
	Teilenummer
O-Ring Packungen (12 Stück Packung)	
Elektronikgehäuse, Deckel	03031-0232-0001
Elektronikgehäuse, Modul	03031-0233-0001
Prozessflansch, glasgefülltes PTFE (weiß)	03031-0234-0001
Prozessflansch, grafitgefülltes PTFE (schwarz)	03031-0234-0002
Prozessflansch für 3051H, PTFE (weiß)	02051-0167-0001
Ovaladapter, glasgefülltes PTFE (hellbraun)	03031-0242-0001
Ovaladapter, grafitgefülltes PTFE (schwarz)	03031-0242-0002
Schraubensätze	Teilenummer
COPLANAR FLANSCH	
Flanschschraubensatz (44 mm [1,75 in.]) (enthält 4 Stück)	
Kohlenstoffstahl	03031-0312-0001
Edelstahl 316	03031-0312-0002
ASTM A 193, Grade B7M	03031-0312-0003
Alloy K-500	03031-0312-0004
Flansch-/Adapterschraubensatz (73 mm [2,88 in.]) (enthält 4 Stück)	
Kohlenstoffstahl	03031-0306-0001
Edelstahl 316	03031-0306-0002
ASTM A 193, Grade B7M	03031-0306-0003
Alloy K-500	03031-0306-0004
ANPASSUNGSFLANSCH	
Differenzdruckflansch/Adapterschraubensatz (44 mm [1,75 in.]) (enthält 8 Stück)	
Kohlenstoffstahl	03031-0307-0001
Edelstahl 316	03031-0307-0002
ASTM A 193, Grade B7M	03031-0307-0003
Alloy K-500	03031-0307-0004
Über-/Absolutdruckflansch Adapterschraubensatz (44 mm [1,75 in.]) (enthält 6 Stück)	
Kohlenstoffstahl	03031-0307-1001
Edelstahl 316	03031-0307-1002
ASTM A 193, Grade B7M	03031-0307-1002
Alloy K-500	03031-0307-1004
Konventionelle Ventilblock/Anpassungsflanschschrauben	55551 5551 1551
Kohlenstoffstahl	Im Lieferumfang des Ventilblocks enthaltene Schrauben verwenden
Edelstahl 316	Im Lieferumfang des Ventilblocks enthaltene Schrauben verwenden
Flanschanschluss senkrecht, Schraubensatz (enthält 4 Stück)	
Kohlenstoffstahl	03031-0395-0001
Edelstahl 316	03031-0395-0002
— 	1

3051H Prozessflansch, Schraubensatz (enthält 4 Stück)	
Kohlenstoffstahl	02051-0164-0001
Edelstahl 316	02051-0164-0002
Ablass-/Entlüftungsventilsätze (jeder Satz enthält Teile für einen Messumformer)	Teilenummer
Differenzdruck Ablass-/Entlüftungsventilsätze	
Edelstahl 316 SST Ventilschaft und -sitz	01151-0028-0022
Alloy C-276 Ventilschaft und -sitz	01151-0028-0023
Alloy K-500 Ventilspindel und Alloy 400 Ventilsitz	01151-0028-0024
Edelstahl 316 SST Ablass-/Entlüftungsventil mit Keramikkugel	03031-0378-0022
Alloy C-276 Ablass-/Entlüftungsventil mit Keramikkugel	03031-0378-0023
Alloy 400/K-500 Ablass-/Entlüftungsventil mit Keramikkugel	03031-0378-0024
Über-/Absolutdruck Ablass-/Entlüftungsventilsätze	
Edelstahl 316 SST Ventilschaft und -sitz	01151-0028-0012
Alloy C-276 Ventilschaft und -sitz	01151-0028-0013
Alloy K-500 Ventilspindel und Alloy 400 Ventilsitz	01151-0028-0014
Edelstahl 316 SST Ablass-/Entlüftungsventil mit Keramikkugel	03031-0378-0012
Alloy C-276 Ablass-/Entlüftungsventil mit Keramikkugel	03031-0378-0013
Alloy 400/K-500 Ablass-/Entlüftungsventil mit Keramikkugel	03031-0378-0014
Montagehalterungen	Teilenummer
3051C und 3051L Coplanar Flansch Montagewinkelsatz	
B4 Montagewinkel, Edelstahl, 50 mm (2 in.) Rohrmontage, Edelstahlschrauben	03031-0189-0003
3051T Inline Montagewinkelsatz	
B4 Montagewinkel, Edelstahl, 50 mm (2 in.) Rohrmontage, Edelstahlschrauben	03031-0189-0004
3051C Montagewinkelsätze für Anpassungsflansch	
B1 Montagewinkel, 50 mm (2 in.) Rohrmontage, Schrauben aus Kohlenstoffstahl	03031-0313-0001
B2 Montagewinkel, Wandmontage, Schrauben aus Kohlenstoffstahl	03031-0313-0002
B3 Montageplatte, 50 mm (2 in.) Rohrmontage, Schrauben aus Kohlenstoffstahl	03031-0313-0003
B7 (B1 Montagewinkel, Edelstahlschrauben)	03031-0313-0007
B8 (B2 Montagewinkel, Edelstahlschrauben)	03031-0313-0008
B9 (B3 Montagewinkel, Edelstahlschrauben)	03031-0313-0009
BA (B1 Edelstahl Montagewinkel, Edelstahlschrauben)	03031-0313-0011
BC (B3 Edelstahl Montagewinkel, Edelstahlschrauben)	03031-0313-0013
3051H Montagewinkelsatz	
3051H Montagewinkelsatz B5 Universalwinkel, 50 mm (2 in.) Rohr- und Wandmontage, Schrauben aus Kohlenstoffstahl	03051-1081-0001

Abbildung A-1. Ersatzteilzeichnung

Anhang B Produkt-Zulassungen

Übersicht	Seite B-1
Sicherheitshinweise	
Zugelassene Herstellungsstandorte	Seite B-2
Informationen zu EU-Richtlinien	Seite B-2
Ex-Zulassungen	Seite B-2
Zulassungs-Zeichnungen	Seite B-6

ÜBERSICHT

Dieser Anhang enthält Informationen über zugelassene Herstellungsstandorte, Informationen zu EU-Richtlinien, Bescheinigungen für normalen Einsatz, Ex-Zulassungen und Zeichnungen für das HART Protokoll.

SICHERHEITSHINWEISE

Verfahren und Anweisungen in diesem Abschnitt können besondere Vorsichtsmaßnahmen erfordern, um die Sicherheit des Bedienungspersonals zu gewährleisten. Informationen, die eine erhöhte Sicherheit erfordern, sind mit einem Warnsymbol () markiert. Lesen Sie die folgenden Sicherheitshinweise, bevor ein durch dieses Symbol gekennzeichnetes Verfahren durchgeführt wird.

Warnungen

MARNUNG

Explosionen können zu schweren oder tödlichen Verletzungen führen:

Die Installation dieses Messumformers in explosionsgefährdeten Umgebungen muss entsprechend der lokalen, nationalen und internationalen Normen, Vorschriften und Empfehlungen erfolgen. Einschränkungen in Verbindung mit der sicheren Installation sind in diesem Abschnitt der Betriebsanleitung für den 3051 zu finden.

- Vor Anschluss eines HART-Handterminals in einer explosionsgefährdeten Atmosphäre sicherstellen, dass die Geräte im Messkreis in Übereinstimmung mit den Vorschriften für eigensichere oder nicht Funken erzeugende Feldverdrahtung installiert sind
- Bei einer Ex-Schutz/Druckfeste Kapselung Installation die Gehäusedeckel des Messumformers nicht entfernen, wenn der Stromkreis unter Spannung steht.

Prozessleckagen können zu schweren oder tödlichen Verletzungen führen.

 Vor der Druckbeaufschlagung müssen die Prozessanschlüsse installiert und fest angezogen werden.

Elektrischer Schlag kann zu schweren oder tödlichen Verletzungen führen.

 Kontakt mit den Leitungsadern und Anschlussklemmen vermeiden. Elektrische Spannung an den Leitungsadern kann zu elektrischen Schlägen führen.

⚠ WARNUNG

Kabelverschraubungen und Stopfen müssen den auf den Zulassungen aufgeführten Anforderungen entsprechen.

ROSEMOUNT®

00809-0105-4797, Rev CA August 2010

ZUGELASSENE HERSTELLUNGS-STANDORTE

Emerson Process Management - Rosemount Inc. -

Chanhassen, Minnesota, USA

Emerson Process Manufacturing GmbH & Co. OHG - Weßling, Deutschland

Emerson Process Management Asia Pacific Private Limited - Singapur

Emerson Process Management – Beijing, China Emerson Process Management – Daman, Indien

INFORMATIONEN ZU EU-RICHTLINIEN

Die neueste Version der EU-Konformitätserklärung ist auf der Website www.emersonprocess.com zu finden.

Zulassung für normalen Einsatz für Factory Mutual

Der Messumformer wurde standardmäßig von FM untersucht und geprüft, um zu gewährleisten, dass die Konstruktion die grundlegenden elektrischen, mechanischen und Brandschutzanforderungen erfüllt. FM ist ein national anerkanntes Prüflabor (NRTL), zugelassen von der Federal Occupational Safety and Health Administration (OSHA [US-Behörde für Sicherheit und Gesundheitsschutz am Arbeitsplatz]).

Ex-Zulassungen

Nordamerikanische Zulassungen

FM-Zulassungen

- E5 Ex-Schutz für Class I, Division 1, Groups B, C und D. Staub Ex-Schutz für Class II, Division 1, Groups E, F und G. Staub Ex-Schutz für Class III, Division 1.
- Eigensicher für Class I, Division 1, Groups A, B, C und D; Class II, Division 1, Groups E, F und G; Class III, Division 1, wenn der Anschluss gemäß Rosemount Zeichnung 03031-1019 erfolgt; keine Funken erzeugend für Class I, Division 2, Groups A, B, C und D.

Temperatur Code: T4 (Ta = 60 °C), T3 (Ta = 85 °C), Gehäuseschutzart 4X Eingangsparameter der Zeichnung 03031-1019 entnehmen.

Canadian Standards Association (CSA)

- Ex-Schutz für Class I, Division 1, Groups B, C und D. Staub Ex-Schutz für Class II und Class III, Division 1, Groups E, F und G. Geeignet für Class I, Division 2, Groups A, B, C und D für Ex-Bereiche in geschlossenen Räumen und im Freien. Gehäuseschutzart 4X, werkseitig abgedichtet
- C6 Ex-Schutz und Eigensicherheit Zulassung. Eigensicher für Class I, Division 1, Groups A, B, C und D bei Anschluss gemäß Rosemount Zeichnung 03031-1024. Temperaturcode T3C. Ex-Schutz für Class I, Division 1, Groups B, C und D. Staub Ex-Schutz für Class II und Class III, Division 1, Groups E, F und G. Geeignet für Ex-Bereiche Class I, Division 2, Groups A, B, C und D. Gehäuseschutzart 4X, werkseitig abgedichtet Eingangsparameter der Zeichnung 03031-1024 entnehmen.

00809-0105-4797, Rev CA August 2010

Europäische Zulassungen

I1 ATEX Eigensicherheit und Staub

Zulassungsnummer: BAS 98ATEX1355X Ѿ II 1 GD

Ex ia IIC T4 (T_{amb} = −60 bis +60 °C)

C€ 1180

TABELLE 1. Eingangsparameter

U _i = 30 V	
I _i = 300 mA	
P _i = 1,3 W	
$C_i = 0 \mu F$	

TABELLE 2. Widerstandsthermometereinheit (3051CFx Option T oder R)

	•
U _i = 5 VDC	
I _i = 500 mA	
P _i = 0,63 W	

Spezielle Voraussetzungen zur sicheren Verwendung (X):

- 1. Wenn das Gerät mit einem 90 V Überspannungsbegrenzer ausgestattet ist, hält es dem 500 V Isolationstest gemäß Richtlinie IEC 60079-11 Abs. 6.3.12 nicht stand. Dies muss bei der Installation des Geräts berücksichtigt werden.
- 2. Das Gehäuse kann aus einer Aluminiumlegierung hergestellt sein und über eine Schutzlackierung aus Polyurethan verfügen. Jedoch ist Vorsicht geboten, um es vor Schlag oder Abrasion zu schützen, wenn dieses in der Zone 0 platziert ist.

IA ATEX FISCO Eigensicherheit

Zulassungsnummer: BAS 98ATEX1355X b II 1 G Ex ia IIC T4 (T_{amb} = -60 bis +60 °C) IP66

€ 1180

TABELLE 3. Eingangsparameter

U _i = 17,5 V	
$I_i = 380 \text{ mA}$	
$P_i = 5,32 \text{ W}$	
$C_i = \le 5 \mu F$	
$L_i = \le 10 \mu H$	

Spezielle Voraussetzungen zur sicheren Verwendung (X):

Bei Verwendung des optionalen Anschlussklemmenblocks mit Überspannungsschutz hält der Messumformer dem 500 V Isolationstest gemäß Richtlinie EN60079-11 Paragraph 6.3.12 nicht stand. Dies muss bei der Installation berücksichtigt werden. Das Gehäuse kann aus einer Aluminiumlegierung hergestellt sein und über eine Schutzlackierung aus Polyurethan verfügen. Jedoch ist Vorsicht geboten, um es vor Schlag oder Abrieb zu schützen, wenn es in Zone 0 eingesetzt wird.

N1 ATEX Typ n und Staub

Zulassungsnummer: BAS 98ATEX3356X B II 3 GD U_i = 40 VDC max. Ex nA nL IIC T5 (T_a = -40 °C bis 70 °C) Staub-Klassifizierung: Ex tD A22 T80 °C (T_{amb} = -20 bis 40 °C) IP66

Spezielle Voraussetzungen zur sicheren Verwendung (X):

Dieses Gerät hält dem 500 V Isolationstest gemäß Richtlinie IEC 60079-15, Paragraph 6.8.1, nicht stand. Dies muss bei der Installation des Geräts berücksichtigt werden.

00809-0105-4797, Rev CA August 2010

E8 ATEX Druckfeste Kapselung und Staub

Zulassungsnummer: KEMA 00ATEX2013X & II 1/2 GD

Ex d IIC T6 ($T_{amb} = -50 \text{ bis } 65 \text{ °C}$)

Staub-Klassifizierung: Ex tD A20/21 T90 °C, IP66

(€ 1180 Vmax = 55 VDC

Spezielle Voraussetzungen zur sicheren Verwendung (X):

Dieses Gerät verfügt über eine dünnwandige Membran. Bei Installation, Betrieb und Wartung sind die Umgebungsbedingungen zu berücksichtigen, denen die Membran ausgesetzt ist. Genau an die Herstelleranweisungen zur Installation und Wartung halten, um die Sicherheit während der Lebensdauer des Geräts zu gewährleisten.

Australische Zulassungen

IFCEx Eigensicherheit

Zulassungsnummer: IECEx BAS 09.0076X Ex ia IIC T4 (-60 °C \leq T $_a \leq$ 60 °C)

IP66

TABELLE 4. Eingangsparameter

	3 3 .	
U _i = 30 V		
I _i = 300 mA		
P _i = 1,3 W		
$C_i = 0 \mu F$		
$L_i = 0 \mu H$		

TABELLE 5. Widerstandsthermometereinheit (3051CFx Option T oder R)

U _i = 5 VDC	
$I_i = 500 \text{ mA}$	
$P_i = 0.63 \text{ W}$	

Spezielle Voraussetzungen zur sicheren Verwendung (X):

- 1. Wenn das Gerät mit einem 90 V Überspannungsbegrenzer ausgestattet ist, hält es dem 500 V Isolationstest gemäß Richtlinie IEC 60079-11 Abs. 6.3.12 nicht stand. Dies muss bei der Installation des Geräts berücksichtigt werden.
- 2. Das Gehäuse kann aus einer Aluminiumlegierung hergestellt sein und über eine Schutzlackierung aus Polyurethan verfügen. Jedoch ist Vorsicht geboten, um es vor Schlag oder Abrasion zu schützen, wenn dieses in der Zone 0 platziert ist.

E7 IECEx Ex-Schutz (Druckfeste Kapselung)

Zulassungsnummer: IECEx KEM 09.0034X Ga/Gb Ex d IIC T6 oder T5 Ex tD A20/A21 IP66 T90 °C IP66

Spezielle Voraussetzungen zur sicheren Verwendung (X):

Dieses Gerät verfügt über eine dünnwandige Membran. Bei Installation, Wartung und Betrieb sind die Umgebungsbedingungen zu berücksichtigen, denen die Membran ausgesetzt ist. Genau an die Herstelleranweisungen zur Installation und Wartung halten, um die Sicherheit während der Lebensdauer des Geräts zu gewährleisten.

Informationen über die Abmessungen der Anschlüsse der druckfesten Kapselung erhalten Sie vom Hersteller.

N7 IECEx Typ n

Zulassungsnummer: IECEx BAS 09.0077X Ex nA nL IIC T5 (–40 °C \leq T_a \leq 70 °C) IP66

Spezielle Voraussetzungen zur sicheren Verwendung (X):

Dieses Gerät hält dem 500 V Isolationstest gemäß Richtlinie IEC 60079-15, Paragraph 6.8.1, nicht stand. Dies muss bei der Installation des Geräts berücksichtigt werden.

Zulassungskombinationen

Ein Zulassungens-Typenschild aus Edelstahl wird mitgeliefert, wenn optionale Zulassungen spezifiziert sind. Ist ein Gerät installiert, das mit einer mehrfachen Zulassung gekennzeichnet ist, sollte dieses nicht mit einer anderen Zulassung(en) wieder installiert werden. Die permanente Beschriftung des Zulassungsschilds dient der Unterscheidung des installierten Zulassungstyps von den nicht verwendeten Zulassungen.

K5 Kombination von E5 und I5
KB Kombination von K5 und C6
KD Kombination von K5, C6, I1 und E8
K6 Kombination von C6, I1 und E8
K8 Kombination von E8 und I1
K7 Kombination von E7, I7 und N7

ZULASSUNGS-ZEICHNUNGEN

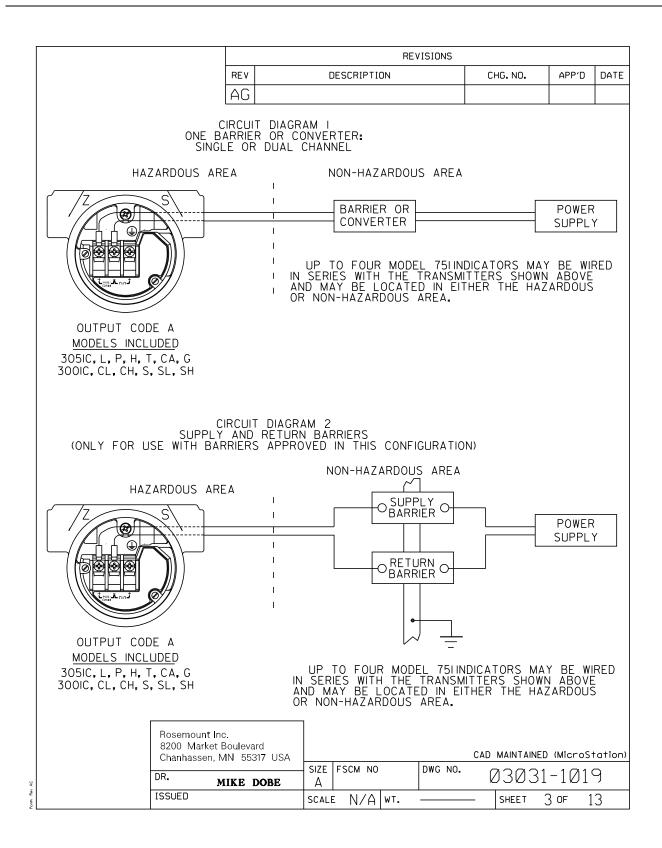
Factory Mutual 03031-1019

CONFIDENTIAL AND PROPRIETARY INFORMATION IS CONTAINED	REVISIONS				
HEREIN AND MUST BE HANDLED ACCORDINGLY	REV	DESCRIPTION	CHG. NO.	APP'D	DATE
	ΑE	ADD 3051G	RTC1Ø19922	J.G.	7/11/05
	AF	ADD FISCO DETAILS	RTC1Ø21913	N.J.H.	7/9/06
	AG	ADD FISCO ENTITY	RTC1022876	N.J.H.	10/27/06
		PARAMETERS TO SHT 12			

ENTITY APPROVALS FOR

3051C 3001C 3051L 3001CL 3051P 3001CH 3051H 3001S 3051CA 3001SL 3051T 3001SH 3051G


OUTPUT CODE A (4-20 mA HART) I.S. SEE SHEETS 2-5 OUTPUT CODE M (LOW POWER) I.S. SEE SHEETS 6-7 OUTPUT CODE F/W (FIELDBUS) I.S. SEE SHEETS 8-12 ALL OUTPUT CODES NONINCENDIVE SEE SHEET 13


THE ROSEMOUNT TRANSMITTERS LISTED ABOVE ARE F.M. APPROVED AS INTRINSICALLY SAFE WHEN USED IN CIRCUIT WITH F.M. APPROVED BARRIERS WHICH MEET THE ENTITY PARAMETERS LISTED IN THE CLASS I, II, AND III, DIVISION 1 GROUPS INDICATED, TEMP CODE T4. ADDITIONALLY, THE ROSEMOUNT 751 FIELD SIGNAL INDICATOR IS F.M. APPROVED AS INTRINSICALLY SAFE WHEN CONNECTED IN CIRCUIT WITH ROSEMOUNT TRANSMITTERS (FROM ABOVE) AND F.M. APPROVED BARRIERS WHICH MEET THE ENTITY PARAMETERS LISTED FOR CLASS I, II, AND III, DIVISION 1, GROUPS INDICATED, TEMP CODE T4.

TO ASSURE AN INTRINSICALLY SAFE SYSTEM, THE TRANSMITTER AND BARRIER MUST BE WIRED IN ACCORDANCE WITH THE BARRIER MANUFACTURER'S FIELD WIRING INSTRUCTIONS AND THE APPLICABLE CIRCUIT DIAGRAM.

CAD MAINTAINED (MicroStation)

	UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES [mm]. REMOVE ALL BURRS AND	CONTRACT NO.	ROSEMOUNT® ROSEMOUNT® ROSEMOUNT® 8200 Market Boulevard • Chanhassen, MN 55317 USA
	SHARP EDGES, MACHINE SURFACE FINISH 125	DR. MIKE DOBE 03/21/89	TITLE INDEX OF I.S. & NONINCENDIVE
	-TOLERANCE- -X ± .1 [2.5]	CHK'D	F.M. FOR 3051C/L/P/H/T
	.XX ± .02 [0.5] .XXX ± .010 [0.25]	APP'D. KELLY ORTH 03/22/89	AND 3001C/S
. AC	FRACTIONS ANGLES ± 1/32 ± 2°		SIZE A FSCM NO DWG NO. 03031-1019
Form Rev	DO NOT SCALE PRINT	APP'D.GOVT.	SCALE N/A WT. — SHEET 1 OF 13

	REVISIONS						
	REV		DESCRIPTION		CHG. NO.	APP'D	DATE
	AG						
		LA CONC	EPT APPROVAL	S			
THE ENTITY CONCEPT A TO ASSOCIATED APPARATU THE APPROVED VALUES OF CIRCUIT CURRENT (Isc OR ASSOCIATED APPARATUS N VOLTAGE (Vmax), MAXIMUM (Pmax) OF THE INTRINSICA ABLE CONNECTED CAPACIT THAN THE SUM OF THE II INTERNAL CAPACITANCE ((APPROVED MAX, ALLOWABL MUST BE GREATER THAN UNPROTECTED INTERNAL I	IS NOT MAX. It) AN MUST B SAFE LLY SO ANCE NTERCO (1) OF E CONNTHE SU	SPECIFOPEN COMEN C	ICALLY EXAMINICULT VOLTAGE VOWER (Voc X INTHAN OR EQUADER (Voc X INTHAN OR EQUADER (Voc X INTHAN OR EQUADER (VOC X INTHAN OR EXPARINSICALLY SATINDUCTANCE (LEINTERCONNICITE (LEINTERCONNICITE (LEINTERCONNICITE (LEINTERCONNICITER (LEINTERCONNIC	IED IN COMI E (Voc OR Isc/4) OR (V IL TO THE , AND MAXIN DITION, THE ID APPARAT CITANCE AN FE APPARA a) OF THE A ECTING CAB	BINATION AS (Vt) AND MAX. (Vt) AND MAX. (Vt) X It/4), FOI MAXIMUM SAF UNPROVED MAY US MUST BE US MUST HE UNPROVED TUS, AND THE ASSOCIATED ALE INDUCTANCE	A SYSTI SHORT R THE E INPUT PUT POW AX. ALLC GREATE ITECTED PPARATI CE AND	ĒM. I IER IW- R I
FOR OUTFOI CODE H	í	APPARAT	PARAMETERS L US WITH LINEA		Y ONLY TO A	SSOCIA ⁻	TED
CLASS I, DIV. 1, (GROUPS				ULAL TO 100		
$\frac{V_{MAX} = 40V}{I_{MAX} = 165mA}$			V _{OC} IS LESS T SC IS LESS TH				
$P_{MAX} = 1 \text{ WATT}$	₍ V _T X		sc is less in oc x Isc) IS LES			A/ATT	
$C_{\rm I} = .01\mu \rm f$	- 4		GREATER THAI		LGOAL TO I	~~	
$L_{\rm I} = 10 \mu \text{H}$			GREATER THAI				
* FOR TI OPTION:		_н		μ			
Imax = 160mA		I _T OR I	SC IS LESS TH	HAN OR EQL	JAL TO 160mA		
L _I =1.05mH			GREATER THAI				
CLASS I, DIV. 1, (GROUPS	C AND	D				
$V_{MAX} = 40V$			V _{OC} IS LESS 1	HAN OR EQ	UAL TO 40V		
I _{MAX} = 225mA		I _T OR I	SC IS LESS TH	HAN OR EQL	JAL TO 225mA		
$P_{MAX} = 1 WATT$	(<u>V_T X</u>	<u>r</u>) OR (<u>V</u>	oc x Isc) IS LES	S THAN OR	EQUAL TO 1 V	WATT	
$C_{\rm I} = .01 \mu f$		C _A IS	GREATER THAI	√ .Ø1μf			
$L_{\rm I}$ =10 μ H		L _A IS	GREATER THAI	N 10μH			
* FOR TI OPTION:	1						
L _I =1.05mH		L _A IS	GREATER THAI	V 1.05mH			
30	OUTPU MODELS 5IC, L,	CODE INCLUDE, H, T, C	A ED CA, G	AZARDOUS ASSOCIAT APPARATI (SEE SHEE	ED US		
Rosemount 8200 Marke Chanhassen	t Bouleva		SIZE ESCM NO	DWC NO	CAD MAINTAINED	(MicroSt	tation)
DR.	MIKE	OOBE	SIZE FSCM NO	DWG NO.	Ø3Ø31	-1019	9
ISSUED			SCALE N/A W	· —	— SHEET 4	1 of 1	3

REVISIONS					
REV	DESCRIPTION	CHG. NO.	APP'D	DATE	
AG					

MODEL 3Ø51G

FOR OUTPUT CODE A

CLASS I, DIV. 1, GROUPS A AND B

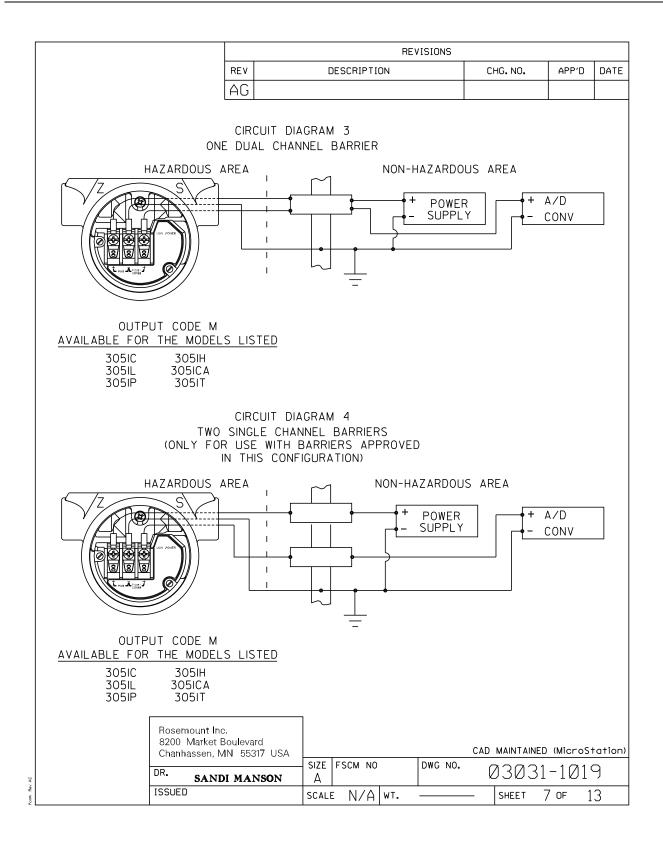
$V_{MAX} = 30V$	Vt or Voc IS LESS THAN OR EQUAL TO 30V
$I_{MAX} = 165 mA$	It or Isc IS LESS THAN OR EQUAL TO 165mA
P _{MAX} = 1 WATT	(Voc X Isc/4) or (Vt X It/4) IS LESS THAN OR EQUAL TO 1 WATT
$C_{I} = 0.01 \mu F$	C _A IS GREATER THAN 0.01 μF + C _{CABLE}
L _I = 10 μH	L _A IS GREATER THAN 10 μH + L _{CABLE}

FOR T1 OPTION:

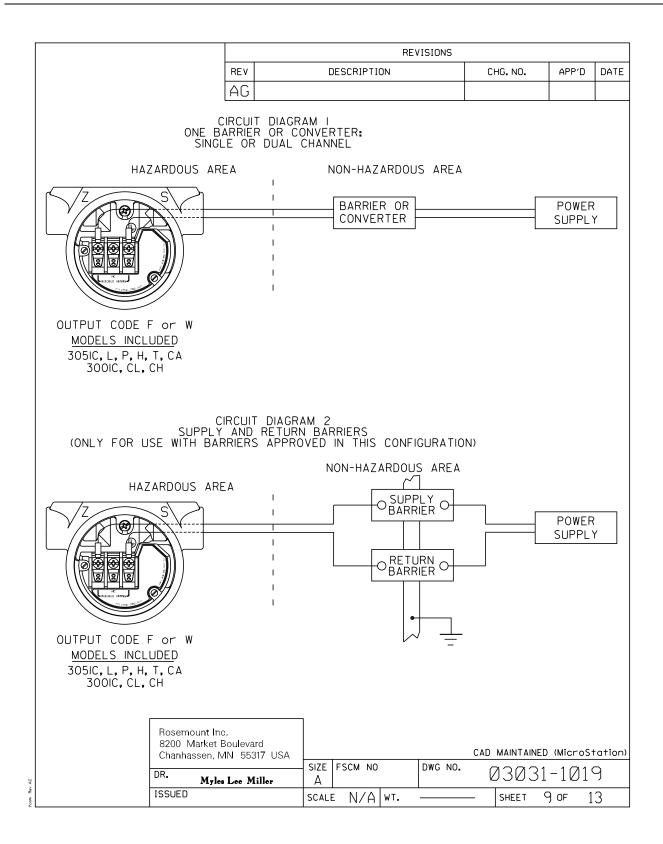
I _{MAX} = 160mA	It or Isc IS LESS THAN OR EQUAL TO 145mA
L _I = 1.06 mH	L _A IS GREATER THAN 1.06 mH + L _{CABLE}

CLASS I, DIV. 1, GROUPS C AND D

$V_{MAX} = 30V$	Vt or Voc IS LESS THAN OR EQUAL TO 30V
$I_{MAX} = 225mA$	It or Isc IS LESS THAN OR EQUAL TO 225mA
P _{MAX} = 1 WATT	(Voc X Isc/4) or (Vt X It/4) IS LESS THAN OR EQUAL TO 1 WATT
C _I = 0.01 μF	CA IS GREATER THAN 0.01μF + C CABLE
L _I = 10 μH	L _A IS GREATER THAN 10 μH + L _{CABLE}
<u> </u>	<u> </u>


FOR TI OPTION:

L _I = 1.06 mH	L _A IS GREATER THAN 1.06 mH + L CABLE	


Rosemount Inc. 8200 Market Boulevard Chanhassen, MN 55317 USA					CAD	MAINTAIN	ED (Micr	roStation)
DR. Myles Lee Miller	SIZE A	FSCM NO		DWG NO.	Q	0303	31-10)19
ISSUED	SCALI	N/A	WT.		_	SHEET	5 of	13

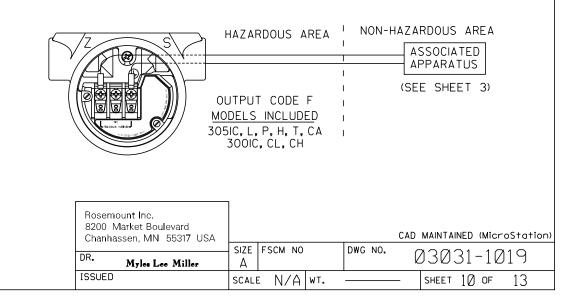
Per AC

						RE'	VISIONS			
			REV		DESCRI	PTION		CHG. NO.	APP'D	DAT
			AG							
							•		'	
FOR (OUTPUT	CODE M								
	CLASS	S I, DIV. 1, 0	GROUPS	A AND	В					
	V _{MAX} =	30V		V _T OR	V _{OC} IS LE	SS THAN	N OR EQU	JAL TO 30V		
	I _{MAX} =	165mA		I _T OR I	sc IS LES	S THAN	OR EQU	AL TO 165m/	4	
	P _{MAX}	= 1 WATT	(V _T X	<u>I_T) OR (^Vc</u>	oc x Isc) IS	LESS T	HAN OR	EQUAL TO 1	WATT	
	C _I =	.042µf		C _A IS	GREATER	THAN .0	142μf			
		:10μH		L _A IS	GREATER	THAN 10	θμH			
*	R T1 OP	T I O N I -								
FUN		0.75mH		ı ic	GREATER	THAN 0	75 U			
	L _I =	./ JMH		L _A IS	UNCHIEN	ITHN 0.	./ JMH			
	CLASS	S I, DIV. 1, 0	GROUPS	C AND	D					
	V _{MAX} =	3ØV		V _T OR	V _{OC} IS LE	SS THAN	N OR EQU	JAL TO 30V		
	I _{MAX} =	225mA		I _T OR I	_{SC} IS LES	SS THAN	OR EQU	AL TO 225m	Α	
		= 1 WATT	(<u>V_T X</u>	<u>I</u> 1) OR (<u>V</u>	oc x Isc) IS	LESS T	HAN OR	EQUAL TO 1	WATT	
	C _I =	.042µf		C _A IS	GREATER	THAN .0	142μf			
	L _I =	10μΗ		L _A IS	GREATER	THAN 10) _μ Η			
* FOR	R T1 OP	TION.								
* TON		0.75mH		L _A IS	GREATER	ΤΗΔΝ (Ι	75mH			
			-							
		ΗΔ7ΔΒ	. פנוסחי	AREA	. 1	NON-HA7.	ARDOUS	ΔRFΔ		
~	/7 -		ر دووو		'	VOIV HAZ	ANDOUS			
	V 5/2	Part	V		1		ASS	SOCIATED		
			·		i		APF	PARATUS		
		LOW POWER	\longrightarrow		i					
))		·					
			' /		·					
		A. A	/							
	OLITPI	JT CODE M								
AVAILABI		THE MODE	LS LIS	TED						
	305IC	305IH								
	305IL	305ICA								
	305IP	305IT								
					1					
		Rosemount								
		8200 Marke Chanhassen						CAD MAINTAINE	D (Micros	tatio
				,						
					SIZE FSCM	NO	DWG NO.	α	1_1/31	a
		DR. ISSUED	MIKE I	DOBE	- SIZE FSCM A	NO	DWG NO.	0303	1-101	9

				RE'	VISIONS			
		REV	DE	ESCRIPTION		CHG. NO.	APP'D	DATE
		[AG]						
	3Ø51 W	ITH FOUNDATI (OUTPUT	ON F COI	FIELDBU DE F OI	JS OF R W)	R PROF	IBUS	
	BARRIER	PARAMETERS (AP		BLE TO 0 = 1.3 WA		T CODE	F OR '	W)
	0.330							
	0.300	0.300 A		\				
	0.270 —							
	0.240							
	⊙ Ø.21Ø —							
	© 0.180 —							
	~ 4 - ~							
	0.150 — 0.120 —							
	0.090—	GROUPS A,B,C,D,	,E,F,G			3ØV		
	Ø.060 —							
	0.030							
	0.000	5 10	15	2Ø 2	 5	 3Ø V MA	X	
			Voc	(VOLTS)				
			. 3 3					
		Rosemount Inc. 8200 Market Boulevard Chanhassen, MN 55317 USA				CAD MAINTAIN	ED (Micros	tation)
9		DR. Myles Lee Miller		FSCM NO	DWG NO.		1-101	
Form Rev AC		ISSUED	SCALE	N/A WT.		— SHEET		.3

REVISIONS									
	REV	DESCRIPTION	CHG. NO.	APP'D	DATE				
	ΑG								

ENTITY CONCEPT APPROVALS


THE ENTITY CONCEPT ALLOWS INTERCONNECTION OF INTRINSICALLY SAFE APPARATUS TO ASSOCIATED APPARATUS NOT SPECIFICALLY EXAMINED IN COMBINATION AS A SYSTEM. THE APPROVED VALUES OF MAX. OPEN CIRCUIT VOLTAGE (Voc OR Vt) AND MAX. SHORT CIRCUIT CURRENT (Isc OR It) AND MAX.POWER (Voc X Isc/4) OR (Vt X It/4), FOR THE CIRCUIT CURRENT (Isc OR It) AND MAX.POWER (Voc X Isc/4) OR (Vt X It/4), FOR THE ASSOCIATED APPARATUS MUST BE LESS THAN OR EQUAL TO THE MAXIMUM SAFE INPUT VOLTAGE (Vmax), MAXIMUM SAFE INPUT CURRENT (Imax), AND MAXIMUM SAFE INPUT POWER (Pmax) OF THE INTRINSICALLY SAFE APPARATUS. IN ADDITION, THE APPROVED MAX. ALLOWABLE CONNECTED CAPACITANCE (Ca) OF THE ASSOCIATED APPARATUS MUST BE GREATER THAN THE SUM OF THE INTERCONNECTING CABLE CAPACITANCE AND THE UNPROTECTED INTERNAL CAPACITANCE (C1) OF THE INTRINSICALLY SAFE APPARATUS, AND THE APPROVED MAX. ALLOWABLE CONNECTED INDUCTANCE (La) OF THE ASSOCIATED APPARATUS MUST BE GREATER THAN THE SUM OF THE INTERCONNECTING CABLE INDUCTANCE AND THE UNPROTECTED INTERNAL INDUCTANCE (L1) OF THE INTRINSICALLY SAFE APPARATUS.

> NOTE: ENTITY PARAMETERS LISTED APPLY ONLY TO ASSOCIATED APPARATUS WITH LINEAR OUTPUT.

FOR OUTPUT CODE F or W

CLASS I, DIV. 1, GROUPS A, B, C AND D

V _{MAX} = 30V	V _T OR V _{OC} IS LESS THAN OR EQUAL TO 30V
$I_{MAX} = 300 mA$	I _T OR I _{SC} IS LESS THAN OR EQUAL TO 300mA
P _{MAX} = 1.3 WATT	$(\frac{V_1 \times I_1}{4})$ or $(\frac{V_{OC} \times I_{SC}}{4})$ is less than or equal to 1.3 watt
$C_{I} = \emptyset \mu f$	C_A is greater than Ø μ f
$L_{\rm I} = \emptyset \mu H$	L_A is greater than $\emptyset_{oldsymbol{\mu}}H$

	REVISIONS										
REV	DESCRIPTION	CHG. NO.	APP'D	DATE							
AG											

FISCO CONCEPT APPROVALS

THE FISCO CONCEPT ALLOWS INTERCONNECTION OF INTRINSICALY SAFE APPARATUS TO ASSOCIATED APPARATUS NOT SPECIALLY EXAMINED IN SUCH COMBINATION. FOR THIS INTERCONNECTION TO BE VALID THE VOLTAGE (U1 or Vmax), THE CURRENT (I1 or Imax), AND THE POWER (P1 or Pma) THAT INTRINSICALLY SAVE APPARATUS CAN RECEIVE AND REMAIN INTRINSICALY SAFE, INCLUDING FAULTS, MUST BE EQUAL OR GREATER THAN THE VOLTAGE (U0, Voc, or Vt), THE CURRENT (I0, Isc, or It), AND THE POWER (P0 or Pmax) LEVELS WHICH CAN BE DELIVERED BY THE ASSOCIATED APPARATUS, CONSIDERING FAULTS AND APPLICABLE FACTORS. ALSO, THE MAXIMUM UNPROTECTED CAPACITANCE (C1) AND THE INDUCTANCE (L1) OF EACH APPARATUS (BESIDES THE TERMINATION) CONNECTED TO THE FIELDBUS MUST BE LESS THAN OR EQUAL TO 5nf AND 10 h RESPECTVELY.

ONLY ONE ACTIVE DEVICE IN EACH SECTION (USUALLY THE ASSOCIATED APPARATUS) IS ALLOWED TO CONTRIBUTE THE DESIRED ENERGY FOR THE FIELDBUS SYSTEM. THE ASSOCIATED APPARATUS' VOLTAGE U0 (or Voc or Vt) IS LIMITED TO A RANGE OF 14V TO 24 V.D.C. ALL OTHER EQUIPENT COMBINED IN THE BUS CABLE MUST BE PASSIVE (THEY CANNOT PROVIDE ENERGY TO THE SYSTEM, EXCEPT A LEAKAGE CURRENT OF 50 \(\mu A \) FOR EACH CONNECTED DEVICE) SEPARATELY POWERED EQUIPMENT REQUIRES A GALVANIC ISOLATION TO AFFIRM THAT THE INTRINSICALLY SAFE FIELDBUS CIRCUIT WILL REMAIN PASSIVE. THE PARAMETER OF THE CABLE USED TO INTERCONNECT THE DEVICES MUST BE IN THE FOLLOWING RANGE:

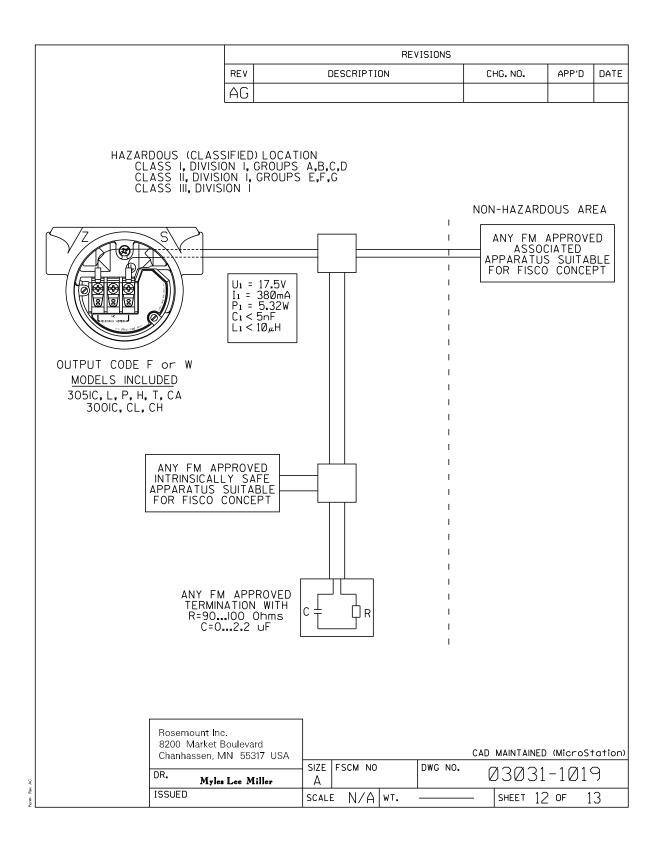
LOOP RESISTANCE R': 15...150 OHM/km INDUCTANCE PER UNIT LENGTH L': 0.4...1mH/KM CAPACITANCE PER UNLIT LENGTH C': 80...200nF

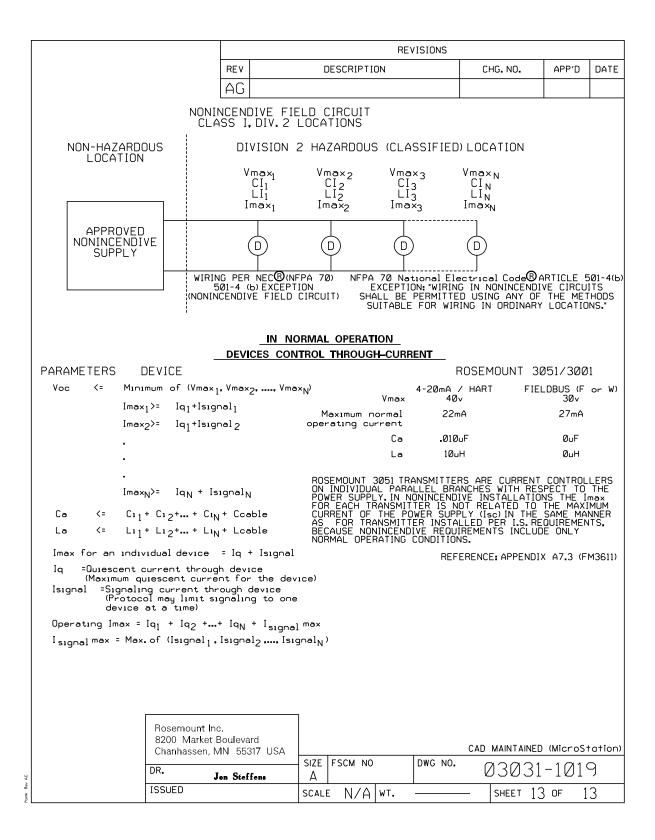
C' = C'LINE/LINE +0.5C'LINE/SCREEN, IF BOTH LINES ARE FLOATING, OR C' = C'LINE/LINE +C'LINE/SCREEN, IF THE SCREEN IS CONNECTED TO ONE LINE TRUNK CABLE LENGTH: ≤ 1000 m SPUR CABLE LENGTH: ≤ 30 m SPLICE LENGTH: ≤ 1 m

AN APPROVED INFALLIBLE LINE TERMINATION TO EACH END OF THE TRUNK CABLE, WITH THE FOLLOWING PARAMETERS IS APPROPRIATE:

R = 90...100 OHMS $C = 2.2 \mu F$

AN ALLOWED TERMINATION MIGHT ALREADY BE LINKED IN THE ASSOCIATED APPARATUS. DUE TO I.S. REASONS, THE NUMBER OF PASSIVE APPARATUS CONNECTED TO THE BUS SEGMENT IS NOT LIMITED. IF THE RULES ABOVE ARE FOLLOWED, UP TO A TOTAL LENGTH OF 1000 m (THE SUMMATION OF TRUNK AND ALL SPUR CABLES), THE INDUCTANCE AND THE CAPACITANCE OF THE CABLE WILL NOT DAMAGE THE INTRINSIC SAFETY OF THE SYSTEM.


NOTES:


INTRINSICALLY SAFE CLASS I, DIV. 1, GROUPS A, B, C, D

- 1. THE MAXIMUM NON-HAZARDOUS AREA VOLTAGE MUST NOT EXCEED 250 V.
- 2. CAUTION: ONLY USE SUPPLY WIRES SUITABLE FOR 5°C ABOVE SURROUNDING TEMPERATURE.
- 3. WARNING: REPLACEMENT OF COMPONENTS MAY DAMAGE INTRINSIC SAFETY.

Rosemount Inc. 8200 Market Boulevard Chanhassen, MN 55317 USA					CAD MAINTAINED	(MicroStation)
DR. Myles Lee Miller	size A	FSCM NO		DWG NO.	Ø3Ø31	-1019
ISSUED	SCALI	N/A	WT.		- SHEET 11	of 13

m Rev AC

Canadian Standards Association (CSA) 03031-1024

CONFIDENTIAL AND PROPRIETARY INFORMATION IS CONTAINED	REVISIONS							
HEREIN AND MUST BE HANDLED ACCORDINGLY	REV	DESCRIPTION	CHG. NO.	APP'D	DATE			
	АΑ	ADD FIELDBUS	RTC1004232	M.L.M.	5/28/98			
	AB	ADD PROFIBUS, ENTITY PARAMETERS	RTC1008326	P.C.S.	2/4/00			
	AC	REM It, Vt FROM ENTITY PARAMETERS	RTC1009279	W.C.R.	7/11/00			
	AD	ADD FISCO FIELDBUS	RTC1012624	J.P.W.	4/4/02			

APPROVALS FOR

3051C 3001C

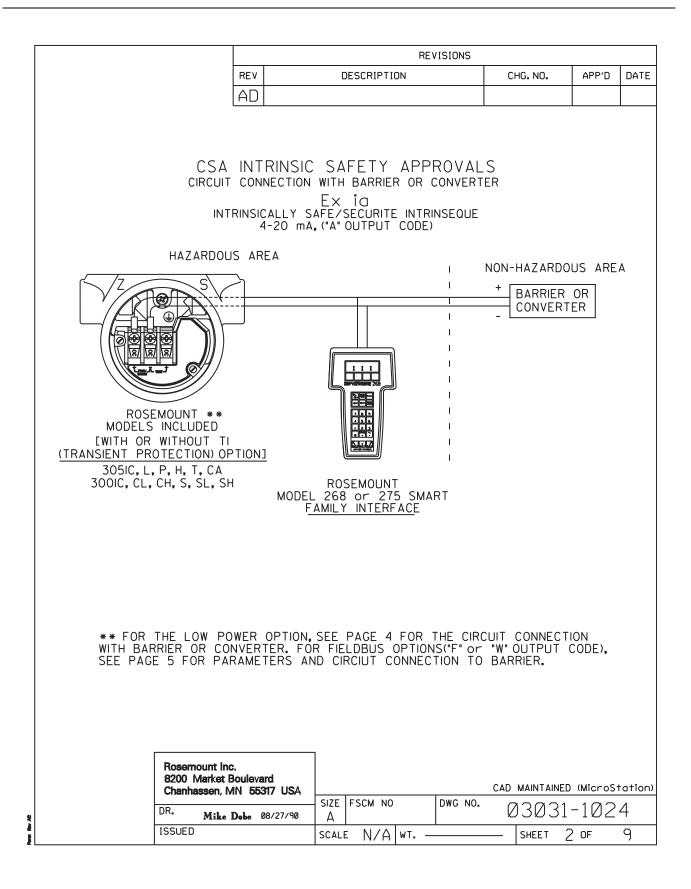
3051L 3001CL

3051P 3001CH

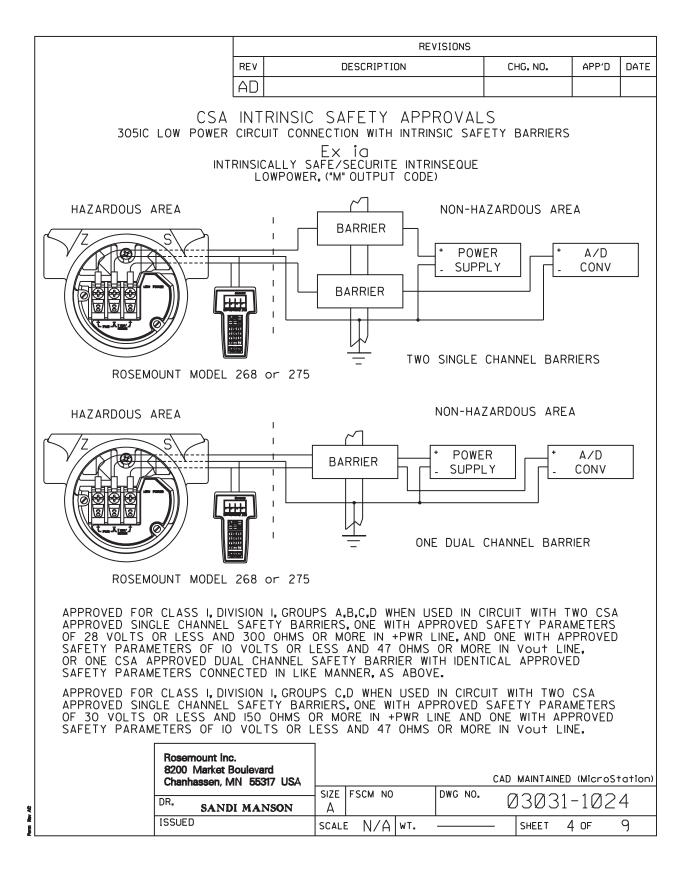
3051H 3001S

3051CA 3001SL

3051T 3001SH


OUTPUT CODE A (4-20 mA HART) I.S. SEE SHEETS 2-3 OUTPUT CODE M (LOW POWER) I.S. SEE SHEETS 3-4 OUTPUT CODE F/W (FIELDBUS) I.S. SEE SHEETS 5-7 OUTPUT CODES A,F,W I.S. ENTITY PARAMETERS SHEET 8-9

TO ASSURE AN INTRINSICALLY SAFE SYSTEM, THE TRANSMITTER AND BARRIER MUST BE WIRED IN ACCORDANCE WITH THE BARRIER MANUFACTURER'S FIELD WIRING INSTRUCTIONS AND THE APPLICABLE CIRCUIT DIAGRAM.


WARNING - EXPLOSION HAZARD - SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR CLASS I, DIVISION 2.

AVERTISSEMENT - RISQUE D'EXPLOSION - LA SUBSTITUTION DE COMPOSANTS PEUT RENDRE CE MATERIEL INACCEPTABLE POUR LES EMPLACEMENTS DE CLASSE I, DIVISION 2.

CAD MAINTAINED (MicroStation) ROSEMOUNI UNLESS OTHERWISE SPECIFIED CONTRACT NO. EMEŘSON. DIMENSIONS IN INCHES Imm REMOVE ALL BURRS AND SHARP EDGES. MACHINE SURFACE FINISH 125 8200 Market Boulevard • Chenhassen, MN 55317 USA TITLE DR. Mike Dobe 08/27/90 INDEX OF I.S. CSA FOR -TOLERANCE-CHK'D .X ± .1 [2,5] 3051C/L/P/H/T & 3001C/S APP'D. GLEN MONZO 8/31/90 .XXX ± .010 [0.25] SIZE FSCM NO DWG NO. FRACTIONS ANGLES 03031-1024 ± 1/32 Α ± 2° APP'D. GOVT. 9 DO NOT SCALE PRINT SCALE N/A wt. SHEET 1 OF

		REVISIONS							
	REV		DESCRIPTI	ON		CHG. NO.	APP'D	DATE	
	[AD								
4-20 mA, ("A" OUTPUT CODE) APPROVED FO									
DEVICE	DEVICE PARAMETERS				CLASS I, DIV.I				
30 V OR LESS *330 OHMS OR MORE * 28 V OR LESS 300 OHMS OR MORE SAFETY BARRIER 25 V OR LESS 200 OHMS OR MORE * 22 V OR LESS 180 OHMS OR MORE					GROUPS A, B, C, D				
FOXBORO CONVE 2AI-I2V-CGB, 2 2AS-I3I-CGB, 3 3A2-I3D-CGB, 3A4-I2D-CGB, 3F4-I2DA	2AI-I3V-CGB, 3A2-I2D-CGB, 3AD-I3I-CGB,					GROU	PS B,C,	D	
			V OR LESS HMS OR MORE			GRO	GROUPS C, D		
DEVICE	LOW PO		"M" OUTPL RAMETERS	JT CI	ODE)	APPR CLAS	OVED FO	ıR I	
		Supply	≤28V,≥300	ĴΩ		CDOUB	S A, B, C	, D	
CSA APPROVED SAFETY BARRIER		Return	$\leq 10V, \geq 47$ $\leq 30V, \geq 150$ $\leq 10V, \geq 47$	Ω			OUPS C, [
* MAY BE USED WITH ROSEMOUNT MODEL 268 or 275 SMART FAMILY INTERFACE.									
Rosemount Inc. 8200 Market Boulevard Chanhassen, MN 55317 USA			SIZE FSCM NO		DWG NO.	CAD MAINTAINE			
	DR. Mike	Dobe	Α	Ι_		0303			
	1990ED		SCALE N/A	WT.		— SHEET	3 of	9	

REVISIONS REV DESCRIPTION CHG. NO. APP'D DATE AD FIELDBUS, ("F" or "W" OUTPUT CODE) APPROVED FOR **DEVICE PARAMETERS** CLASS I, DIV.I 30 V OR LESS 300 OHMS OR MORE 28 V OR LESS CSA APPROVED 235 OHMS OR MORE GROUPS A, B, C, D SAFETY BARRIER 25 V OR LESS 160 OHMS OR MORE 22 V OR LESS 100 OHMS OR MORE CSA INTRINSIC SAFETY APPROVALS CIRCUIT CONNECTION WITH BARRIER OR CONVERTER Ex ia INTRINSICALLY SAFE/SECURITE INTRINSEQUE FIELDBUS, ("F" or "W" OUTPUT CODE) HAZARDOUS AREA NON-HAZARDOUS AREA 1 1 BARRIER OR CONVERTER ROSEMOUNT ** MODELS INCLUDED [WITH OR WITHOUT TI (TRANSIENT PROTECTION) OPTION] 305IC, L, P, H, T, CA 300IC, CL, CH, S, SL, SH WARNING - EXPLOSION HAZARD - SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR CLASS I, DIVISION 2. AVERTISSEMENT - RISQUE D'EXPLOSION - LA SUBSTITUTION DE COMPOSANTS PEUT RENDRE CE MATERIEL INACCEPTABLE POUR LES EMPLACEMENTS DE CLASSE I, DIVISION 2. Rosemount Inc. 8200 Market Boulevard CAD MAINTAINED (MicroStation) Chanhassen, MN 55317 USA SIZE FSCM NO DWG NO. 03031-1024 DR.

Myles Lee Miller

ISSUED

Α

SCALE

N/A wt.

5 of

SHEET

9

REVISIONS

REV DESCRIPTION CHG. NO. APP'D DATE

AD

FISCO CONCEPT APPROVALS

THE FISCO CONCEPT ALLOWS INTERCONNECTION OF INTRINSICALY SAFE APPARATUS TO ASSOCIATED APPARATUS NOT SPECIALLY EXAMINED IN SUCH COMBINATION. FOR THIS INTERCONNECTION TO BE VALID THE VOLTAGE (U1 or Vmax), THE CURRENT (I1 or Imax), AND THE POWER (P1 or Pma) THAT INTRINSICALLY SAVE APPARATUS CAN RECEIVE AND REMAIN INTRINSICALY SAFE, INCLUDING FAULTS, MUST BE EQUAL OR GREATER THAN THE VOLTAGE (U0, Voc, or Vt), THE CURRENT (I0, Isc, or It), AND THE POWER (P0 or Pmax) LEVELS WHICH CAN BE DELIVERED BY THE ASSOCIATED APPARATUS, CONSIDERING FAULTS AND APPLICABLE FACTORS. ALSO, THE MAXIMUM UNPROTECTED CAPACITANCE (C1) AND THE INDUCTANCE (L1) OF EACH APPARATUS (BESIDES THE TERMINATION) CONNECTED TO THE FIELDBUS MUST BE LESS THAN OR EQUAL TO 50F AND 10µH RESPECTIVELY.

ONLY ONE ACTIVE DEVICE IN EACH SECTION (USUALLY THE ASSOCIATED APPARATUS) IS ALLOWED TO CONTRIBUTE THE DESIRED ENERGY FOR THE FIELDBUS SYSTEM. THE ASSOCIATED APPARATUS' VOLTAGE U0 (or Voc or Vt) IS LIMITED TO A RANGE OF 14V TO 24 V.D.C. ALL OTHER EQUIPENT COMBINED IN THE BUS CABLE MUST BE PASSIVE (THEY CANNOT PROVIDE ENERGY TO THE SYSTEM, EXCEPT A LEAKAGE CURRENT OF 50 µA FOR EACH CONNECTED DEVICE) SEPARATELY POWERED EQUIPMENT REQUIRES A GALVANIC ISOLATION TO AFFIRM THAT THE INTRINSICALLY SAFE FIELDBUS CIRCUIT WILL REMAIN PASSIVE. THE PARAMETER OF THE CABLE USED TO INTERCONNECT THE DEVICES MUST BE IN THE FOLLOWING RANGE:

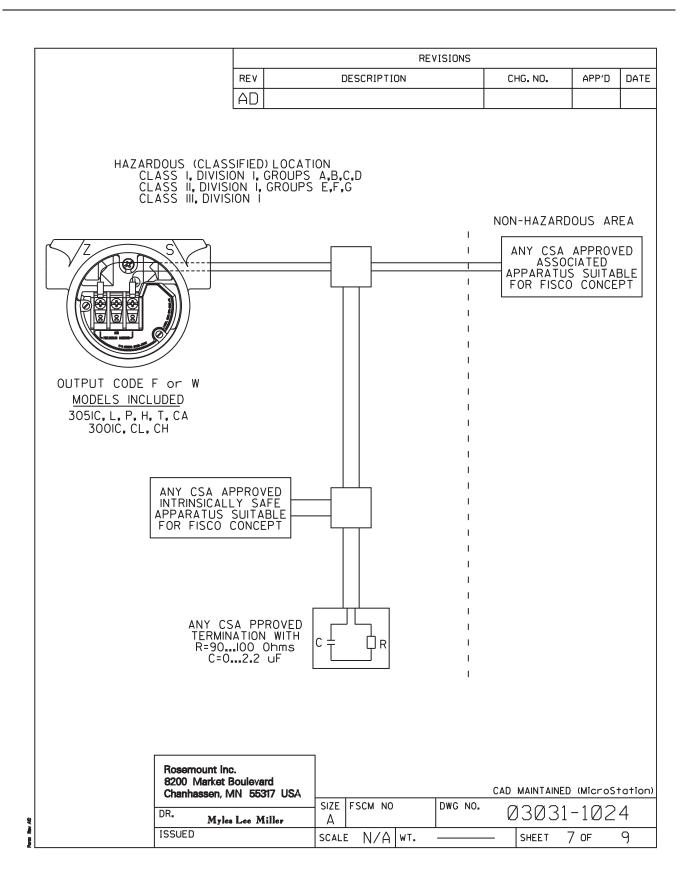
LOOP RESISTANCE R': 15...150 OHM/km INDUCTANCE PER UNIT LENGTH L': 0.4...1mH/KM CAPACITANCE PER UNLIT LENGTH C': 80...200nF

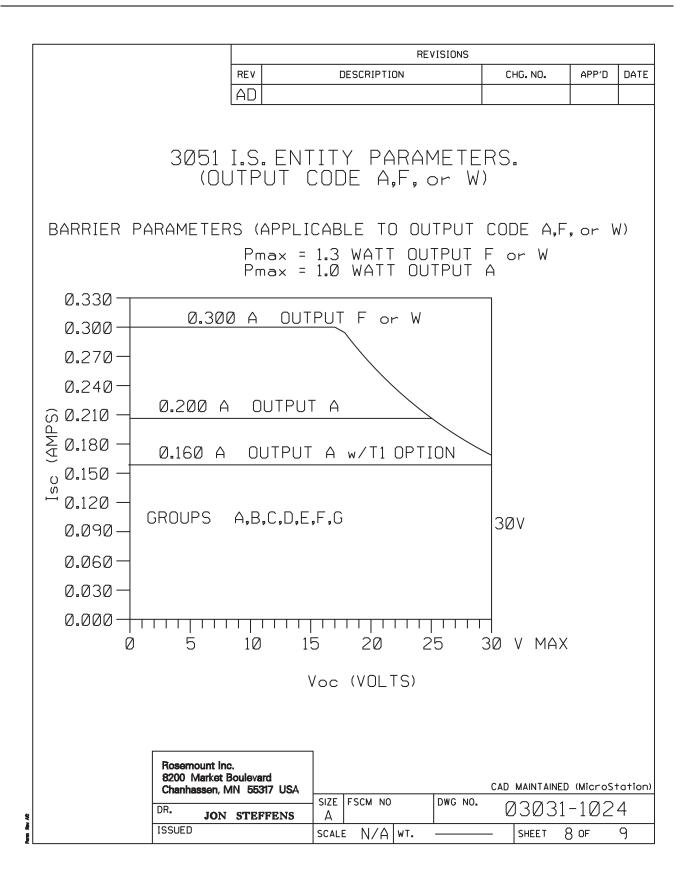
C' = C'LINE/LINE +0.5C'LINE/SCREEN, IF BOTH LINES ARE FLOATING, OR C' = C'LINE/LINE +C'LINE/SCREEN, IF THE SCREEN IS CONNECTED TO ONE LINE TRUNK CABLE LENGTH: $\leq 1000~\text{m}$ SPUR CABLE LENGTH: $\leq 30~\text{m}$ SPLICE LENGTH: $\leq 1~\text{m}$

AN APPROVED INFALLIBLE LINE TERMINATION TO EACH END OF THE TRUNK CABLE, WITH THE FOLLOWING PARAMETERS IS APPROPRIATE:

R = 90...100 OHMS $C = 2.2 \mu F$

AN ALLOWED TERMINATION MIGHT ALREADY BE LINKED IN THE ASSOCIATED APPARATUS. DUE TO I.S. REASONS, THE NUMBER OF PASSIVE APPARATUS CONNECTED TO THE BUS SEGMENT IS NOT LIMITED. IF THE RULES ABOVE ARE FOLLOWED, UP TO A TOTAL LENGTH OF 1000 m (THE SUMMATION OF TRUNK AND ALL SPUR CABLES), THE INDUCTANCE AND THE CAPACITANCE OF THE CABLE WILL NOT DAMAGE THE INTRINSIC SAFETY OF THE SYSTEM.


NOTES:


INTRINSICALLY SAFE CLASS I, DIV. 1, GROUPS A, B, C, D

- 1. THE MAXIMUM NON-HAZARDOUS AREA VOLTAGE MUST NOT EXCEED 250 V.
- 2. CAUTION: ONLY USE SUPPLY WIRES SUITABLE FOR 5°C ABOVE SURROUNDING TEMPERATURE.
- 3. WARNING: REPLACEMENT OF COMPONENTS MAY DAMAGE INTRINSIC SAFETY.

Rosemount Inc. 8200 Market Boulevard Chanhassen, MN 55317 USA			CAD MAINTAINED	(MicroStation)
DR. Myles Lee Miller	SIZE FSCM NO	DWG NO.	03031	-1024
ICCUED	SCALE N/A WT.		- SHEET 6) OF 9

97

REVISIONS				
REV	DESCRIPTION	CHG. NO.	APP'D	DATE
AD				

ENTITY CONCEPT APPROVALS

THE ENTITY CONCEPT ALLOWS INTERCONNECTION OF INTRINSICALLY SAFE APPARATUS TO ASSOCIATED APPARATUS NOT SPECIFICALLY EXAMINED IN COMBINATION AS A SYSTEM. THE APPROVED VALUES OF MAX. OPEN CIRCUIT VOLTAGE (Voc) AND MAX. SHORT CIRCUIT CURRENT (Isc) AND MAX.POWER (Voc X Isc/4), FOR THE ASSOCIATED APPARATUS MUST BE LESS THAN OR EQUAL TO THE MAXIMUM SAFE INPUT VOLTAGE (Vmax), MAXIMUM SAFE INPUT CURRENT (Imax), AND MAXIMUM SAFE INPUT POWER (Pmax) OF THE INTRINSICALLY SAFE APPARATUS. IN ADDITION, THE APPROVED MAX. ALLOW-ABLE CONNECTED CAPACITANCE (Ca) OF THE ASSOCIATED APPARATUS MUST BE GREATER THAN THE SUM OF THE INTERCONNECTING CABLE CAPACITANCE AND THE APPROVED MAX. ALLOWABLE CONNECTED INDUCTANCE (La) OF THE ASSOCIATED APPARATUS, AND THE APPROVED MAX. ALLOWABLE CONNECTED INDUCTANCE (La) OF THE ASSOCIATED APPARATUS MUST BE GREATER THAN THE SUM OF THE INTERCONNECTING CABLE INDUCTANCE AND THE UNPROTECTED INTERNAL INDUCTANCE (L1) OF THE INTRINSICALLY SAFE APPARATUS.

FOR OUTPUT CODE A

CLASS I, DIV. 1, GROUPS A, B, C AND D

V _{MAX} = 30V	V _{OC} IS LESS THAN OR EQUAL TO 30V
I _{MAX} = 200mA	I _{SC} IS LESS THAN OR EQUAL TO 200mA
P _{MAX} = 1 WATT	(Voc x Isc) IS LESS THAN OR EQUAL TO 1 WATT
$C_{\rm I} = .01 \mu f$	C_A is greater than .01 μf + c cable
L _I =10 μH	L _A IS GREATER THAN 10μH + L CABLE

* FOR T1 OPTION:

Imax = 160mA	I _{SC} IS LESS THAN OR EQUAL TO 160mA
L _I =1.05mH	L _a IS GREATER THAN 1.05mH + L CABLE

FOR OUTPUT CODE F or W

CLASS I, DIV. 1, GROUPS A, B, C AND D

V _{MAX} = 30V	V _{OC} IS LESS THAN OR EQUAL TO 30V
I _{MAX} = 300mA	I _{SC} IS LESS THAN OR EQUAL TO 300mA
P _{MAX} = 1.3 WATT	(Voc x Isc) IS LESS THAN OR EQUAL TO 1.3 WATT
$C_{I} = \emptyset \mu f$	C_A is greater than 0 $_\mu$ f + C cable
L _I = ØμΗ	L_A is greater than 0_\muH + L cable

NOTE: ENTITY PARAMETERS LISTED APPLY ONLY TO ASSOCIATED APPARATUS WITH LINEAR OUTPUT.

	Rosemount Inc. 8200 Market Boulevard Chanhassen, MN 55317 USA							CAD	MAINTAIN	ED (Mi	icroSt	ation)	
ļ				SIZE	FSCM	NO		DWG NO.		× ~ ~ ~	1 1	$\alpha \sim$	4
	DR.	JON	STEFFENS	Α					K	1303	1-1	WZ'	4
	ISSUED			SCALE	E N/	Ά	WT.		_	SHEET	9 of	=	9

Standards Association of Australia (SAA) 03031-1026

CONFIDENTIAL AND PROPRIETARY INFORMATION IS CONTAINED		REVISIONS			
HEREIN AND MUST BE HANDLED ACCORDINGLY	REV	DESCRIPTION	CHG. NO.	APP'D	DATE
	ΔА	UPDATE ENTITY PARAMETERS	RTC1002910	J.D.J.	12/2/97
	ΑB	ADD FIELDBUS AND PROFIBUS	RTC1006448	J.D.J.	4/26/99
	AC	ADD 2088 & 2090's	RTC1Ø17572	K.J.K.	6/11/04

SAA ENTITY CONCEPT APPROVALS

3051C 3001C 2088 3051L 3001CL 2090P 3051P 3001CH 2090F 3051H 3001S 3051CA 3051T

OUTPUT CODE A (4-20 mA HART) SEE SHEETS 2
OUTPUT CODE M (LOW POWER) SEE SHEETS 3
OUTPUT CODE F / W (FIELDBUS, PROFIBUS) SEE SHEETS 4

THE ROSEMOUNT PRESSURE TRANSMITTERS LISTED ABOVE ARE INTRINSICALLY SAFE WHEN USED IN THE CURCUIT WITH SAA APPROVED BARRIERS WHICH MEET THE LIST ENTITY PERAMETERS.

TO ASSURE AN INTRINSICALLY SAFE SYSTEM, THE TRANSMITTER AND BARRIER MUST BE WIRED IN ACCORDANCE WITH THE BARRIER MANUFACTURER'S FIELD WIRING INSTRUCTIONS AND THE APPLICABLE CIRCUIT DIAGRAM.

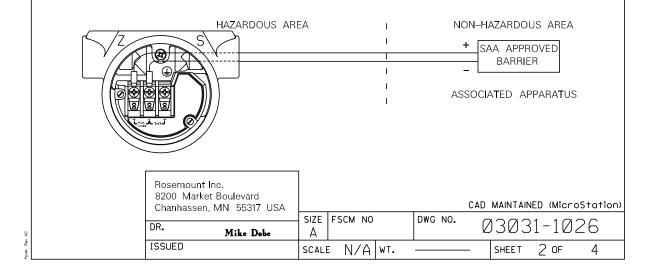
CAD MAINTAINED (MicroStation) **ROSEMOUNT®** UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES [mm], REMOVE ALL BURRS AND SHARP EDGES, MACHINE SURFACE FINISH 125 CONTRACT NO. EMEŘSON. 8200 Market Boulevard • Chanhassen, MN 55317 USA Mike Dobe 12/30/91 TITLE DR. SAA I.S. INDEX FOR -TOLERANCE-CHK'D 2088, 2090, 3051 & 3001 .X ± .1 [2,5] .XX ± .02 [0,5] APP'D. GLEN MONZO 5/8/92 XXX ± .010 [0.25] SIZE FSCM NO DWG NO. FRACTIONS ANGLES 03031-1026 А ± 1/32 ± 2° APP'D. GOVT. DO NOT SCALE PRINT SCALE N/A WT. SHEET

	REVISIONS			
REV	DESCRIPTION	CHG. NO.	APP'D	DATE
AC				

OUTPUT CODE "A" (4-20MA / HART) SAA ENTITY CONCEPT APPROVALS

THE ROSEMOUNT PRESSURE TRANSMITTERS LISTED BELOW ARE INTRINSICALLY SAFE WHEN USED IN THE CIRCUIT WITH SAA APPROVED BARRIERS WHICH MEET THE LISTED ENTITY PARAMETERS.

APPROVED TRANSMITTERS


3051C	3051H	3001C	2088
3051L	3051 T	3001CL	2090P
3051P	3051CA	3001CH	2090F
		20015	

ENTITY PARAMETER FOR Ex ia IIC T5 CLASS I. ZONE 0 PROTECTION:

ENTITE FARMILIER FOR EX IG IIC 15	ANTITI TANAMETER TON EX IN 110 13 CEASO 1, 2014E STROTECTION.					
APPARATUS PARAMETER	BARRIER PARAMETER					
Vmax = 30V Imax = 200mA Pmax = 0.9W	Voc IS LESS THAN OR EQUAL TO 30V Isc IS LESS THAN OR EQUAL TO 200mA Voc * Isc 4					
Ci = 0.01μ F Li = 10μ H	Ca IS GREATER THAN 0.01 MICROFARADS La IS GREATER THAN 10 MICROHENRIES					
FOR T1 OPTION ONLY						
Imax = 160mA Li = 1.05mH	Isc IS LESS THAN OR EQUAL TO 160mA La IS GREATER THAN 1.05 MILLIHENRIES					

THE ENTITY CONCEPT ALLOWS INTERCONNECTION OF INTRINSICALLY SAFE APPARATUS NOT SPECIFICALLY EXAMINED IN COMBINATION AS A SYSTEM.

TO ASSURE AN INTRINSICALLY SAFE SYSTEM THE TRANSMITTER AND BARRIER MUST BE WIRED IN ACCORDANCE WITH THE BARRIER MANUFACTURERS FIELD WIRING INSTRUCTIONS AND THE CIRCUIT DIAGRAM SHOWN BELOW.

REVISIONS						
	REV	DESCRIPTION	CHG. NO.	APP'D	DATE	
	AC					

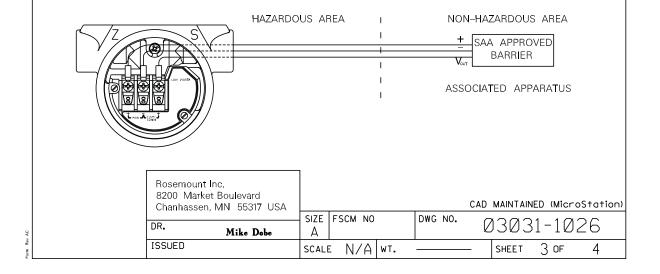
OUTPUT CODE "M" (LOW POWER) SAA ENTITY CONCEPT APPROVALS

SAA ENTITY CONCEPT APPROVALS

THE ROSEMOUNT LOW POWER CONFIGURED PRESSURE TRANSMITTERS LISTED BELOW ARE SAA APPROVED AS INTRINSICALLY SAFE WHEN USED IN THE CIRCUIT WITH SAA APPROVED BARRIERS WHICH MEET THE LISTED ENTITY PARAMETERS.

APPROVED TRANSMITTERS WITH LOW POWER CONFIGURATION

3051C 3051T 3051L 3051CA 3051P


3051H

ENTITY PARAMETER FOR Ex ia IIC T5 CLASS I. ZONE 0 PROTECTION:

APPARATUS PARAMETER	BARRIER PARAME T ER
Vmax = 30V Imax = 200mA Pmax = 0.9W	Voc IS LESS THAN OR EQUAL TO 30V Isc IS LESS THAN OR EQUAL TO 200mA Voc * Isc 4
Ci = 0.042μ F Li = 10μ H	Ca IS GREATER THAN 0.042 MICROFARADS La IS GREATER THAN 10 MICROHENRIES
FOR T1 OPTION ONLY Li = 0.75mH	La IS GREATER THAN 0.75 MILLIHENRIES

THE ENTITY CONCEPT ALLOWS INTERCONNECTION OF INTRINSICALLY SAFE APPARATUS NOT SPECIFICALLY EXAMINED IN COMBINATION AS A SYSTEM.

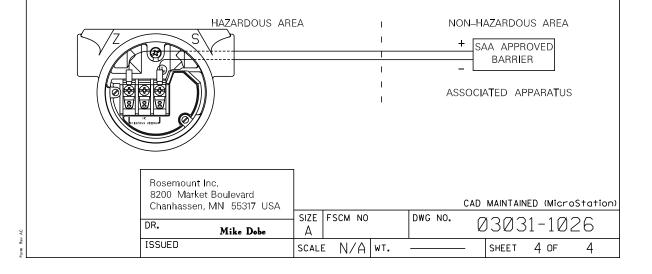
TO ASSURE AN INTRINSICALLY SAFE SYSTEM THE TRANSMITTER AND BARRIER MUST BE WIRED IN ACCORDANCE WITH THE BARRIER MANUFACTURERS FIELD WIRING INSTRUCTIONS AND THE CIRCUIT DIAGRAM SHOWN BELOW.

	REVISIONS			
REV	DESCRIPTION	CHG. NO.	APP'D	DATE
AC				

OUTPUT CODE F / W (FIELDBUS, PROFIBUS) SAA ENTITY CONCEPT APPROVALS

THE ROSEMOUNT PRESSURE TRANSMITTERS LISTED BELOW ARE INTRINSICALLY SAFE WHEN USED IN THE CIRCUIT WITH SAA APPROVED BARRIERS WHICH MEET THE LISTED ENTITY PARAMETERS.

APPROVED TRANSMITTERS


3051C 3051H 3001C 3001S 3051L 3051T 3001CL 3051P 3051CA 3001CH

ENTITY PARAMETER FOR Ex ia IIC T5 CLASS I, ZONE 0 PROTECTION:

APPARATUS PARAMETER	BARRIER PARAMETER
Vmax = 30V Imax = 300mA Pmax = 1.3W Ci = 0 μF Li = 0μH	Voc IS LESS THAN OR EQUAL TO 30V Isc IS LESS THAN OR EQUAL TO 300mA Voc * Isc 4 Ca IS GREATER THAN 0 MICROFARADS La IS GREATER THAN 0 MICROHENRIES

THE ENTITY CONCEPT ALLOWS INTERCONNECTION OF INTRINSICALLY SAFE APPARATUS NOT SPECIFICALLY EXAMINED IN COMBINATION AS A SYSTEM.

TO ASSURE AN INTRINSICALLY SAFE SYSTEM THE TRANSMITTER AND BARRIER MUST BE WIRED IN ACCORDANCE WITH THE BARRIER MANUFACTURERS FIELD WIRING INSTRUCTIONS AND THE CIRCUIT DIAGRAM SHOWN BELOW.

Anhang C Menü Bedieninterface

Übersicht	Seite C-1
Detaillierte Bedieninterface Menü	. Seite C-2

ÜBERSICHT

Dieser Anhang enthält das komplette Bedieninterface Menü.

SICHERHEITSHINWEISE

Verfahren und Anweisungen in diesem Abschnitt können besondere Vorsichtsmaßnahmen erfordern, um die Sicherheit des Bedienungspersonals zu gewährleisten. Informationen, die eine erhöhte Sicherheit erfordern, sind mit einem Warnsymbol () markiert. Lesen Sie die folgenden Sicherheitshinweise, bevor ein durch dieses Symbol gekennzeichnetes Verfahren durchgeführt wird.

Warnungen

⚠ WARNUNG

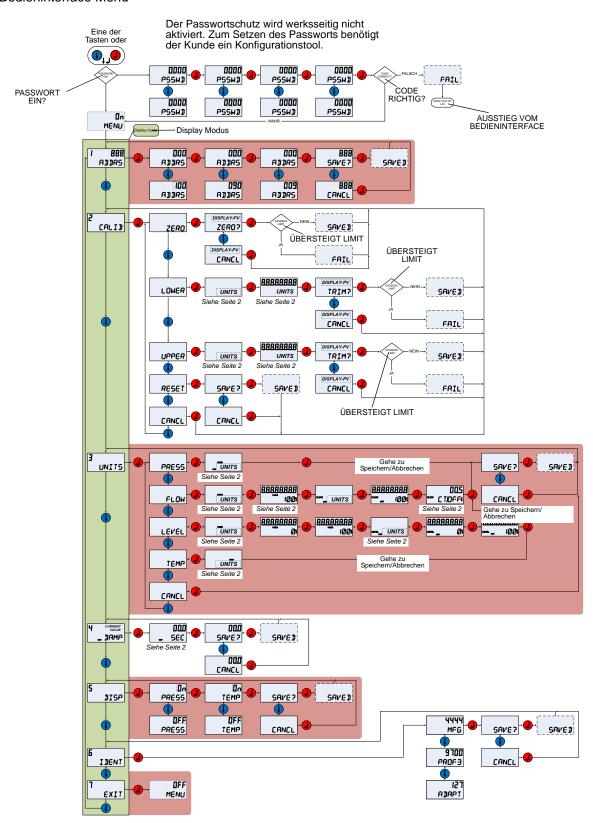
Explosionen können zu schweren oder tödlichen Verletzungen führen:

Die Installation dieses Messumformers in explosionsgefährdeten Umgebungen muss entsprechend der lokalen, nationalen und internationalen Normen, Vorschriften und Empfehlungen erfolgen. Einschränkungen in Verbindung mit der sicheren Installation finden Sie in der Betriebsanleitung für den 3051 im Kapitel "Zulassungen".

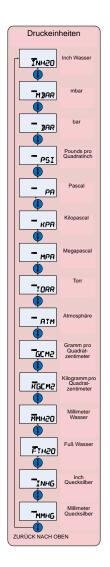
 Bei einer Ex-Schutz/Druckfeste Kapselung Installation die Gehäusedeckel des Messumformers nicht entfernen, wenn der Stromkreis unter Spannung steht.

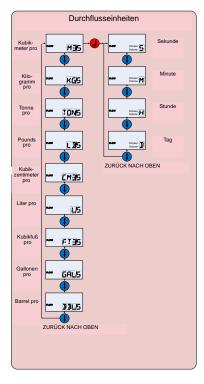
Prozessleckagen können zu schweren oder tödlichen Verletzungen führen.

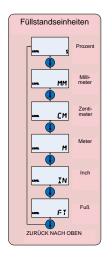
 Vor der Druckbeaufschlagung müssen die Prozessanschlüsse installiert und fest angezogen werden.

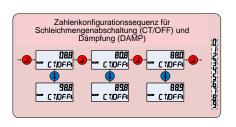

Elektrischer Schlag kann zu schweren oder tödlichen Verletzungen führen.

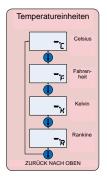
 Kontakt mit den Leitungsadern und Anschlussklemmen vermeiden. Elektrische Spannung an den Leitungsadern kann zu elektrischen Schlägen führen.

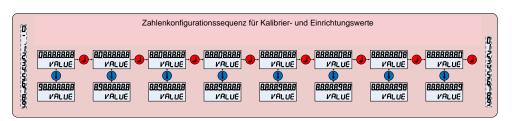





Abbildung C-1. Detaillierte Bedieninterface Menü




Details der Bedieninterface Menüinformationen



Anhang D Profibus Blockinformationen

Übersicht	Seite D-1
Sicherheitshinweise	Seite D-1
Warnungen	Seite D-1
Parameter des Profibus Blocks	Seite D-2
Komprimierter Status	Seite D-6

ÜBERSICHT

Dieser Anhang enthält Informationen über Profibus Block und Parameter.

SICHERHEITSHINWEISE

Verfahren und Anweisungen in diesem Abschnitt können besondere Vorsichtsmaßnahmen erfordern, um die Sicherheit des Bedienungspersonals zu gewährleisten. Informationen, die eine erhöhte Sicherheit erfordern, sind mit einem Warnsymbol () markiert. Lesen Sie die folgenden Sicherheitshinweise, bevor ein durch dieses Symbol gekennzeichnetes Verfahren durchgeführt wird.

Warnungen

⚠ WARNUNG

Explosionen können zu schweren oder tödlichen Verletzungen führen:

Die Installation dieses Messumformers in explosionsgefährdeten Umgebungen muss entsprechend der lokalen, nationalen und internationalen Normen, Vorschriften und Empfehlungen erfolgen. Einschränkungen in Verbindung mit der sicheren Installation finden Sie in der Betriebsanleitung für den 3051 im Kapitel "Zulassungen".

 Bei einer Ex-Schutz/Druckfeste Kapselung Installation die Gehäusedeckel des Messumformers nicht entfernen, wenn der Stromkreis unter Spannung steht.

Prozessleckagen können zu schweren oder tödlichen Verletzungen führen.

 Vor der Druckbeaufschlagung müssen die Prozessanschlüsse installiert und fest angezogen werden.

Elektrischer Schlag kann zu schweren oder tödlichen Verletzungen führen.

 Kontakt mit den Leitungsadern und Anschlussklemmen vermeiden. Elektrische Spannung an den Leitungsadern kann zu elektrischen Schlägen führen.

PARAMETER DES PROFIBUS BLOCKS

Tabelle D-1 bis Tabelle D-3 können für den Querverweis von Parametern der Profibus Spezifikationen, Master Klasse 2 und Bedieninterface verwendet werden.

Tabelle D-1. Physical Block

Paramet	er			
Indexver- zeichnis	Parametername	DD Name	Bedieninter- face Anord- nung ⁽¹⁾	Definition
0	BLOCK OBJECT	Block Objekt		
1	ST_REV	Statische Versions-Nr.		Die Versionsnummer der mit dem Block assoziierten statischen Daten. Die Versionsnummer wird hochgezählt, wenn ein statischer Parameterwert im Block geändert wird.
2	TAG_DESC	Kennzeichnung		Anwenderbeschreibung der beabsichtigten Blockanwendung.
3	STRATEGY	Strategie		Gruppierung der Function Blocks.
4	ALERT_KEY	Alarmtaste		Die Identifikationsnummer der Anlageneinheit. Diese Information kann im Host zum Sortieren der Alarme usw. verwendet werden.
5	TARGET_MODE	Zielmodus		Enthält den gewünschten Blockmodus, der normalerweise vom Bediener oder von einer Steuerspezifikation gesetzt wird.
6	MODE_BLK	Tatsächlicher Modus		Enthält den aktuellen, zugelassenen und normalen Modus des Blocks.
7	ALARM_SUM			Enthält den aktuellen Status der Blockalarme
8	SOFTWARE REVISION	Software-Version		Softwareversion, enthält eine Haupt- und Nebenrevision und eine Baugruppenrevision.
9	HARDWARE_REVISION	Hardware-Version		Hardwareversion
10	DEVICE_MAN_ID	Hersteller		Identifikationscode vom Hersteller des Feldgeräts
11	DEVICE_ID	Geräte ID		Identifikation des Gerätes (3051)
12	DEVICE_SER_NUM	Seriennummer des Geräts		Seriennummer des Geräts (Seriennummer der Ausgangskarte).
13	DIAGNOSIS	Diagnose		Detaillierte Informationen des Geräts, bitweise codiert. MSB (Bit 31) repräsentiert weitere Informationen, die in der erweiterten Diagnose verfügbar sind.
14	DIAGNOSIS_EXTENSION	Erweiterte Diagnose		Zusätzliche Diagnoseinformationen des Herstellers (siehe Tabelle DIAGNOSIS_EXTENSION unten).
15	DIAGNOSIS_MASK			Definition der unterstützten DIAGNOSE Informationsbits
16	DIAGNOSIS_MASK_EXTENSION			Definition der unterstützten DIAGNOSE_EXTENSION Informationsbits
18	WRITE_LOCKING	Schreibschutz		Software Schreibschutz
19	FACTORY_RESET	Auf Werkseinstellung rücksetzen		Befehl zum Neustart des Geräts
20	DESCRIPTOR	Beschreibung		Vom Anwender definierbarer Text zur Gerätebeschreibung.
21	DEVICE_MESSAGE	Meldung		Vom Anwender definierbare Meldung zum Gerät oder zur Anwendung im Werk.
22	DEVICE_INSTAL_DATE	Installationsdatum		Datum der Geräteinstallation.
23	LOCAL_OP_ENA	Bedieninterface aktiviert		Aktivieren/deaktivieren des optionalen Bedieninterface (Local Operator Interface, LOI)
24	IDENT_NUMBER_SELECTOR	Auswahl der Identnummer	IDENT	Spezifiziert das zyklische Verhalten eines Geräts, das in der entsprechenden GSD Datei beschrieben wird
25	HW_WRITE_PROTECTION	HW Schreibschutz		Status der Steckbrücke für den Schreibschutz
26	FEATURE	Optionale Gerätefunktionen		Zeigt die optional implementierten Funktionen des Geräts an

Indexver- zeichnis	Parametername	DD Name	Bedieninter- face Anord- nung ⁽¹⁾	Definition
27	COND_STATUS_DIAG			Zeigt den Modus eines Geräts an. Kann sowohl auf Status als auch auf Diagnoseverhalten konfiguriert werden
33	FINAL_ASSEMBLY_NUM	Endmontagenummer		Die gleiche Endmontagenummer wie auf der Stutzenkennzeichnung
34	DOWNLOAD_MODE	Werksseitiges Upgrade		Setzt das Gerät in einen Herstellermodus für ein Upgrade
35	PASSCODE_LOI	Passwort	PSSWD	Passwort für das Bedieninterface
36	LOI_DISPLAY_SELECTION	Display Auswahl	DISP	Gibt die auf dem Bedieninterface angezeigten Prozessvariablen an
37	LOI_BUTTON_STATE	Status der Schaltflächen		Status der optionalen Bedieninterface-Schaltflächen
38	VENDOR_IDENT_NUMBER	Identnummer des Lieferanten	IDENT	0x4444
39	LOI_PRESENT	Bedieninterface vorhanden		Parameter, die während der Herstellung geschrieben wurden um anzuzeigen, ob ein optionales Bedieninterface vorhanden ist
40	HW_SIMULATE_PROTECTION	HW Simulationsschutz		Status der Steckbrücke Hardware Simulation

⁽¹⁾ Wenn dieses Feld leer ist, trifft der Parameter nicht auf das Bedieninterface zu

Tabelle D-2. Parameter des Transducer Blocks

Indexver- zeichnis	Parametername	DD Name	Bedieninter- face Anord- nung ⁽¹⁾	Definition
1	ST_REV	Statische Versions-Nr.		Die Versionsnummer der mit dem Block assoziierten statischen Daten. Die Versionsnummer wird hochgezählt, wenn ein statischer Parameterwert im Block geändert wird.
2	TAG_DESC	Kennzeichnung		Anwenderbeschreibung der beabsichtigten Blockanwendung.
3	STRATEGY	Strategie		Gruppierung der Function Blocks.
4	ALERT_KEY	Alarmtaste		Die Identifikationsnummer der Anlageneinheit. Diese Information kann im Host zum Sortieren der Alarme usw. verwendet werden.
5	TARGET_MODE	Zielmodus		Enthält den gewünschten Blockmodus, der normalerweise vom Bediener oder von einer Steuerspezifikation gesetzt wird.
6	MODE_BLK	Tatsächlicher Modus		Enthält den aktuellen, zugelassenen und normalen Modus des Blocks.
7	ALARM_SUM			Enthält den aktuellen Status der Blockalarme
8	SENSOR_VALUE	Original Druckwert		Original Sensorwert, nicht abgeglichen, in SENSOR_UNIT
9	SENSOR_HI_LIM	Obere Sensorgrenze		Oberer Sensorbereichswert, in SENSOR_UNIT
10	SENSOR_LO_LIM	Untere Sensorgrenze		Unterer Sensorbereichswert, in SENSOR_UNIT
11	CAL_POINT_HI	Oberer Kalibrierpunkt	CALIB-> UPPER	Der Sensormesswert, der für den oberen Kalibrierpunkt verwendet wird. Die Einheit wird von SENSOR_UNIT abgeleitet
12	CAL_POINT_LO	Unterer Kalibrierpunkt	CALIB-> LOWER	Der Sensormesswert, der für den unteren Kalibrierpunkt verwendet wird. Die Einheit wird von SENSOR_UNIT abgeleitet
13	CAL_MIN_SPAN	Kalibrierung min. Messspanne		Die Min. Messspanne, die zwischen den oberen und unteren Kalibrierpunkten zulässig ist.
14	SENSOR UNIT	Sensoreinheit	UNITS	Physikalische Einheiten für die Kalibrierwerte

Indexver- zeichnis	Parametername	DD Name	Bedieninter- face Anord- nung ⁽¹⁾	Definition
15	TRIMMED_VALUE	Abgeglichener Druckwert	UNITS	Enthält den Sensorwert nach dem Abgleich. Die Einheit wird von SENSOR_UNIT abgeleitet
16	SENSOR_TYPE	Sensortyp		Sensortyp (Endwert, Bereich)
18	SENSOR_SERIAL_NUMMER	Sensor Seriennummer		Sensor Seriennummer
19	PRIMARY_VALUE	Primärwert		Gemessener Wert und verfügbarer Status des Function Blocks. Die Einheit von PRIMARY_VALUE ist PRIMARY_VALUE_UNIT.
20	PRIMARY_VALUE_UNIT	Einheit (PV)		Physikalische Einheiten des Primärwerts
21	PRIMARY_VALUE_TYPE	Primärwerttyp		Art der Druckanwendung (Druck, Durchfluss, Füllstand)
22	SENSOR_DIAPHRAGM_ MATERIAL	Trennwerkstoff		Werkstoff der Sensor Trennmembran
23	SENSOR_FILL_FLUID	Modul Füllmedium		Art des Sensor Füllmediums
24	SENSOR_O_RING_MATERIAL	Werkstoff O-Ring		Art der Flansch O-Ringe Werkstoffs
25	PROCESS_CONNECTION_TYPE	Prozessanschluss		Art das am Gerät angebrachten Flanschtyps
26	PROCESS_CONNECTION_ MATERIAL	Werkstoffe des Prozessanschlusses		Art des Flanschwerkstoffs
27	TEMPERATURE	Temperatur		Sensortemperatur, in TEMPERATURE_UNIT
28	TEMPERATURE_UNIT	Temperatureinheit	UNITS	Physikalische Einheiten der Sensortemperatur
29	SECONDARY_VALUE_1	Sekundärwert 1	UNITS	Abgeglichener Druckwert, nicht skaliert, in SECONDARY_VALUE_1_UNIT
30	SECONDARY_VALUE_1_UNIT	Einheit (Sekundärwert 1)	UNITS	Physikalische Einheit von SECONDARY_VALUE_1
31	SECONDARY_VALUE_2	Sekundärwert 2	UNITS	Gemessener Wert nach der Eingangsskalierung
33	LIN_TYPE	Charakterisierungsart	UNITS	Linearisierungsart
34	SCALE_IN	Eingangsskalierung	UNITS	Eingangsskalierung in SECONDARY_VALUE_1_UNIT
35	SCALE_OUT	Ausgangsskalierung	UNITS	Ausgangsskalierung in PRIMARY_VALUE_UNIT
36	LOW_FLOW_CUT_OFF	Schleichmengenab- schaltung	UNITS-> FLOW	Dies ist der Punkt in Prozent Durchfluss, bis zu dem der Ausgang der Durchflussfunktion auf Null gesetzt ist. Diese Funktion dient zum Unterdrücken von Schleichmengen
59	FACT_CAL_RECALL	Werkskalibrierung wiederherstellen	CALIB-> RESET	Ruft die werksseitig Sensor Kalibriereinstellung auf
60	SENSOR_CAL_METHOD	Sensorkalibrierfaktor		Die Methode der letzten Sensorkalibrierung.
61	SENSOR_VALUE_TYPE	Messumformertyp		Art der Druckmessung (Differenz-, Absolut-, Unterdruck)

⁽¹⁾ Wenn dieses Feld leer ist, trifft der Parameter nicht auf das Bedieninterface zu

Tabelle D-3. Analog Input Block Parameter

Indexver- zeichnis	Parametername	DD Name	Bedieninterface Anordnung ⁽¹⁾	Definition
1	ST_REV	Statische Versions-Nr.		Die Versionsnummer der mit dem Block assoziierten statischen Daten. Die Versionsnummer wird hochgezählt, wenn ein statischer Parameterwert im Block geändert wird.
2	TAG_DESC	Kennzeichnung		Anwenderbeschreibung der beabsichtigten Blockanwendung.
3	STRATEGY	Strategie		Gruppierung der Function Blocks.
4	ALERT_KEY	Alarmtaste		Die Identifikationsnummer der Anlageneinheit. Diese Information kann im Host zum Sortieren der Alarme usw. verwendet werden.
5	TARGET_MODE	Zielmodus		Enthält den gewünschten Blockmodus, der normalerweise vom Bediener oder von einer Steuerspezifikation gesetzt wird.
6	MODE_BLK	Tatsächlicher Modus		Enthält den aktuellen, zugelassenen und normalen Modus des Blocks.
7	ALARM_SUM	Alarm Zusammenfassung		Enthält den aktuellen Status der Blockalarme.
8	BATCH	Batch Informationen		In Batch Anwendungen gemäß IEC 61512-1 verwendet.
10	OUT	Wert (Ausgang)		Wert und Status des Block-Ausgangs.
11	PV_SCALE	PV Skalierung		Umrechnung der Prozessvariablen in Prozent mittels dem hohen und niedrigen Skalierwerts, in TB.PRIMARY_VALUE_UNIT
12	OUT_SCALE	Ausgangsskalierung		Die hohen und niedrigen Skalierwerte, Einheitencode und Anzahl der Stellen rechts neben dem Dezimalpunkt, dem OUT zugeordnet.
13	LIN_TYPE	Charakterisierungsart		Linearisierungsart.
14	KANAL	Kanal		Zur Auswahl des Messwerts des Transducer Block verwendet. Stets 0x112.
16	PV_FTIME	Zeitkonstante des Filters	DAMP	Die Zeitkonstante des PV Filters erster Ordnung. Zeit, die bei einer Änderung des Eingangswerts von 63 % benötigt wird (Sekunden).
17	FSAFE_TYPE	Störsicherer Modus		Definiert die Reaktion des Geräts, falls ein Fehler erkannt wird.
18	FSAFE_VALUE	Vorgabewert der Störsicherung		Der Vorgabewert für den OUT Parameter in OUT_SCALE Einheiten bei Erkennung eines Sensor- oder Sensorelektronikfehlers.
19	ALARM_HYS	Hysterese Grenzwert		Der Betrag des Alarmwertes muss zurück innerhalb der Alarmgrenze bevor die zugehörige aktive Alarmbedingung gelöscht wird.
21	HI_HI_LIM	Obere Grenze für den Alarm		Die Einstellung der Alarmgrenze, die zur Erkennung der HI HI Alarmbedingung verwendet wird.
23	HI_LIM	Obere Grenze für die Warnung		Die Einstellung der Alarmgrenze, verwendet zur Erkennung der HI Alarmbedingung.
25	LO_LIM	Untere Grenze für die Warnung		Die Einstellung der Alarmgrenze, verwendet zur Erkennung der LO Alarmbedingung.
27	LO_LO_LIM	Untere Grenze für den Alarm		Die Einstellung der Alarmgrenze, verwendet zur Erkennung der LO LO Alarmbedingung.
30	HI_HI_ALM	Oberer Grenzalarm		Die HI HI Alarmdaten.
31	HI_ALM	Obere Grenzwarnung		Die HI Alarmdaten.
32	LO_ALM	Untere Grenzwarnung		Die LO Alarmdaten.
33	LO_LO_ALM	Unterer Grenzalarm		Die LO LO Alarmdaten.
34	SIMULATE	Simulation		Eine Datengruppe, die den simulierten Wert und Status des Messumformers und das aktiv/inaktiv Bit enthält.

⁽¹⁾ Wenn dieses Feld leer ist, trifft der Parameter nicht auf das Bedieninterface zu.

00809-0105-4797, Rev CA August 2010

KOMPRIMIERTER STATUS

Das Rosemount 3051 Gerät verwendet den komprimierten Status gem. den Empfehlungen der Spezifikation Profile 3.02 und NE 107. Der komprimierte Status weist einige zusätzliche Bits und geänderte Zuweisungen für das Bit gegenüber des klassischen Status auf. Bestätigung der Bitzuweisung unter Verwendung von Tabelle D-4 und Tabelle D-5.

Tabelle D-4. Beschreibung der Diagnose

	Gerätebezogene Diagnose	•
Byte-Bit	Unit_Diag_Bit	Beschreibung der Diagnose
2–4	36	Kaltstart
2–3	35	Warmstart
3–2	42	Funktionsprüfung
3–0	40	Wartungsalarm
4–7	55	Weitere Informationen verfügbar

Tabelle D-5. Definition des Ausgangsstatusbits

Beschreibung	HEX	DEZIMAL
Schlecht – passiviert	0x23	35
Schlecht, Wartungsalarm, weitere Diagnose verfügbar	0x24	36
Schlecht, prozessbezogen – keine Wartung	0x28	40
Ungewiss, Austauschsatz	0x4B	75
Unsicher, prozessbezogen, keine Wartung	0x78	120
Gut, OK	0x80	128
Gut, Ereignis aktualisieren	0x84	132
Gut, Hinweisalarm, unterer Grenzwert	0x89	137
Gut, Hinweisalarm, oberer Grenzwert	0x8A	138
Gut, kritischer Alarm, unterer Grenzwert	0x8D	141
Gut, kritischer Alarm, oberer Grenzwert	0x8E	142
Gut, Funktionsprüfung	0xBC	188

00809-0105-4797, Rev CA August 2010

Indexverzeichnis

A	G	Montage
Anforderungen	Gehäuse	Anforderungen 3-8
Allgemein	Ausbau6-7	Anschlussklemmenblock
Kompatibilität	Geschlossene Behälter	installieren6-8
Mechanik 3-2	Füllstandsmessung von	Installation 3-3
Messstellenumgebung 3-2	Flüssigkeiten 3-19	Messstellenumgebung2-1
gerungg	Zustand mit "nasser"	Prozesssensor-Gehäuse 6-9
_	Impulsleitung 3-20	Sensormodul anbringen6-8
В	Zustand mit "trockener"	3
Behälter	Impulsieitung 3-19	A.I
Offen/Geschlossen 3-19	impulsicitally 10	N
Bestellinformationen A-24	_	Netzfilter
Betriebsanleitung	1	Feldbus Protokoll 4-6
Leitfaden1-1	Impulsleitungen	
Modellpalette	Informationen zur	0
Blitzschlag 4-7	Messstellenumgebung3-2	Offene Behälter
	Installation 3-1, 3-3, 4-1	Füllstandsmessung von
D	Ausrichtung Prozessflansch3-3	Flüssigkeiten3-19
Demontage	Beispiele	ridoligikoliorio ro
Elektronikplatine ausbauen 6-7	Erdung der Signalverdrahtung 4-7	_
Messumformer außer Betrieb	Explosionsgefährdete	Р
nehmen 6-6	Bereiche3-15	Perlrohrsystem in einem offenen
Sensormodul 6-7	Gehäuse drehen	Behälter
Vor der Demontage 6-6	Mechanische Informationen3-2	Füllstandsmessung von
	Modell 305 Ventilblock 3-14	Flüssigkeiten3-21
Demontageverfahren 6-6	Modell 306 Ventilblock 3-14	Produkt-ZulassungenB-1
	Montage	Prozess
E	Winkel	Anschlüsse
Einführung 1-1	Schrauben	
Elektrischer Anschluss	Installation des Ventilblocks 3-14	R
Erdung 4-4		Rücksendung von Produkten und
Signal- und Testklemmen 4-4	K	Materialien 6-9
Verdrahtung 4-4	Klemmsockel	Materialieri I I I I I I I I I I I I I I I I I I I
Erdung 4-4	Installation 6-8	
Abgeschirmtes Kabel 4-6	Komprimierter Status D-6	S
Messumformergehäuse 4-8		Schrauben
Erdung der Signalverdrahtung 4-7	Konfiguration	Anordnung3-7
Ersatzteilliste	Schlauben	Installation
Explosionsgefährdete Bereiche . 3-15		Werkstoff
	L	Schreibschutz4-2
F	Leitungen, Impuls3-8	Seite mit dem
Foundation Feldbus 1-3		Anschlussklemmenblock 3-3
Füllstandsmessung von Flüssigkeiten	M	Service Unterstützung 1-2
Geschlossene Behälter 3-19	Mechanische Informationen3-2	Software
Offene Behälter 3-19	Menü Bedieninterface C-2	Verriegelung4-2
Perlrohrsystem in einem offenen	Merkmale	Steckbrücke
Behälter 3-21	Messrohr	Alarm
Zustand mit "nasser"	Modul	Schreibschutz4-2
Impulsleitung 3-20	Ausbau 6-7	
Zustand mit "trockener"	Installation 6-8	U
Impulsieitung 3-19	Messstellenumgebung	Unterstützung 1-2
Füllstandsmessung von Flüssigkeiten	Messumformergehäuse4-8	ŭ
mit Perlrohr 3-21		

Sicherheitsanleitung 00809-0105-4797, Rev CA

00809-0105-4797, Rev CA August 2010

V
Verdrahtung
W
Winkel Montage 3-4
Z
Zeichnungen
Zulassungen B-6
Canadian Standards
Association B-19
Factory Mutual (FM) B-6
Standards Association of
Australia B-28
Zulassungen
Information B-1
Zeichnungen
Canadian Standards
Association B-19
Factory Mutual (FM) B-6
Standards Association
Australia B-28
Zulassungszeichnungen B-6
Zustand mit "nasser" Impulsleitung
Beispiel (Abbildung 4-6) 3-20
Füllstandsmessung von
Flüssigkeiten 3-20
Zustand mit "trockener" Impulsleitung
Füllstandsmessung von
Flüssiakeiten 3-19

Das Emerson Logo ist eine Marke der Emerson Electric Co.
Rosemount, das Rosemount Logo und SMART FAMILY sind eingetragene Marken von Rosemount Inc.
Coplanar ist eine Marke von Rosemount Inc.
Halocarbon ist eine Marke von Halocarbon Products Corporation.o.
Fluorinert ist eine eingetragene Marke von Minnesota Mining and Manufacturing Company Corporation
Syltherm 800 und D.C. 200 sind eingetragene Marken von Dow Corning Corporation.
Neobee M-20 ist eine eingetragene Marke von PVO International, Inc.
HART ist eine eingetragene Marke der HART Communication Foundation.
Foundation Fieldbus ist eine eingetragene Marke der Fieldbus Foundation.
Alle anderen Marken sind Eigentum ihrer jeweiligen Besitzer.

© 2010 Rosemount, Inc. Alle Rechte vorbehalten.

Deutschland

Emerson Process Management GmbH & Co. OHG Argelsrieder Feld 3 82234 Weßling Deutschland T +49 (0) 8153 939 - 0 F +49 (0) 8153 939 - 172

www.emersonprocess.de

Schweiz

Emerson Process Management AG Blegistrasse 21 6341 Baar-Walterswil Schweiz T +41 (0) 41 768 6111 F +41 (0) 41 761 8740 www.emersonprocess.ch

Österreich

Emerson Process Management AG Industriezentrum NÖ Süd Straße 2a, Objekt M29 2351 Wr. Neudorf Österreich T +43 (0) 2236-607 F +43 (0) 2236-607 44 www.emersonprocess.at

