

DCX RM S Generator

Bedienungsanleitung

Branson Ultrasonics Corp. 120 Park Ridge Road Brookfield, CT 06804 (203) 796-0400 http://www.bransonultrasonics.com

Informationen zu Änderungen an der Betriebsanleitung

Wir bemühen uns bei Branson, unsere Position als führendes Unternehmen für das Ultraschallverbinden von Kunststoffen, das Schweißen von Metallen sowie die Reinigung und die damit verbundenen Technologien durch eine kontinuierliche Verbesserung der Schaltkreise und Komponenten in unseren Geräten zu festigen. Diese Verbesserungen werden unmittelbar bei der Produktentwicklung implementiert und gründlichen Tests unterzogen.

Die die Verbesserungen betreffenden Informationen werden den entsprechenden technischen Dokumentationen bei der nächsten Überarbeitung und dem nächsten Ausdruck beigefügt. Deshalb achten Sie bitte auf die Revisionsinformationen, die sich auf dieses Dokuments befinden, und nehmen Sie Bezug auf das auf dieser Seite aufgeführte Druckdatum, wenn Sie Service-Support für bestimmte Geräte benötigen.

Hinweise zu Urheberrecht und Warenzeichen

Copyright © 2022 Branson Ultrasonics Corporation. Alle Rechte vorbehalten. Der Inhalt dieses Dokuments darf ohne schriftliche Genehmigung der Branson Ultrasonics Corporation nicht vervielfältigt werden.

Mylar ist eine eingetragene Marke von DuPont Teijin Films.

Loctite ist eine eingetragene Marke der Loctite Corporation.

WD-40 ist eine eingetragene Marke der WD-40 Company.

Windows 7, Windows Vista und Windows XP sind eingetragene Marken der Microsoft Corporation.

Sonstige, hierin erwähnte Markenzeichen und Dienstleistungsmarken gehören den jeweiligen Inhabern.

Vorwort

Wir freuen uns, dass Sie sich für ein System der Branson Ultrasonics Corporation entschieden haben.

Bei dem Generator DCX RM S von Branson handelt es sich um Prozesstechnik zum Fügen von Kunststoffteilen unter Verwendung von Ultraschallenergie. Dies ist ein Produkt der neuesten Generation. Seine fortschrittliche Technologie wurde entwickelt, um eine große Bandbreite an Kundenanforderungen zu erfüllen. Die vorliegende Bedienungsanleitung gehört zur Dokumentation dieses Systems und sollte zusammen mit der Anlage aufbewahrt werden.

Vielen Dank, dass Sie sich für Branson entschieden haben!

Einleitung

Das vorliegende Handbuch ist in verschiedene Kapitel aufgeteilt. Sie finden darin alle erforderlichen Informationen zur sicheren Handhabung, Installation, Konfiguration, Programmierung, Verwendung und Wartung dieses Produkts. Bitte verwenden Sie das Inhaltsverzeichnis und/oder den <u>Index</u> dieser Betriebsanleitung, um die gewünschten Informationen zu finden. Falls Sie zusätzliche Unterstützung oder Informationen benötigen, wenden Sie sich bitte an unsere Kundendienstabteilung (Kontaktdaten siehe Abschnitt <u>1.3 Kontaktaufnahme mit Branson</u>) oder an Ihre örtliche Branson-Vertretung.

Inhaltsverzeichnis

Kapitel 1: Sicherheit und Support

	1. Sichement und Support
1.1	Sicherheitsanforderungen und Warnungen 2
1.2	Allgemeine Vorsichtsmaßnahmen
1.3	Kontaktaufnahme mit Branson8
Kapitel	2: Einleitung
2.1	Modelle
2.2	Kompatibilität mit anderen Produkten von Branson
2.3	Merkmale
2.4	Steuerelemente und Anzeigen
2.5	Schweißsysteme
2.6	Glossar
Kapitel	3: Lieferung und Handhabung
3.1	Transport und Handhabung 30
3.2	Annahme 31
33	Generator auspacken 32
3.0	Inventur der Kleinteile 33
3.4	Rücksendung von Geräten
3.5	
Kapitel	4: Technische Daten
4.1	Iechnische Daten
4.2	Abmessungen und Gewichte
4.3	Konformitatserklarung
Kapitel	5: Installation und Einrichtung
5.1	Information zum Kapitel Installation 42
5.2	Installationsvoraussetzungen
5.3	Installationsschritte
5.4	Generatorkonfiguration
5.5	Montage der Resonanzeinheit
5.6	Konverterkühlung
5.7	Testen der Installation
5.8	Benötigen Sie weitere Hilfe? 69
Kapitel	6: Konverter und Booster
6.1	Konverter und Booster
Kapitel	7: Betrieb
7.1	Einstellen der Primärparameter
7.2	Einstellung von Leistungs-Fenster-Grenzwerten
7.3	Einstellung der Amplitude
7.4	Zurücksetzen der Generatoralarme
7.5	Konfiguration der Generatorregister
7.6	I CD-Balkendiagramm
77	Webinterface 107
78	Ultraschall-Prüfverfahren 112
,	

Kapitel 8: Wartung

8.1	Allgemeine Wartungshinweise	16
8.2	Vorbeugende Wartung1	18
8.3	Kalibrierung	24
8.4	Empfohlener Ersatzteilvorrat	25
8.5	Fehlerbehebung	31
Anhang A	: Signaldiagramme	
A.1	Signaldiagramme	36

Abbildungsverzeichnis

Kapitel 1: Sicherheit und Support

Abbildung 1.1 Abbildung 1.2	Sicherheitsaufkleber auf dem Generator DCX RM S
Kapitel 2: Eir	hleitung
Abbildung 2.1	Der Generator DCX RM S 15
Abbildung 2.2	Generator DCX RM S Bedienelemente und Anzeigen am Bedienpanel 20
Abbildung 2.3	LCD-Beschreibung
Abbildung 2.4	Generator DCX RM S Gehäuserückwand

Kapitel 3: Lieferung und Handhabung

Kapitel 4: Technische Daten

Alalah Jahungar 4, 1	Komformaltätooriklänunga	20
Abbildung 4. I	Konformitalserklarung	 39

Kapitel 5: Installation und Einrichtung

Abbildung 5.1	Generator DCX RM S Maßzeichnung (klein)	44
Abbildung 5.2	Generator DCX RM S Maßzeichnung (mittel)	45
Abbildung 5.3	Generator DCX RM S Maßzeichnung (groß)	46
Abbildung 5.4	LCD-Blickwinkel	49
Abbildung 5.5	Generator DCX RM S Anschlüsse	50
Abbildung 5.6	Benutzer-E/A-Kabelkennzeichnung und Aderfarben	52
Abbildung 5.7	Typische Digital-E/A-Verdrahtungsbeispiele	56
Abbildung 5.8	Typische Analog-E/A-Verdrahtungsbeispiele	56
Abbildung 5.9	HF-Kabelanschluss	57
Abbildung 5.10	Montage der Resonanzeinheit	62
Abbildung 5.11	Anbringen der Spitze an die Sonotrode	65

Kapitel 6: Konverter und Booster

Abbildung 6.1	Abmessungen 20-kHz-Konverter	12
Abbildung 6.2	Abmessungen 20-kHz-Booster	73
Abbildung 6.3	Typische Abmessungen 20-kHz-Konverter/Booster/Sonotrode	14
Abbildung 6.4	Abmessungen 30-kHz-Konverter	75
Abbildung 6.5	Abmessungen 30-kHz-Booster	16
Abbildung 6.6	Typische Abmessungen 30-kHz-Konverter/Booster/Sonotrode	7
Abbildung 6.7	Abmessungen 40-kHz-Konverter 4TR	18
Abbildung 6.8	Abmessungen 40-kHz-Booster	19
Abbildung 6.9	Typische Abmessungen 40-kHz-Konverter/Booster/Sonotrode	30

Kapitel 7: Betrieb

Abbildung 7.1	Leistungs-Fenster-Grenzwerte	91
Abbildung 7.2	LCD-Anzeige beim Einschalten	96
Abbildung 7.3	LCD-Anzeige bei aktivierter externer Amplitudensteuerung	97
Abbildung 7.4	Prüfanschlüsse 1	14

Kapitel 8: Wartung

Abbildung 8.1	Überholen der Berührungsflächen der Resonanzeinheit	12	1
---------------	---	----	---

Anhang A: Signaldiagramme

Abbildung A.1	Dauerbetrieb
Abbildung A.2	Dauerbetrieb, Überlastfehler 137
Abbildung A.3	Zeit
Abbildung A.4	Zeit, Fensterfehler
Abbildung A.5	Zeit, Überlastfehler
Abbildung A.6	Energie
Abbildung A.7	Energie, Fensterfehler
Abbildung A.8	Energie, Überlastfehler

Tabellenverzeichnis

Kapitel 1: Sicherheit und Support

Tabelle 1.1	Autorisiertes Servicecenter (Nordamerika)	8
Tabelle 1.2	Autorisierte Servicecenter (Südamerika)	8
Tabelle 1.3	Autorisierte Servicecenter (Asien)	9
Tabelle 1.4	Autorisierte Servicecenter (Europa)	11
Kapitel 2: I	Einleituna	
Tabelle 2.1	In diesem Handbuch behandelte Modelle	. 14
Tabelle 2.2	Kompatibilität des Generators mit Konvertern von Branson	16
Tabelle 2.3	Steuerfunktionen	17
Tabelle 2.4	Generator DCX RM S Bedienelemente und Anzeigen am Bedienpanel.	20
Tabelle 2.5	LCD-Display	22
Tabelle 2.6	Anschlüsse am Generator DCX RM S	24
Tabelle 2.7	Glossar	26
Kapitel 3: I	Lieferung und Handhabung	
Tabelle 3.1	Transportbedingungen	
Tabelle 3.2	Überprüfen des Generators	
Tabelle 3.3	Generator auspacken	
Tabelle 3.4	Enthaltene Kleinteile $(=x)$: Generatoreinheiten	
Tabelle 3.5	Generator DCX RM S Systemkabel	
Kapitel 4:	Technische Daten	
Tabelle 4.1	Umgebungsanforderungen	36
Tabelle 4.2	Eingangsspannung für den Betrieb	36
Tabelle 4.3	Angaben zu Eingangsstrom und Sicherungsspezifikationen	36
Tabelle 4.4	Max. Leistung bei Dauerbetrieb	37
Tabelle 4.5	Abmessungen und Gewichte des Generator DCX RM S	38
Kapitel 5:	Installation und Einrichtung	
Tabelle 5.1	Umgebungsanforderungen	47
Tabelle 5.2	Angaben zu Eingangsstrom und Schutzschalter	47
Tabelle 5.3	Generator DCX RM S Anschlüsse	50
Tabelle 5.4	Pinbelegung Benutzer-E/A-Kabel	53
Tabelle 5.5	Verfügbare Digitaleingangs-Funktionen	54
Tabelle 5.6	Verfügbare Digitalausgangs-Funktionen	54
Tabelle 5.7	Verfügbare Analogeingangs-Funktionen	55
Tabelle 5.8	Verfügbare Analogausgangs-Funktionen	55
Tabelle 5.9	HF-Kabelanschluss.	57
Tabelle 5.10	Beschreibung der Resonanzeinheit.	62
Tabelle 5.11	Drehmomentwerte der Resonanzeinheit	62
Tabelle 5.12	Werkzeuge	63
Tabelle 5.13	20-kHz-System	63
Tabelle 5.14	30-kHz-System	63
Tabelle 5.15	40-kHz-System	64
Tabelle 5.16	Drehmomentwerte der Spitze an der Sonotrode	65
Tabelle 5.17	Maximalleistung Dauerbetrieb und Arbeitszyklus bei voller Leistung	66
Tabelle 5.18	Verfahren zur Konverterkühlung	67

Kapitel 6: Konverter und Booster

Tabelle 6.1	20-kHz-Konverter
Tabelle 6.2	20-kHz-Booster
Tabelle 6.3	20-kHz-Konverter/Booster/Sonotrode
Tabelle 6.4	30-kHz-Konverter
Tabelle 6.5	30-kHz-Booster
Tabelle 6.6	30-kHz-Konverter/Booster/Sonotrode
Tabelle 6.7	40-kHz-Konverter 4TR
Tabelle 6.8	40-kHz-Booster
Tabelle 6.9	40-kHz-Konverter/Booster/Sonotrode
Kapitel 7: E	Betrieb
Tabelle 7.1	Zusammenfassung der Betriebsarten
Tabelle 7.2	Arbeitsfolge bei Dauerbetrieb
Tabelle 7.3	Parameter für die Betriebsart "Zeit"
Tabelle 7.4	Arbeitsfolge bei der Betriebsart "Zeit"
Tabelle 7.5	Stellen Sie die Parameter für den Modus "Betriebsart Zeit" ein
Tabelle 7.6	Parameter für die Betriebsart "Energie"
Tabelle 7.7	Arbeitsfolge bei der Betriebsart "Energie"
Tabelle 7.8	Stellen Sie die Parameter für den Betriebsart "Energie" ein
Tabelle 7.9	Parameter für die Leistungsfenster-Untergrenze
Tabelle 7.10	Arbeitsfolge für die Leistungsfenster-Untergrenze
Tabelle 7.11	Parameter für die Leistungsfenster-Obergrenze
Tabelle 7.12	Arbeitsfolge für die Leistungsfenster-Obergrenze
Tabelle 7.13	Einstellen der Amplitude über das Bedienfeld
Tabelle 7.14	Zurücksetzen des Generator DCX RM S98
Tabelle 7.15	Konfigurationsschritte für die Generatorregister
Tabelle 7.16	Register des Generators
Tabelle 7.17	Beispiele für das Ablesen des Balkendiagramms für Leistung
Tabelle 7.18	Ablesen des Balkendiagramms – 20 kHz (50-Hz-Segment)
Tabelle 7.19	Ablesen des Balkendiagramms – 30 kHz (76-Hz-Segment) 105
Tabelle 7.20	Ablesen des Balkendiagramms – 40 kHz (100-Hz-Segment) 106
Tabelle 7.21	Beispiele für das Ablesen des Balkendiagramms für Frequenz
Tabelle 7.22	Generator-Ultraschall-Prüfverfahren (Bedienfeld)
Tabelle 7.23	Generator-Ultraschall-Prüfverfahren (Benutzer-E/A)
Kapitel 8: \	Nartung
Tabelle 8.1	Verfahren zur Überholung der Resonanzeinheit
Tabelle 8.2	Überholen der Berührungsflächen der Resonanzeinheit
Tabelle 8.3	Drehmomentwerte der Resonanzeinheit 121
Tabelle 8.4	Montage der Resonanzeinheit für ein 20-kHz-System
Tabelle 8.5	Montage der Resonanzeinheit für ein 30-kHz-System
Tabelle 8.6	Montage der Resonanzeinheit für ein 40-kHz-System
Tabelle 8.7	Drehmomentwerte der Bolzen 123
Tabelle 8.8	Generator DCX RM S Systemkabel
Taballa 0.0	Empfohlang Erzetzteile

Tabelle 8.9	Empfohlene Ersatzteile
Tabelle 8.10	Konverter kompatibel mit dem Generator DCX RM S
Tabelle 8.11	Generator DCX RM S – Kompatible Booster
Tabelle 8.12	Andere Teile für den Generator DCX RM S
Tabelle 8.13	Fehlerbehebung
Tabelle 8.14	Fehlerbehebung bei allgemeinen Problemen mit der Elektrik
Tabelle 8.15	Fehlersuche bei Problemen mit der Ultraschallleistung
Tabelle 8.16	Fehlersuche bei Problemen mit dem Schweißzyklus

Anhang A: Signaldiagramme

Kapitel 1: Sicherheit und Support

1.1	Sicherheitsanforderungen und Warnungen	2
1.2	Allgemeine Vorsichtsmaßnahmen	6
1.3	Kontaktaufnahme mit Branson	8

1.1 Sicherheitsanforderungen und Warnungen

In diesem Kapitel werden die verschiedenen Symbole und Piktogramme mit Sicherheitsanweisungen erläutert, die im Handbuch und auf dem Gerät zu finden sind. Zudem sind hier weitere Sicherheitsinformationen für das Ultraschallschweißen aufgeführt. In diesem Kapitel ist außerdem beschrieben, wie Branson zur Unterstützung kontaktiert werden kann.

1.1.1 In dieser Anleitung enthaltene Symbole

Diese im vorliegenden Handbuch verwendeten Symbole sind besonders zu beachten:

WARNUNG	Weist auf eine mögliche Gefahr hin
	Wenn diese Risiken nicht vermieden werden, können Tod oder schwere Verletzungen die Folge sein.

WARNUNG	Warnung vor gefährlicher elektrischer Spannung		
	Hochspannung. Vor der Wartung Stromversorgung ausschalten.		

WARNUNG	Warnung vor ätzenden Stoffen
	Korrosives Material. Kontakt mit Augen und Haut vermeiden. Geeignete Schutzausrüstung tragen.

VORSICHT	Weist auf eine mögliche Gefahr hin
	Wenn diese Risiken nicht vermieden werden, können leichte oder geringfügige Verletzungen die Folge sein.

VORSICHT	Warnung vor hohem Geräuschpegel		
	Gefahr durch hohen Geräuschpegel. Ohrenschutz tragen.		

VORSICHT	Warnung vor schwerem Gegenstand
	Schwerer Gegenstand. Zur Vermeidung von Muskelzerrungen oder Rückenverletzungen Hebehilfen und geeignete Hebetechniken verwenden.

HINWEIS	Bezeichnet eine möglicherweise schädliche Situation
i	Wenn diese Situation nicht vermieden wird, können die Anlage oder etwas in ihrer Umgebung beschädigt werden. Anwendungsarten und andere wichtige oder nützliche Informationen werden hervorgehoben.

1.1.2 Auf dem Produkt angebrachte Symbole

Der Generator DCX RM S ist mit zahlreichen Sicherheitsaufklebern versehen, die auf die Präsenz gefährlicher Spannungen in der Einheit hinweisen.

Abbildung 1.1 Sicherheitsaufkleber auf dem Generator DCX RM S

WARNING

To prevent electrical shock wait 2 minutes after disconnecting before servicing.

1.2 Allgemeine Vorsichtsmaßnahmen

Bitte ergreifen Sie folgende Vorsichtsmaßnahmen, bevor Sie den Generator warten:

- Zur Vermeidung von gefährlichen Stromschlägen darf der Generator nur an eine geerdete Stromquelle angeschlossen werden.
- Erden Sie den Generator zur Vermeidung von gefährlichen Stromschlägen, indem Sie einen Erdungsleiter der Größe AWG 8 an der Erdungsschraube neben dem Luftauslass anbringen.
- Generatoren erzeugen Hochspannung. Gehen Sie folgendermaßen vor, bevor Sie Arbeiten am Generator durchführen:

Schalten Sie den Generator aus.

Ziehen Sie den Netzstecker.

Warten Sie mindestens 2 Minuten, damit sich die Kondensatoren entladen können.

- Achtung, Hochspannung im Generator! Nicht mit entfernter Abdeckung betreiben.
- In der Ultraschall-Generatoreinheit ist Hochspannung vorhanden. Die allgemeinen Anschlüsse sind mit Schaltkreisen und nicht mit der Gehäuseerdung verbunden. Aus diesem Grund dürfen zum Testen der Generatoreinheit nur batteriebetriebene, ungeerdete Universalmessgeräte verwendet werden. Die Verwendung von anderen Prüfgeräten kann zu Stromschlägen führen.
- Halten Sie Ihre Hände nicht unter die Sonotrode. Nach unten wirkende Kraft (Druck) und Ultraschallschwingungen können zu Verletzungen führen.
- Takten Sie das Schweißsystem nicht, falls das HF-Kabel oder der Konverter nicht angeschlossen ist.
- Vermeiden Sie Situationen, in denen Finger zwischen Sonotrode und Unterwerkzeug eingeklemmt werden könnten, falls Sie größere Sonotroden einsetzen.
- Stellen Sie sicher, dass die Installation des Generators nur durch qualifiziertes Personal und gemäß den örtlichen Standards und Vorschriften erfolgt.

VORSICHT	Warnung vor hohem Geräuschpegel		
	Der Geräuschpegel und die Geräuschfrequenz, die sich beim Ultraschallschweißen entwickeln, können abhängig sein von a) der Art der Anwendung; b) Größe, Form und Zusammensetzung des zu fügenden Materials; c) Form und Material des Unterwerkzeugs; d) den Konfigurationsparametern für den Schweißvorgang und e) den verwendeten Werkzeugen.		
	Einige Teile schwingen während des Schweißvorgangs mit einer hörbaren Frequenz. Einige oder alle diese Faktoren können zu unangenehmen Geräuschen führen.		
	In solchen Fällen ist es eventuell erforderlich, dem Personal einen Hörschutz zur Verfügung zu stellen. Siehe auch 29 CFR (Code of Federal Regulations; US-Vorschriften), 1910.95 Occupational Noise Exposure (Lärmexposition am Arbeitsplatz).		

1.2.1 Bestimmungsgemäße Verwendung des Systems

Der Generator DCX RM S und dessen Bauteile sind für die Verwendung in einem Ultraschall-Schweißsystem konzipiert. Der Generator wurde für eine große Bandbreite von Schweiß- und Verarbeitungsanwendungen entwickelt.

Wird die Anlage in einer Weise verwendet, die nicht von Branson angegeben wurde, können die Schutzfunktionen der Anlage beeinträchtigt werden.

Bei der Branson Ultrasonics Corp. steht der Sicherheitsaspekt bei der Entwicklung und Herstellung der Anlagen an erster Stelle, damit die Kunden ihre Anlagen sicher und effektiv nutzen können. Bedienung und Wartung der Anlage sollte nur durch geschultes Personal erfolgen. Nicht geschultes Personal kann die Anlage möglicherweise falsch verwenden oder Sicherheitsanweisungen unbeachtet lassen, was Personenschäden oder Beschädigungen der Ausrüstung zur Folge haben kann. Das gesamte Betriebs- und Wartungspersonal muss bei Bedienung und Wartung der Anlage unbedingt die Sicherheitsanweisungen beachten.

1.2.2 Emissionen

Aufgrund der verschiedenen Arten von giftigen oder schädlichen Gasen, die je nach verarbeitetem Material während des Schweißens freigesetzt werden können, sollte für eine ausreichende Be- und Entlüftung gesorgt werden, um eine Konzentration dieser Gase von mehr als 0,1 ppm zu verhindern. Setzen Sie sich mit Ihren Materiallieferanten bezüglich der empfohlenen Schutzmaßnahmen bei der Verarbeitung der Materialien in Verbindung.

VORSICHT	Warnung vor ätzenden Stoffen
	Die Verarbeitung vieler Materialien, z.B. von PVC, kann die Gesundheit des Bedienpersonals gefährden und eventuell zu Korrosion/Beschädigungen der Schweißanlage führen. Sorgen Sie für ordnungsgemäße Be- und Entlüftung und treffen Sie entsprechende Schutzvorkehrungen.

1.2.3 Vorbereitung des Arbeitsplatzes

Die Maßnahmen zur Vorbereitung eines Arbeitsplatzes für den sicheren Betrieb des Ultraschall-Schweißgeräts sind in <u>Kapitel 5: Installation und Einrichtung</u> aufgeführt.

1.2.4 Normenkonformität

Dieses Produkt erfüllt die Vorschriften zur elektrischen Sicherheit und zur elektromagnetischen Verträglichkeit für Nordamerika und die Europäische Union.

1.3 Kontaktaufnahme mit Branson

Branson ist da, um Ihnen zu helfen. Wir möchten Ihnen und Ihrem Unternehmen bei der erfolgreichen Verwendung unserer Produkte behilflich sein. Um Unterstützung von Branson anzufordern, verwenden Sie bitte die folgenden Telefonnummern oder nehmen Sie Kontakt mit der nächsten Filiale auf.

1.3.1 Autorisiertes Servicecenter (Nordamerika)

Tabelle 1.1	Autorisiertes	Servicecenter	(Nordamerika)
			(

Benennung	Adresse	Tel./Fax
Branson Ultrasonics Corp. Global Headquarters USA	120 Park Ridge Road, Brookfield, CT 06804	Tel.: 1-203-796-0400 Fax: 1-203-796-0593 info@bransonultrasonics.com

1.3.2 Autorisierte Servicecenter (Südamerika)

Tabelle 1.2	Autorisierte Servicecenter	(Südamerika)
	Autorisierte Servicecenter	(Suuamenka)

Benennung	Adresse	Tel./Fax
Intersonic	Av. Cramer 2361 1C	Tel.: 011-54-11-4781-2327
Argentinien	Buenos Aires 1428	Fax: 011-54-11-4782-2412
Branson do Brasil	Rua Goiatuba, 81	Tol . EE 11 4200 1452
Brasilien	06465-300 – Barueri / SP	181. 55-11-4200-1052

1.3.3 Autorisierte Servicecenter (Asien)

Benennung	Adresse	Tel./Fax
Branson Ultrasonics (Shanghai) Co. Ltd. – China	528 Rong Le Dong Road, Song Jiang	Tel.: 86-21-3781-0588
Headquarters	Song Jiang Industry Zone	Fax: 86-21-5774-5100
China	CN-Shanghai, 201613 PRC	c.service@emerson.com
	Room 216, Flat B, 12 Hong Da North Road,	
Branson Ultrasonics Co.	Chuangxin Technological	Tel.: 86-10-6787-7806
Ltd. Beijing Office	Mansion Beijing Department Area.	Fax: 86-10-6787-3378
	Beijing 100176 PRC	
Branson Ultrasonics Co.		Tel.: 86-22-2732-5233
Ltd. Tianjin Office		Fax: 86-22-2732-3581
Branson Ultrasonics Co.		Tel.: 86-769-8541-0736
Ltd. Dongguan Office		Fax: 86-769-8541-0735
Branson Ultrasonics Co.		Tel.: 86-512-6295-3652
Ltd. Suzhou Office		Fax: 86-512-6295-3651
Propeop Illtracopics Asia	Flat A, 5/F Pioneer Building	Tel.: 852-2790-3393
Pacific Co. Ltd.	213 Wai Yip Street, Kwung	Fax: 852-2341-2716
Hong Kong Office	long	info@emerson.com
Branson Ultrasonics	8/35, Marol Co-Op Industrial Estate	Tol · 01-22-2850-5570
DIV. of Emerson Electric Co. P. Ltd. "Ajanta House"	M.V. Road, Andheri (East)	Fax: 91-22-2850-8681
Indien	Mumbai 400 059, Indien	
Branson Ultrasonics		
Japan Headquarters	4-3-14 Okada, Atsugi-Shi	Tel.: 81-46-228-2881
Division of Emerson Japan	Kanagawa 243-0021	Fax: 81-46-288-8892
Ltd.	Japan	
	#803, 8F Dongil Techno Town	
Branson Korea Co., Ltd.	823, Kwan Yang-2dong,	Tel.: 82-1577-0631
Korea		Fax: 82-31-422-9572
	An rang-si, kyung ki-do,	
	431-062 Korea	

Benennung	Adresse	Tel./Fax
Branson Ultrasonics Div. of Emerson Elec (M) Sdn Bhd. Malaysia	No. 20, Jalan Rajawali 3, Puchong Jaya Industrial Park Batu 8, Jalang Puchong 47170 Puchong, Selangor Malaysia	Tel.: 603-8076-8608 Fax: 603-8076-8302
Branson Ultrasonics Philippinen	Emerson Building 104 Laguna Blvd. Laguna Technopark Inc. Sta. Rosa, Laguna, 4026 Philippinen	Tel.: 63-49-502-8860 Fax: 63-49-502-8860 Mobil: 63-917-5372072
Branson Ultrasonics Singapur	10 Pandan Crescent #03-06 UE Tech Park LL3 Singapore 128466	Tel.: 65-6891-7600 Fax: 65-6873-7882
Branson Ultraschall Taiwan	Div. of Emerson Electric (Taiwan) Co. Ltd. 5F-3, No. 1, Wu-Chiuan First Road Wu-Ku Ind Zone, Hsin- Chuang City Taipei Hsien 24892, Taiwan	Tel.: 886-2-2298-0828 Fax: 886-2-2298-9985
Emerson Limited Thailand	662/39-40 Rama 3 Road Bangpongpang, Yannawa Bangkok 10120, Thailand	Tel.: 66-2-293-01217 Fax: 66-2-293-0129

Tabelle 1.3	Autorisierte Servicecenter	(Asien)
		· · · /

1.3.4 Autorisierte Servicecenter (Europa)

Benennung	Adresse	Tel./Fax
Branson Ultraschall		Tel.: 420-374-625-620
Tschechien		Fax: 420-374-625-617
Branson Ultrasons Frankreich	1 Rue des Pyrenees Silic 404 94573 Rungis Cedex Frankreich	Tel.: 33-1-4180-2550 Fax: 33-1-4687-8729
Branson Ultraschall Europäische Zentrale Deutschland	Niederlassung der EMERSON Technologies GmbH & Co. OHG Waldstraße 53-55 63128 Dietzenbach	Tel.: 49 (0)6074/497-0 Tel.: 49 (0)6074/497-784 Fax: 49 (0)6074/497-199 <u>info@branson.de</u>
Branson Ultrasuoni, S.r.I. Italien	Via Dei Lavoratori, 25 20092 Cinisello Balsamo Milano, Italien	Tel.: 39-02-660-8171 Fax: 39-02-660-10480
Branson Ultrasonics B.V. Niederlande	P.O. Box 9, 3760 Soest Niederlande	Tel.: 31-35-60-98101
Branson Ultrasonidos S.A.E. Portugal	Rua General Orlando Barbosa 74, RC-NP 4490-640 Póvoa de Varzim Portugal	Tel.: 351-936-059-080 Mobil: 351-252-101-754
Emerson a.s., division Branson Slowakei	Piestandska 1202/44 91528 Nove Mesto Nad Vahom Slowakei	Tel.: 421-32-7700-501 Fax: 421-32-7700-470
Branson Ultrasonidos S.A.E. Spanien	Edificio Emerson C/Can Pi, 15 1 ^a Planta (Antigua Carretera del Prat) Polígono Industrial Gran Vía Sur 08908 HOSPITALET DE LLOBREGAT (BARCELONA) Spanien	Tel.: 34-93-586-0500 Fax: 34-93-588-2258

 Tabelle 1.4
 Autorisierte Servicecenter (Europa)

Benennung	Adresse	Tel./Fax
Branson Ultrasonics S.A. Schweiz	Sonifers: Case Postale 1031 Bransonics: Chemin du Faubourg-de-Cruseilles 9 CH 1227, Carouge, Schweiz	Tel.: 41-22-304-8340 Tel.: 41-58-611-1222 Fax: 41-22-304-8359
Branson Ultrasonics Großbritannien	158 Edinburgh Avenue Slough, Berkshire England SL1 4UE	Tel.: 44-1753-756675 Fax: 44-1753-551270
Branson Ultraschall Russland	Torfyanaya road, 7F 197374, Saint-Petersburg Russland	Tel.: 7-812-449-35-24 Mobil: 7-962-693-77-12

Tabelle 1.4	Autorisierte Service	ecenter (Europa)

Kapitel 2: Einleitung

2.1	Modelle	4
2.2	Kompatibilität mit anderen Produkten von Branson	6
2.3	Merkmale	17
2.4	Steuerelemente und Anzeigen2	20
2.5	Schweißsysteme	25
2.6	Glossar	26

2.1 Modelle

Dieses Handbuch behandelt alle Modelle des Generator DCX RM S.

Frequenz	Leistung	EDP-Nr.
	1100 W	101-132-2077
20 kHz	2200 W	101-132-2078
	4000 W	101-132-2079
30 kHz	1500 W	101-132-2076
40 kHz	800 W	101-132-2075

2.1.1 Modellübersicht

Abbildung 2.1 Der Generator DCX RM S

Der Generator DCX RM S erzeugt über einen Ultraschallkonverter Ultraschallenergie für das Schweißen von Kunststoff. Je nach gewünschter Frequenz (z. B. 20 kHz) und dem gewünschten Leistungsspektrum (z. B. 4,0 kW) stehen verschiedene Modelle zur Verfügung. Der Generator umfasst auch ein mikroprozessorbasiertes Steuermodul zur Steuerung und Überwachung der Schweißarbeiten.

Der Generator bietet die folgenden Funktionen:

Speichern nach Schweißende: Ermöglicht dem Generator die Überwachung und Speicherung der Frequenz der letzten Schweißung.

Zeitgesteuerte Suche: Überwachen und Starten der Resonanzeinheit mit der korrekten Frequenz. Dies erfolgt durch den Betrieb der Sonotrode bei geringer Amplitude (10 %), um die Betriebsfrequenz der Resonanzeinheit zu finden und darauf einzurasten. Die Suchvorgänge beginnen ab dem Zeitpunkt, zu dem der Ultraschall das letzte Mal aktiviert wurde.

Netzspannungsregelung: Hält die Konverteramplitude aufrecht, indem Schwankungen in der Netzspannung geregelt werden.

Lastregelung: Hält die Konverteramplitude im gesamten Bereich der Nennleistung aufrecht.

Systemschutz: Schützt den Generator auf fünf Schutzebenen.

- Spannung Strom Phase Temperatur Leistung Frequenz
- Webinterface: Bietet über eine Ethernet-Verbindung Zugang zu Generatorinformations-,

Diagnose- und Konfigurations-Web-Pages. **Frequenz-Offset:** Ermöglicht das Anlegen einer externen Frequenzänderung an der

Arbeitsfrequenz.

Amplitudenregelung: Ermöglicht die komplette Kontrolle der Amplitude im gesamten Schweißzyklus: programmierbare Anlauframpe und digitale Einstellung der Schweißamplitude.

2.2 Kompatibilität mit anderen Produkten von Branson

	DCX RM S Modelle	Konverter
		CR-20
		CR-20S
		CR-20C
20 kHz		CH-20S (932 AH SPL)
		CH-20C
		CS-20S
		CS-20C
		902*
		CR-30S
		CR-30C
20 kHz		CH-30S
30 KHZ		CH-30C
		CS-30S
		CS-30C
40 kHz		CR-40S (4TH)
		CR-40C
		4TP
		4TR

Tabelle 2.2 Kompatibilität des Generators mit Konvertern von Branson

* Nur für Generator 20 kHz/1100 W.

HINWEIS	
()	Für den Anschluss an MS-Konverter (CR20 und 4TR) stehen spezielle Adapterkabel zur Verfügung. Siehe <u>Tabelle 8.8 Generator DCX RM S</u> Systemkabel.

2.3 Merkmale

2.3.1 Das Schweißsystem

Das Schweißsystem besteht aus einem Generator DCX RM S und einer Konverter-Booster-Sonotroden-Resonanzeinheit. Das System kann zur Durchführung von Ultraschall-Schweißvorgängen, zum Einbetten, Nieten, Punktschweißen, Bördeln, Angüsse entfernen und für kontinuierliche Schweißarbeiten verwendet werden. Der Generator ist für die automatische, halbautomatische und/oder manuelle Produktion ausgelegt.

2.3.2 Der Generator

Der Generator DCX RM S besteht aus einer Ultraschall-Generatoreinheit mit einer Systemsteuerung (Controller) und Benutzerschnittstellen. Die Ultraschall-Generatoreinheit wandelt den konventionellen 50/60-Hz-Netzstrom in Strom mit 20 kHz, 30 kHz oder 40 kHz um. Der Controller steuert das Schweißsystem.

Nachstehend sind die Steuerfunktionen des Generator DCX RM S Ultraschall-Schweißsystems aufgeführt.

Benennung	Beschreibung
Autotuning	Die Abstimmung (Tuning) des Branson-Generators stellt sicher, dass das System mit der höchsten Effizienz läuft.
Benutzername und Passwörter:	Ermöglicht die Nachverfolgung des Benutzerzugriffs auf das Generator DCX RM S-Webinterface.
Digitale Amplitu- denregelung	Über diese Funktion können Sie die exakte, für Ihre Anwendung erforderliche Amplitude einstellen. Dadurch werden der Bereich und die Wiederholbarkeit in Analogsystemen gesteigert.
Echtes Wattmeter	Die Steuerelemente des Generators umfassen auch ein echtes Wattmeter für eine exakte Messung der Leistung und Energie.
Folientasten	Die Steuerelemente des Bedienfelds sind auf eine hohe Zuverlässigkeit und Beständigkeit gegen Verunreinigung durch Staub und Öl ausgelegt.
Frequenz-Offset	Über diese Funktion haben Sie die Möglichkeit, für bestimmte, besondere Anwendungen einen Frequenzwert einzustellen, wenn die Kraft, die auf eine Befestigung oder einen Amboss wirkt, zu einem Frequenzanstieg beim Betrieb der Resonanzeinheit führt. Diese Funktion sollten Sie nur einsetzen, wenn dies von Branson empfohlen wird.
Lastregelung	Hält die Konverteramplitude im gesamten Bereich der Nennleistung aufrecht.
LCD (Liquid Crystal Display, Flüssigkristall- Anzeige)	Bietet eine klar sichtbare Schnittstelle zur Überwachung und Konfiguration des Systems.
Netzspannungsre- gelung	Hält die Konverteramplitude aufrecht, indem Schwankungen in der Netzspannung geregelt werden.

Benennung	Beschreibung
Rampenstart	Der Generator DCX RM S und die Sonotrode werden mit einer Rate gestartet, die die elektrische und mechanische Belastung des Systems gering hält. Die Startrate der Sonotrode kann für bestimmte, schwer zu startende Anwendungen angepasst werden.
Sonotrodensigna- tur	Mit dem Generator DCX RM S-Webinterface können Sie die Ultraschall-Resonanzeinheit scannen, um ihre Betriebsfrequenz auf einem Computer anzeigen zu lassen. Anhand der Digitalausgaben erhalten Sie ein gutes Bild vom Betrieb der Resonanzeinheit.
Startdiagnose	Beim Anfahren prüfen die Steuerelemente die größeren internen Bauteile.
Suche	Stellt den Resonanzbetrieb sicher; minimiert Tuning-Fehler; sorgt für den Betrieb der Resonanzeinheit bei geringer Amplitude (10 %) und bietet anschließend ein Mittel zur Erkennung und Speicherung des Frequenzwerts im Resonanzbetrieb.
Systemschutz	Schützt den Generator auf sechs Schutzebenen: Spannung, Strom, Phase, Temperatur, Leistung und Frequenz.
Webinterface	Bietet über eine Ethernet-Verbindung Zugang zu Generatorinformations-, Diagnose- und Konfigurations-Web-Pages.
Zeitgesteuerte Suche	Nach der Aktivierung erfolgt minütlich eine Suche, um die Resonanzfrequenz der Sonotrode im Speicher zu aktualisieren. Dies ist insbesondere dann sinnvoll, wenn der Schweißprozess sich auf die Ist-Temperatur der Sonotrode auswirkt und dadurch einen Anstieg der Resonanzfrequenz verursacht.

Tabelle 2.3Steuerfunktionen

2.3.3 Die Vorschubeinheit

Der Generator DCX RM S bietet keine Steuerfunktionen für die Vorschubeinheit und keine Schnittstelle zu den Signalen der Vorschubeinheit.

2.3.4 Konverter-/Booster-/Sonotroden-Einheit

Der Konverter

Die elektrische Ultraschallenergie vom Generator wird an den Konverter (manchmal auch Wandler genannt) geleitet. Hier werden die hochfrequenten elektrischen Schwingungen in mechanische Vibrationen mit derselben Frequenz umgewandelt. Das Herzstück des Konverters ist ein piezoelektrisches Keramikelement. Wird ein Wechselstrom angelegt, dann dehnen sich diese Elemente abwechselnd aus und ziehen sich zusammen, was zu einer über 90 %igen Umwandlung der elektrischen in mechanische Energie führt.

Der Booster

Die Effizienz der Ultraschalleinheit hängt von der richtigen Amplitude der Bewegung an der Sonotrodenfläche ab. Die Amplitude ist eine Funktion der Sonotrodenform, welche in großem Maß von der Größe und Form der zu fügenden Teile abhängt. Der Booster kann als mechanischer Transformator eingesetzt werden, um die Amplitude der Schwingungen zu erhöhen oder zu verringern, die von der Sonotrode auf die Teile übertragen werden.

Der Booster ist eine Halbwellenlängen-Resonanzeinheit aus Aluminium oder Titan. Er ist als Teil der Ultraschall-Resonanzeinheit zwischen dem Konverter und der Sonotrode montiert. Er besitzt auch einen Befestigungspunkt für die feste Montage der Resonanzeinheit.

Booster sind so konzipiert, dass sie mit der gleichen Frequenz schwingen wie der Konverter, mit dem sie verwendet werden. Booster werden normalerweise an einem Knotenpunkt (minimale Schwingung) der Axialbewegung montiert. Dadurch wird der Energieverlust minimiert und verhindert, dass Vibrationen auf die Trägerstruktur der Resonanzeinheit übertragen werden.

Die Sonotrode

Die Sonotrode wird jeweils für eine spezifische Anwendung ausgewählt oder konzipiert. Jede Sonotrode wird typischerweise als Halbwellenlängen-Element abgestimmt, das den erforderlichen Druck und die Schwingung gleichmäßig auf die zu fügenden Teile überträgt. Sie überträgt die Ultraschallschwingungen des Konverters auf das Werkstück. Die Sonotrode ist als Teil der Ultraschall-Resonanzeinheit am Booster montiert.

Je nach Profil werden Sonotroden als abgestuft, kegelförmig, exponentiell, stabförmig oder katenoid bezeichnet. Die Sonotrodenform bestimmt die Amplitude an der Sonotrodenoberfläche. Je nach Anwendung werden Sonotroden aus Titanlegierungen, Aluminium oder Stahl gefertigt. Titanlegierungen eignen sich aufgrund ihrer hohen Stabilität und der geringen Verluste am besten für die Fertigung von Sonotroden. Aluminiumsonotroden sind normalerweise chrom- oder nickel- oder hartbeschichtet, um die Abnutzung zu verringern. Stahlsonotroden eignen sich für niedrige Amplituden, die Härte erfordern, wie z. B. beim Ultraschalleinbetten.

2.4 Steuerelemente und Anzeigen

2.4.1 Generator DCX RM S Bedienpanel

Abbildung 2.2 Generator DCX RM S Bedienelemente und Anzeigen am Bedienpanel

 Tabelle 2.4
 Generator DCX RM S Bedienelemente und Anzeigen am Bedienpanel

Referenz	Beschreibung
	LCD Detaillierte Informationen finden Sie in <u>Abbildung 2.3 LCD-</u> <u>Beschreibung</u> und <u>Tabelle 2.5 LCD-Display</u> .
\bigotimes	Tasten Auf-/Abwärts Zur Anpassung der Amplitude der Ultraschallvibrationen (10 % bis 100 %). Werden auch verwendet, um die Schweißparameter einzustellen, Register zu wählen und die Registerwerte zu bearbeiten.
	Alarm-Rücksetztaste
	Zum Zurücksetzen von Alarmen.
	Verwenden Sie beim Anpassen der Systemregister die Rücksetztaste, um ein Register nach der Eingabe des Registers und vor Bearbeitung des Werts auf den Standardwert zurückzusetzen.

Referenz	Beschreibung
	Konfigurationstaste Zur Änderung der Systemregister. Die Register werden verwendet, um die Systemparameter zu ändern. Weitere Informationen zur Verwendung der Konfigurationstaste für die Einstellung der Systemregister finden Sie in <u>7.5 Konfiguration der</u> <u>Generatorregister</u> .
	Ultraschall-Prüftaste Zur Durchführung eines Ultraschalltests. Beim Test wird eine Suche durchgeführt und anschließend die Amplitude gemäß der aktuellen Einstellung gestartet.
	Ethernet-Port Zur Herstellung einer Verbindung mit dem Webinterface des Generator DCX RM S.
	Einschalt-Kontrollleuchte Leuchtet, wenn der Generator am Netzanschluss angeschlossen ist.
24V	24-V-Anzeige Leuchtet, wenn der Generator DCX RM S mit 24 V DC versorgt wird.

 Tabelle 2.4
 Generator DCX RM S Bedienelemente und Anzeigen am Bedienpanel

Tabelle 2.5LCD-Display

Referenz	Beschreibung
8.8:8.8	Numerische Anzeige Zeigt die Amplitudeneinstellungen, Registernummern, Registerwerte oder Alarmnummern des Generators an.
\mathbf{i}	Symbol für Dauerbetrieb Zeigt an, dass der Generator im Dauerbetrieb läuft. Im Dauerbetrieb erscheint auf der numerischen Anzeige die Amplitudeneinstellung zusammen mit einem %-Symbol. Die Amplitude kann in einem Bereich zwischen 10 % und 100 % eingestellt werden. Für weitere Informationen siehe Kapitel 7: Betrieb.
(Î.,	Symbol für die Betriebsart "Zeit" Zeigt an, dass der Generator im Dauerbetrieb läuft. Im Dauerbetrieb erscheint auf der numerischen Anzeige die Amplitudeneinstellung zusammen mit einem %-Symbol. Die Amplitude kann in einem Bereich zwischen 10 % und 100 % eingestellt werden. Für weitere Informationen siehe <u>7.1.2 Betriebsart "Zeit"</u> .
	Symbol für die Betriebsart "Energie" Zeigt an, dass der Generator im Energiemodus läuft. Im Energiemodus erscheint auf der numerischen Anzeige die eingestellte Schweißenergie zusammen mit dem J-Symbol. Die Schweißenergie kann in einem Bereich zwischen 1 Joule und 9999 Joule eingestellt werden. Für weitere Informationen siehe <u>7.1.3 Betriebsart "Energie"</u> .
Ο	Kreissymbol Zeigt an, dass es sich bei dem auf dem numerischen Display angezeigten Wert um einen Registerwert handelt. Verwenden Sie zur Veränderung eines Registerwerts die Auf- und Abwärts-Tasten. Für weitere Informationen siehe <u>7.5 Konfiguration der Generatorregister</u> .

Tabelle 2.5	LCD-Display
-------------	-------------

Referenz	Beschreibung
	Nummernzeichen-Symbol Zeigt an, dass es sich bei dem auf dem numerischen Display dargestellten Wert um eine Registernummer
Ŧ	handelt. Verwenden Sie zur Auswahl eines Registers die Auf- und Abwärts-Tasten. Für weitere Informationen siehe <u>7.5 Konfiguration der Generatorregister</u> .
	Prozentsymbol
%	Der auf der numerischen Anzeige dargestellte Wert steht für einen Prozentsatz. In der Betriebsart "Spitzenleistung" steht der auf der numerischen Anzeige dargestellte Wert für einen Prozentsatz der Nennleistung des Generators. Außerhalb der Betriebsart "Spitzenleistung" steht der auf der numerischen Anzeige dargestellte Wert für die Amplitudeneinstellung.
	loulesymbol
J	Der auf der numerischen Anzeige dargestellte Wert steht für die Energie.
C	Zeitsymbol Der auf der numerischen Anzeige dargestellte Wert steht für
3	die Zeit in Sekunden.
4	Zeigt an, dass der Ultraschall läuft.
/	
	Leistungs-/Frequenz-Balkendiagramm
10 20 30 40 50 60 70 80 90 100	Zeigt den tatsächlichen Prozentsatz der Ultraschallleistung bei einem Schweißzyklus an. Das Balkendiagramm kann so konfiguriert werden, dass die Spitzenleistung oder die Frequenz am Ende jedes Schweiß- oder Prüfzyklus angezeigt wird. Anweisungen zur Änderung dieser Einstellungen finden Sie in <u>7.5 Konfiguration der Generatorregister</u> .
	Eine detaillierte Beschreibung des Balkendiagramms und Beispiele zum Ablesen des Diagramms finden Sie in <u>7.6.1</u> <u>Ablesen des Balkendiagramms für Leistung</u> und <u>7.6.2</u> <u>Ablesen des Balkendiagramms für Frequenz</u> .
\sim	Alarmsymbol
$\mathbf{\lambda}$	Blinkendes Symbol, das einen Alarmzustand anzeigt.

2.4.2 Generator DCX RM S Anschlüsse

Abbildung 2.4 Generator DCX RM S Gehäuserückwand

 Tabelle 2.6
 Anschlüsse am Generator DCX RM S

Pos.	Benennung	Funktion
1	Netzeingangsan- schluss	Netzeingangsanschluss zum Anschließen der Netzspannung. Einzelheiten zur Verkabelung finden Sie in <u>Kapitel 5:</u> Installation und Einrichtung.
2	Benutzer-E/A- Anschluss	Bietet die erforderlichen Eingangs-/Ausgangssignale für die Schnittstelle mit der Benutzerautomation oder Kontrollschnittstellen. Weitere Einzelheiten zur Verbindung mit dem Generator DCX RM S finden Sie in <u>Kapitel 5:</u> <u>Installation und Einrichtung</u> .
3	HF-Anschluss	SHV-Anschluss für HF-Kabel, zur Versorgung des Konverters mit Ultraschallstrom.

2.5 Schweißsysteme

2.5.1 Funktionsprinzip

Teile aus Thermoplast werden durch hochfrequente Ultraschallschwingungen an andere Teile angeschweißt. Die Schwingungen erzeugen durch Reibung zwischen den Oberflächen und Molekülen einen starken Temperaturanstieg an der Fügefläche.

Wenn die Temperatur so hoch ist, dass der Kunststoff schmilzt, erfolgt ein Materialfluss zwischen den Teilen. Wenn die Schwingungen gestoppt werden, wird das Material unter Druck fest und es entsteht eine Schweißnaht.

2.5.2 Schweißsystem-Anwendungen

Generator DCX RM S Schweißsysteme können für die folgenden Anwendungen eingesetzt werden:

- Ultraschallschweißen
- Schneiden und Versiegeln von thermoplastischem Gewebe und Folien.
- Nieten, Punktschweißen, Bördeln und Angussentfernung von Thermoplastteilen.
- Weitere Ultraschall-Verarbeitungsanwendungen.

Generator DCX RM S-Schweißsysteme bestehen typischerweise aus einem Generator, der mit einer festen Konverter-Booster-Sonotroden-Resonanzeinheit betrieben wird.

2.6 Glossar

Beim Einsatz oder Betrieb eines Ultraschall-Schweißsystems Generator DCX RM S können folgende Begriffe auftreten:

Tabelle 2.7Glossar

Benennung	Beschreibung
Alarm	Fehler-Sichtanzeige
Amplitude	Die Bewegung von einer Spitze zur anderen an der Sonotrodenoberfläche. Wird immer als Prozentwert des Maximums ausgedrückt.
Amplitudenrege- lung	Möglichkeit zur Einstellung der Amplitude, digital oder über eine externe Steuerung.
Angussentfernung	Entfernen eines Gussteils aus seiner Angussspinne.
Austrieb	Material, das sich nicht im Fügebereich befindet.
Benutzername	Eindeutige zwölfstellige, alphanumerische ID, die verwendet wird, um die Benutzerzugriffe auf das Webinterface nachzuverfolgen.
Booster	Metallene Halbwellenlängen-Resonanzeinheit, die zwischen dem Konverter und der Sonotrode montiert ist, wobei sich die Querschnittsfläche zwischen der Ein- und Ausgangsfläche ändern kann. Der Booster wandelt die Vibrationsamplitude, die er vom Konverter empfängt, mechanisch um und gibt die neue Amplitude an die Sonotrode weiter.
Bördeln	Verfahren zum Einfassen einer weiteren Teils einer Baugruppe durch Schmelzen und Formen eines Kunststoffwulsts.
Duroplast	Polymer, das sich bei Erhitzung irreversibel verändert.
Einbetten	Verfahren zur Einbettung einer Metallkomponente in Kunststoff.
Energierichter	Dreieckiges Kunststoffelement, das die Ultraschallenergie an der Berührungsfläche der Kunststoffteile konzentriert.
Externe Amplitu- densteuerung	Ermöglicht den Echtzeit-Zugang zur direkten Amplitudensteuerung über den Benutzer-E/A-Anschluss.
Externe Frequenz- steuerung	Ermöglicht den Echtzeit-Zugang zur direkten Frequenzsteuerung über den Benutzer-E/A-Anschluss.
Frequenz	Arbeitsfrequenz der Ultraschall-Resonanzeinheit. Die gespeicherte Frequenz wird am Ende des Ultraschallteils des Zyklus gemessen (wenn der Ultraschall beendet wird).
Frequenz-Offset	Auf die Ultraschallfrequenz angewandter, im Generator gespeicherter Abweichungsfaktor.
Fügefläche	Die Schweißflächen.
Generator	Elektronisches Gerät in einem Ultraschallsystem, das konventionellen 50/60 Hz Strom in hochfrequenten Strom mit 20 kHz, 30 kHz oder 40 kHz umwandelt.
Kaltstart	Stellt die ursprünglichen Generatoreinstellungen wieder her.
Benennung	Beschreibung
---------------------------	--
Klemm-/ Spannkraft	Kraft in Pfund oder Kilogramm, die von der Sonotrode auf das Werkstück ausgeübt wird.
Konverter	Gerät, das den elektrischen Strom in mechanische Schwingungen mit hoher Frequenz umwandelt (Ultraschallniveau).
Nieten	Verfahren zum Schmelzen und erneuten Formen eines Kunststoffniets zur mechanischen Befestigung eines anderen Materials.
Parameter	Eindeutiger Faktor oder eindeutiges Element, das den Schweißvorgang auf eine bestimmte Weise beeinflusst.
Parameterbereich	Für eine bestimmte Konfiguration zulässiger Parameterbereich.
Passungsrost	Schwarze Oberfläche, die durch die Reibung von Metallteilen entsteht und an den Verbindungsflächen der Konverter-Booster- Sonotroden-Resonanzeinheit auftritt.
Schnittstelle	 Kontaktfläche zweier zusammengefügter Teile. Verbindung zwischen zwei Ausrüstungsteilen.
Schweißsystem	Die erforderlichen Komponenten für den Ultraschallbetrieb. Besteht gewöhnlich aus Generator, Konverter, Booster und Sonotrode, entweder mit einer Vorschubeinheit oder einem Handgerät oder an einem fest montierten Ort.
Sonotrode	Stab oder Metallteil (gewöhnlich eine halbe Wellenlänge), das die Vibrationsenergie auf das Werkstück überträgt.
Sonotrodenampli- tude	Spitze-zu-Spitze-Verlagerung einer Sonotrode an der Arbeitsfläche.
Sonotrodensigna- tur	Scan zur Verbesserung der Auswahl der Betriebsfrequenz und der Steuerparameter.
Suche	Die Aktivierung des Ultraschalls auf einem geringen Amplitudenniveau (10 %) zur Ermittlung der Resonanzfrequenz der Resonanzeinheit.
Thermoplast	Polymer, das seinen Aggregatzustand bei Erhitzung reversibel verändert.
Ultraschallleistung	Vorliegen von Ultraschallleistung an der Sonotrodenoberfläche.
Ultraschallschwei- ßen	Einsatz von Ultraschallschwingungen zur Erzeugung von Hitze und zum anschließenden Schmelzen der Kontaktflächen zweier Thermoplast-Teile. Wenn die Ultraschallschwingungen gestoppt werden, härtet das geschmolzene Material wieder aus und es bildet sich eine Schweißnaht.
Umformen	Erneutes Formen eines Thermoplastelements.
Unterwerkzeug	Vorrichtung, um ein Teil beim Fügen in Position zu halten.
Verstärkung	Verhältnis zwischen Ausgangs- und Eingangsamplitude einer Sonotrode oder eines Boosters.

Tabelle 2.7 Glossar

Benennung	Beschreibung
Vorschubeinheit	Einheit, welche die Konverter-/Booster-/Sonotrodeneinheit in einem festen Gehäuse beherbergt. Sie ermöglicht, dass sich die Resonanzeinheit entweder mechanisch oder pneumatisch auf- und abwärts bewegt. Dabei wird mit einer vom Benutzer definierbaren Kraft und Geschwindigkeit Druck auf ein Teil ausgeübt.
Zähler	Aufzeichnung der im Generator erfassten Anzahl voreingestellter Zyklen.

Tabelle 2.7	Glossar
	0103301

Kapitel 3: Lieferung und Handhabung

Transport und Handhabung
Annahme
Generator auspacken
Inventur der Kleinteile
Rücksendung von Geräten

3.1 Transport und Handhabung

VORSICHT	Warnung vor schwerem Gegenstand
	Der Generator ist möglicherweise schwer. Bei der Handhabung, dem Auspacken und der Installation empfiehlt es sich, zu zweit zu arbeiten und geeignete Hebebühnen und Hebezeuge zu verwenden.

3.1.1 Umgebungsanforderungen

Der Generator DCX RM S ist ein elektronisches Gerät zur Umwandlung von Netzspannung in Ultraschallenergie und reagiert auf Benutzereingaben zur Regulierung des Schweißprozesses. Die internen Bauteile des Generators reagieren empfindlich auf elektrostatische Entladungen. Viele Bauteile können beschädigt werden, wenn die Einheit herunterfällt, nicht ordnungsgemäß transportiert oder anderweitig nicht sachgemäß gehandhabt wird.

Beim Transport des Generators sind folgende Rahmenbedingungen zu berücksichtigen:

Umgebungsbedingung	Zulässiger Bereich
Lagerungs-/ Transporttemperatur	–25 °C / –13 °F bis +55 °C / +131 °F (+70 °C / +158 °F für 24 Stunden)
Stöße/Vibrationen (auf dem Transportweg)	45 g Stoß / 0,5 g und (3 bis 100 Hz) Vibrationen gemäß ASTM-Norm 3332-88 und 3580-90
Fallprüfung	ISTA-Verfahren 1 und 2A (mit Verpackung)
Feuchtigkeit	Maximum 95 %, nicht kondensierend

Tabelle 3.1	Transportbedingungen

3.2 Annahme

Der Generator DCX RM S ist ein empfindliches elektronisches Gerät. Viele seiner Bauteile können beschädigt werden, wenn das Gerät fallen gelassen oder anderweitig unsachgemäß gehandhabt wird.

Lieferumfang

Branson-Geräte werden vor dem Versand sorgfältig geprüft und verpackt. Dennoch empfehlen wir, bei Anlieferung Ihres Generator DCX RM S wie nachstehend beschrieben vorzugehen.

Überprüfen Sie den Generator bei der Anlieferung unter Befolgung der nachstehenden Schritte:

	Tabelle 3.2	Überprüfen des Generators
--	-------------	---------------------------

Schritt	Aktion
1	Prüfen Sie anhand der Packliste die Vollständigkeit des Lieferumfangs.
2	Überprüfen Sie die Verpackung und das Gerät auf Schäden (Sichtprüfung).
3	Melden Sie sämtliche Schäden unverzüglich Ihrem Transportunternehmen.
4	Stellen Sie sicher, dass sich beim Transport keine Teile gelöst haben. Ziehen Sie bei Bedarf die Schrauben an.

HINWEIS	
i	Wurden die gelieferten Waren beim Transport beschädigt, nehmen Sie bitte unverzüglich Kontakt mit dem Transportunternehmen auf. Bewahren Sie das Verpackungsmaterial auf (für eine mögliche Prüfung oder für eine Rücksendung der Ausrüstung).

3.3 Generator auspacken

HINWEIS	
i	BENACHRICHTIGEN SIE SOFORT IHR TRANSPORTUNTERNEHMEN, wenn Sie sichtbare Schäden an der Verpackung oder am Produkt feststellen. Dies gilt auch für den Fall, dass Sie zu einem späteren Zeitpunkt verborgene Schäden entdecken. Bewahren Sie das Verpackungsmaterial auf.

Der Generator ist vollständig montiert. Er wird in einem robusten Pappkarton geliefert. Einige zusätzliche Bauteile werden in dem Karton gemeinsam mit dem Generator geliefert. Notieren Sie sich ggf., wie der Generator verpackt ist, für den Fall dass eine Rücksendung/ erneute Verpackung erforderlich ist. Führen Sie beim Auspacken des Generators die folgenden Schritte aus:

Tabelle 3.3Generator auspacken

Schritt	Aktion
1	Packen Sie den Generator direkt nach dem Eintreffen aus. Bewahren Sie das Verpackungsmaterial auf.
2	Überprüfen Sie, ob die Ausrüstung vollständig geliefert wurde. Einige Bauteile sind in eigenen Kartons verpackt.
3	Untersuchen Sie Bedienelemente, Anzeigen und Oberfläche auf Anzeichen von Beschädigungen.
4	Entfernen Sie die Abdeckung des Generators und prüfen Sie, ob sich beim Transport Teile gelöst haben.

3.4 Inventur der Kleinteile

Teil oder Satz	20 kHz	30 kHz	40 kHz
Mylar®-Kunststofffolie- Unterlegscheibensatz	x	x	
Silikonfett			х
Hakenschlüssel (2)	Х	Х	Х

 Tabelle 3.4
 Enthaltene Kleinteile (=x): Generatoreinheiten

* Mylar ist eine eingetragene Marke von DuPont Teijin Films.

3.4.1 Kabel

Das HF-Kabel wird für die Verbindung zwischen dem Generator und dem Konverter verwendet. Bei automatisierten Systemen benötigen Sie außerdem ein Benutzer-E/A-Kabel zur Überwachung und Steuerung des Generators. Überprüfen Sie die Kabeltypen und -längen auf Ihrer Rechnung.

Artikelnummer	Beschreibung
100-240-383	Kabel, HF 2,5 m (8 ft)
100-240-384	Kabel, HF 4,5 m (15 ft)
100-240-385	Kabel, HF 7,5 m (25 ft)
100-240-387	Kabel, HF Winkel nach rechts 2,5 m (8 ft)
100-240-388	Kabel, HF Winkel nach rechts 4,5 m (15 ft)
100-240-389	Kabel, HF Winkel nach rechts 7,5 m (25 ft)
100-240-391	Kabel, HF-Adapter für CR20-Konverter 0,9 m (3 ft)
011-003-515	Kabel, JDC 3 Steuerung
200-240-396	Ethernetkabel Kat. 5e 2,1 m (7 ft)

 Tabelle 3.5
 Generator DCX RM S Systemkabel

3.5 Rücksendung von Geräten

Bevor Sie ein Gerät an die Branson Ultrasonic Corporation zurücksenden, fordern Sie bitte telefonisch bei unserem Kundendienst eine Rücksendebestätigung an. Siehe <u>1.3 Kontaktaufnahme mit Branson</u>.

Kapitel 4: Technische Daten

4.1	Technische Daten	36
4.2	Abmessungen und Gewichte	38
4.3	Konformitätserklärung	39

4.1 Technische Daten

HINWEIS	
i	Alle Daten gelten unter Vorbehalt und können ohne Vorankündigung geändert werden.

4.1.1 Umgebungsanforderungen

Der Generator DCX RM S erfordert die folgenden Umgebungsbedingungen:

Tabelle 4.1 Umgebun	ngsanforderungen
---------------------	------------------

Umgebungsbedingung	Zulässiger Bereich
Umgebungstemperatur, Betrieb	+41 °F bis +104 °F (+5 °C bis +40 °C)
Lagerungs-/Transporttemperatur	-25 °C bis +55 °C (-13 °F bis +131 °F)
Betriebshöhe	Bis 2000 m (6560 ft)
Feuchtigkeit	Maximum 95%, nicht kondensierend
IP-Schutzart	2X

4.1.2 Elektrische Spezifikationen

In den folgenden Tabellen sind die Eingangsspannung und die Stromanforderungen für den Generator DCX RM S aufgeführt.

 Tabelle 4.2
 Eingangsspannung für den Betrieb

Generator Nennwerte	Eingangsspannung für den Betrieb
Alle Modelle	200 V bis 230 V Nennspannung (180 V Min.* bis 253 V Max.), 50 Hz oder 60 Hz, einphasig
	24 VDC, 2.5 A.

* Min. 200 V bei 4-kW-Einheiten.

Tabelle 4 3	Angahen zu	Findandsstrom	und Sicherun	assnezifikationen
	Angaben zu	Lingangsstrom	unu Sicherun	ysspezinkationen

Modell	Leistung	Stromnennwert
	1100 W	10 A Max. @ 200 V / 15-A-Sicherungs
20 kHz	2200 W	14 A Max. @ 200 V / 15-A-Sicherungs
	4000 W	25 A Max. @ 200 V / 25-A-Sicherungs
30 kHz	1500 W	10 A Max. @ 200 V / 15-A-Sicherungs

Tabelle 4.3	Angaben zu Eingangsstrom und Sicherungsspezifikation	nen
-------------	--	-----

Modell	Leistung	Stromnennwert
40 kHz	800 W	5 A Max. @ 200 V / 15-A-Sicherungs

Tabelle 4.4 Max. Leistung bei Dauerbetrieb

Modell	Leistung	Dauerbetrieb. Max. Leistung
	1100 W	330 W
20 kHz	2200 W	660 W
	4000 W	1200 W
30 kHz	1500 W	460 W
40 kHz	800 W	240 W

Bei Hochleistungszyklen ist eine Zusatzkühlung des Konverters erforderlich. Weitere Informationen zur Konverterkühlung finden Sie in <u>5.6 Konverterkühlung</u> in <u>Kapitel 5: Installation und Einrichtung</u> .	HINWEIS	
	i	Bei Hochleistungszyklen ist eine Zusatzkühlung des Konverters erforderlich. Weitere Informationen zur Konverterkühlung finden Sie in <u>5.6 Konverterkühlung</u> in <u>Kapitel 5: Installation und Einrichtung</u> .

HINWEIS	
i	Die durchschnittliche Systemleistung muss auf das angegebene ständige Maximum begrenzt sein. Ein höherer Spitzenstrom, bis hin zur akzeptablen Stromgrenze, mit einer "Ein"-Zeit von bis zu 10 Sekunden ist möglich, wenn durch die entsprechende "Aus"-Zeit sichergestellt ist, dass die maximale Dauerbetriebsleistung nicht überschritten wird.

4.2 Abmessungen und Gewichte

In diesem Abschnitt sind die Abmessungen des Generator DCX RM S beschrieben.

HINWEIS	
i	Bei allen Maßangaben handelt es sich um Nenngrößen.

 Tabelle 4.5
 Abmessungen und Gewichte des Generator DCX RM S

Größe	Breite	Höhe	Tiefe	Gewicht
Klein	106 mm 4,2″			3,6 kg 8 lb
Mittel	142 mm 5,6″	128 mm 5,07″	560 mm 22″	5,4 kg 12 lb
Groß	213 mm 8,4″			6,8 kg 15 lb

Ausführliche Informationen zu den Abmessungen finden Sie in <u>Kapitel 5: Installation und</u> <u>Einrichtung</u>.

((

4.3 Konformitätserklärung

Abbildung 4.1 Konformitätserklärung

DocuSign Envelope ID: B0909E8A-D9E3-4295-81B6-06331CD21321

EU DECLARATION OF CONFORMITY According to Low Voltage Directive 2014/35/EU, EMC Directive 2014/30/EU, and RoHS Directive 2011/65/EU.

We, the manufacturer

BRANSON ULTRASONICS CORPORATION

120 Park Ridge Rd. Brookfield, CT 06804 USA

represented in the community by

BRANSON ULTRASONICS, a.s. Piestanska 1202 91501 Nove Mesto nad Vahom Slovak Republic

expressly declare under our sole responsibility that the following electrical equipment product:

Ultrasonic Assembly System consisting of an Ultrasonic Power Supply, model:

0.80 DCX(S, A, f-EIP, or f-DP) 40 RACKMT 1.50 DCX(S, A, f-EIP, or f-DP) 30 RACKMT 1.25 DCX(S, A, f-EIP, or f-DP) 20 RACKMT 1.50 DCX(S, A, f-EIP, or f-DP) 20 RACKMT 4.00 DCX(S, A, f-EIP, or f-DP) 20 RACKMT DCX RM 222 STD DCX RM 240 STD DCX RM 222 B DCX RM 240 B DCX RM 480 STD DCX RM 315 STD DCX RM 211 STD DCX RM 480 B DCX RM 315 B DCX RM 211 B P/S 2.20 DCX STD 20 SIG

used with converter model: CR-20, CR-20S, CR-20C, CH-20C, CS-20S, CS-20C, CR-30, CR-30C, CH-30, CH-30C, CS-30S, CS-30C, CR-40C, 4TR, 4TH, 4TP or 932, and associated cables.

in the state in which it was placed on the market, fulfills all the relevant provisions of:

Low Voltage Directive 2014/35/EU EMC Directive 2014/30/EU RoHS Directive 2011/65/EU

The object of this declaration is in conformity with relevant Union harmonization legislation. The electrical equipment product, to which this declaration relates, is in conformity with the following standards:

EN 61010-1:2010+A1:2019 EN 55011:2016/A11:2020 EN 61000-6-2:2005/AC:2005

Brookfield, CT, USA March 29, 2022

ocuSigned by: Luis Benavides

Luis Benavides Product safety Officer

Kapitel 5: Installation und Einrichtung

5.1	Information zum Kapitel Installation	42
5.2	Installationsvoraussetzungen	43
5.3	Installationsschritte	48
5.4	Generatorkonfiguration	59
5.5	Montage der Resonanzeinheit	61
5.6	Konverterkühlung	66
5.7	Testen der Installation	68
5.8	Benötigen Sie weitere Hilfe?	69

5.1 Information zum Kapitel Installation

Dieses Kapitel gibt dem Installierer Hilfestellung für die Grundinstallation und Einstellung Ihres neuen Generator DCX RM S.

VORSICHT	Warnung vor schwerem Gegenstand
	Der Generator und die zugehörigen Teile sind schwer. Bei der Handhabung, dem Auspacken und der Installation empfiehlt es sich, zu zweit zu arbeiten und geeignete Hebebühnen und Hebezeuge zu verwenden.

Am Generator sind internationale Sicherheitsaufkleber angebracht. Die Aufkleber, die während der Installation des Systems wichtig sind, sind in <u>Abbildung 1.1</u> <u>Sicherheitsaufkleber auf dem Generator DCX RM S</u> und <u>Abbildung 1.2 Sicherheitsaufkleber auf dem Generator DCX RM S</u> dargestellt.

5.2 Installationsvoraussetzungen

In diesem Abschnitt werden die Anforderungen an den Aufstellort, die Montageoptionen, die Generatorabmessungen, die Umgebungsanforderungen und die elektrischen Anforderungen behandelt, um Ihnen die erfolgreiche Planung und Durchführung der Installation zu ermöglichen.

5.2.1 Installation der Schubladen für den Generator DCX RM S in einem Kundengestell

Die Generatoreinheiten können in jedem Gestell installiert werden, das dem 19-Zoll-Industriestandard entspricht.

Für einen erfolgreichen Gestelleinbau müssen die entsprechenden Anforderungen an Elektrik und Kühlsystem erfüllt sein.

- Wenn mehrere Schubladen in einem Gestell installiert werden sollen, empfehlen wir, eine dreiphasige Stromversorgung des Gestells vorzusehen, sodass jede Schublade ihre fest zugeordnete Versorgung erhält mit einer Phase zu jeder Schublade.
- Es muss besonders darauf geachtet werden, dass die beim Betrieb erzeugte Wärme abgeführt wird. Wie viel Wärme entsteht, hängt von der vom Modul abgegebenen Leistung und den Umgebungsbedingungen ab.
- Der Kühlkörper des Moduls ist an der rechten Seite montiert. Achten Sie darauf, dass die Kühleinrichtung so montiert wird, dass die Kühlluft an dieser Seite frei zirkulieren kann.
- Für jede Gruppe bestehend aus vier installierten Generatormodulen wird eine Kühlschublade benötigt. Die Kühlschubladen müssen direkt unter den Generatoren installiert werden, um eine ausreichende Kühlung zu gewährleisten.
- Wenn zur Reinigung der Ansaugluft ein Filterelement verwendet wird, ist je nach Umgebungsbedingungen eine regelmäßige Überprüfung und Reinigung des Filters erforderlich, damit das Luftstromvolumen beibehalten wird.
- Um eine thermische Überlastung zu verhindern, ist das System durch Wärmeschalter abgesichert, die nach einer Abkühlung automatisch zurückgesetzt werden.

5.2.2 Installationsort

Der Generator sollte für Parameteränderungen und Einstellungen gut zugänglich sein. Der Generator sollte nicht in der Nähe von Heizkörpern oder Heizluftöffnungen aufgestellt werden.

Der Generator DCX RM S darf nicht so aufgestellt werden, dass der Netzstecker nur schwer ein- oder ausgesteckt werden kann.

5.2.3 Abmessungen

Zeichnungen mit den Abmessungen finden Sie auf den folgenden Seiten. Alle Abmessungen sind näherungsweise Angaben und können leicht abweichen:

Abbildung 5.1 Generator DCX RM S Maßzeichnung (klein)

Abbildung 5.2 Generator DCX RM S Maßzeichnung (mittel)

Abbildung 5.3 Generator DCX RM S Maßzeichnung (groß)

Abbildung 5.2 Generator DCX RM S Maßzeichnung (mittel)

560mm

5.2.4 Umgebungsanforderungen

Stellen Sie sicher, dass der Generator DCX RM S in einer Umgebung betrieben wird, die den Temperatur- und Feuchtigkeitsanforderungen aus <u>Table 5.1</u> entspricht.

 Tabelle 5.1
 Umgebungsanforderungen

Umgebungsbedingung	Zulässiger Bereich
Umgebungstemperatur, Betrieb	+41 °F bis +104 °F (+5 °C bis +40 °C)
Betriebshöhe	Bis 2000 m (6560 ft)
Feuchtigkeit	Maximum 95%, nicht kondensierend
IP-Schutzart	2X

5.2.5 Spezifikationen für die Spannungsversorgung

Schließen Sie den Generator an eine einphasige, geerdete, dreiadrige Stromquelle mit 200 V bis 230 V und 50 oder 60 Hz an. In <u>Table 5.2</u> sind die Spezifikationen für Strom und Schutzschalter der verschiedenen Modelle aufgeführt.

Modell	Leistung	Stromnennwert
	1100 W	10 A Max. @ 200 V / 15-A-Unterbrecher
20 kHz	2200 W	14 A Max. @ 200 V / 15-A-Unterbrecher
	4000 W	25 A Max. @ 200 V / 25-A-Unterbrecher
30 kHz	1500 W	10 A Max. @ 200 V / 15-A-Unterbrecher
40 kHz	800 W	5 A Max. @ 200 V / 10-A-Unterbrecher

 Tabelle 5.2
 Angaben zu Eingangsstrom und Schutzschalter

5.2.6 Pneumatikanforderungen

Möglicherweise erfordert Ihr Schweißsystem einen Kühlluftstrom für die Konverter. Im Dauerbetrieb oder bei Anwendungen mit längeren Arbeitszyklen kann es erforderlich sein, die Sonotrode und den Konverter zu kühlen.

Für die meisten Schweißvorgänge werden pro Stunde 2,26 m³ (80 Kubikfuß) saubere, trockene Druckluft zur Kühlung benötigt.

Um die 2,26 m³ (80 Kubikfuß) Kühlluft pro Stunde für Ihr Schweißsystem sicherzustellen, siehe <u>5.6 Konverterkühlung</u>.

5.3 Installationsschritte

WARNUNG	Warnung vor gefährlicher elektrischer Spannung		
	Zur Vermeidung von Stromschlägen:		
	 Sicherstellen, dass der Generator vor Arbeiten an den Netzanschlüssen von der Versorgungsspannung getrennt ist. 		
7	 Sicherstellen, dass sich der Netzschalter auf der Rückseite des Geräts in der AUS-Stellung befindet, bevor elektrische Anschlüsse hergestellt werden. 		
	Generator immer an eine geerdete Stromquelle anschließen.		
	 Erden Sie den Generator zur Vermeidung von gefährlichen Stromschlägen, indem Sie einen Erdungsleiter der Größe AWG 14 an der Erdungsschraube neben dem Luftauslass anbringen. 		
	 Stellen Sie sicher, dass die Installation des Generators nur durch qualifiziertes Personal und gem		

Grundlegende Installationshinweise:

- Um Probleme mit EMIs (elektromagnetischen Interferenzen) zu vermeiden, Hochspannungsleitungen (Wechselstrom und Ultraschall-HF) nicht in der N\u00e4he von Niederspannungsleitungen (Steuersignale) verlegen.
- Bei der Installation und Verkabelung künftige Fehlerbehebungs- und Reparaturmaßnahmen berücksichtigen. Alle Kabel müssen entweder farbcodiert oder mit industriellen Kabeletiketten gekennzeichnet sein.
- Der Mindestbiegeradius der Kabel entspricht dem Fünffachen des Kabelaußendurchmessers für HF-Kabel.
- Der Mindestbiegeradius der Kabel entspricht dem Zehnfachen des Kabelaußendurchmessers für Benutzer-E/A- und Ethernetkabel.
- Erdungskabel dürfen nicht mit anderen Geräten geteilt werden.
- Alle Induktionsspulen müssen mit entsprechenden Geräten gedämpft werden, z. B. Dioden oder RC-Netzwerke.

5.3.1 Montage des Generators

Die Kabellängen sind durch die Arbeitsfrequenz der Schweißanlage begrenzt. Wenn das HF-Kabel gequetscht, eingeklemmt, beschädigt oder geändert wird, können Leistung und Schweißergebnisse beeinträchtigt werden. Wenden Sie sich an Ihre Branson-Vertretung, wenn Sie besondere Anforderungen an Ihre Kabel haben.

Platzieren Sie den Generator nicht auf dem Boden oder an Standorten, an denen Staub, Schmutz oder Fremdkörper in den Generator gelangen könnten.

HINWEIS	
()	Der Ab- und Zuluftkreislauf ist für die Aufrechterhaltung der sicheren Betriebstemperatur erforderlich und darf daher nicht verstopft werden.

Maßzeichnungen für den Generator DCX RM S finden Sie in den Abbildungen <u>Abbildung</u> <u>5.1 Generator DCX RM S Maßzeichnung (klein)</u>, <u>Abbildung</u> <u>5.2 Generator DCX RM S</u> <u>Maßzeichnung (mittel)</u> und <u>Abbildung</u> <u>5.3 Generator DCX RM S Maßzeichnung (groß)</u>.

5.3.2 Hinweise zur Montage

Neben den oben genannten Vorgaben ist bei der Wahl des Installationsorts für den Generator DCX RM S der Blickwinkel auf die LCD-Anzeige zu berücksichtigen. Die LCD-Anzeige ist auf eine Betrachtung von oben ausgelegt. <u>Abbildung 5.4 LCD-Blickwinkel</u> enthält weitere Hinweise zum Installationsort des Generator DCX RM S.

Abbildung 5.4 LCD-Blickwinkel

5.3.3 Elektrische Anschlüsse

Abbildung 5.5 Generator DCX RM S Anschlüsse

 Tabelle 5.3
 Generator DCX RM S Anschlüsse

Pos.	Beschreibung
1	Netzeingangsanschluss. Siehe 5.3.13 Anschluss der Eingangsleistung.
2	Netzkabel
3	HF-Anschluss
4	HF-Kabel (Ferrit-Ende). Siehe <u>5.3.12 Anschluss der Ausgangsleistung (HF-Kabel)</u> .
5	Benutzer-E/A-Anschlüsse

5.3.4 Benutzer-E/A-Anschlüsse

Der Benutzer-E/A ist eine Standardschnittstelle für Automatisierung am Generator. Er bietet die Möglichkeit, eine eigene Schnittstelle für Automatisierungs-, spezielle Steuerungs- oder Berichtsanforderungen herzustellen. Das Schnittstellenkabel verfügt über einen DB15-Stecker an einem Ende und Drähte am anderen Ende. Die Pins sind nach ICEA-Standard-Farbcodierung verdrahtet (siehe <u>Abbildung 5.6 Benutzer-E/A-Kabelkennzeichnung und Aderfarben</u> und Tabelle <u>Tabelle 5.4 Pinbelegung Benutzer-E/A-Kabel</u>).

HINWEIS

Vergewissern Sie sich, dass alle unbenutzten Drähte korrekt isoliert sind. Andernfalls kann es zu Fehlfunktionen des Generators kommen.

Die Funktionen der Digital-E/A können über das Webinterface des Generator DCX RM S entweder als aktiv-high oder aktiv-low konfiguriert werden. In <u>Tabelle 5.5 Verfügbare</u> <u>Digitaleingangs-Funktionen</u> bis <u>Tabelle 5.8 Verfügbare</u> <u>Analogausgangs-Funktionen</u> sind die Ein- und Ausgangsfunktionen aufgeführt, die für den Generator DCX RM S verfügbar sind. Die Pinbelegung der Benutzer-E/A ist in <u>Tabelle 5.4 Pinbelegung Benutzer-E/A-Kabel</u> aufgeführt.

In <u>Abbildung 5.7 Typische Digital-E/A-Verdrahtungsbeispiele</u> und <u>Abbildung 5.8 Typische</u> <u>Analog-E/A-Verdrahtungsbeispiele</u> sind typische Verdrahtungsbeispiele aufgeführt.

Abbildung 5.6 Benutzer-E/A-Kabelkennzeichnung und Aderfarben

Benutzer-E/A-Kabel Offenes Kabelende, DB15-Stecker am anderen Ende, (Kabellänge gemäß Bestellung)

Three Colors = Insulator/Stripe/Dot

Aderfarben Zwei Farben = Isolator/Streifen Drei Farben = Isolator / Streifen / Punkt

Pos.	Beschreibung	
1	Artikelnummer	
2	Isolation	
3	Streifen	
4	Punkt	

5.3.5 Pinbelegung Benutzer-E/A-Kabel

Din	Eingangs-/	Signaltyn	Signalboroich	Farbe	
PIII	Ausgangsfunktion	Signaltyp	Signalbereich	ISO	IEC
1	Spitzenleistungs- obergrenze	Digitaler Ausgang	24 V ±10 %, 25 mA	Weiß	Schwarz
2	Überlast invertiert (bereit)	Digitaler Ausgang	24 V ±10 %, 25 mA	Braun	Braun
3	GND	24 V Masse	0 V Extern	Grün	Rot
4	Überlast	Digitaler Ausgang	24 V ±10 %, 25 mA	Gelb	Orange
5	Externer Start	Digitaler	$24.V \pm 10.\% 25 m$	Grau	Gelb
6	Externes Suchen	Eingang	24 V ±10 %, 25 MA	Rosa	Grün
7	+10 V	10 V Referenz	+10 V	Blau	Blau
8	GND	24 V Masse	0 V Extern	Rot	Violett
9	Ultraschall betriebsbereit	Digitaler Ausgang	24 V ±10 %, 25 mA	Schwarz	Grau
10	Leistungsausgang	Analoger Ausgang	0 V bis 10 V	Violett	Weiß
11	+24 V	24 V Quelle	24 V Extern	Grau/ Rosa	Weiß/ Schwarz
12	Spitzenleistungsun- tergrenze	Digitaler Eingang	24 V ±10 %, 25 mA	Rot/ Blau	Weiß/ Braun
13	Externes Rückstellen	Digitaler Eingang	24 V ±10 %, 25 mA	Weiß/ Grün	Weiß/ Rot
14	Amplitudenausgang	Analoger Ausgang	0 V bis 10 V	Braun/ Grün	Weiß/ Orange
15	Amplitudeneingang	Analoger Eingang	-10 V bis +10 V	Weiß/ Gelb	Weiß/ Gelb

 Tabelle 5.4
 Pinbelegung Benutzer-E/A-Kabel

5.3.6 Verfügbare Digitaleingangs-Funktionen

Tabelle 5.5	Verfügbare	Digitaleingan	as-Funktionen
	1011 agoar o	Digitaionigan	go i annenoriori

Funktion	Beschreibung
	Aktiviert die Ultraschallenergie mit der momentan eingestellten Amplitude.
Externer Start	HINWEIS Vor einem externen Start muss sich der Generator DCX RM S im Bereitschaftsmodus befinden.
Externes Rückstellen	Zurücksetzen der Alarmbedingungen.
Externes Suchen	Aktiviert die Ultraschallenergie mit einer Amplitude von 10 %, um die Resonanzfrequenz zu ermitteln.
Spitzenlei- stungsober- grenze	Zeigt an, dass beim Schweißen die festgelegte maximale Leistungsspitze überschritten wurde.
Spitzenlei- stungsunter- grenze	Zeigt an, dass beim Schweißen nicht die festgelegte Mindest- Leistungsspitze erreicht wurde.

5.3.7 Verfügbare Digitalausgangs-Funktionen

 Tabelle 5.6
 Verfügbare Digitalausgangs-Funktionen

Funktion	Beschreibung
Bereit	Zeigt an, dass das System betriebsbereit ist.
Überlast Alarm	Zeigt an, dass ein Überlastalarm aufgetreten ist.
Ultraschall betriebsbereit	Zeigt an, dass das Ultraschallsystem aktiviert ist.

5.3.8 Verfügbare Analogeingangs-Funktionen

Funktion	Beschreibung		Gültiger Bereich	
Amplitu- deneingang	Steuert die Amplitude der Ultraschallenergie, die vom Generator geliefert wird.		–8 V bis +10 V* (10 % bis 100 %)	
	Steuert die in Bezug auf die Arbeitsfrequenz des Generators angewandte Frequenzabweichung. Die tatsächliche Abweichung ist abhängig von der Betriebsfrequenz des Generators:		–10 V bis +10 V*	
Frequenz- Offset	Frequenz	Offset-Bereich	(0 V entspricht der Nullabwei- chung)	
	20 kHz	±400 Hz		
	30 kHz	±600 Hz		
	40 kHz	±800 Hz		

Tabelle 5.7	Verfügbare Analogeingangs-Funktionen
-------------	--------------------------------------

* Falls die Eingangssignale nicht innerhalb des gültigen Bereichs liegen oder nicht verbunden sind, verwendet der Generator 50 % der Amplitude bzw. einen Frequenz-Offset von 0.

5.3.9 Verfügbare Analogausgangs-Funktionen

Funktion	Beschreibung	Gültiger Bereich
Amplituden- ausgang	Liefert ein 0 bis 10 V Ausgangssignal proportional zur Amplitude (0 bis 100 %).	0 V bis 10 V (0 % bis 100 %)
Leistungsaus- gang	Liefert ein 0 bis 10 V Ausgangssignal proportional zur Ultraschall-Ausgangsleistung (0 bis 100 %).	0 V bis 10 V (0 % bis 100 %)

Tabelle 5.8	Verfüghare Ar	nalogausgangs	-Funktionen
Tabelle 5.0	VCHUYDAIC AI	naioyausyanys	-i uniktionen

5.3.10 Typische Digital-E/A-Verdrahtungsbeispiele

Abbildung 5.7 Typische Digital-E/A-Verdrahtungsbeispiele

5.3.11 Typische Analog-E/A-Verdrahtungsbeispiele

Abbildung 5.8 Typische Analog-E/A-Verdrahtungsbeispiele

5.3.12 Anschluss der Ausgangsleistung (HF-Kabel)

Ultraschallenergie wird an den SHV-Anschluss des Generators geliefert und anschließend über ein HF-Kabel an den Konverter übertragen. Der HF-Anschluss befindet sich an der Rückseite des Generators.

Um elektromagnetische Interferenzen (EMIs) zu verringern, sind HF-Kabel an einem Ende mit einem Ferritkern ausgestattet (Kunststoffummantelung). Diese Seite ist für den Anschluss an den Generator gedacht.

WARNUNG	Warnung vor gefährlicher elektrischer Spannung
4	Der Betrieb des Systems bei getrenntem oder beschädigtem HF- Kabel kann zu Stromschlägen führen.

WARNUNG	Warnung vor gefährlicher elektrischer Spannung
4	Zur Vermeidung von Stromschlägen müssen Konverter sachgemäß geerdet sein.

HINWEIS	
6	Um elektromagnetische Interferenzen (EMIs) zu vermeiden, sicherstellen, dass der HF-Anschluss an den Generator am Kabelende mit dem Ferritkern erfolgt (siehe <u>Abbildung 5.9 HF-Kabelanschluss</u>).

Abbildung 5.9 HF-Kabelanschluss

Tabelle 5.9 HF-Kabelanschluss

Pos.	Beschreibung
1	An Generator
2	Ferritkern-Box

5.3.13 Anschluss der Eingangsleistung

WARNUNG	Warnung vor gefährlicher elektrischer Spannung
	Stellen Sie sicher, dass die elektrische Spannung ausgeschaltet ist, wenn Sie die Eingänge am Netzanschluss Ihres Generator DCX RM S verdrahten.
	Erden Sie den Generator zur Vermeidung von gefährlichen Stromschlägen, indem Sie einen Erdungsleiter der Größe AWG 14 an der Erdungsschraube neben dem Luftauslass anbringen.
WARNUNG	Warnung vor gefährlicher elektrischer Spannung
	Bei fehlerhafter Verkabelung besteht am Generator die Gefahr von Stromschlägen.
HINWEIS	

Der Generator kann dauerhaft geschädigt werden, wenn er an die falsche Netzspannung angeschlossen wird oder wenn die Verdrahtun fehlerhaft erfolgt.

5.4 Generatorkonfiguration

5.4.1 Auswahl des Alarmmodus

Der Generator DCX RM S aktiviert die Ultraschallleistung, nachdem er ein externes Startsignal erhalten hat. Die Ultraschallleistung bleibt aktiv, bis der Generator oder das externe Signal ausgeschaltet wird. Die Reaktion des Generator DCX RM S auf Alarmbedingungen kann für den Betrieb in zwei Modi konfiguriert werden:

- **Bleibender Alarm:** In diesem Modus erfordert der Generator DCX RM S vor dem Beginn eines neuen Schweißzyklus ein Rücksetzen der Alarmbedingungen. Um die Alarmbedingungen in diesem Modus zurückzusetzen, drücken Sie entweder die Rücksetztaste auf dem Bedienfeld oder senden ein externes Signal über den Benutzer-E/A-Anschluss.
- Löschender Alarm: In diesem Modus erfordert der Generator DCX RM S keine Rücksetzung der Alarmbedingungen, und ein neuer Schweißvorgang kann beginnen, wenn ein externes Startsignal empfangen wird.

Der Alarmmodus ist werkseitig auf löschenden Alarm eingestellt. Anweisungen zum Ändern des Alarmmodus finden Sie unter <u>7.5 Konfiguration der Generatorregister</u> in <u>Kapitel 7: Betrieb</u> und in ihrer Bedienungsanleitung zur DCX-Serien Webseiten-Schnittstelle (4000843).

5.4.2 Konfiguration des Generators

Bestimmte Generatorkonfigurationen können falls erforderlich von den Werkseinstellungen abweichend verändert werden. Obwohl die Werkseinstellungen gewöhnlich nicht verändert werden müssen, können die folgenden Funktionen ausgewählt werden:

- **Amplitudenregelung:** Ermöglicht die Anpassung der Amplitude (10 % bis 100 %) über das LCD-Bedienfeld, das Webinterface oder durch externe Steuerelemente (Analogsignal über den Benutzer-E/A-Analogeingang).
- **Bleibende Alarme:** Bietet die Möglichkeit, die Generatoralarme als bleibende Alarme (Rücksetzen erforderlich) oder löschende Alarme (Rücksetzen durch erneutes Startsignal) einzustellen.
- **Betriebsart:** Ermöglicht die Auswahl der Betriebsart für den Schweißvorgang. Folgende Optionen sind verfügbar: Dauerbetrieb, Zeitschweißen (s) und Energieschweißen (J).
- Anlauframpenzeit: Bietet eine Auswahl verschiedener Startrampenzeiten. Sie kontrolliert, wie schnell die Amplitude der Sonotrode von Null auf die aktuell eingestellte Amplitude ansteigt. Lange Rampenzeiten können bei großen Sonotroden oder hohen Verstärkungs-Resonanzeinheiten sinnvoll sein.
- Ende Speichern Schweißfrequenz: Ermöglicht die Speicherung der Frequenz der Resonanzeinheit am Ende eines Schweißzyklus.
- Suche Rampenzeit: Bietet eine Auswahl verschiedener Rampenzeiten für die Frequenzsuche des Generators.
- Zeitgesteuerte Suche: Bietet eine Überwachungs- und Speicheroption für die Betriebsfrequenz in Zeitintervallen (60 Sekunden). Regelmäßige Frequenzsuchen können hilfreich sein, wenn das Schweißgerät längere Zeit nicht benutzt wird. Die Suchvorgänge beginnen ab dem Zeitpunkt, zu dem der Ultraschall das letzte Mal aktiviert wurde.
- Suchzeit: Bietet eine Auswahloption für die Suchdauer.
- Frequenz-Offset: Ermöglicht die Anpassung der Startfrequenz durch externe Steuerelemente (Analogsignal wird über den Benutzer-E/A-Analogeingang eingespeist) oder die Einstellung eines Festwerts über das Webinterface. Bei bestimmten Anwendungen ist dies sinnvoll, z. B. wenn die auf die Befestigung oder das Amboss ausgeübte Kraft einen Frequenzanstieg beim Betrieb der Resonanzeinheit verursacht.

Anweisungen zum Ändern der Generatoreinstellungen finden Sie unter <u>7.5 Konfiguration</u> <u>der Generatorregister</u> in <u>Kapitel 7: Betrieb</u> und in ihrer Bedienungsanleitung zur Generator DCX RM S-Webseiten-Schnittstelle (4000843).

HINWEIS	
i	Halten Sie vor Veränderungen der Werkseinstellungen mit Branson Rücksprache.

5.5 Montage der Resonanzeinheit

VORSICHT	Allgemeine Warnung
	Die folgenden Arbeiten sind von einer für die Einrichtung qualifizierten Person durchzuführen. Falls erforderlich, fixieren Sie den größten Teil der quadratischen oder rechteckigen Sonotrode in einem Schraubstock mit weichen Backen. Versuchen Sie NIEMALS eine Sonotrode zu montieren oder zu entfernen, indem Sie das Konvertergehäuse oder den Booster-Klemmring in einen Schraubstock einspannen.
VORSICHT	Allgemeine Warnung
	Verwenden Sie kein Silikonfett in Verbindung mit Mylar- Kunststofffolie-Unterlegscheiben. Verwenden Sie an jeder Berührungsfläche nur 1 (eine) Mylar-Kunststofffolie-Unterlegscheibe mit dem korrekten Innen- und Außendurchmesser.
HINWEIS	
G	Wir empfehlen den Einsatz eines Branson-Drehmomentschlüssels oder eines vergleichbaren Schlüssels. Artikelnummer 101-063-787 für 20-kHz- und 30-kHz-Systeme und 101-063-618 für 40-kHz- Systeme.

Abbildung 5.10 Montage der Resonanzeinheit

 Tabelle 5.10
 Beschreibung der Resonanzeinheit

Pos.	Beschreibung
1	Konverter
2	Booster
3	Hakenschlüssel (im Lieferumfang enthalten)
4	Sonotrode
5	Siehe Vorgehensweise zur Montage der Resonanzeinheit
6	Schraubstock-Schutzbacken (Aluminium oder weiches Metall)
7	Schraubstock

 Tabelle 5.11
 Drehmomentwerte der Resonanzeinheit

Frequenz	Drehmoment
20 kHz	24,85 Nm (220 in lb)
30 kHz	21 Nm (185 in lb)
40 kHz	10,73 Nm (95 in lb)
Tabelle 5.12 Werkzeuge

Werkzeug	EDP-Nummer
20-kHz- und 30-kHz- Drehmomentschlüsselsatz	101-063-787
40-kHz-Drehmomentschlüssel	101-063-618
20-kHz-Hakenschlüssel	101-118-039
30-kHz-Hakenschlüssel	201-118-033
40-kHz-Hakenschlüssel	201-118-024
Silikonfett	101-053-002
Mylar-Kunststofffilm-Unterlegscheiben (20 kHz)	100-063-357
Mylar-Kunststofffilm-Unterlegscheiben (30 kHz)	100-063-632

5.5.1 Für ein 20-kHz-System

Tabelle 5.1320-kHz-System

Schritt	Aktion
1	Stellen Sie sicher, dass die Berührungsflächen von Konverter, Booster und Sonotrode sauber sind und dass die Gewindebohrungen frei von Fremdstoffen sind.
2	Bringen Sie eine einzelne Mylar-Kunststofffolie-Unterlegscheibe (Größe passend zum Bolzen) an jeder Berührungsfläche an.
3	Montieren Sie den Konverter an den Booster und den Booster an die Sonotrode.
4	An jeder Berührungsfläche auf 24,85 Nm (220 in Ib) festziehen.

5.5.2 Für ein 30-kHz-System

Tabelle 5.14 30-kHz-System

Schritt	Aktion
1	Stellen Sie sicher, dass die Berührungsflächen von Konverter, Booster und Sonotrode sauber sind und dass die Gewindebohrungen frei von Fremdstoffen sind.
2	Bringen Sie eine einzelne Mylar-Kunststofffolie-Unterlegscheibe (Größe passend zum Bolzen) an jeder Berührungsfläche an.
3	Montieren Sie den Konverter an den Booster und den Booster an die Sonotrode.
4	An jeder Berührungsfläche auf 20,90 Nm (185 in Ib) festziehen.

5.5.3 Für ein 40-kHz-System

Tabelle 5.15	40-kHz-System

Schritt	Aktion
1	Stellen Sie sicher, dass die Berührungsflächen von Konverter, Booster und Sonotrode sauber sind und dass die Gewindebohrungen frei von Fremdstoffen sind.
2	Bestreichen Sie jede Berührungsfläche mit einer dünnen Schicht Silikonfett – jedoch nicht die Gewindebolzen oder Spitze.
3	Montieren Sie den Konverter an den Booster und den Booster an die Sonotrode.
4	An jeder Berührungsfläche auf 10,73 Nm (95 in lb) festziehen.

5.5.4 Anbringen der Spitze an die Sonotrode

- 1. Stellen Sie sicher, dass die Berührungsflächen von Spitze und Sonotrode sauber sind. Entfernen Sie alle Fremdstoffe vom Gewindebolzen und der Bohrung.
- 2. Montieren Sie die Spitze von Hand an die Sonotrode. Trockenmontage. Benutzen Sie kein Silikonfett.
- 3. Hakenschlüssel und Maulschlüssel (siehe <u>Abbildung 5.11 Anbringen der Spitze an die Sonotrode</u>) verwenden und gemäß den folgenden Drehmomentangaben für die Spitze festziehen:

Abbildung 5.11 Anbringen der Spitze an die Sonotrode

 Tabelle 5.16
 Drehmomentwerte der Spitze an der Sonotrode

Spitzengewinde	Drehmoment
1/4 – 28	12,42 Nm (110 in lbs)
3/8 – 24	20,33 Nm (180 in lbs)

5.6 Konverterkühlung

Die Leistungsfähigkeit und Zuverlässigkeit des Konverters kann beeinträchtigt werden, wenn die Keramikelemente des Konverters Temperaturen über 60 °C (140 °F) ausgesetzt werden. Die Temperatur des Konverter-Fronttreibers sollte 50 °C (122 °F) nicht überschreiten.

Um die Lebensdauer des Konverters zu verlängern und einen hohen Grad an Systemzuverlässigkeit zu gewährleisten, sollte der Konverter mit reiner, trockener Druckluft gekühlt werden, insbesondere, wenn Ihre Anwendung einen Ultraschall-Dauerbetrieb erfordert. Die Konverterkühlung ist besonders bei 40-kHz-Anwendungen von kritischer Bedeutung.

Gehen Sie nach einem der folgenden Verfahren vor, um zu bestimmen, ob ein Konverter im Bereich der zulässigen Höchsttemperatur läuft. Überprüfen Sie die Konvertertemperatur sofort nach längerem Maschinenbetrieb und ohne Anwendung von Leistung auf die Sonotrode.

- Drücken Sie eine Pyrometersonde (oder ein ähnliches Temperaturmessgerät) gegen den Frontantrieb der Konvertereinheit. Warten Sie, bis die Sonde die Temperatur der Hülle erreicht hat. Liegt die Temperatur bei 49 °C (120 °F) oder höher, benötigt der Konverter einen Kühlluftstrom.
- Wenn Ihnen kein Temperaturmessgerät zur Verfügung steht, fühlen Sie die Hülle des Konverters mit der Hand. Ist der Konverter so heiß, dass Sie ihn nicht berühren können, erfordert der Konverter einen Kühlluftstrom.

Bei Hochleistungszyklen ist eine Zusatzkühlung des Konverters erforderlich. Die durchschnittliche Systemleistung muss auf das angegebene ständige Maximum begrenzt sein. Ein höherer Spitzenstrom, bis hin zur akzeptablen Stromgrenze, mit einer "Ein"-Zeit von bis zu 10 Sekunden ist möglich, wenn durch die entsprechende "Aus"-Zeit sichergestellt ist, dass die maximale Dauerbetriebsleistung nicht überschritten wird.

Modell	Leistung	Dauerbetrieb. Max. Leistung	Arbeitszyklen bei Nennleistung
	1100 W	330 W	
20 kHz	2200 W	660 W	1 Sekunde ein, 3 Sekunden
	4000 W	1200 W	aus.
30 kHz	1500 W	460 W	(25 % Arbeitszyklus)
40 kHz	800 W	240 W	

Tabelle 5.17	Maximalleistung Dauerbetrie	o und Arbeitszyklus bei voller	Leistung
--------------	-----------------------------	--------------------------------	----------

Wenn eine Konverterkühlung erforderlich ist, gehen Sie wie folgt vor:

Tabelle 5.18	Verfahren zur Konverterkühlung

Schritt	Aktion
1	Start mit einer Luftquelle mit 345 kPa (50 psi) oder höher aus einer Düse mit einem Innendurchmesser von 1,5 mm (0,06 in).
2	Einen Schweißdurchgang durchführen.
3	Sofort nach dem Schweißdurchgang die Konvertertemperatur überprüfen.
4	Ist der Konverter noch immer zu heiß, den Innendurchmesser der Düse in kleinen Schritten vergrößern, bis die Temperatur im Bereich der Tabelle liegt.

Eine Düse mit 1,5 mm (0,06 in) bei 345 kPa (50 psi) ergibt einen Ablesewert von 2,26 m³ (80 ft³) pro Stunde. Dies sollte zur Kühlung der meisten Anwendungen, die einen Kühlluftstrom erfordern, ausreichen. Im Dauer-Schweißbetrieb oder bei Anwendungen mit längeren Arbeitszyklen kann es erforderlich sein, die Sonotrode und den Konverter zu kühlen. Sonotroden erfordern möglicherweise aufgrund der Wärmeübertragung durch den Kontakt mit dem Werkstück ebenfalls eine Kühlung.

5.7 Testen der Installation

Befolgen Sie zum Prüfen des Generators die in <u>7.8 Ultraschall-Prüfverfahren</u> von <u>Kapitel 7:</u> <u>Betrieb</u>beschriebenen Verfahren.

5.8 Benötigen Sie weitere Hilfe?

Wir bei Branson freuen uns, dass Sie sich für unser Produkt entschieden haben, und sind gerne für Sie da! Wenn Sie Teile oder technische Unterstützung bei der Arbeit mit Ihrem Generator DCX RM S benötigen, rufen Sie Ihren örtlichen Branson Vertreter an. Eine Liste der wichtigsten Ansprechpartner bei Branson finden Sie in <u>1.3 Kontaktaufnahme mit Branson</u>.

Kapitel 6: Konverter und Booster

1 4	Kana and an and Deceter		70
6.1	Konverter und Booster .	 	

6.1 Konverter und Booster

Für den Einsatz mit dem Generator DCX RM S steht eine Reihe von Konvertern und Boostern zur Verfügung. Diese werden auf den folgenden Seiten beschrieben.

WARNUNG	Warnung vor gefährlicher elektrischer Spannung
Â	Zur Vermeidung von Stromschlägen müssen Konverter sachgemäß geerdet sein.

HINWEIS	
i	Für den Anschluss an MS-Konverter (CR20 und 4TR) stehen spezielle Adapterkabel zur Verfügung. Siehe <u>Tabelle 8.8 Generator DCX RM S</u> <u>Systemkabel</u> .

Abbildung 6.1 Abmessungen 20-kHz-Konverter

Pos.	Beschreibung
1	Lufteinlass
2	Erdungsbolzen
3	SHV-Stecker
4	Haltebereich

Tabelle 6.2 20-kHz-Booster

Pos.	Beschreibung
1	1/2 – 20 x 1 – 1/4 Bolzen (Ti-Booster)
I	1/2 – 20 x 1 – 1/2 Bolzen (Al-Booster)
2	Durchmesser des Halterings
3	Variabel
4	Variiert je nach Abstimmung und Verstärkung

* Diese Abmessungen unterliegen keinen Schwankungen.

Abbildung 6.3 Typische Abmessungen 20-kHz-Konverter/Booster/Sonotrode

Tabelle 6.3	20-kHz-Konverter/Booster/Sonotrode

Pos.	Beschreibung
1	Konverter
2	Booster
3	Halbwellenlängen-Sonotrode
4	Empfohlener Spannbereich
5	Durchmesser der Booster-Vorderseite variiert mit Amplitude

* Die Gesamtlänge der Sonotrode kann abhängig von der Anwendung von diesen typischen Abmessungen abweichen.

Tabelle 6.4 30-	-kHz-Konverter
-----------------	----------------

Pos.	Beschreibung
1	Lufteinlass
2	SHV-Stecker
3	Erdungsbolzen
4	Haltebereich

CR-30S und CH-30S haben die gleichen Abmessungen und unterscheiden sich nur hinsichtlich der Kühlung.

CR-30S besitzt eine Durchflusskühlung und CH-30S einen geschlossenen Kühlkreislauf (die Luft zirkuliert im Konverter und kehrt zum Ausgangspunkt zurück).

Abbildung 6.5 Abmessungen 30-kHz-Booster

Tabelle 6.5	30-kHz-Booster
	JU KIL DUUSICI

Pos.	Beschreibung	
1	3/8 – 24 x 1 – 1/4 Bolzen	
2	Durchmesser des Halterings	
3	Variabel	
4	Variiert je nach Abstimmung und Verstärkung	

* Diese Abmessungen unterliegen keinen Schwankungen.

Abbildung 6.6 Typische Abmessungen 30-kHz-Konverter/Booster/Sonotrode

Tabelle 6.6 30-kHz-Konverter/Booster/Sonoti	rode
---	------

Pos.	Beschreibung
1	Konverter
2	Booster
3	Halbwellenlängen-Sonotrode
4	Empfohlener Spannbereich
5	Durchmesser der Booster-Vorderseite variiert mit Amplitude
1 2 3 4 5	Konverter Booster Halbwellenlängen-Sonotrode Empfohlener Spannbereich Durchmesser der Booster-Vorderseite variiert mit Amplitude

* Die Gesamtlänge der Sonotrode kann abhängig von der Anwendung von diesen typischen Abmessungen abweichen.

Abbildung 6.7 Abmessungen 40-kHz-Konverter 4TR

Tabelle 6.740-kHz-Konverter 4TR

Pos.	Beschreibung
1	Erdungsbolzen
2	SHV-Stecker
3	Haltebereich

Tabelle 6.8	40-kHz-Booster

Pos.	Beschreibung	
1	M8 x 1 – 1/4 Bolzen (Ti-Booster)	
Ι	M8 x 1 – 1/2 Bolzen (Al-Booster)	
2	Durchmesser des Halterings	
3	Variabel	
4	Variiert je nach Abstimmung und Verstärkung	

Abbildung 6.9 Typische Abmessungen 40-kHz-Konverter/Booster/Sonotrode

Tabelle 6.9	40-kHz-Konverter/Booster/Sonotrode

Pos.	Beschreibung	
1	Konverter	
2	Booster	
3	Halbwellenlängen-Sonotrode	
4	Empfohlener Spannbereich	
5	Durchmesser der Booster-Vorderseite variiert mit Amplitude	

* Die Gesamtlänge der Sonotrode kann abhängig von der Anwendung von diesen typischen Abmessungen abweichen.

** Abmessungen variieren je nach Abstimmung und Verstärkung.

6.1.1 Funktionsbeschreibung der Komponenten

Ultraschall-Resonanzeinheit

Konverter

Der Konverter ist im Automatisierungssystem des Kunden als Teil der Ultraschall-Resonanzeinheit montiert. Die elektrische Ultraschallenergie vom Generator wird an den Konverter (manchmal auch Wandler genannt) geleitet. Hier werden die hochfrequenten elektrischen Schwingungen in mechanische Vibrationen mit derselben Frequenz umgewandelt. Das Herzstück des Konverters sind piezoelektrische Keramikelemente. Wird ein Wechselstrom angelegt, dann dehnen sich diese Elemente abwechselnd aus und ziehen sich zusammen, was zu einer über 90 %igen Umwandlung der elektrischen in mechanische Energie führt.

Booster

Um mit Ultraschall erfolgreich fügen zu können, ist es wichtig, die Amplitude der Sonotrode an der Schweißfläche zu verändern. Der Booster ermöglicht die Veränderung der Amplitude. Er koppelt Ultraschallenergie in verschiedenen Verhältnissen an die Sonotrode. Dadurch steigt oder sinkt die Amplitude an der Sonotrodenoberfläche. Dies erfolgt über die Veränderung der Masseverhältnisse am Ein- und Ausgangsquerschnitt des Boosters.

Der Booster ist eine Halbwellenlängen-Resonanzeinheit aus Aluminium oder Titan. Er ist als Teil der Ultraschall-Resonanzeinheit zwischen dem Konverter und der Sonotrode montiert. Er besitzt auch einen Befestigungspunkt für die feste Montage der Resonanzeinheit.

Sonotrode

Die Sonotrode wird jeweils für eine spezifische Anwendung ausgewählt oder konzipiert. Jede Sonotrode wird typischerweise als Halbwellenlängen-Element abgestimmt, das den erforderlichen Druck und die Schwingung gleichmäßig auf die zu fügenden Teile überträgt. Sie überträgt die Ultraschallschwingungen des Konverters auf das Werkstück. Die Sonotrode ist als Teil der Ultraschall-Resonanzeinheit am Booster montiert.

Je nach Profil werden Sonotroden als abgestuft, kegelförmig, exponentiell, stabförmig oder katenoid bezeichnet. Die Sonotrodenform bestimmt die Amplitude an der Sonotrodenoberfläche. Je nach Anwendung werden Sonotroden aus Titanlegierungen, Aluminium oder Stahl gefertigt. Titanlegierungen eignen sich aufgrund ihrer hohen Stabilität und der geringen Verluste am besten für die Fertigung von Sonotroden. Aluminiumsonotroden sind normalerweise chrom- oder nickel- oder hartbeschichtet, um die Abnutzung zu verringern. Stahlsonotroden eignen sich für niedrige Amplituden, die Härte erfordern, wie z. B. beim Ultraschalleinbetten.

Fest montierte Booster

Der fest montierte Booster ist eine Halbwellenlängen-Resonanzeinheit, die ausschließlich aus Titan besteht. Er ist zwischen dem Konverter und der Sonotrode angebracht, verändert die Amplitude der Schwingung, die auf die Sonotrode wirkt und bietet einen Klemmpunkt.

Der fest montierte Booster ist älteren Boosterversionen überlegen, da die Auslenkung auf ein Minimum begrenzt ist. Dies wird durch den neu konzipierten Klemmring mit einer Pressverbindung von Metall auf Metall anstelle einer O-Ring-Baugruppe ermöglicht.

Der Vorteil dieses Boosters ist seine größere Steifigkeit. Bei Daueranwendungen bedeutet dies, dass mehr Energie an das Produkt übertragen wird, während im Taktbetrieb eine bessere Ausrichtung möglich ist. Die feste Montage ermöglicht eine verbesserte Positionsausrichtung und ist bei Daueranwendungen von Vorteil, da hierbei eine große Kraft, eine hohe Seitenlast oder hohe Zyklusraten erforderlich sind. Im Taktbetrieb wird bei einer Vielzahl von Materialien, Fügedesigns und Betriebsbedingungen die Gesamtauslenkung im Durchschnitt um 0,064 mm (0,0025 in) verringert. Die Ergebnisse dieser Prüfung in Verbindung mit den Informationen aus Feldversuchen deuten darauf hin, dass Tauschschweißanwendungen, bei denen eine präzise Ausrichtung erforderlich ist (z. B. beim Nieten, Bördeln oder Einbetten) oder wo Koaxialität/Parallelität entscheidend sind, von der festen Montage profitieren.

Kapitel 7: Betrieb

7.1	Einstellen der Primärparameter	84
7.2	Einstellung von Leistungs-Fenster-Grenzwerten	91
7.3	Einstellung der Amplitude	96
7.4	Zurücksetzen der Generatoralarme	98
7.5	Konfiguration der Generatorregister	99
7.6	LCD-Balkendiagramm	.104
7.7	Webinterface	. 107
7.8	Ultraschall-Prüfverfahren	.112

7.1 Einstellen der Primärparameter

HINWEIS	
i	Es gibt eine Hochlaufverzögerung von zwei Sekunden, bevor das System im Bereitschaftsmodus ist.

Sie können die Betriebsart für das Fügen Ihrer Teile an Ihre jeweilige Anwendung anpassen. Die Betriebsart basiert auf verschiedenen Schweißparametern. (Kontaktieren Sie das Branson-Labor für Ultraschallanwendungen, um mehr über die Bestimmung der geeigneten Betriebsart für Ihre Anwendung zu erfahren. Siehe <u>1.3 Kontaktaufnahme mit Branson</u>.

Es stehen vier Betriebsarten zur Verfügung: Dauerbetrieb, Zeit und Energiebetriebsarten. Die folgende Tabelle enthält eine Beschreibung der einzelnen Betriebsarten:

Schweißbetriebsart	Beschreibung
Dauerbetrieb	In dieser Betriebsart wird bei aktivem Startsignal kontinuierlich Ultraschallenergie bereitgestellt.
Zeit	Sie wählen die Zeitspanne (in Sekunden), während der Ultraschallenergie auf die Teile übertragen wird.
Energie	Sie wählen die Energiemenge (in Joule), die auf die Teile übertragen wird. (Ein Joule ist eine Wattsekunde).

HINWEIS	
()	In diesen Betriebsarten können Abschaltungen als sekundäre Steuerungen verwendet werden.

7.1.1 Dauerbetrieb

In dieser Betriebsart wird bei aktivem Startsignal kontinuierlich Ultraschallenergie bereitgestellt. Im Dauerbetrieb können Sie außerdem verschiedene andere Parameter auswählen, vom Nachimpuls bis zu Grenzwerten und Abschaltungen. Informationen zur Konfiguration der optionalen Parameter im Dauerbetrieb oder zu anderen Betriebsarten finden Sie in der DCX-Web-Page-Anleitung.

Schritt	Aktion	Referenz
1	Drücken Sie die Konfigurationstaste, bis das Nummernsymbol (#) auf der LCD angezeigt wird. Beim Einschalten zeigt der Generator immer das Register 101 an.	
2	Drücken Sie wiederholt die Auf- und Abwärts-Pfeiltaste, um das Register 138 auszuwählen. Eine detaillierte Beschreibung der verfügbaren Register finden Sie in <u>Tabelle 7.16 Register des</u> <u>Generators</u> .	
3	Wenn Sie das Register 138 erreicht haben, drücken Sie die Konfigurationstaste. Der Registerwert wird angezeigt. Dies wird durch das Kreissymbol gekennzeichnet.	

Schritt	Aktion	Referenz
4	Verwenden Sie die Auf- und Abwärts- Pfeiltaste, um den Wert 0 auszuwählen (Dauerbetrieb), und drücken Sie dann die Konfigurationstaste, um die Auswahl zu bestätigen.	
5	Das Symbol für Dauerbetrieb und der Amplitudenwert werden angezeigt.	

Tabelle 7.2 Arbeitsfolge bei Dauerbetrieb

7.1.2 Betriebsart "Zeit"

Mit der Betriebsart "Zeit" können Sie festlegen, wie lange Ultraschallenergie auf Ihre Teile einwirken soll. Innerhalb der Betriebsart "Zeit" können Sie außerdem verschiedene andere Parameter auswählen, vom Nachimpuls bis zu Grenzwerten und Abschaltungen. Informationen zur Konfiguration der optionalen Parameter in der Betriebsart "Zeit" oder zu anderen Betriebsarten finden Sie in der DCX-Web-Page-Anleitung.

Tabelle 7.3	Parameter	für die	Betriebsart	"Zeit"

Parameter	Voreinstellung	Höchstwert	Mindestwert
Zeit	00,01 s	30,00 s	00,01 s

Tabelle 7.4 Arbeitsfolge bei der Betriebsart "Zeit"

Schritt	Aktion	Referenz
1	Drücken Sie die Konfigurationstaste, bis das Nummernsymbol (#) auf der LCD angezeigt wird. Beim Einschalten zeigt der Generator immer das Register 101 an.	
2	Drücken Sie wiederholt die Auf- und Abwärts-Pfeiltaste, um das Register 138 auszuwählen. Eine detaillierte Beschreibung der verfügbaren Register finden Sie in <u>Tabelle 7.16 Register des</u> <u>Generators</u> .	

Schritt	Aktion	Referenz
3	Wenn Sie das Register 138 erreicht haben, drücken Sie die Konfigurationstaste. Der Registerwert wird angezeigt. Dies wird durch das Kreissymbol gekennzeichnet.	
4	Verwenden Sie die Auf- und Abwärts- Pfeiltaste, um den Wert 1 auszuwählen (Betriebsart "Zeit"), und drücken Sie dann die Konfigurationstaste, um die Auswahl zu bestätigen.	

Tabelle 7.4 Arbeitsfolge bei der Betriebsart "Zeit"

7.1.2.1 Stellen Sie die Parameter für den Modus Betriebsart "Zeit" ein

 Tabelle 7.5
 Stellen Sie die Parameter f
 ür den Modus "Betriebsart Zeit" ein

Schritt	Aktion	Referenz
1	Stellen Sie den Generator auf Betriebsart "Zeit".	Sie die auf 7.1.2 Betriebsart "Zeit".
2	Das Symbol für die Betriebsart "Zeit" und der Parameterwert werden angezeigt. Verwenden Sie die Auf- und Abwärtstaste, um den gewünschten Parameterwert einzugeben, und drücken Sie dann die Konfigurationstaste, um die Auswahl zu bestätigen.	

7.1.3 Betriebsart "Energie"

Mit der Betriebsart "Energie" können Sie festlegen, wie viel Ultraschallenergie auf Ihre Teile einwirken soll. Innerhalb der Betriebsart "Energie" können Sie außerdem verschiedene andere Parameter auswählen, vom Nachimpuls bis zu Grenzwerten und Abschaltungen. Informationen zur Konfiguration der optionalen Parameter in der Betriebsart "Energie" oder zu anderen Betriebsarten finden Sie in der DCX-Web-Page-Anleitung.

Tabelle 7.6	Parameter	für	die	Betriebsart	"Energie"

Parameter	Voreinstellung	Höchstwert	Mindestwert
Energie	500 J	9999 J	0010 J

Tabelle 7.7	Arbeitsfolge bei der Be	triebsart "Energie"
	0	0

Schritt	Aktion	Referenz
1	Drücken Sie die Konfigurationstaste, bis das Nummernsymbol (#) auf der LCD angezeigt wird. Beim Einschalten zeigt der Generator immer das Register 101 an.	
2	Drücken Sie wiederholt die Auf- und Abwärts-Pfeiltaste, um das Register 138 auszuwählen. Eine detaillierte Beschreibung der verfügbaren Register finden Sie in <u>Tabelle 7.16 Register des</u> <u>Generators</u> .	

Schritt	Aktion	Referenz
3	Wenn Sie das Register 138 erreicht haben, drücken Sie die Konfigurationstaste. Der Registerwert wird angezeigt. Dies wird durch das Kreissymbol gekennzeichnet.	
4	Verwenden Sie die Auf- und Abwärts- Pfeiltaste, um den Wert 2 auszuwählen (Betriebsart "Energie"), und drücken Sie dann die Konfigurationstaste, um die Auswahl zu bestätigen.	

Tabelle 7.7 Arbeitsfolge bei der Betriebsart "Energie"

7.1.3.1 Stellen Sie die Parameter für den Betriebsart "Energie" ein

 Tabelle 7.8
 Stellen Sie die Parameter f
 ür den Betriebsart "Energie" ein

Schritt	Aktion	Referenz
1	Stellen Sie den Generator auf Betriebsart "Energie".	Sie die auf <u>7.1.3 Betriebsart</u> <u>"Energie"</u> .
2	Das Symbol für die Betriebsart "Energie" und der Parameterwert werden angezeigt. Verwenden Sie die Auf- und Abwärtstaste, um den gewünschten Parameterwert einzugeben, und drücken Sie dann die Konfigurationstaste, um die Auswahl zu bestätigen.	

7.2 Einstellung von Leistungs-Fenster-Grenzwerten

Wenn obere oder untere Leistungsfenster-Grenzwerte aktiviert sind, wird im Balkendiagramm ein einzelnes, langsam blinkendes Segment für die Obergrenze bzw. ein einzelnes, langsam blinkendes Segment für die Untergrenze angezeigt. Bei einem Fenstergrenzwertalarm blinkt das jeweilige Segment schneller.

Abbildung 7.1 Leistungs-Fenster-Grenzwerte

HINWEIS	
i	Leistungsfenster-Grenzwerte müssen in Vielfachen von 5 eingestellt werden.

7.2.1 Leistungs-Fenster-Untergrenze

Parameter	Voreinstellung	Höchstwert	Mindestwert
Leistungsfenster- Untergrenze	20 %	100 %*	0 % (Aus)

Tabelle 7.9	Parameter für	die Leistungsfenster	-Untergrenze
-------------	---------------	----------------------	--------------

HINWEIS	
i	*Der Maximalwert sollte 5 % niedriger sein als der obere Fenstergrenzwert. Bei abgeschaltetem oberen Fenstergrenzwert ist der Maximalwert 100 %.

Tabelle 7.10	Arbeitsfolge für	die Leistungsfenster	-Untergrenze

Schritt	Aktion	Referenz
1	Drücken Sie die Konfigurationstaste, bis das Nummernsymbol (#) auf der LCD angezeigt wird. Beim Einschalten zeigt der Generator immer das Register 101 an.	
2	Drücken Sie wiederholt die Auf- und Abwärts-Pfeiltaste, um das Register 155 auszuwählen. Eine detaillierte Beschreibung der verfügbaren Register finden Sie in <u>Tabelle 7.16 Register des</u> <u>Generators</u> .	

Schritt	Aktion	Referenz
3	Wenn Sie das Register 155 erreicht haben, drücken Sie die Konfigurationstaste. Der Registerwert wird angezeigt. Dies wird durch das Kreissymbol gekennzeichnet.	
4	Verwenden Sie die Auf- und Abwärts- Pfeiltaste, um den gewünschten Wert für die Leistungsfenster-Untergrenze auszuwählen, und drücken Sie dann die Konfigurationstaste, um die Auswahl zu bestätigen.	

Tabelle 7.10	Arbeitsfolge für	die Leistungsfenster-	Unterarenze
	rabolitologo lai	alo Eolorangoronoro	erner gi erize

7.2.2 Leistungs-Fenster-Obergrenze

Parameter	Voreinstellung	Höchstwert	Mindestwert
Leistungsfenster- Obergrenze	80 %	100 %	0 % (Aus)*

HINWEIS	
6	*Der Minimalwert sollte 5 % höher sein als der untere Fenstergrenzwert. Bei abgeschaltetem oberen Fenstergrenzwert ist der Minimalwert 0 %.

Tabelle 7.12	Arbeitsfolge	für die	Leistungsfenst	er-Obergrenze

Schritt	Aktion	Referenz
1	Drücken Sie die Konfigurationstaste, bis das Nummernsymbol (#) auf der LCD angezeigt wird. Beim Einschalten zeigt der Generator immer das Register 101 an.	
2	Drücken Sie wiederholt die Auf- und Abwärts-Pfeiltaste, um das Register 156 auszuwählen. Eine detaillierte Beschreibung der verfügbaren Register finden Sie in <u>Tabelle 7.16 Register des</u> <u>Generators</u> .	

Schritt	Aktion	Referenz
3	Wenn Sie das Register 156 erreicht haben, drücken Sie die Konfigurationstaste. Der Registerwert wird angezeigt. Dies wird durch das Kreissymbol gekennzeichnet.	
4	Verwenden Sie die Auf- und Abwärts- Pfeiltaste, um den gewünschten Wert für die Leistungsfenster-Obergrenze auszuwählen, und drücken Sie dann die Konfigurationstaste, um die Auswahl zu bestätigen.	

Tabelle 7.12	Arbeitsfolge für die	Leistungsfenster	-Obergrenze
	Albeitslonge für die	Leistungstenster	Obergrenze

7.2.3 Verwendung des Webinterface

Die Fenstergrenzwerte können über das Webinterface auf einen benutzerdefinierten Wert eingestellt werden. Weitere Informationen finden Sie in der Bedienungsanleitung zum DCX-Serien-Webinterface.

7.3 Einstellung der Amplitude

7.3.1 Verwendung der Bedienelemente

Beim Einschalten des Generator DCX RM S wird auf dem LCD-Display die letzte Amplitudeneinstellung angezeigt. Außerdem kann die Anzeige der Betriebsart aktiviert werden.

Abbildung 7.2 LCD-Anzeige beim Einschalten

Schritt	Aktion	Referenz
1	Drücken Sie die Konfigurationstaste, bis auf dem LCD-Display das Prozentsymbol (%) (und keine Symbole für die Betriebsarten) angezeigt wird.	
2	Drücken Sie wiederholt die Auf- und Abwärts-Pfeiltaste, um die gewünschte Amplitude in 1-%-Schritten einzustellen.	
	Drücken Sie die Auf- und Abwärts- Pfeiltaste und halten Sie sie gedrückt. Der Amplitudenwert inkrementiert jede Viertelsekunde automatisch um 1 %.	
	Wenn Sie eine der Pfeiltasten länger als vier Sekunden gedrückt halten, inkrementiert der Amplitudenwert jede Viertelsekunde automatisch um 5 %.	

7.3.2 Verwendung der externen Amplitudensteuerung

Wenn die externe Amplitudensteuerung aktiviert ist, ist die Amplitudenregelung am Bedienfeld deaktiviert und auf der LCD-Anzeige erscheinen vier Querstriche (siehe Abbildung 7.3 LCD-Anzeige bei aktivierter externer Amplitudensteuerung unten).

Abbildung 7.3 LCD-Anzeige bei aktivierter externer Amplitudensteuerung

Die Ultraschallamplitude kann über einen der beiden Analogeingangspins am Benutzer-E/A-Anschluss (Pins 17 und 18) angesteuert werden.

7.3.3 Verwendung des Webinterface

Die Ultraschallamplitude kann über das Webinterface auf einen benutzerdefinierten Wert eingestellt werden. Weitere Informationen finden Sie in der Bedienungsanleitung zum DCX-Serien-Webinterface.

7.4 Zurücksetzen der Generatoralarme

Bei Überlast muss das Schweißsystem zurückgesetzt werden. Tritt eine Überlastsituation auf, wird das Alarmsymbol auf der Bedienfeld-LCD angezeigt und der allgemeine Alarmausgang am Benutzer-E/A-Anschluss wird aktiviert. Das Verfahren zum Zurücksetzen des Generators hängt von den Alarmeinstellungen des Generators ab. Rücksetzverfahren, siehe <u>Tabelle 7.14 Zurücksetzen des Generator DCX RM S</u>.

Tabelle 7.14	Zurücksetzen	des Generator	DCX RM S
--------------	--------------	---------------	----------

Alarmeinstellung	Rücksetzverfahren
Bleibende Alarme	Drücken Sie die Rücksetztaste am Bedienfeld. Sie können auch ein externes Rücksetzungssignal senden.
Löschende Alarme	Das Startsignal löschen und erneut anwenden.

HINWEIS	
i	Der Alarmkreis benötigt bis zum erneuten Start der Ultraschallenergie mindestens 20 ms.

Weitere Informationen zur Verbindung des Generator DCX RM S über den Benutzer-E/A-Anschluss finden Sie in <u>5.3.4 Benutzer-E/A-Anschlüsse</u> in <u>Kapitel 5: Installation und</u> <u>Einrichtung</u>.
7.5 Konfiguration der Generatorregister

Beim Einschalten des Generator DCX RM S wird die zuletzt verwendete Amplitudeneinstellung angezeigt. Sie ist durch ein Prozentsymbol (%) auf der LCD-Anzeige gekennzeichnet. Siehe <u>Abbildung 7.2 LCD-Anzeige beim Einschalten</u>.

Tabelle 7.15	Konfigurationsschritte für	die Generatorregister
--------------	----------------------------	-----------------------

Schritt	Aktion	Referenz
1	Drücken Sie die Konfigurationstaste, bis das Nummernsymbol (#) auf der LCD angezeigt wird. Beim Einschalten zeigt der Generator immer das Register 101 an.	
2	Drücken Sie wiederholt die Auf- und Abwärts-Pfeiltaste, um das gewünschte Register auszuwählen. Eine detaillierte Beschreibung der verfügbaren Register finden Sie in <u>Tabelle 7.16 Register des</u> <u>Generators</u> .	
3	Wenn Sie das gewünschte Register erreicht haben, drücken Sie die Konfigurationstaste. Der Registerwert wird angezeigt. Dies wird durch das Kreissymbol gekennzeichnet.	

Schritt	Aktion	Referenz
	Drücken Sie wiederholt die Auf- und Abwärts-Pfeiltaste, um den gewünschten Wert in Inkrementen von 1 einzugeben.	
	Drücken Sie die Auf- und Abwärts- Pfeiltaste und halten Sie sie gedrückt. Der Wert verändert sich jede Viertelsekunde automatisch um 1.	
4	Wenn Sie eine der Pfeiltasten vier Sekunden gedrückt halten verändert sich der Wert jede Viertelsekunde automatisch um 5.	
	Oder drücken Sie die Rücksetztaste, um den Standardwert einzugeben. Eine detaillierte Auflistung der Standardwerte für die verfügbaren Register finden Sie in <u>Tabelle 7.16</u> <u>Register des Generators</u> .	
5	Drücken Sie zum Speichern des Werts die Konfigurationstaste. Die aktuelle Amplitudeneinstellung wird nur im Dauerbetrieb angezeigt. In allen anderen Betriebsarten wird der primäre Parameter der Betriebsart angezeigt.	

Tabelle 7.15 Konfigurationsschritte f ür die Generatorregister

7.5.1 Register des Generators

Register	Beschreibung	Stan- dard- wert	Höchst- wert	Min- dest- wert
101	Systemsoftwareversion	n. v.	n. v.	n. v.
102	Balkendiagramm-Kennzeichnung nach Abschluss des Schweißvorgangs 0: Leistung 1: Frequenz	0	1	0
104	Externe Amplitudensteuerung – Benutzer- Analogeingang 0: Aus 1: Ein	0	1	0
105	Amplitudenrampenzeit (ms)	80	1000	10
106	Frequenz am Ende des Schweißvorgangs speichern 0: Aus 1: Ein	1	1	0
107	Suche/Scan beim Einschalten 0: Aus 1: Suche 2: Scan	1	2	0
108	Rampenzeit bei Suche (ms)	80	1000	10
109	Zeitlich festgelegte Suche (alle 60 Sekunden) 0: Aus 1: Ein	0	1	0
110	Suchzeit (ms)	500	1000	10
	Frequenz-Offset-Wert			
110	20 kHz		500	-500
112	0 kHz 0		750	-750
	40 kHz		1000	-1000
115	Standards wiederherstellen 0: Aus 1: Nur Schweißvoreinstellung 2: System-Standardwerte	0	2	0
116	IP-Adresse – 1	192	255	0

Register	Beschreibung	Stan- dard- wert	Höchst- wert	Min- dest- wert
117	IP-Adresse – 2	168	255	0
118	IP-Adresse – 3	10	255	0
119	IP-Adresse – 4	100	255	0
120	Gateway für IP-Adresse 1		255	0
121	Gateway für IP-Adresse 2	168	255	0
122	Gateway für IP-Adresse 3	10	255	0
123	Gateway für IP-Adresse 4	1	255	0
124	Subnetzmaske für IP-Adresse 1	255	255	0
125	Subnetzmaske für IP-Adresse 2	255	255	0
126	Subnetzmaske für IP-Adresse 3	255	255	0
127	Subnetzmaske für IP-Adresse 4	0	255	0
128	DHCP-Einstellungen 0: Server 1: Client 2: Statisch 3: Register 116-128 auf Standardeinstellung zurücksetzen	2	3	0
133	Impulsstart deaktivieren 0: Impulsstart aktiviert 1: Der Eingang muss beibehalten werden	0	1	0
134	Timeout Hintergrundbeleuchtung (s) 0: Immer an	600	9999	0
135	Stufengröße Autoscroll	5	50	1
136	Display ein 0: Schweißbetriebsart 1: Amplitude	1	1	0
138	Schweißbetriebsart 0: Dauerbetrieb 1: Zeit 2: Energie	1	2	0
139	MAC-Adresse 1	n. v.	FFFF	0
140	MAC-Adresse 2	n. v.	FFFF	0
141	141 MAC-Adresse 3		FFFF	0

|--|

Register	Beschreibung	Stan- dard- wert	Höchst- wert	Min- dest- wert
	Leistungsfenster-Untergrenze			
155	0: Aus	20	100	0
	1 bis 100: Leistungsuntergrenze (muss niedriger sein als Register 156)			
	Leistungsfenster-Obergrenze			
156	0: Aus	90	100	0
	1 bis 100: Leistungsobergrenze (muss höher sein als Register 155)			
457	Speicherlöschung bei externer Rücksetzung über E/A			0
157	0: Keine Speicherlöschung	0	1	0
	1: Speicherlöschung			

7.6 LCD-Balkendiagramm

Ist die Ultraschallleistung aktiv, dann zeigt die LCD immer den Leistungswert auf dem LCD-Balkendiagramm (bestehend aus 20 Segmenten) als Prozentwert der maximalen Ausgangsleistung an.

Am Ende des Schweiß- oder Prüfzyklus wechselt das Balkendiagramm auf die Werkseinstellungen, um die Spitzenleistung des Zyklus als Prozentwert der maximalen Ausgangsleistung anzuzeigen.

Der Generator kann auch so konfiguriert werden, dass ein einzelner Strich auf dem LCD-Balkendiagramm angezeigt wird, welcher die Betriebsfrequenz der Resonanzeinheit darstellt, die am Ende jedes Schweiß- oder Prüfzyklus gespeichert wird. Diese Option kann für die Fehlerbehebung bei Änderungen der Betriebsfrequenz als Folge von Wärmeeffekten, Kopplung, Werkzeugabnutzung, etc. verwendet werden.

Informationen zum Einstellen der Generatorregister finden Sie unter <u>7.5 Konfiguration der</u> <u>Generatorregister</u>.

7.6.1 Ablesen des Balkendiagramms für Leistung

Das Blitzsymbol links vom Balkendiagramm zeigt an, dass der Ultraschall läuft. Jedes der Segmente zeigt 5-%-Schritte der maximalen Ausgangsleistung an. Die Segmente erscheinen nur, wenn die Ausgangsleistung den dargestellten Wert überschreitet. Liegt die Leistung beispielsweise nur bei 4 %, ist lediglich der "Blitz" sichtbar. Erreicht der Wert 5 %, erscheint das erste Segment des Balkendiagramms.

Tabelle 7.17	Beispiele für das Ab	olesen des Balkendiagramms f	ür Leistuna

Beschreibung	Referenz
In diesem Beispiel erscheint lediglich der Blitz links vom Balkendiagramm. Das bedeutet, dass die Leistung zwischen 0 % und 5 % liegt. Bei einem 800-W-Generator liegt die tatsächliche Ausgangsleistung zwischen 0 W und 40 W.	% +
In diesem Beispiel erscheinen die ersten sechs Segmente auf dem Balkendiagramm. Das bedeutet, dass die Leistung zwischen 30 % und 35 % liegt. Bei einem 800-W-Generator liegt die tatsächliche Ausgangsleistung zwischen 240 W und 280 W.	

7.6.2 Ablesen des Balkendiagramms für Frequenz

Die tatsächliche Frequenz ist abhängig von der Betriebsfrequenz des Generators. Verwenden Sie die Tabellen unten, um das Balkendiagramm für Frequenz abzulesen.

HINWEIS	
i	Liegt eine Prüfüberlast oder ein externes Rücksetzungssignal des Speichers vor, wird das 50-%-Segment angezeigt und es blinkt.

20 kHz (50 Hz/Segment) 19.675-19.724 19.875-19.924 20.075-20.124 20.375-20.424 19.575–19.624 19.775–19.824 19.975-20.024 20.275–20.324 19.475–19.524 19.525-19.574 19.625-19.674 19.925-19.974 20.025-20.074 20.125-20.174 20.175-20.224 20.325-20.374 20.425–20.474 20.225–20.274 19.725–19.774 19.825-19.874 20 (100 %) 10 (50 %) (25 %) 15 (75 %) 12 13 4 16 8 19 7 17 \sim c 9 ω 6 4 ю

Tabelle 7.18 Ablesen des Balkendiagramms – 20 kHz (50-Hz-Segment)

Tabelle 7.20 Ablesen des Balkendiagramms – 40 kHz (100-Hz-Segment)

Tabelle 7.21 Beispiele für das Ablesen des Balkendiagramms für Frequenz

Beschreibung	Referenz
In diesem Beispiel befindet sich der Balken im 11. Segment. Wenn es sich beim Generator um eine 20-kHz-Einheit handelt, bewegt sich die Resonanzeinheit in einem Frequenzbereich von 19.975 Hz bis 20.024 Hz.	
In diesem Beispiel befindet sich der Balken im 7. Segment. Wenn es sich beim Generator um eine 20-kHz-Einheit handelt, bewegt sich die Resonanzeinheit in einem Frequenzbereich von 19.775 Hz bis 19.824 Hz.	

7.7 Webinterface

Das Generator DCX RM S Webinterface bietet über eine Ethernet-Verbindung einen Zugang zu Generatorinformations-, Diagnose- und Konfigurations-Webseiten. Die Kommunikation kann über eine Punkt-zu-Punkt-Verbindung oder über ein lokales Netzwerk erfolgen.

7.7.1 Systemvoraussetzungen

Für die Verbindung mit dem Webinterface des Generator DCX RM S benötigen Sie einen PC mit dem Betriebssystem Windows® mit installiertem Internet Explorer® (Version 7 oder höher).

7.7.2 Verbinden mit der Webinterface

HINWEIS	
()	Der Generator DCX RM S ist nicht kompatibel mit Netzwerk- Scansoftware. Falls Ihr lokales Netzwerk ein solches Programm verwendet, muss die IP-Adresse des Generator DCX RM S auf eine Ausschlussliste gesetzt werden.

HINWEIS	
i	Für die Verbindung mit dem Webinterface des Generator DCX RM S sollte ein geschirmtes Ethernetkabel verwendet werden, um mögliche EMIs (elektromagnetische Interferenzen) zu verhindern.

7.7.2.1 Punkt-zu-Punkt-Verbindung (Windows Vista und Windows 7)

Für die Herstellung einer Verbindung zwischen dem Webinterface des ^{Generator DCX RM S} und einem PC mit dem Betriebssystem Windows Vista[®] oder Windows 7[®] gehen Sie folgendermaßen vor:

- 1. Verbinden Sie den Generator über den Ethernet-Port mit einem PC.
- 2. Schalten Sie den Generator ein.
- 3. Klicken Sie auf Ihrem PC auf das Windows-Logo in der Taskleiste und öffnen Sie die Systemsteuerung.
- 4. Wählen Sie rechts oben Große Symbole aus.
- 5. Öffnen Sie das Netzwerk- und Freigabecenter.

6. Wählen Sie Adaptereinstellungen ändern aus.

7. Klicken Sie mit der rechten Maustaste auf **LAN-Verbindung** und wählen Sie **Eigenschaften** aus, um die Registerkarte **Netzwerk** anzuzeigen.

8. Markieren Sie Internetprotokoll Version 4 (TCP/IPv4) in der Liste und klicken Sie auf Eigenschaften.

Local Area Connection Properties
Networking Sharing
Connect using:
Intel(R) 82577LM Gigabit Network Connection
Configure
This connection uses the following items:
Client for Microsoft Networks
🗹 📮 QoS Packet Scheduler
🗹 📮 File and Printer Sharing for Microsoft Networks
Internet Protocol Version 6 (TCP/IPv6)
Internet Protocol Version 4 (TCP/IPv4)
Link-Layer Topology Discovery Mapper I/O Driver
Ink-Layer Topology Discovery Responder
Install
Description
Transmission Control Protocol/Internet Protocol. The default wide area network protocol that provides communication across diverse interconnected networks.
OK Cancel

9. Verwenden Sie folgende IP-Adresse:
IP-Adresse: 192.168.10.101
Subnetzmaske: 255.255.255.0

eneral	
You can get IP settings assigned this capability. Otherwise, you n for the appropriate IP settings,	automatically if your network supports eed to ask your network administrator
Obtain an IP address autor	natically
Use the following IP addres	s:
IP address:	192 . 168 . 10 . 101
S <u>u</u> bnet mask:	255.255.255.0
Default gateway:	
🕐 O <u>b</u> tain DNS server address	automatically
() Use the following DNS serve	er addresses:
Preferred DNS server:	X 6 30
Alternate DNS server:	10 K 70
🔲 Validate settings upon exit	Ad <u>v</u> anced

- 10.Klicken Sie auf OK. Schließen Sie die übrigen Dialogfelder.
- 11. Öffnen Sie den Internet Explorer (Version 7 oder höher).
- 12.Geben Sie in der Adresszeile folgende Adresse ein: <u>http://192.168.10.100</u>. Drücken Sie die Enter-Taste.
- 13. Jetzt erscheint das Webinterface des Generator DCX RM S.
- 14.Geben Sie eine Nutzer ID ein (jede Zahl mit bis zu 9 Ziffern).

BRANSON	
IP Setup Weld Preset I/O Diagnostics P/S Diagnostics System I/O Configuration Alarm Log Information	
LOGIN	
User ID# Log In	
© 2011 Branson, All Rights Reserved EMERSON. Industrial Automation	

7.7.2.2 Punkt-zu-Punkt Verbindung (Windows XP)

- 1. Für die Herstellung einer Verbindung zwischen dem Webinterface des ^{Generator DCX RM S} und einem PC mit dem Betriebssystem Windows XP[®] gehen Sie folgendermaßen vor:
- 2. Verbinden Sie den Generator über den Ethernet-Port mit einem PC.
- 3. Schalten Sie den Generator ein.
- 4. Öffnen Sie auf Ihrem PC: **Start > Systemsteuerung**.
- 5. Wählen Sie links oben Zur klassischen Ansicht wechseln.

ols
) :
5
٦

- 6. Wählen Sie Netzwerkverbindungen.
- 7. Klicken Sie mit der rechten Maustaste auf LAN-Verbindung, wählen Sie Eigenschaften und anschließend die Registerkarte Allgemein.

8. Markieren Sie Internetprotokoll (TCP/IP) in der Liste und klicken Sie auf Eigenschaften.

eneral Adv	anced			
Connect usir	ıg:			
🕮 Broad	com Net⊠tre	me 57xx Gigabit	C	Configure
This connect	ion uses the	following items:		
	Packet Scl	heduler		~
	.T. Wi-Fi Sup	port Driver		
🗹 🤉 İnte	rnet Protoco	I (TCP/IP)		~
<				>
l <u>n</u> stall		<u>U</u> ninstall	\square	Properties
Description				
Transmiss wide area across div	ion Control F network pro erse intercor	rotocol/Internet tocol that provid	Protocol. es commu	The default inication
Charles in a	n in notificati	on area when c	onnected	
Show ico	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		nited of po	

9. Verwenden Sie folgende IP-Adresse:
IP-Adresse: 192.168.10.101
Subnetzmaske: 255.255.255.0

eneral	
You can get IP settings assigned this capability. Otherwise, you r for the appropriate IP settings.	d automatically if your network supports eed to ask your network administrator
O Obtain an IP address autor	natically
OUSE the following IP addres	55:
IP address:	192 . 168 . 10 . 101
Sybnet mask:	255 . 255 . 255 . 0
Default gateway:	
Obtain DNS server address	automatically
OUSe the following DNS serv	er addresses:
Preferred DNS server:	
Alternate DNS server:	
	Advanced

10.Klicken Sie auf OK. Schließen Sie die übrigen Dialogfelder.

- 11. Öffnen Sie den Internet Explorer (Version 7 oder höher).
- 12.Geben Sie die folgende Adresse in der Adresszeile ein: <u>http://192.168.10.100</u>. Drücken Sie die Enter-Taste.
- 13.Jetzt erscheint das Webinterface des Generator DCX RM S.
- 14.Geben Sie eine Nutzer ID ein (jede Zahl mit bis zu 9 Ziffern).

BRANSON		
IP Setup Weld Preset I/O Diagnostics P/S	Diagnostics System I/O Configuration Alarm Log Information	×
LOGIN		
User ID#		
Log In	© 2011 Branson, All Rights Reserved	
	EMERSON. Industrial Automation	

7.7.3 Verwendung des Webinterface

Eine vollständige Anleitung zum Webinterface finden Sie im Handbuch zum Webinterface der DCX-Serie.

7.8 Ultraschall-Prüfverfahren

Die Ultraschall-Prüffunktion misst die Ultraschallleistung, die ohne Last von der Ultraschall-Resonanzeinheit abgegeben wird. Das Ultraschall-Prüfverfahren umfasst einen automatischen Abgleich der Frequenz des Generators mit der Frequenz der Konverter-Booster-Sonotroden-Resonanzeinheit.

WARNUNG	Warnung vor gefährlicher elektrischer Spannung
4	Stellen Sie sicher, dass bei der Prüfung des Generators niemand mit der Sonotrode in Berührung kommt. Takten Sie das Schweißsystem nicht, falls das HF-Kabel oder der Konverter nicht angeschlossen ist.

WARNUNG	Warnung vor gefährlicher elektrischer Spannung
4	Stellen Sie sicher, dass der Generator korrekt angeschlossen ist, wie in <u>5.3 Installationsschritte</u> beschrieben.

7.8.1 Verwendung der Bedienelemente

HINWEIS	
(]	Um das Bedienfeld zu verwenden, muss sich der Generator DCX RM S im manuellen Modus befinden.

 Tabelle 7.22
 Generator-Ultraschall-Prüfverfahren (Bedienfeld)

Schritt	Aktion	Referenz
15	Drücken Sie die Test-Taste ein bis zwei Sekunden lang und lassen Sie sie dann los. Die Anzeige "Ultraschall aktiv" erscheint beim Drücken der Test-Taste. Wird die Generator-Alarmanzeige nicht angezeigt, dann ist der Prüfvorgang abgeschlossen.	$\mathbf{\tilde{\mathbf{S}}}^{\mathbf{W}}$
16	Wird die Alarmanzeige angezeigt, dann drücken Sie die Alarm-Rücksetztaste und wiederholen Sie Schritt 2 nur ein Mal. Bleibt der Alarm bestehen, siehe <u>8.5 Fehlerbehebung</u> .	

7.8.2 Verwendung der E/A-Anschlüsse

Schritt	Aktion	Referenz
1	Verdrahten Sie die erforderlichen E/A- Signale, wie in <u>Abbildung 7.4</u> <u>Prüfanschlüsse</u> dargestellt oder verwenden Sie eine ähnliche Konfiguration.	Siehe <u>Abbildung 7.4</u> Prüfanschlüsse unten.
2	Senden Sie ein bis zwei Sekunden lang ein externes Startsignal. Der Ultraschall-aktiv-Ausgang wird aktiv und die Ultraschall-aktiv-Anzeige erscheint, während das externe Startsignal vorliegt. Wenn der allgemeine Alarmausgang/die Alarmanzeige nicht erscheint, ist der Prüfvorgang abgeschlossen.	%
3	Wenn der allgemeine Alarmausgang/die Alarmanzeige aktiviert wird, senden Sie ein externes Rücksetzungssignal und wiederholen Sie Schritt 2 nur ein Mal. Bleibt der Alarm bestehen, siehe <u>8.5</u> <u>Fehlerbehebung</u> .	

Tabelle 7.23	Generator-Ultraschall-Prüfverfahren	(Benutzer-E/A)
		· · · · · · · · · · · · · · · · · · ·

Abbildung 7.4 Prüfanschlüsse

Kapitel 8: Wartung

Allgemeine Wartungshinweise	116
Vorbeugende Wartung	118
Kalibrierung	124
Empfohlener Ersatzteilvorrat	125
Fehlerbehebung	131
	Allgemeine WartungshinweiseVorbeugende WartungKalibrierungEmpfohlener ErsatzteilvorratFehlerbehebung

8.1 Allgemeine Wartungshinweise

WARNUNG	Warnung vor gefährlicher elektrischer Spannung
	Generatoren erzeugen Hochspannung. Um Stromschläge zu vermeiden, Anlage vor Reparaturen immer ausschalten.

VORSICHT	Allgemeine Warnung
	Stellen Sie bei Wartungsarbeiten am Schweißgerät sicher, dass keine weiteren automatisierten Systeme aktiv sind.

HINWEIS	
i	Der Generator enthält keine vom Kunden austauschbaren Teile. Lassen Sie alle Wartungsarbeiten von einem entsprechend qualifizierten Branson-Servicetechniker durchführen.

HINWEIS	
i	Bei der Rücksendung von Platinen sicherstellen, dass diese antistatisch verpackt werden.

HINWEIS	
(1)	Möglicherweise sind die Anschlüsse nicht gekennzeichnet und die Drähte nicht farbcodiert. Beim Trennen der Kabel und Drähte müssen diese gekennzeichnet werden, um sie später wieder richtig anschließen zu können.

HINWEIS	
i	Um den Schaltkreis vor Schäden durch elektrostatische Entladungen zu schützen, ist der Generator immer auf einer antistatischen Oberfläche zu warten. Tragen Sie bei den Arbeiten immer ein Erdungsarmband.

8.2 Vorbeugende Wartung

Durch die folgenden vorbeugenden Maßnahmen können Sie den langfristigen Betrieb Ihres Generator DCX RM S von Branson gewährleisten.

8.2.1 Regelmäßige Reinigung

HINWEIS	
i	Ausschließlich antistatische Staubsauger verwenden, um Schäden durch elektrostatische Entladungen am Generator zu vermeiden.

Es wird ständig Luft in den Generator hinein gesogen. Trennen Sie das Gerät regelmäßig vom Netzanschluss, entfernen Sie die Abdeckung und saugen Sie den angesammelten Staub und Rückstände ab. Entfernen Sie Ablagerungen an:

- Kühllamellen des Generators
- Transformatoren
- Leiterplatten
- Kühlluft-Einlassöffnungen
- Abluftöffnungen

Die äußeren Abdeckungen können mit einem feuchten Schwamm oder Lappen und einer milden Seifenlauge und Wasser gereinigt werden. Achten Sie darauf, dass keine Reinigungslösung in das Gerät gelangt.

Um Rost an Standorten mit hoher Feuchtigkeit zu vermeiden, die freiliegenden Stahloberflächen gegebenenfalls mit einem sehr dünnen Film Rostschutzöl, z. B. WD-40[®], behandeln.

8.2.2 Aufarbeitung der Resonanzeinheit (Konverter, Booster und Sonotrode)

HINWEIS	
i	Die Berührungsflächen der Konverter-Booster-Sonotroden- Resonanzeinheit nie mit einer Schwabbelscheibe oder durch Feilen reinigen.

Die Komponenten des Schweißsystems arbeiten am effizientesten, wenn die Berührungsflächen der Konverter-Booster-Sonotroden-Resonanzeinheit plan sind, festen Kontakt haben und keinen Passungsrost aufweisen. Ein unzureichender Kontakt der Berührungsflächen führt zur Verschwendung von Ausgangsleistung, zu einer erschwerten Abstimmung, zu einem höheren Geräusch- und Hitzepegel und möglicherweise zu Schäden am Konverter.

Bei standardmäßigen 20-kHz- und 30-kHz-Produkten sollte eine Branson Mylar-Unterlegscheibe aus Polyesterfolie zwischen der Sonotrode und dem Booster und auch zwischen der Sonotrode und dem Konverter montiert werden. Ersetzen Sie die Unterlegscheibe, wenn sie gerissen oder perforiert ist. Resonanzeinheiten mit Mylar-Kunststofffolie-Unterlegscheiben sollten alle drei Monate überprüft werden.

Resonanzeinheiten, die mit Silikonfett betrieben werden sowie bestimmte 20-kHz-, 30-kHz- und alle 40-kHz-Produkte sollten regelmäßig überholt werden, um Passungsrost zu beseitigen. Eine Resonanzeinheit, die mit Silikonfett verwendet wird, sollte alle zwei Wochen auf Korrosionsspuren untersucht werden. Wenn Sie Erfahrung mit bestimmten Resonanzeinheiten haben, kann das Inspektionsintervall entsprechend den tatsächlichen Bedürfnissen verlängert oder verkürzt werden.

Verfahren zur Überholung der Resonanzeinheit

Gehen Sie beim Überholen der Resonanzeinheit wie folgt vor:

Schritt	Aktion
1	Bauen Sie die Konverter-Booster-Sonotroden-Resonanzeinheit auseinander und wischen Sie die Berührungsflächen mit einem sauberen Lappen oder Papiertuch ab.
2	Untersuchen Sie alle Berührungsflächen. Weist eine der Berührungsflächen Anzeichen von Korrosion oder harte, dunkle Ablagerungen auf, dann überholen Sie das Gerät.
3	Entfernen Sie ggf. den Gewindebolzen aus dem Teil.
4	Kleben Sie ein sauberes Stück Polierleinen der Körnung 400 (oder feiner) auf eine saubere, glatte, flache Oberfläche (z. B. eine Glasscheibe), wie in Abbildung 8.1 Überholen der Berührungsflächen der Resonanzeinheit.
5	Platzieren Sie die Berührungsfläche auf dem Polierleinen. Halten Sie das Teil am unteren Ende mit dem Daumen über dem Hakenschlüssel-Loch und strei- fen Sie das Teil zum Polieren in einer geraden Linie über das Polierleinen. Üben Sie dabei keinen Druck nach unten aus – das Gewicht des Teils allein sorgt für den erforderlichen Druck.

Tabelle 8.1 Verfahren zur Überholung der Resonanzeinheit

Schritt	Aktion
6	Streifen Sie mit dem Teil zwei oder drei Mal in der gleichen Richtung über das Polierleinen. (Siehe <u>Abbildung 8.1 Überholen der Berührungsflächen der</u> <u>Resonanzeinheit</u>).
7	Drehen Sie das Teil um 120 Grad, legen Sie Ihren Daumen über das Hakenschlüssel-Loch und wiederholen Sie den Vorgang aus Schritt 6.
8	Drehen Sie das Teil nochmals um 120 Grad zum nächsten Hakenschlüssel-Loch und wiederholen Sie erneut den Vorgang aus Schritt 6.
9	Untersuchen Sie erneut die Berührungsfläche. Wiederholen Sie ggf. die Arbeitsschritte 2 bis 5, bis die Ablagerungen größtenteils entfernt sind. Beachten Sie, dass dies bei einer Sonotrode oder einem Booster aus Aluminium mehr als zwei oder drei vollständige Umdrehungen erfordert. Bei Titankomponenten können es auch noch mehr Umdrehungen sein.
10	Vor dem erneuten Einsetzen eines Gewindebolzens in einen Aluminium- Booster oder in eine Aluminium-Sonotrode:
	Verwenden Sie eine Feilen- oder Drahtbürste, um Aluminiumteile vom gerändelten Ende des Bolzens zu entfernen.
	Benutzen Sie zum Reinigen der Gewindebohrung ein sauberes Tuch.
	Untersuchen Sie das gerändelte Ende des Bolzens. Ist er abgenutzt, dann ersetzen Sie ihn. Untersuchen Sie auch den Bolzen und die Gewindebohrung auf Abnutzungserscheinungen.
	HINWEIS Bei Titan-Sonotroden oder -Boostern dürfen Gewindebolzen nicht wiederver- wendet werden. Tauschen Sie bei diesen Komponenten alle Bolzen aus.
11	Bauen Sie die Resonanzeinheit wieder zusammen und montieren Sie sie.

Tabelle 8.1	Verfahren zur Überholung der Resonanzeinheit
	-

Abbildung 8.1 Überholen der Berührungsflächen der Resonanzeinheit

Tabelle 8.2	Überholen d	er Berührund	gsflächen der	Resonanzeinheit
	Obci noich u	CI DCI UIII UII	ganachen uci	Resonanzennen

Pos.	Beschreibung	
1	Klebeband	
2	K 400 Polierleinen	

8.2.2.1 Wiederanbringung der Resonanzeinheit

Tabelle 8.3	Drehmomentwerte der	Resonanzeinheit
		Resonanzennen

Frequenz	Drehmoment
20 kHz	24,85 Nm (220 in lb)
30 kHz	21 Nm (185 in lb)
40 kHz	10,73 Nm (95 in lb)

Für ein 20-kHz-System

 Tabelle 8.4
 Montage der Resonanzeinheit für ein 20-kHz-System

Schritt	Aktion
1	Reinigen Sie die Berührungsflächen des Konverters, des Boosters und der Sonotrode. Entfernen Sie alle Fremdstoffe von den Gewindebohrungen.

Schritt	Aktion
2	Montieren Sie den Gewindebolzen oben in den Booster. Ziehen Sie ihn mit einem Drehmoment von 50,84 Nm (450 in Ib) fest. Ist der Bolzen trocken, tropfen Sie vor der Montage 1 oder 2 Tropfen leichtes Schmieröl darauf.
3	Montieren Sie den Gewindebolzen oben in die Sonotrode. Ziehen Sie ihn mit einem Drehmoment von 50,84 Nm (450 in Ib) fest. Ist der Bolzen trocken, tropfen Sie vor der Montage 1 oder 2 Tropfen leichtes Schmieröl darauf.
4	Bringen Sie eine einzelne Mylar-Kunststofffolie-Unterlegscheibe (Größe passend zum Bolzen) an jeder Berührungsfläche an.
5	Montieren Sie den Konverter an den Booster und den Booster an die Sonotrode.
6	An jeder Berührungsfläche auf 24,85 Nm (220 in lb) festziehen.

Tabelle 8.4	Montage der	Resonanzeinheit	für ein	20-kHz-System
	0			5

Für ein 30-kHz-System

Schritt	Aktion
1	Reinigen Sie die Berührungsflächen des Konverters, des Boosters und der Sonotrode. Entfernen Sie alle Fremdstoffe von den Gewindebohrungen.
2	Montieren Sie den Gewindebolzen oben in den Booster. Ziehen Sie ihn mit einem Drehmoment von 32,76 Nm (290 in Ib) fest. Ist der Bolzen trocken, tropfen Sie vor der Montage 1 oder 2 Tropfen leichtes Schmieröl darauf.
3	Montieren Sie den Gewindebolzen oben in die Sonotrode. Ziehen Sie ihn mit einem Drehmoment von 32,76 Nm (290 in Ib) fest. Ist der Bolzen trocken, tropfen Sie vor der Montage 1 oder 2 Tropfen leichtes Schmieröl darauf.
4	Bringen Sie eine einzelne Mylar-Kunststofffolie-Unterlegscheibe (Größe passend zum Bolzen) an jeder Berührungsfläche an.
5	Montieren Sie den Konverter an den Booster und den Booster an die Sonotrode.
6	An jeder Berührungsfläche auf 21 Nm (185 in Ib) festziehen.

Für ein 40-kHz-System

Schritt	Aktion
1	Reinigen Sie die Berührungsflächen des Konverters, des Boosters und der Sonotrode. Entfernen Sie alle Fremdstoffe von den Gewindebohrungen.
2	Geben Sie einen Tropfen Loctite®*-290-Schraubensicherungslack (oder gleichwertig) auf die Bolzen für den Booster und die Sonotrode.
3	Montieren Sie den Gewindebolzen oben in den Booster. Ziehen Sie ihn mit einem Drehmoment von 7,91 Nm (70 in Ib) fest. Entfernen Sie überschüssigen Loctite-290-Schraubensicherungslack von der Boosteroberfläche und lassen Sie ihn 30 Minuten aushärten.
4	Montieren Sie den Gewindebolzen oben in die Sonotrode. Ziehen Sie ihn mit einem Drehmoment von 7,91 Nm (70 in·lb) fest. Entfernen Sie überschüssigen Loctite-290-Schraubensicherungslack von der Sonotrodenoberfläche und lassen Sie ihn 30 Minuten aushärten.
5	Bestreichen Sie jede Berührungsfläche mit einer dünnen Schicht Silikonfett – jedoch nicht die Gewindebolzen oder Spitze.
6	An jeder Berührungsfläche auf 10,73 Nm (95 in lb) festziehen.

 Tabelle 8.6
 Montage der Resonanzeinheit für ein 40-kHz-System

* Loctite ist eine eingetragene Marke der Henkel Corporation, USA.

8.2.3 Drehmomentwerte der Bolzen

Tabelle 8.7 Drehmomentwerte der Bolzen

Verwendun g mit	Bolzengröße	Drehmoment	EDP-Nr.
20 kHz	1/2 in x 20 x 1-1/4 in	50.84 Nm 450 in lb	100-098-370
	1/2 in x 20 x 1-1/2 in	50,84 MH, 450 HHD	100-098-123
30 kHz	3/8 in x 24 x 1 in	32,76 Nm (290 in lb)	100-298-170R
40 kHz*	M8X1.25 X 20	7,91 Nm (70 in lb)	100-098-790

* Einen Tropfen Loctite-290-Schraubensicherungslack auf den Bolzen geben. Festziehen und 30 Minuten aushärten lassen.

8.2.4 Routinemäßiger Austausch von Bauteilen

Die Lebensdauer bestimmter Teile ist abhängig von der Anzahl der Zyklen oder Betriebsstunden des Geräts.

8.3 Kalibrierung

Dieses Produkt benötigt normalerweise keine planmäßige Kalibrierung. Falls Sie die Einheit in Verbindung mit bestimmten rechtlichen Anforderungen einsetzen, sollten Sie sie dennoch gemäß diesem Plan und den Standards kalibrieren. Einzelheiten hierzu erfahren Sie von Branson.

8.4 Empfohlener Ersatzteilvorrat

In diesem Abschnitt finden Sie eine Liste aller Austauschteile, Systemkabel und empfohlener Ersatzteile.

8.4.1 Systemkabel

Sie können die folgenden Kabel bestellen:

 Tabelle 8.8
 Generator DCX RM S Systemkabel

Artikelnummer	Beschreibung
100-240-383	Kabel, HF 2,5 m (8 ft)
100-240-384	Kabel, HF 4,5 m (15 ft)
100-240-385	Kabel, HF 7,5 m (25 ft)
100-240-387	Kabel, HF Winkel nach rechts 2,5 m (8 ft)
100-240-388	Kabel, HF Winkel nach rechts 4,5 m (15 ft)
100-240-389	Kabel, HF Winkel nach rechts 7,5 m (25 ft)
100-240-391	Kabel, HF-Adapter für CR20-Konverter 0,9 m (3 ft)
011-003-515	Kabel, JDC 3 Steuerung
200-240-396	Ethernetkabel Kat. 5e 2,1 m (7 ft)

8.4.2 Empfohlene Ersatzteile

Tabelle 8.9	Empfohlene Ersatzteile
-------------	------------------------

Beschreibung	EDP-Nr.	1-4 Geräte	6-12 Geräte	14 und mehr Geräte
Konverter	Siehe <u>Tabelle 8.10</u> Konverter kompatibel mit dem Generator DCX RM S.	0	1	2
Booster	Siehe <u>Tabelle 8.11</u> <u>Generator DCX</u> <u>RM S –</u> <u>Kompatible</u> <u>Booster</u> .	0	1	2
Sonotrode	Wie bestellt	1	1	2
Bolzen	Siehe <u>Tabelle 8.12</u> Andere Teile für den Generator DCX RM S.	4	6	8
Mylar-Kunststofffolie- Unterlegscheibensatz	Siehe <u>Tabelle 8.12</u> Andere Teile für den Generator DCX RM S.	1	1	1

8.4.3 Konverter kompatibel mit dem Generator DCX RM S

Verwendung	Modell	Anschluss	Artikelnummer
	CR-20*	3-poliger MS-Stecker	101-135-060R
	CR-20S	SHV-Stecker	125-135-115R
	CR-20C	SHV-Stecker mit 0,9 m (3 ft) Kabel	159-135-210R
20 kHz/4000 W	CH-20S (932 AH SPL)	SHV-Stecker	159-135-075R
	CH-20C	SHV-Stecker mit 0,9 m (3 ft) Kabel	159-135-211R
	CS-20S	SHV-Stecker	159-135-138R
	CS-20C	SHV-Stecker mit 0,9 m (3 ft) Kabel	159-135-209R
20 kHz/1100 W	902	Konverter 902R	101-135-048R
	CR-30S	SHV-Stecker	101-135-081R
	CR-30C	SHV-Stecker mit 0,9 m (3 ft) Kabel	159-135-213R
	CH-30S	SHV-Stecker	101-135-071R
30 kHz/1500 W	CH-30C	SHV-Stecker mit 0,9 m (3 ft) Kabel	159-135-214R
	CS-30S	SHV-Stecker	159-135-110R
	CS-30C	SHV-Stecker mit 0,9 m (3 ft) Kabel	159-135-212R
	4TR	3-poliger MS-Stecker	101-135-042R
	4TP	SHV-Stecker (plattenmontiert)	101-135-068R
40 kHz/800 W	CR-40S (4TH)	SHV-Stecker	101-135-067R
	CR-40C	SHV-Stecker mit 0,9 m (3 ft) Kabel	159-135-215R

Tabelle 8.10 Konverter kompatibel mit dem Generator DCX RM S

* Erfordert ein spezielles Adapterkabel. Siehe Tabelle 8.8 Generator DCX RM S Systemkabel.

8.4.4 Generator DCX RM S – Kompatible Booster

Boostertyp	Beschreibung	Artikelnummer
	Titan, 1:0,6 (lila)	101-149-095
Fest montiert	Titan, 1:1 (grün)	101-149-096
(1/2-20 Sonotroden- Bolzen)	Titan, 1:1,5 (gold)	101-149-097
20 kHz	Titan, 1:2 (silber)	101-149-098
	Titan, 1:2,5 (schwarz)	101-149-099
	Titan, 1:0,6 (lila)	109-041-178
Fest montiert	Titan, 1:1 (grün)	109-041-177
(M8 x 1,25 Sonotroden- Bolzen)	Titan, 1:1,5 (gold)	109-041-176
40 kHz	Titan, 1:2 (silber)	109-041-175
	Titan, 1:2,5 (schwarz)	109-041-174
	Aluminium, 1:0,6 (lila)	101-149-055
	Aluminium, 1:1 (grün)	101-149-051
	Aluminium, 1:1,5 (gold)	101-149-052
Standardserie	Aluminium, 1:2 (silber)	101-149-053
(1/2-20 Sonotroden- Bolzen)	Titan, 1:0,6 (lila)	101-149-060
20 kHz	Titan, 1:1 (grün)	101-149-056
	Titan, 1:1,5 (gold)	101-149-057
	Titan, 1:2 (silber)	101-149-058
	Titan, 1:2,5 (schwarz)	101-149-059
Standardserie	Titan, 1:2,5 (schwarz)	101-149-103
(3/8-24 Sonotroden-	Titan, 1:2 (silber)	101-149-104
Bolzen)	Titan, 1:1,5 (gold)	101-149-105
30 kHz	Titan, 1:1 (grün)	101-149-106

 Tabelle 8.11
 Generator DCX RM S – Kompatible Booster

Boostertyp	Beschreibung	Artikelnummer
	Aluminium, 1:0,6 (lila)	101-149-087
	Aluminium, 1:1 (grün)	101-149-079
	Aluminium, 1:1,5 (gold)	101-149-080
Standardserie	Aluminium, 1:2 (silber)	101-149-081R
(M8 x 1,25 Sonotroden- Bolzen)	Aluminium, 1:2,5 (schwarz)	101-149-082
40 kHz	Titan, 1:1 (grün)	101-149-085
	Titan, 1:1,5 (gold)	101-149-086
	Titan, 1:2 (silber)	101-149-083
	Titan, 1:2,5 (schwarz)	101-149-084

 Tabelle 8.11
 Generator DCX RM S – Kompatible Booster

8.4.5 Andere Teile für den Generator DCX RM S

Produkt	Beschreibung	Artikelnr.
Silikonfett	Für den Einsatz mit 40-kHz-Systemen	101-053-002
Mylar-Kunststofffolie-	Satz, 10 Stck. (1/2 in. und 3/8 in)	100-063-357
Unterlegscheiben	Satz, 150 Stck. (1/2 in)	100-063-471
(für 20-kHz-Systeme)	Satz, 150 Stck. (3/8 in)	100-063-472
Mylar-Kunststofffolie-	Satz, 10 Stck. (3/8 in)	100-063-632
(für 30-kHz-Systeme)	Satz, 150 Stck. (3/8 in)	100-063-712
	20 kHz (Hakenschlüssel und Unterlegscheibensatz mit 10 Stck.)	101-063-208R
Werkzeugsatz	30 kHz (Hakenschlüssel und Unterlegscheibensatz mit 10 Stck.)	101-063-636R
	40 kHz (Hakenschlüssel und Silikonfett)	101-063-176R
	20 kHz	101-118-039
Hakenschlüssel	30 kHz	201-118-033
	40 kHz	201-118-024
	1/2-20 x 1-1/4 (Titan-Sonotroden)	100-098-370
	1/2-20 x 1-1/2 (Aluminium-Sonotroden, 20-kHz-Booster)	100-098-123
Bolzen	3/8-24 x 1 (30 kHz-Titan-Sonotroden und Booster)	100-298-170R
	M8X1.25 X 20 (40-kHz-Sonotroden und Booster)	100-098-790

Tabelle 8.12 Andere Teile für den Generator DCX RM S

8.5 Fehlerbehebung

Falls beim Betrieb des Generator DCX RM S ein Problem auftritt, gehen Sie folgendermaßen vor:

Tabelle 8.13 Fehlerbehebung

Schritt	Aktion
1	Stellen Sie sicher, dass die Konverter-Booster-Sonotroden-Resonanzeinheit korrekt montiert und installiert ist.
2	Anweisungen zur Überholung der Komponentenoberflächen der Resonanzeinheit finden Sie in <u>8.2.2 Aufarbeitung der Resonanzeinheit</u> <u>(Konverter, Booster und Sonotrode)</u> .
3	Wenn Sie zusätzliche Unterstützung benötigen, kontaktieren Sie Ihren örtlichen Branson-Vertreter, siehe: <u>1.3 Kontaktaufnahme mit Branson</u> .

HINWEIS	
i	Der Generator DCX RM S sollte ausschließlich von qualifizierten Servicetechnikern mit von Branson freigegebenen Prüf- und Reparaturausrüstungen, Prüf- und Reparaturverfahren und Ersatzteilen gewartet werden. Nicht genehmigte Reparaturversuche oder Veränderungen am Generator führen zum Erlöschen der Garantie.

8.5.1 Allgemeine Probleme mit der Elektrik

Tabelle 8.14 Fehlerbehebung bei allgemeinen Problemen mit der Elektrik

Problem	Prüfung	Die Lösung
Beim Anschließen des Generators an eine Stromquelle wird der Hauptsicherungsautomat ausgelöst.	Überprüfen Sie die Anschlusskabel.	Austauschen, falls beschädigt.
Der Hauptsicherungsautomat wird während eines Schweißzyklus ausgelöst.	Überprüfen Sie den Nennstromwert des Hauptsicherungsautomaten.	Austauschen, falls beschädigt.
Der Hauptsicherungsautomat wird beim Einschalten ausgelöst.	Überprüfen Sie den Nennstromwert des Hauptsicherungsautomaten.	Falls inkompatibel, Hauptsicherungsauto maten austauschen.
Beim Berühren der Komponenten des Schweißsystems erhalten Sie einen leichten elektrischen Schlag.	Stellen Sie sicher, dass das Erdungskabel korrekt angeschlossen ist.	n. v.
	Überprüfen Sie die Netzkabel.	Reparieren oder austauschen, falls beschädigt.

8.5.2 Ultraschallleistungs-Probleme

Problem	Prüfung	Die Lösung
Ultraschallleistung an Sonotrode; keine Anzeige im Balkendiagramm.	Anschlusskabel überprüfen und falls defekt, austauschen.	Defekte Kabel austauschen.
	Generator testen.	Siehe <u>Kapitel 7: Betrieb</u> 7.8 Ultraschall- Prüfverfahren
Bei gedrückter Prüftaste wird keine Ultraschallleistung erzeugt; keine Alarmanzeige.	Resonanzeinheit defekt oder fehlt.	Austauschen.
	HF-Kabel abgezogen oder defekt; falls defekt, austauschen.	Einstecken oder austauschen.
	Generator prüfen (<u>Kapitel 7:</u> <u>Betrieb</u> 7.8 Ultraschall- <u>Prüfverfahren</u>).	Falls defekt: Gerät zur Reparatur einsenden.
Einstellung der Amplitude über das Bedienfeld nicht möglich.	Registereinstellung auf "Externe Amplitudensteuerung" eingestellt	Gegebenenfalls zurücksetzen, siehe <u>Kapitel 7: Betrieb</u> 7.5 <u>Konfiguration der</u> <u>Generatorregister</u>
Fernsteuerung nicht möglich.	Benutzer-E/A-Kabel	Reparieren oder austauschen.
	Kundenschaltgerät	Prüfen/inspizieren/ reparieren/ austauschen.

 Tabelle 8.15
 Fehlersuche bei Problemen mit der Ultraschallleistung

8.5.3 Schweißzyklus-Probleme

Problem	Prüfung	Die Lösung	
Ultraschallleistung wird nicht voll übertragen.	Ungeeignete/n Sonotrode oder Booster ausgewählt.		
	Material der Kunststoffteile unterschiedlich.		
	Formtrennmittel im Schweißbereich.	Branson Applications Lab kontaktieren	
	Ungeeignete Fügeflächenform.		
	Ungeeignete oder fehlerhaft ausgerichtete Teilebefestigung.		
	Amplitudeneinstellung	Gegebenenfalls einstellen.	
Ultraschallleistung wird nicht an Sonotrode weiter gegeben.	Überhitzung des Generators	Staub und Verunreinigungen entfernen.	
Wenn Sie die Prüftaste drücken oder während des Schweißzyklus leuchtet die Alarmanzeige auf.	Berührungsflächen der Konverter-Booster- Sonotroden-Resonanzeinheit auf Passungsrost prüfen.	Siehe 8.2.2 Aufarbeitung der Resonanzeinheit (Konverter, Booster und Sonotrode)	
	Auf lose oder defekte Sonotrode, Konverter oder Booster überprüfen.	Gegebenenfalls festziehen oder austauschen.	
	Auf lose oder defekte Sonotroden- oder Booster- Bolzen überprüfen.		
	Defektes HF-Kabel	Falls defekt, austauschen.	
Übermäßige Erwärmung von Sonotrode, Booster und Konverter; gelegentliche Überlasten.	Oberflächen der Konverter- Booster-Sonotroden- Resonanzeinheit auf Passungsrost prüfen.	Siehe <u>8.2.2 Aufarbeitung der</u> Resonanzeinheit (Konverter, Booster und Sonotrode).	
	Stellen Sie sicher, dass eine ausreichende Kühlung eingerichtet wurde.	Siehe <u>5.2.1 Installation der</u> Schubladen für den Generator DCX RM S in einem Kundengestell.	

Tabelle 8.16 Fehlersuche bei Problemen mit dem Schweißzyklus
Anhang A: Signaldiagramme

A.1	Signaldiagramme	 5
	o.g	 -

A.1 Signaldiagramme

Abbildung A.1 Dauerbetrieb

	_	_	_	_	_	_	_	_	_	_		
Ready Mode												
Hold time (variable, depending on the application)												Ī
Signal length depending on the necessary weld time				< Weld time>								Normal Cycle chart
				< 50ms >								ļ
Frequency seek			n. 50ms			· generator internal time (max. 500ms) ->						Seek Function
*Reset the frequency memory inside the generator		< 50ms >	Ē			v					ľ	e Stored to be
				<- min. 100ms ->								Only necessary if th Frequency needs
Power ON (DCX RM Pin 11,3)											I	
Signal	Reset	Seek		Start		Sonic active		Ready		Overload		
Pin DCX RM	13	9		5		ი		2	23	4	1	
Signal direction	PLC -> DCX	PLC -> DCX		PLC -> DCX		DCX -> PLC		DCX -> PLC		DCX -> PLC		

Abbildung A.3 Zeit

				_		_			_		
Ready Mode											
Hold time (variable, depending on the application)											
Signal length depending on the adjusted weld time			min. 20ms		< Weld time>						Normal Cycle chart
Impulse start					Ľ						
			< 50ms >								ļ
					or internal time (max. 500ms) ->						Seek Function
Frequency seek			min. 50ms		<- generato						_
*Reset the frequency memory inside the generator		< 50ms >								1	e Stored e updated
			/ min 100ms /								Only necessary if th Frequency needs to b
Power ON (DCX RM Pin 11,3)										-	-
Signal	Reset	Seek	Ctart Ctart		Sonic active		Ready	Overload			
Pin DCX RM	13	9	ч	,	თ		2	4			
Signal direction	PLC -> DCX	PLC -> DCX			DCX -> PLC		DCX -> PLC	DCX -> PLC			

Abbildung A.4 Zeit, Fensterfehler

Abbildung A.5 Zeit, Überlastfehler

Abbildung A.6 Energie

Abbildung A.7 Energie, Fensterfehler

Index

Α

Abnahme des Geräts 31 Alarm 26 bleibend 59 konfigurieren 59 Modi 59 Allgemeine Sicherheitsvorkehrungen 6 Amplitude 26 Anlauframpe 59 Regelung 59 Amplitudenregelung 26, 59 Anbringen der Spitze an die Sonotrode 65 Angussentfernung 26 Anleitungspaket 15 Stromversorgung 15 Anschluss Benutzer-E/A 24 Eingangsspannung 59 HF 24 Netz 24 Anwendungen 25 Anzeigen 20 Ausgänge analog 55 digital 54 Ausgangsleistungskabel 57 Auspacken 32 Austrieb 26 Autotune mit Speicher (AT/M) 15 Autotuning 17

В

Balkendiagramm 104 Frequenzablesung 105 Leistungsablesung 104 Bauarten Stromversorgung 14, 15 Benutzername 17, 26 Besondere Kabelanforderungen 49 Betrieb 83 Betriebsspannung 36 Biegeradius 48 Booster 19, 26 Abmessungen 38, 72 Teilenummern 128 Bördeln 26

D

Digitale Amplitudenregelung 17 Duroplast 26

Ε

Echtes Wattmeter 17 Einbetten 26 Eingänge analog 54 Eingangsleistung 57, 58 Eingangsstrom Einstufungen 36, 47 Stecker 59 Elektrischer Eingang Betriebsspannungen 36 Energierichter 26 Externe Amplitudensteuerung 26

F

Fallprüfung 30 Fehlersuche Probleme mit der Elektrik 132 Schweißzyklus-Probleme 134 Ultraschallleistung 133 Fenstergrenzwerte 91 Fest montierte Booster 82 Feuchtigkeit 30, 36, 47 Folientasten 17 Frequenz 26 Abweichung 15 Ende Speichern Schweißen 59 Frequenz-Offset 17, 26 Einrichtung 59 Fügefläche 26 Funktion Prinzip 25

G

Generator 26 Anschlüsse 24 Bedienfeldkontrollen 20 konfigurieren 98, 99 max. Leistung Dauerbetrieb 37 Montage 49 Standardeinstellungen (Kaltstart) 134 Zyklusrate 38

I

Information zum Kapitel Installation 42 Installation Prüfung 68 Resonanzeinheit 68 Schritte 48 Voraussetzungen 43

Installations- 41 Inventur der Kleinteile 33

Κ

```
Kabel
Benutzer-E/A 51
Biegeradius 48
HF 57
Kaltstart 26, 134
Klemm-/Spannkraft 26, 27
Komponenten
Funktionsbeschreibung 81
Konverter 19, 27, 81
Abmessungen 38, 72
Kühlung 66
Teilenummern 127
```

L

Lastregelung 15, 17 LCD 17 Balkendiagramm 104 Frequenzablesung 105 Leistungsablesung 104 Beschreibung 22 Blickwinkel 49 Leistungsfenster-Untergrenze 92

Μ

Montage der Resonanzeinheit 61

Ν

Netzeingang Anschluss 24 Netzspannungsregelung 15, 17 Nieten 27

Ρ

Parameter 27 Parameterbereich 27 Passungsrost 27 Passwörter 17

R

Rampenstart 18 Regelmäßige und vorbeugende Wartung Ausrüstung regelmäßig reinigen 118 Routineaustausch von Komponenten 125 Überholen der Resonanzeinheit 119 Resonanzeinheit 19, 81 20 kHz 63, 121, 122, 123 30 kHz 63 40 kHz 64 Rücksendung von Geräten 34

S

Schnittstelle 27 Schweißparameter 84 Schweißsystem 27 Anwendungen 25 Schweißsysteme 25 Sicherheit Wartung 116 Sicherheits symbole, Bedeutung 2 Sonotrode 19, 27 Sonotrodenamplitude 27 Sonotrodensignatur 18, 27 Startdiagnose 18 Steuerelemente, Bedienfeld 20 Stöße 30 Suche 18, 27 Rampenzeit 59 Suchen Zeit 59 zeitliche Festlegung 15, 59 Support 69 Systemanforderungen, Webinterface 107 Systemschutz 18

Т

Technische Daten 35 Teileliste 125 Temperatur Transport und Lagerung 30, 36 Umgebungstemperatur, Betrieb 36, 47 Thermoplast 27 Token 27 Transport und Handhabung 30

U

Ultraschalleistung 27 Ultraschall-Resonanzeinheit 81 Ultraschallschweißen 27 Umformen 27 Umgebung Anforderungen 30 Umgebungs anforderungen 47 Unterwerkzeug 27

V

Verbindung Benutzer-E/A 51 Verstärkung 27 Vibrationen 30 Vorschubeinheit 26, 28

W

Wartung 115

allgemeine Überlegungen 116 Web-Interface 15 Webinterface 18, 112 Punkt-zu-Punkt Verbindung Windows Vista und Windows 7 107 Windows XP 110 Window Limit Low 94

Ζ

Zähler 28 Zeitgesteuerte Suche 18 Zeitliche Festlegung Suchen 15