
Январь 2009

Rosemount 585 Main Steam Annubar[®] для острого пара с поддержкой на противоположной стороне

ROSEMOUNT

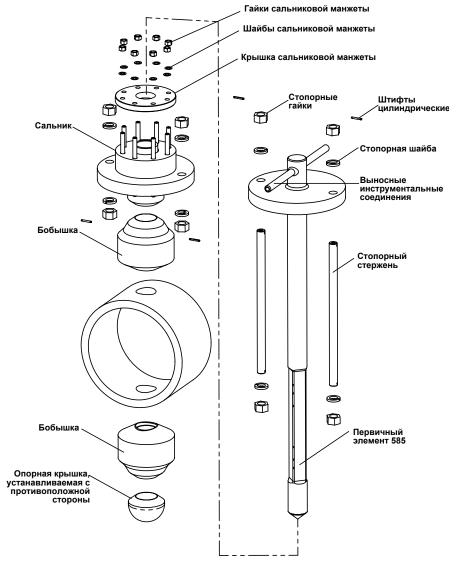
www.rosemount.com

00825-0307-4585, Ред. AA Январь 2009

© 2011 Rosemount Inc. Все права защищены. Все логотипы компании Rosemount являются зарегистрированными торговыми марками компании Rosemount..

▲ ПРИМЕЧАНИЕ

Это руководство содержит основные инструкции по установке расходомера компании Rosemount модели 585. Оно не содержит инструкций для настройки конфигурации, диагностике, техническому обслуживанию, уходу, обнаружению и устранению неисправностей, а также инструкций для взрывобезопасных, пожаробезопасных или искробезопасных (ИБ) моделей. Обратитесь к руководству по эксплуатации расходомера 585 (документ № 00809-0100-4585) для получения дополнительных инструкций. Это руководство доступно также в электронном виде на сайте: www.rosemount.com.


А ВНИМАНИЕ

Технологические протечки могут причинить ущерб или привести к жертвам. Поток пара может нагреть расходомер и привести к ожогам.

№ ВНИМАНИЕ

Компания Emerson Process Management рекомендует пользоваться услугами квалифицированной организации для выполнения сварки крепежных элементов. Этот процесс может быть сложным, а допущенные ошибки могут привести к серьезным травмам или жертвам.

Pacxoдoмер Annubar® 585 в разобранном виде

ПРИМЕЧАНИЕ

Для резьбовых соединений используйте подходящие по рабочим температурам герметик и смазку.

Краткое описание процесса установки

Для корректной работы расходомера на базе трубки Аннубар 585 очень важно правильно установить и отцентрировать изделие во избежание повреждений, которые могут стать причиной серьезных травм или привести к жертвам. Для достижения наилучших результатов необходимо неукоснительно следовать инструкциям этого руководства. Рекомендуется воспользоваться услугами квалифицированной организации для установки элементов крепления, поскольку центрирование и сварка имеют решающе значение для безопасной установки. Для получения перечня рекомендованных организаций следует связаться с компанией Emerson Process Management. Для получения наилучших результатов следует заказать центрирующий стержень (код опции А1) для выравнивания крепежных элементов и опоры, находящейся с противоположной стороны.

Шаг 1: Размещение и ориентация

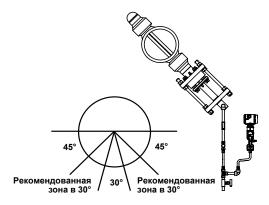
Должны быть выполнены требования к правильной ориентации и по расположению на участке прямой трубы для точных и воспроизводимых измерений расхода. Обратитесь к таблице 1, где приведены минимальные расстояния для заданного диаметра трубы от места установки Аннубан 585.

Таблица 1. Требования к прямолинейным участкам при различных местных сопротивлениях

		До расходомера		. 6
		В плоскости	Вне	После расходо- мера
		А	А	Dac M
1	A B B	8	10	4
2	A A A A A A A A A A A A A A A A A A A	11	16	4
3	P P P P P P P P P P P P P P P P P P P	23	28	4
4	A—————————————————————————————————————	12	12	4

Продолжение шага 1...

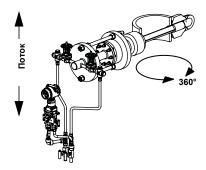
		До расходомера		. d
		В плоскости	Вне плоскости	После расходо- мера
		Α	Α	□ ĕ ¹
5	A—————————————————————————————————————	18	18	4
6	A H-B-H	30	30	4


ПРИМЕЧАНИЕ

- "В плоскости А" означает, что трубопровод находится в той же плоскости, что и колено. "Вне плоскости А" означает, что трубопровод перпендикулярен плоскости колена.
- Строка 6 в таблице 1 относится к запорным дроссельным клапанам, которые частично открыты, а также к клапанам регулировки.

Горизонтальная ориентация

Для измерения расхода пара датчик должен располагаться в нижней половине трубы.


Рисунок 1. Горизонтальная ориентация трубопровода

Продолжение шага 1...

Вертикальная ориентация трубопровода

Первичный элемент можно устанавливать в любом положении вокруг контура трубы. Рисунок 2. Вертикальная ориентация трубопровода

Шаг 2: Сверление монтажных отверстий в трубе

Выполните приведенную далее последовательность шагов для сверления отверстий в трубе:

- 1. Сбросьте давление в трубе и слейте из нее воду.
- 2. Выберите место для сверления монтажных отверстий. Выберите положение в любом месте поверхности трубы для вертикальных труб. Для сверления горизонтальных труб обратитесь к рис. 1 на стр. 5.
- Просверлите отверстие в стенке трубы согласно инструкциям, предоставленным производителем сверлильного станка. Просверлите отверстие диаметром 2,5 дюйма (64 мм). Допуск на отверстие +¹/16 дюйма/ -0 дюйма (+1,6 мм/ -0 мм).
- 4. После того как отверстие просверлено, отшлифуйте края внутри трубы.
- 5. Второе отверстие идентичного размера должно быть просверлено в месте, противоположно расположенном относительно первого отверстия, чтобы первичный элемент мог полностью проходить сквозь трубу. Для высверливания второго отверстия выполните следующие шаги:
 - а. Измерьте длину окружности трубы с помощью ленты для уплотнения трубной резьбы, мягкой проволоки или веревки (для точных измерений используемая лента должна быть перпендикулярна оси потока)
 - b. Разделите измеренную длину окружности пополам, чтобы определить местоположения второго отверстия.
 - с. Повторно оберните трубу лентой, мягкой проволокой или веревкой, начиная от центра первого отверстия. Затем, используя величину, полученную на предыдущем шаге, отметьте центр положения второго отверстия.
 - d. Используя диаметр, определенный на 3-м шаге, высверлите отверстие в трубе с помощью кольцевой пилы или дрели. НЕ ИСПОЛЬЗУЙТЕ ДЛЯ ВЫПОЛНЕНИЯ ОТВЕРСТИЯ АВТОГЕН.
- 6. Отшлифуйте высверленные отверстия с внутренней стороны трубы.

Руководство по установке

00825-0307-4585, Ред. АА Январь 2009

585 Main Steam Annubar

Шаг 3: Сварка крепежных приспособлений

- 1. Для приваривания толстостенных бобышек к паропроводу необходимо воспользоваться центрирующим стержнем. Центрирующий стержень можно заказать в компании Emerson Process Management (опция A1).
- 2. Приваривать толстостенную бобышку к сальниковой манжете следует стыковым швом с полным проваром.
 - а. Вставьте центрирующий стержень через сальниковую манжету и бобышку. Бобышка также будет иметь опорную втулку, расположенную ближе к концу, который затем будет приварен к трубе. Прежде чем выполнять сварку, следует убедиться, что опорная пластина присоединена к сальниковой манжете.
 - b. Прихватите сваркой бобышку к сальниковой манжете. Уберите центрирующий стержень.
 - с. Выполните первый проход сварки Повторно проверьте центровку с помощью центрирующего стержня. При необходимости выполните центрирование. Центрирующий стержень не должен слишком нагреваться, иначе его трудно будет извлечь. Используйте его в течение непродолжительного времени для проверки центровки между проходами сварки.
 - d. Завершите оставшиеся проходы сварки, всякий раз используя центрирующий стержень для проверки центровки. Компания Emerson Process Management рекомендует, чтобы толщина сварного слоя была равна толщине основного металла.
- 3. Приварите сборку бобышки и сальниковой манжеты к трубе.
 - а. Поместите снова центрирующий стержень в трубу, опустите блок бобышки и сальниковой манжетой вдоль центрирующего стержня, чтобы он уперся в трубу.
 - b. Убедитесь, что прямая проходящая через 1¹/8 дюйма (29 мм) отверстия в опорной пластите перпендикулярна оси трубы в пределах ± 3° для горизонтальных трубопроводов и параллельны оси трубы в пределах ± 3° для вертикальных линий. Это позволит отверстиям для измерения статического и динамического давления быть соосными потоку. См. рис. 3 на стр. 9..
 - с. Прихватите сваркой бобышку к трубе. Проверьте центровку. Уберите центрирующий стержень и выполните первый проход сварки. Компания Emerson Process Management рекомендует пользоваться вольфрамовыми электродами в среде инертного газа для двух первых проходов.

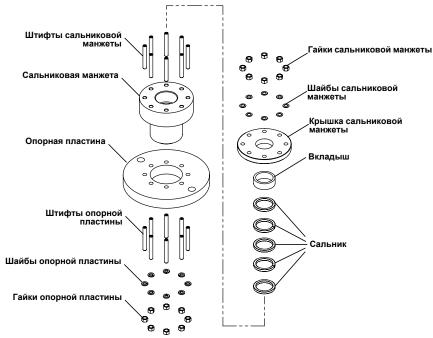
ПРИМЕЧАНИЕ

При приваривании сборки к трубе очень помогает одновременная работа двух сварщиков, при этом один сварщик начинает сварку под углом180° к другому. Это позволяет избежать смещения арматуры при изменениях температуры, связанных процессом сварки.

- d. Проверьте центровку после первого прохода. Уберите центрирующий стержень и выполните следующий проход. Повторно проверьте центровку.
- е. Продолжайте нанесение слоев сварки и повторные проверки, пока сварка не будет завершена. Угловые швы будут примерно размером в 1¹/в дюйма (29 мм).

00825-0307-4585, Ред. АА Январь 2009

Продолжение шага 3...

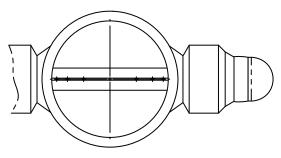

- 4. Приварите противоположную сторону бобышки к трубе.
 - а. Пропустите центрирующий стержень через монтажное отверстие в верхней части трубы и поместите опорную бобышку с противоположной стороны над концом центрирующего стержня.
 - Визуально выставьте противоположную опорную бобышку по центру отверстия.
 Приварите прихваточным швом бобышку, используя проволоку или другим аналогичным способом.
 - с. Сварите первым проходом и проверьте центровку с помощью центрирующего прутка и продолжите дальше. Во время сварки проверку центровки следует выполнять как можно чаще. Выравнивайте бобышку во время прихватки для сохранения центровки. Не оставляйте центрирующий стержень надолго, поскольку он может нагреться и его будет трудно извлечь.
 - d. После того как сварка завершена, центрирующий стержень должен свободно проходить через сальник в установленную с противоположной стороны бобышку.
 - е. Приварите торцевую заглушку к бобышке, установленную с противоположной стороны, использую стыковой сварной шов с полным проваром.
- 5. Выполните необходимую термическую обработку.
- 6. После термической обработки установите расходомер, убедившись, что стрелка на корпусе указывает по направлению потока пара.

00825-0307-4585, Ред. АА Январь 2009

Шаг 4: Установка расходомера

1. Установите сальник в сальниковую манжету. Три цельных графитовых кольца типа Garlock должны располагаться между двумя разрезанными кольцами (типа Garlock 1303FEP). Убедитесь, что прорези на наружных сальниках находятся под углом 180°.

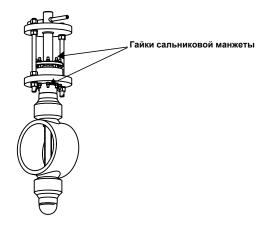
Рисунок 3. Блок сальниковой манжеты


ПРИМЕЧАНИЕ

Сальниковая манжета и опорная пластины поставляются в полностью собранном виде.

- Пропустите расходомер модели 585 через сальник и установите стопорные стержни, гайки и шайбы. Расстояние между пластинами должно быть 11,9" (302 мм). См. рис. 4 на стр. 10. Если есть доступ для визуального контроля внутренней части трубы, убедитесь, что отверстия первичного элемента находятся на равном расстоянии от стенок трубопровода.
- При необходимости выполните небольшое выравнивание, затем закрепите первичный элемент 585 с помощью стопорных стержней, гаек и стопорных шайб. В смонтированном виде верхняя часть головки элемент 585 будет находиться на расстоянии 28" (711 мм) от оси трубы.
- 4. Затяните гайки сальниковой манжеты моментом затяжки 25 30 фунтов на фут (35-40 H*м).

Продолжение шага 4...


Рисунок 4. Установка датчика 585

ПРИМЕЧАНИЕ

Если есть возможность визуального контроля внутренней части трубы, то следует убедиться, что отверстия датчика одинаково отстоят от стенок трубы.

Рисунок 5. Затягивание гаек сальниковой манжеты

Шаг 5. Монтаж преобразователя

Выносной монтаж преобразователя

Превышение температуры электроники значения в 250 °F (121 °C) приведет к повреждению преобразователя. Выносные преобразователи соединяются с датчиком с помощью импульсных линий, что дает возможность понизить температуру среды до рабочей величины для преобразователя.

Рекомендации по монтажу импульсных линий:

Следует придерживаться следующих ограничений и рекомендаций относительно местоположения импульсной обвязки.

- 1. Импульсная линия, которая идет горизонтально, должна иметь уклон не менее одного дюйма на фут (83 мм/м).
- 2. Импульсная линия должна быть в длину не менее одного фута (0,3048 м) для каждых 100 °F (38°C) превышения температуры над 250 °F (121°C). Для снижения температуры рабочей среды импульсные трубки не должны быть покрыты теплоизоляцией. Следует проверить все резьбовые соединения после достижения системой заданной температуры, поскольку соединения могут ослабнуть при сжатии и расширении, вызванными изменениями температуры.
- 3. Для установок, работающих на открытом воздухе, может понадобиться теплоизоляция и электрообогреватель для предотвращения образования наледи.
- 4. В случае, когда импульсные линии длиннее шести футов (1,8 м) трубопроводы высокого и низкого давления должны располагаться вместе для поддержания одинаковой температуры. Во избежание провисаний и вибраций их следует закрепить.
- 5. Импульсные линии следует располагать в защищенных участках или вдоль стен или потолка. Для резьбовых соединений используйте герметики, рассчитаны на соответствующие рабочие температуры. Не помещайте импульсные линии вблизи высокотемпературных трубопроводов или оборудования.

Общие рекомендации:

- а. Для всех установок рекомендуется использовать вентильный блок. Вентильные блоки дают возможность оператору выравнивать давления, прежде чем выставлять ноль и изолировать рабочую среду от преобразователя.
- b. Используйте только клапаны и арматуру, рассчитанные на проектные давления и температуры (в некоторых случаях вентильный блок может поставляться компанией Emerson Process вместе с расходомером).
- с. Используйте герметики для трубной резьбы, состав которых рассчитан на рабочие температуры и давления для всех клапанов и арматуры.
- d. Проверьте, затянуты ли все соединения и закрыты ли все измерительные клапаны.
- е. Проверьте правильность ориентации зонда датчика по поставленным в комплекте схематическим чертежам.
- f. Труба, используемая для соединения зонда датчика и преобразователя, должна быть рассчитана на непрерывную эксплуатацию при проектных температурах и давлении. Рекомендуется использовать трубу из нержавеющей стали с внешним диаметром не менее полдюйма (12 мм) и толщиной стенок не менее ¹/16 дюйма (1,6 мм).

Продолжение шага 5...

Рекомендованные варианты установок

Установка преобразователя ниже технологического трубопровода. Направьте импульсную обвязку вниз к преобразователю и заполните систему холодной водой через тройник.

Рисунок 6. Горизонтальная линия

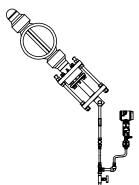
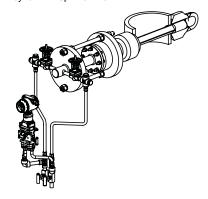



Рисунок 7. Вертикальная линия

