Rosemount[™] 935

Детектор горючих газов с открытым оптическим трактом

Официальное уведомление

Система Rosemount, описанная в данном документе, является собственностью компании Emerson.

Запрещаются копирование, передача, переписывание, сохранение в информационно-поисковых системах и перевод на другой язык или язык программирования в любой форме и любым способом любых частей аппаратного или программного обеспечения и документации без предварительного письменного разрешения Emerson.

Несмотря на значительные усилия, приложенные, чтобы гарантировать точность и ясность этого документа, Еmerson не несет никакой ответственности за последствия, возникшие в результате каких-либо пропусков в данном документе либо неправильного использования полученной из него информации. Информация, содержащаяся в данном документе, была тщательно проверена и считается полностью достоверной и включающей все необходимые сведения. Компания Emerson не несет никакой ответственности за последствия, возникшие в результате применения или использования любого описанного здесь изделия или схемы, и не передает лицензию на свои патентные права или права других лиц.

▲ ПРЕДУПРЕЖДЕНИЕ

Все лица, которые несут или будут нести ответственность за использование, ремонт или сервисное обслуживание данного изделия, должны внимательно прочитать это руководство.

▲ ПРЕДУПРЕЖДЕНИЕ

Физический доступ

Несанкционированный доступ может привести к серьезным повреждениям и/или нарушению настройки оборудования. Это может быть сделано намеренно или непреднамеренно; в связи с чем необходима защита оборудования от такого доступа.

Обеспечение физической безопасности является важной составной частью правил безопасности и основ защиты всей системы. Необходимо ограничить несанкционированный доступ к изделию с целью сохранения активов конечного пользователя. Это относится ко всем системам, используемым на данном объекте.

№ ОСТОРОЖНО

Излучатель и детектор не подлежат ремонту в полевых условиях в связи с необходимостью высокоточного выравнивания и калибровки датчиков и соответствующих схем.

Не пытайтесь модифицировать или ремонтировать внутренние схемы или менять настройки, так как это уменьшит производительность системы и сделает недействительной гарантию Emerson.

Глоссарий и сокращения

Сокращение	Значение
Аналоговое видео Видеозначения представлены масштабируемым сигналом.	
ATEX	Потенциально взрывоопасные среды.
AWG	Американский сортамент проводов.
BIT	Встроенная самодиагностика.
CMOS	Датчик изображения на основе комплементарного металлооксидного проводника.
Цифровое видео	Каждый компонент представлен числом, которое представляет дискретное квантование.

Сокращение	Значение	
DSP	Цифровая обработка сигналов.	
EMC	Электромагнитная совместимость.	
EMI	Электромагнитные помехи.	
EOL	В конце трубопровода.	
FOV	Зона обзора.	
HART®	Протокол цифровой связи магистрального адресуемого удаленного преобразователя.	
IAD	Невосприимчивость на любом расстоянии.	
IECEx	Международная электротехническая комиссия по сертификации электрооборудования для взрывоопасных сред.	
IP	Интернет-протокол.	
IPA	Изопропиловый спирт.	
ИК	Инфракрасный.	
IR3	Относится к трем инфракрасным датчикам.	
JP5	Авиационное топливо.	
Фиксация	Относится к реле, оставшимся во включенном состоянии даже после того, как условие включения было устранено.	
LED	Светодиод.	
НКПВ	Нижний концентрационный предел взрываемости: минимальная концентрация вещества (газа/пара) в воздушной смеси, которая может сдетонировать. Эта смесь будет разной для каждого газа/пара, измеряется в % от НКПВ.	
НКПВм	Интегральная концентрация, выражаемая в единицах концентрации НКПВ (1 НКПВ = 100 % НКПВ), умноженной на рабочее расстояние в метрах (м).	
СПГ	Сжиженный природный газ.	
СНГ	Сжиженный нефтяной газ.	
мА	Миллиампер (0,001 ампера).	
Modbus®	Иерархическая структура сообщений.	
НЗ	Нормально-замкнутый.	
HP	Нормально-разомкнутый.	
Н/п	Неприменимо.	
NFPA	Национальная ассоциация противопожарной защиты.	
NPT	Национальная трубопроводная резьба.	
NTSC	Национальный комитет по телевизионным системам (система кодирования цвета).	
PAL	Построчное изменение фазы (система кодирования цвета).	
PN	Номер изделия.	
РЧП	Радиочастотные помехи.	
RTSP	Протокол потоковой передачи в режиме реального времени.	
SIL	Класс безопасности эксплуатации оборудования.	
UNC	Унифицированная крупная резьба.	

Сокращение	Значение
Переменный ток	Вольт переменного тока.
Постоянный ток	Вольт постоянного тока.
мкм	Микрометр.

Содержание

Установка	5
Эксплуатация	23
Сертификаты изделия	
· · · · Конфигурации проводки	31

1 Установка

1.1 Общие рекомендации

1.1.1 Персонал

Установка и обслуживание должны выполняться только квалифицированным персоналом, знающим местные нормы и правила и прошедшим подготовку по обслуживанию систем обнаружения газа.

Проводка должна выполняться только специалистом по электронике и монтажу проводки или под его руководством.

1.1.2 Требования к месту установки

При выборе места установки системы Rosemount 935 необходимо учитывать вес контролируемого газа в сравнении с весом воздуха, а также индивидуальные требования.

Убедитесь, что выбранное место обеспечивает детектору прямую видимость излучателя. Устройства должны крепиться на прочную и стабильную поверхность с минимальными вибрациями. Устанавливайте оборудование в месте, где невозможно сбить заданное выравнивание и где оборудование будет защищено от ударов.

1.1.3 Излучатель и детектор

Выбирайте детектор с учетом длины контролируемого открытого тракта.

Поскольку со временем характеристики излучателя будут ухудшаться и инфракрасный сигнал будет ослабевать из-за неблагоприятных погодных условий, компания Emerson рекомендует выбирать рабочую дальность детектора с запасом.

Обычно рекомендуется устанавливать детектор на расстоянии от излучателя, не превышающем 75 % номинального рабочего расстояния. В неблагоприятных погодных условиях, например на морских нефтеплатформах, сократите это расстояние до 50 %.

В открытом тракте между излучателем и детектором следует убрать все преграды, мешающие свободному движению воздуха в охраняемой зоне и блокирующие инфракрасный луч.

1.1.4 Рекомендации по выбору места установки детектора утечки газа

Для обеспечения наилучшего радиуса действия устанавливайте детектор:

- Ниже потенциальных источников утечки газов тяжелее воздуха.
- Выше потенциальных источников утечки газов легче воздуха.

- Рядом с источниками утечки вдоль предполагаемой траектории утечки с учетом преобладающего направления ветра.
- Между источниками утечки и потенциальными источниками возгорания.

▲ ОСТОРОЖНО

Для оптимальной работы избегайте размещения детектора в местах с частым выходом пара.

1.1.5 Расстояния разделения

Чтобы избежать перекрестных помех между соседними системами детекторов газа с открытым контуром (OPGD), в которых датчики установлены на одной стороне, соблюдайте соответствующее расстояние между соседними системами OPGD в соответствии с установочной длиной, указанной в Таблица 1-1.

Таблица 1-1. Минимальные расстояния разделения

Расстояние по линии прямой видимо- сти, фут (м)	Минимальное расстояние, фут (м)	
33 (10)	3,3 (1)	
66 (20)	5 (1,5)	
98 (30)	6,5 (2,5)	
131 (40)	11,5 (3,5)	
164 (50)	15 (4,5)	
197 (60)	16,5 (5)	
230 (70)	20 (6)	
262 (80)	23 (7)	
295 (90)	26 (8)	
328 (100)	28 (8,5)	
361 (110)	29,5 (9)	
394 (120)	33 (10)	
427 (130)	34,5 (10,5)	
459 (140)	38 (11,5)	
492 (150)	42,5 (13)	
525 (160)	47,5 (14,5)	
558 (170)	49 (15)	

Таблица 1-1. Минимальные расстояния разделения (продолжение)

Расстояние по линии прямой видимо- сти, фут (м)	Минимальное расстояние, фут (м)
591 (180)	51 (15,5)
623 (190)	52,5 (16)
656 (200)	54 (16,5)

1.1.6 Электрические подключения

Для проводки используйте цветные проводники или соответствующие маркировки проводов или этикетки.

- Сечение провода должно быть от 28 до 14 AWG (0,5–2,5 мм²).
- Выбор калибра провода зависит от числа детекторов в одном контуре и расстояния до блока управления. К одной клемме можно подсоединять не более двух проводов сечением 1 мм².
- Для полного соблюдения Директивы по электромагнитной совместимости (ЭМС) и защиты от радиочастотных (РЧ) и электромагнитных (ЭМ) помех кабель к детектору должен быть экранирован, а детектор должен быть заземлен. Заземляйте экран только на конце детектора.

1.2 Подготовка к установке

Установка должна отвечать местным, государственным и международным правилам и нормам, применяемым к детекторам и одобренным электрическим устройствам, устанавливаемым в опасных зонах.

1.2.1 Оборудование

Система должна включать в себя следующее (в дополнение к данному руководству):

Рисунок 1-1. Содержимое коробки

Комплект для ввода в эксплуатацию (не изображено)

- А. Источник или детектор (в зависимости от коробки)
- В. Поворотные кронштейны
- Блок детектора: 935-R1F00XXXX
- Блок излучателя: 935-TXFXXXXXX
- Две наклонные подставки (одна для источника и одна для детектора).⁽¹⁾
- Комплект для ввода в эксплуатацию, три опции при заказе:
 - для калибровки на метан;
 - для калибровки на пропан;
 - для калибровки на этилен.

В комплект для ввода в эксплуатацию входят:

- комплект инструментов для выравнивания;
- фильтры функциональной проверки;
- комплект жгутов для портативного устройства HART[®].

Также предлагаются другие принадлежности (по заказу заказчика):

- комплект для установки на столб 5 дюймов;
- комплект для установки на столб от 2 до 3 дюймов;
- настенное крепление;
- защитная крышка.

⁽¹⁾ Если вы заказываете источник или детектор отдельно, вы получите один поворотный кронштейн.

Прим.

Номера изделий для аксессуаров см. в *писте технических данных Rosemount*935.

1.2.2 Требуемые инструменты

Детектор можно установить, используя обычные инструменты и оборудование общего назначения.

Таблица 1-2. Инструменты

Инструмент	Функция
Комплект выравнивания	Представляет собой инструменты для точной центровки.
Шестигранный ключ 8 мм	Монтаж детектора на поворотном кронштейне.
Шестигранный ключ 3/16"	Выравнивание детектора.
Шестигранный ключ 5/16"	Винты ¾, стопорная пробка.
Плоская отвертка 4 мм	Подключение клеммы заземления.
Плоская отвертка 2,5 мм	Подсоединение проводов к клеммной колодке.

1.3 Инструкции по сертификации

▲ ПРЕДУПРЕЖДЕНИЕ

ВЗРЫВ

Не открывайте детектор в огнеопасной среде, даже когда он изолирован.

- Температура, на которую рассчитан кабельный вход, может превышать 182 °F (83 °C). При выборе кабеля примите соответствующие меры предосторожности.
- Оборудование может использоваться в зонах с воспламеняющимися газами и парами: группы оборудования IIA и IIB + H2 T4 при температуре окружающей среды от –67 °F до +149 °F (от –55 °C до +65 °C).
- Установка детектора должна проводиться только квалифицированным персоналом в соответствии с действующими нормами и правилами, например EN 60079-14: 1997.

- Проверка и обслуживание данного оборудования должна проводиться только квалифицированным персоналом в соответствии с действующими нормами и правилами, например EN 60079-19.
- Ремонт данного оборудования должен проводиться только квалифицированным персоналом в соответствии с действующими нормами и правилами, например EN 60079-19.
- Сертификация оборудования определяется перечисленными ниже материалами, используемыми в его конструкции:
 - Корпус: нержавеющая сталь 316
 - Окна: сапфировое стекло
 - Уплотнения: EPDM
- Если предполагается контакт оборудования с агрессивными веществами, необходимо принять соответствующие меры для предотвращения порчи оборудования, тем самым гарантируя обеспечение его возможной защиты.
 - Агрессивные вещества: кислотные жидкости или газы, которые могут повредить металлы, либо растворители, которые могут воздействовать на полимерные материалы.
 - Меры предосторожности: регулярные проверки в рамках периодических осмотров или применение материалов, стойких к воздействию конкретных химреагентов (определяется по паспорту безопасности материала).

1.4 Специальные условия для безопасного использования из сертификата ATEX IECEx

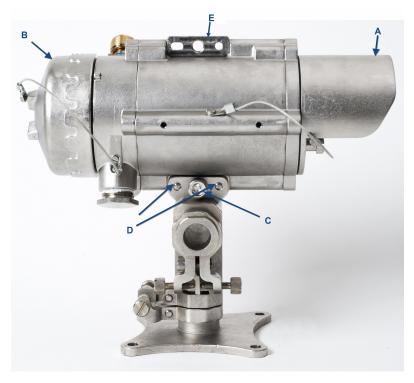
Размеры огнестойких соединений отличаются от соответствующих минимальных или максимальных значений, указанных в таблице 2 стандарта IEC/EN 60079-1: 2007 для IIB + H_2 , как описано в Таблица 1-3.

Таблица 1-3. Дорожки огня

Описание дорожки огня	Тип соединения	Минимальная ширина L в дюймах (миллиметрах)	Максимальный зазор і _с в дюймах (миллиметрах)
Цилиндрическая секция крана (оба конца отсека Ex d)	Цилиндрическое	0,59 (15)	0,003 (0,08)
Окно диаметром 1,2 дюйма (30 мм), установленное на корпусе	Фланцевое	0,42 (10,7)	0,001 (0,02)
Окно диаметром 1,6 дюйма (39,5 мм), установленное на корпусе	Фланцевое	0,39 (10)	0,001 (0,02)

- Зазоры і_с нельзя увеличивать до значений, больше указанных в Таблица 1-3, а ширину L нельзя уменьшать до значений, меньше указанных в этой таблице.
- Подключение к искробезопасному порту на боковой стороне корпуса детектора должно выполняться с помощью оборудования, поддерживающего уровень искробезопасности.
- Um следует устанавливать в соответствии с одним из следующих требований:
 - Um составляет 18–32 В постоянного тока в системе SELV/PELV.
 - Через защитный изолирующий трансформатор, отвечающий требованиям IEC 61588-2-6 или технически эквивалентного стандарта.
 - Непосредственное подключение к аппарату, отвечающему требованиям IEC 60950, IEC 61010-1 или технически эквивалентного стандарта.
 - Питание непосредственно от элементов или батарей.
- Если продукт будет использоваться в качестве устройства, связанного с безопасностью, потребуется соответствующая независимая сертификация, отвечающая всем требованиям.

1.5 Установка кабелепроводов и кабелей


Установка кабелепровода и кабеля должна отвечать следующим требованиям:

- Во избежание попадания влаги в детектор устанавливайте его так, чтобы кабелепроводы/кабельные вводы были внизу.
- Используйте гибкие кабелепроводы/кабели для последней соединительной части, примыкающей непосредственно к детектору.
- При прокладке кабелей в кабельных каналах убедитесь, чтобы они не были спутаны или пережаты. Вытяните кабели примерно на 12 дюймов (30 см) за пределы места детектора, чтобы уложить проводку после установки.
- После прокладки кабелей через кабельные вводы проведите испытание целостности.

1.6 Монтаж детектора и источника на поворотный кронштейн

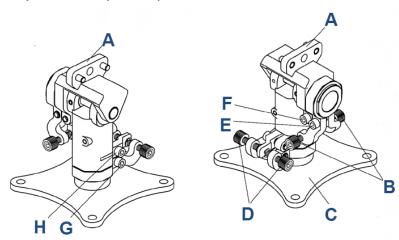

Вы можете установить детектор и источник двумя способами с одним и тем же поворотным кронштейном, используя верхний или нижний монтажный доступ.

Рисунок **1-2.** Установка поворотного кронштейна и детектора с использованием нижнего монтажного доступа

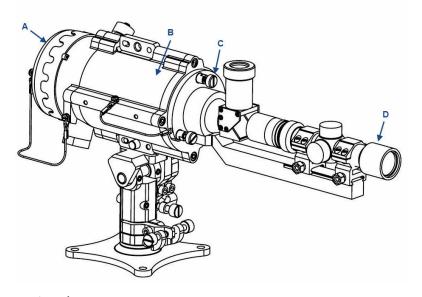

- А. Передний экран
- В. Задняя крышка
- С. Винт безопасности
- D. Расположение контактов
- Е. Альтернативное место монтажа

Рисунок 1-3. Поворотный кронштейн

- А. Удерживающая пластина детектора/излучателя
- В. Зажимной винт точной регулировки по вертикали
- С. Удерживающая пластина поворотного кронштейна
- D. Зажимной винт точной регулировки по горизонтали
- Е. Зажимной винт приблизительного выравнивания по вертикали
- F. Зажимной винт точного выравнивания по вертикали
- G. Зажимной винт приблизительного выравнивания по горизонтали
- Н. Зажимной винт точного выравнивания по горизонтали

Рисунок 1-4. Узел детектора и поворотного кронштейна с использованием нижнего монтажного доступа

- А. Задняя крышка
- В. Детектор
- С. Зажимной болт центрирующего приспособления
- D. Центрирующее приспособление

Таблица 1-4. Комплектация поворотного кронштейна

Позиция	Количество	Тип/модель
Поворотный кронштейн	1	Н/п
Винт	1	M10 × 1,5
Пружинная шайба	1	№ 10

Предварительные условия

Перед установкой поворотного кронштейна на устойчивую поверхность убедитесь, что линия свободна и соответствует расстоянию до установки детектора.

Порядок действий

 Поместите удерживающую пластину поворотного кронштейна на место установки и прикрепите четырьмя винтами через четыре отверстия диаметром 0,3 дюйма (8,5 мм).

УВЕДОМЛЕНИЕ

Пропустите этот шаг, если поворотный кронштейн уже установлен.

Для снятия детектора для технического обслуживания не нужно снимать поворотный кронштейн.

- 2. Установите детектор кабельными вводами вниз на крепежную пластину поворотного кронштейна.
- 3. Прикрепите детектор винтами M10 × 1,5 с пружинными шайбами M10.
- 4. Прикрепите детектор к поворотному кронштейну винтами $M10 \times 1,5$ с помощью шестигранного ключа № 7.
- 5. Повторите шаги Шаг 1–Шаг 4 для установки излучателя.

1.7 Проводка детектора

Процесс проводки детектора:

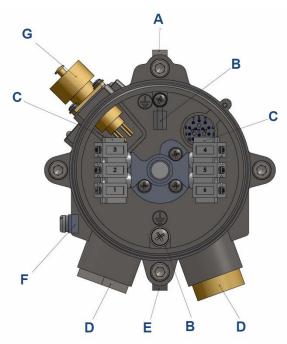


Рисунок 1-5. Детектор со снятой крышкой

- A. Kopnyc
- В. Внутреннее подключение заземления
- С. Клеммная колодка
- D. Входной кабелепровод
- Е. Удерживающая пластина детектора
- F. Клемма заземления
- G. Подключение к полевому коммуникатору

Порядок действий

- 1. Отверните крепежный болт задней крышки и снимите заднюю крышку детектора.
- 2. Снимите защитную заглушку с кабельного ввода/входного отверстия кабельного ввода.
- 3. Заведите провода через входное отверстие детектора.
- 4. Подключите кабель/взрывобезопасный кабелепровод к детектору с использованием взрывобезопасного кабельного ввода 3/4 дюйма 14 NPT или взрывобезопасной муфты M25 × 1,5.

5. Подключите провода к требуемым клеммам согласно электрической схеме.

См. Конфигурации проводки.

6. Подсоедините заземляющий провод к винту заземления снаружи детектора.

Детектор должен быть надежно заземлен.

7. Установите на место и закрепите заднюю крышку детектора крепежным болтом.

1.8 Проводка к клеммам детектора

Детектор имеет 6 клемм для проводки. Таблица 1-5 описывает функцию каждой электрической клеммы детектора.

Таблица 1-5. Варианты подключения

Номер клеммы	Функция	
1 Питание +24 В постоянного тока		
2 Возврат -24 В постоянного тока		
3	0-20 мА (вход)	
4	0-20 мА (выход)	
5	RS-485 (+)	
6	RS-485 (–)	

1.9 Проводка импульсного излучателя

1.9.1 Прокладка проводки импульсного излучателя

Порядок прокладки проводки:

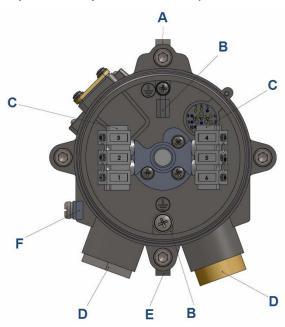


Рисунок 1-6. Излучатель со снятой крышкой

- A. Kopnyc
- В. Внутреннее подключение заземления
- С. Клеммная колодка
- D. Входной кабелепровод
- Е. Удерживающая пластина детектора
- F. Клемма заземления

Порядок действий

- 1. Отверните задний винт и откройте заднюю крышку излучателя.
- Снимите защитную заглушку, установленную на вход кабеля/ кабелепровод излучателя, и протащите провода через вход излучателя.
- 3. Подключите кабель/взрывобезопасный кабелепровод к детектору с использованием взрывобезопасного кабельного ввода 3/4 дюйма 14 NPT или взрывобезопасной муфты M25 × 1,5.
- 4. Подключите провода к требуемым клеммам согласно электрической схеме.
 - См. Проводка к клеммам излучателя и Конфигурации проводки.

- Подсоедините заземляющий провод к винту заземления снаружи детектора.
 - Излучатель должен быть надежно заземлен.
- 6. Установите на место заднюю крышку излучателя и зафиксируйте ее задним винтом.

1.9.2 Проводка к клеммам излучателя

Излучатель имеет шесть клемм для проводки.

Таблица **1-6.** Варианты подключения проводов к импульсному излучателю

Номер клеммы	Функция	
1	Питание +24 В постоянного тока	
2 Возврат – 24 В постоянного тока		
3	Не используется	
4	Не используется	
5	RS-485 (+)	
6	RS-485 (–)	

1.10 Выравнивание детектора

Используйте центрирующее приспособление для выполнения полного выравнивания.

Выравнивание выполняется в два этапа: приблизительное выравнивание и точное выравнивание.

В комплект центрирующего приспособления входит перископ, который состоит из призмы и окуляра и расположен вертикально по отношению к конструкции центрирующего приспособления. Это позволяет посмотреть в противоположное устройство перпендикулярно к выравниванию, если доступ к задней части устройства невозможен. Для оборудования с доступом к задней части установка перископа необязательна. В этом случае можно убрать перископ, вывернув его крепежный винт.

УВЕДОМЛЕНИЕ

Перед установкой центрирующего приспособления убедитесь, что на нем и его кронштейне прицела нет грязи. Это необходимо для надлежащего выравнивания согласно заводской калибровке. Не пытайтесь изменить заводскую калибровку центрирующего приспособления или кронштейна.

Порядок выравнивания устройства (см. Рисунок 1-3 и Рисунок 1-4):

- 1. Проверьте правильность установки детектора и импульсного излучателя. Установка содержит инструкции по установке.
- 2. Снимите передний защитный экран, отвернув 2 невыпадающих винта.
- 3. Установите центрирующее приспособление на переднюю часть детектора/излучателя.
- 4. Зафиксируйте центрирующее приспособление с помощью крепежных винтов.

1.10.1 Выполнение приблизительного выравнивания

Предварительные условия

Для всех регулировочных винтов используйте шестигранную отвертку $\frac{1}{4}$ дюйма.

Порядок действий

- 1. Ослабьте горизонтальные стопорные винты.
- 2. Примерно направьте излучатель на детектор по горизонтали.
- 3. Затяните горизонтальный стопорный винт рядом с пластиной.
- 4. Отверните вертикальные стопорные винты.

▲ ОСТОРОЖНО

Если детектор не будет должным образом поддерживаться при ослаблении стопорных винтов, он может упасть и получить повреждения.

Поддерживайте детектор при ослаблении вертикальных стопорных винтов.

- 5. Примерно направьте излучатель на детектор по вертикали.
- 6. Затяните внешний вертикальный стопорный винт.
- 7. Повторите эту процедуру для детектора.

1.10.2 Выполнение точного выравнивания

См. Рисунок 1-4 информацию о детекторе с установленным центрирующим приспособлением.


Порядок действий

- 1. Снимите передний экран и закрепите центрирующее приспособление на передней части источника, используя три винта.
 - Центрирующее приспособление входит в комплект для ввода в эксплуатацию.
- 2. Направьте источник на детектор в горизонтальном доступе.
- 3. Направьте крестик центрирующего приспособления на центр переднего окна детектора или излучателя.
- 4. Затяните внешний горизонтальный стопорный винт.
- 5. Отрегулируйте направление по вертикальной оси.
- 6. Затяните внутренний вертикальный винт блокировки.
- 7. Убедитесь, что крестик центрирующего приспособления находится в центре окна детектора и излучателя.
- 8. Повторите шаги Шаг 2 Шаг 7, чтобы выровнять детектор.
- 9. Уберите центрирующее приспособление.
- 10. Установите передний защитный экран.

Дальнейшие действия

После того как вы завершили точную настройку источника и детектора, вы можете включить питание.

Рисунок 1-7. Просмотр через центрирующее приспособление

2 Эксплуатация

2.1 Меры предосторожности

После включения детектор почти не требует внимания для нормального функционирования, но необходимо отметить следующее:

▲ ПРЕДУПРЕЖДЕНИЕ

Следуйте инструкциям в данном руководстве, а также см. чертежи и спецификации производителя.

▲ ПРЕДУПРЕЖДЕНИЕ

Не открывайте корпус детектора/излучателя при включенном питании.

▲ ПРЕДУПРЕЖДЕНИЕ

Перед выполнением работ по техобслуживанию выключайте внешние устройства, такие как системы автоматического пожаротушения.

2.2 Включение питания

▲ ПРЕДУПРЕЖДЕНИЕ

Перед эксплуатацией или обслуживанием детектора см. Меры предосторожности.

Порядок действий

- 1. Подключите излучатель и детектор к источнику питания.
- 2. Убедитесь в том, что электромонтажный измеритель 4–20 мА подключен к детектору.
- 3. Включите электропитание системы 18–32 В. Через 60 с амперметр покажет ток 4 мА.

Дальнейшие действия

После включения питания выполните калибровку нуля системы. См. Калибровка нуля.

2.3 Проверка сигнала

Используйте полевой коммуникатор RS-485 или HART[®] для проверки сигнала в соответствии с Таблица 2-1.

Рисунок 2-1. Светодиодная индикация перед калибровкой нуля

- 1. Проверьте индикацию светодиода.
- 2. Используйте Winhost или HART® для проверки параметров установки.

2.3.1 Значения ограничения сигнала

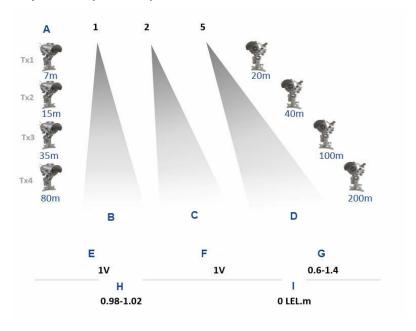
Таблица 2-1. Пределы сервисных каналов

Канал	Расстояние установки		
	Минималь- ное	Среднее	Максималь- ное
Справочные материалы	1 В, усил. 1	1 В, усил. 2	1 В, усил. 5
Сигнал	1 В, усил. 1	1 В, усил. 2	1 В, усил. 5
Отношение	0,6–1,4	0,6-1,4	0,6-1,4
NQRat	0,98-1,02		
Нижний концентрационный предел взрываемости (НКПВ)	0 НКПВм		
Температура	На 25 °C выше комнатной температуры		
Напряжение	32 В пост. тока > V > 18 В пост. тока		

Прим.

Информация по установке относится к установочному расстоянию.

Минималь- Минимальное расстояние, определенное в соответствии **ное** с номером модели.


Среднее Половина максимального расстояния, определенного в

соответствии с номером модели.

Максимальное

Максимальное расстояние, определенное в соответствии с номером модели.

Рисунок 2-2. Пределы сервисных каналов

- А. Максимальное усиление
- В. Минимальный диапазон
- С. Средний диапазон
- D. Максимальный диапазон
- Е. Справочный минимум
- F. Минимальный сигнал
- G. Отношение
- Н. Отношение NQ
- І. НКПВ

2.4 Калибровка нуля

Предварительные условия

Выполняйте калибровку нуля после любой из следующих операций:

- Установка.
- Повторное выравнивание.

- Очистка окна.
- Любое изменение положения детектора или излучателя.

▲ ПРЕДУПРЕЖДЕНИЕ

Калибровка нуля производится только в том случае, если:

Отсутствуют горючие газы.

Между источником и детектором отсутствуют преграды.

Погодные условия не создают помех.

Перед калибровкой нуля точно выровняйте детектор.

Рисунок 2-3. Калибровка нуля с помощью ручного коммуникатора

Рисунок **2-4.** Экраны, отображаемые при калибровке нуля с помощью программного обеспечения **WinHost**®

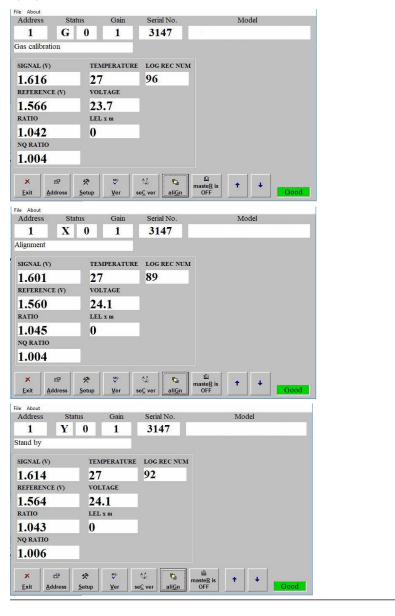
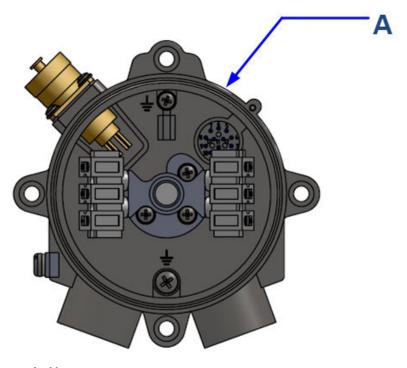



Рисунок 2-5. Магнитный переключатель режима

А. Магнит

Для переключения с каждого положения (Шаг 1–Шаг 3) используйте протокол HART® или RS-485 Winhost или перемещайте магнитный переключатель режима (см. Рисунок 2-5).

Порядок действий

- 1. Переключитесь с режима Normal (Нормальный) на режим Alignment (Выравнивание).
- 2. Переключитесь с режима Alignment (Выравнивание) на режим Standby (Ожидание).
- 3. Переключитесь с режима Standby (Ожидание) на режим Zero Calibration (Калибровка нуля). Теперь на выходе 0–20 мА должен быть 1 мА.
- 4. Подождите до 60 с, пока устройство не переключится в нормальный режим. Теперь задано нормальное показание детектора. На выходе 0–20 мА теперь должно быть 4 мА.

Дальнейшие действия

После завершения калибровки нуля обратитесь к Значения ограничения сигнала, чтобы проверить параметры установки.

2.5 Используйте фильтры проверки для проверки конфигурации

Порядок действий

1. Установите фильтр проверки уровня предупреждения на детектор, как показано.

Фильтры проверки входят в комплект для ввода в эксплуатацию.

- 2. Убедитесь, что показания детектора находятся в диапазоне, указанном в сертификате заводских приемочных испытаний (FAT).
- 3. Повторите Шаг 1 и Шаг 2 с фильтром аварийной сигнализации.
- 4. Удалите все фильтры и подождите от 30 до 60 секунд. Затем убедитесь, что детектор вернулся в нормальное состояние (светодиод [LED] горит зеленым и мигает, а на выходе 4 мА).

3 Сертификаты изделия

Открытый контур Rosemount 935 имеет следующие сертификаты:

- ATEX, IECEx
- FM/FMC
- SIL-2
- Функциональный тест согласно FM6325 и EN60079-20-4

3.1 ATEX u IECEx

Детектор Rosemount 935 имеет следующие сертификаты:

Ex II 2(2) G D

Ex db eb ib [ib Gb] IIB+H₂ T4 Gb

Ex tb [ib Db] IIIC T135 °C Db

Токр. = от -55 °C до +65 °C

3.2 FM/FMC

Система Rosemount 935 имеет сертификат взрывобезопасности FM/FMC:

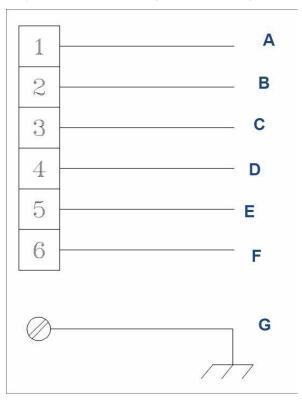
- Класс I, раздел 1, группы B, C и D, T6 –50 °C ≤ T_{окр.} ≤ 65 °C.
- Пыленевозгораемость класс II/III, раздел 1, группы E, F и G.
- Степень защиты от внешних воздействий IP66, IP68, NEMA[®] 250, тип 6P.

3.3 SIL-2

Система Rosemount 935 имеет сертификат TUV о соответствии требованиям SIL-2 по IEC 61508.

Согласно требованиям SIL-2 в качестве условия тревоги можно использовать сигнал тревоги через контур тока 0–20 мА.

Дополнительные сведения и указания по настройке, установке, эксплуатации и обслуживанию см. в разделе «Характеристики SIL-2» и в отчете TUV № 968/EZ619.00/13.


3.4 Сертификация функциональности

Детектор Rosemount 935 прошел функциональные испытания FM6325.

Детектор Rosemount 935 испытан FM в соответствии с EN60079-29-4.

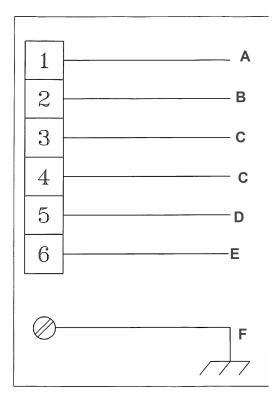

А Конфигурации проводки

Рисунок А-1. Клемма для проводки детектора

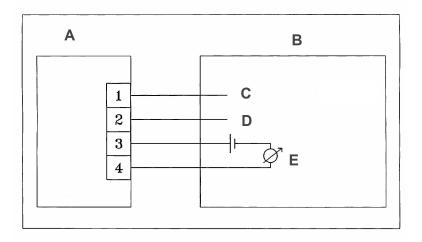

- А. Питание (+)
 - 18–32 B пост. тока
- В. Ответ приложения (–)
- С. 0–20 мА (вход)
- D. 0-20 мA (выход)
- E. RS-485 (+)
- F. RS-485 (-)
- G. Заземление

Рисунок А-2. Клемма для проводки излучателя

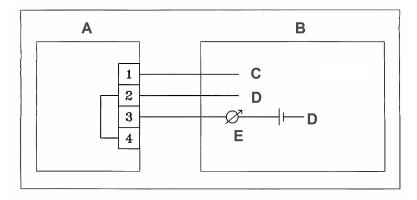

- А. Питание (+) 18–32 В пост. тока
- В. Ответ приложения (–)
- С. Не используется
- D. RS-485 (+)
- E. RS-485 (-)
- F. Заземление

Рисунок А-3. 0-20 мА (приемник), 4 провода

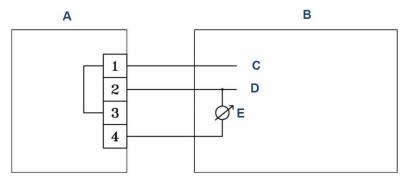

- А. Детектор
- В. Контроллер
- С. Входная мощность 18–32 В пост. тока
- D. Возврат
- E. 0-20 мA, измеритель

Рисунок А-4. 0-20 мА (неизолированный приемник), 3 провода

- А. Детектор
- В. Контроллер
- С. Входная мощность 18–32 В пост. тока
- D. Возврат
- E. 0-20 мA, измеритель

Рисунок А-5. 0-20 мА (излучатель), 3 провода

- А. Детектор
- В. Контроллер
- С. Входная мощность 18–32 В пост. тока
- D. Возврат
- *E.* 0–20 мА, измеритель

A.1 Сеть связи RS-485

При использовании функциональности сети RS-485 детектора Rosemount 935 и дополнительного программного обеспечения можно подключить до 32 детекторов к адресуемой системе с использованием только четырех проводов (два для питания и два для связи).

Использование повторителей позволяет увеличить количество детекторов (32 детектора для каждого повторителя) до 247 с использованием тех же четырех проводов. При использовании сети RS-485 можно считывать состояние каждого детектора (отказ, предупреждение и тревога).

Для получения более подробной информации обращайтесь в компанию Emerson.

Рисунок A-6. Сеть RS-485 для третьего варианта подключения

- А. Контроллер
- В. Первый детектор
- С. Последний детектор
- D. Источник питания
- Е. Компьютерный порт RS-485

В Декларация соответствия

ROSEMOUNT

EU_R421K

Декларация соответствия директивам ЕС

Мы, Rosemount Inc., 6021 Innovation Blvd, Shakopee, MN 55379, США, заявляем под свою исключительную ответственность, что перечисленный ниже продукт соответствует сертификату типовых испытаний ЕС и следующим директивам, применяя перечисленные стандарты.

Детектор горючих газов с открытым оптическим трактом 935

Партия №: <Партия №>		
№ модели: <№ модели:>		
SIRA 16ATEX1224X		
	Ex II 2(2) G D Ex db eb ib (ib Gb] IIB + H2 T4 Gb Ex tb IIIC T135 °C Db Tokp = ot -55 °C дo +65 °C	
Выдано уполномоченным органом:	CSA Group Netherlands B.V. Utrechtseweg 310 (B42), 6812AR ARNHEM, Netherlands 2813 (Нидерланды)	
Контроль качества продукции:	SGS FIMKO OY, P.O. Box 30 (Särkiniementie 3), 00211 Helsinki, Finland (Финляндия) 0598	

Положения директивы		Номер и дата выпуска стандарта
2014/34/EU	Директива ATEX	EN 60079-0:2012+A11:2013, EN 60079-1:2014, EN 60079-7:2015,
		EN 60079-28:2015, EN 60079-11:2012, EN 60079-31:2014
2014/30/EU	Директива по электромагнитной совместимости (EMC)	EN 50270:2015
		EN 61000-6-3:2006+AMD1:2010
2011/65/EU	Директива RoHS	EN50581:2012

Утверждено Дата: 8 января 2021 г. [Signature]

6021 Innovation Blvd, Shakopee, MN 55379, USA (США). Тел.: +1 (866) 347-3427, + 1 (952) 906-8888 | Веб-сайт: www.emerson.com. Электронная почта: Safety.CSC@Emerson.com

Краткое руководство по эксплуатации 00825-0107-4035, Rev. AA Апрель, 2021 г.

Для дополнительной информации: www.emerson.com

© Emerson, 2021 г. Все права защищены.

Положения и условия договора по продаже оборудования Emerson предоставляются по запросу. Логотип Emerson является товарным знаком и знаком обслуживания компании Emerson Electric Co. Rosemount является товарным знаком одной из компаний группы Emerson. Все прочие товарные знаки являются собственностью соответствующих владельцев.

